

ISO 9001:2015 Certified | DST-FIST Supported Institution Recognized under Section 2(f) & 12(B) of the UGC Act, 1956 Vannarpettai, Tirunelveli - 627003, Tamil Nadu

M.E. – VLSI Design

R2019-Curriculum and Syllabi 2021 – PG CHOICE BASED CREDIT SYSTEM AND OBE

VISION OF THE DEPARTMENT

To develop Electronics and Communication Engineers by permeating with proficient morals, to be recognized as an adroit engineer worldwide and to strive endlessly for excellence to meet the confronts of our modern society by equipping them with changing technologies, professionalism, creativity research, employability, analytical, practical skills and to excel as a successful entrepreneur.

MISSION OF THE DEPARTMENT

- To provide excellence through effective and qualitative teaching- learning process that equips the students with adequate knowledge and to transform the students' lives by nurturing the human values to serve as a precious resource for Electronics and Communication Engineering and nation.
- To enhance the problem solving and lifelong learning skills that will enable by edifying the students to pursue higher studies and career in research.
- To create students with effective communication skills, the abilities to lead ethical values in order to fulfill the social needs

Table of Contents

S.No	Contents	Page No
1	Vision And Mission Of Department	1
2	Program Educational Objectives	3
3	Programme Specific Outcomes	3
4	Programme Outcomes	3
5	Mapping With PO Vs PEO, PSO	5
6	Credit Distribution	6
7	Subject List	7
8	Syllabus of individual subjects	11

FRANCIS XAVIER ENGINEERING COLLEGE, TIRUNELVELI DEPARTMENT OF ELECTRONICIS AND COMMUNICATION ENGINEERING 103 G2 Bye Pass Road, Vannarpettai, Tirunelveli, Tamilnadu – 627003 Phone : 0462 – 2502283, 2502157, Fax: 0462 – 2501007 Email :principal@francisxavier.ac.in, Website : www.francisxavier.ac.in

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

PEO 1 – Core Competence: To demonstrate core competence in mathematics, basic sciences and engineering concepts, that apply to VLSI Design engineering knowledge and/or also to pursue advanced study or research.

PEO 2 – Design and Analysis: To demonstrate good skills to comprehend VLSI Design engineering trade-offs, forecast, analyse, design, and synthesize data and technical concepts to create novel solutions for real life problems.

PEO 3 – Develop multi skills & Professionalism: To have a successful career by meeting the demand driven needs of VLSI based industries/ profession, with multi-disciplinary projects, adhering to ethical standards with social responsibility.

PROGRAMME SPECIFIC OUTCOMES (PSOs)

PSO 1: Design, Implement and Test Embedded and VLSI systems using state of the art components and software tools

PSO 2: Design and develop the signal processing and communication systems for the real time application.

PROGRAM OUTCOMES (POs)

Engineering Graduates will be able to:

1. Engineering Knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

2. Problem Analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. Design/Development of Solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

4. Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

6. The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. Environment and Sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. Individual and Team Work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. Project Management and Finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-Long Learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Mapping with PO Vs PEO, PSO

PO	PEO1	PEO2	PEO3	PSO1	PSO2
1		Н		Н	
2		Н		М	
3		L	Н		
4	Н	L			Н
5				Н	
6			L		
7					Н
8	L				Н
9	L			М	
10	М			М	
11	М				Н
12	L	М	Н		

Contribution L: Low / Reasonable M: Medium / Significant H:High / Strong

FRANCIS XAVIER ENGINEERING COLLEGE

M.E VLSI DESIGN REGULATIONS 2019

Choice Based Credit System and Outcome Based Education

S. No	CATEGORY	CREI	DITS PER	R SEME	STER	TOTAL	CREDITS
5.110	CATEGORI	Ι	II	ш	IV	CREDIT	IN %
1	ES	3				3	4%
2	PC	14	9	7		30	41.8%
3	PE	6	12			18	25%
4	EEC		2	7	12	21	29.2%
	TOTAL	23	23	14	12	72	100%

SUMMARY OF CREDIT DISTRIBUTION

Minimum Number of Credits to be Acquired: 72

- ES Engineering Sciences
- PC Professional Core
- PE Professional Elective
- EEC Employability Enhancement Course

FRANCIS XAVIER ENGINEERING COLLEGE

M.E VLSI DESIGN REGULATIONS 2019

Choice Based Credit System and Outcome Based Education

I – IV Semesters Curricula and Syllabi 2021

SEMESTER I

S.No.	Course Code	Course	Category	Contact Periods	L	Т	Р	С
Theor	y Courses							
1	21MA1255	Advanced Mathematics for VLSI	ES	3	2	1	0	3
2	21VL1601	CMOS VLSI Design	PC	3	3	0	0	3
3	21VL1602	Analog and Digital IC Design	PC	3	3	0	0	3
4	21VL1603	Advanced Digital System Design	PC	3	3	0	0	3
5		Professional Elective I	PE	3	3	0	0	3
6		Professional Elective II	PE	3	3	0	0	3
7	21CS1605	Research Methodology for Engineers	PC	3	3	0	0	3
Practi	cal Courses							
1	21VL1611	Advanced Digital System Design Laboratory	PC	4	0	0	4	2
			Total	25	20	1	4	23

SEMESTER II

S.No.	Course Code	Course	Category	Contact Periods	L	Т	Р	С
Theory	v Courses							
1	21VL2601	Low Power VLSI Design	PC	3	3	0	0	3
2		Professional Elective III	PE	3	3	0	0	3
3		Professional Elective IV	PE	3	3	0	0	3
4		Professional Elective V	PE	3	3	0	0	3
5		Professional Elective VI	PE	3	3	0	0	3
Theory	v cum Practi	cal Courses			•			
1	21VL2602	IC Design for Communications	PC	5	3	0	2	4
Practic	al Courses							
1	21VL2611	Analog and Digital IC Design Laboratory	PC	4	0	0	4	2
2	21VL2911	Advanced Design and Analysis Laboratory	EEC	4	0	0	4	2
			Total	28	18	0	10	23
	1			_				

SEMESTER III

S.No.	Course Code	Course	Category	Contact Periods	L	Т	Р	С
Theory	cum Practic	cal Courses						
1	21VL3601	Physical Design of Integrated Circuits	PC	5	3	0	2	4
2	21VL3602	ASIC Design	PC	3	3	0	0	3
Practic	al Courses							
1	21VL3911	Term Paper Writing	EEC	2	0	0	2	1
2	21VL3912	Dissertation I	EEC	12	0	0	12	6
			Total	22	6	0	16	14

SEMESTER IV

S.No.	Course Code	Course	Category	Contact Periods	L	Т	Р	С
Practic	al Courses							
1	21VL4911	Dissertation II	EEC	24	0	0	24	12
			Total	24	0	0	24	12

Minimum Number of Credits to be Acquired: 72

L - 1	Lecture	T-Tutorial	P- Practical	H- Hours	C- Credit
-------	---------	------------	--------------	----------	-----------

List of Engineering Science Courses

S.No	Course Code	Course Name	Category	Contact Periods	L	Т	Р	С
Theory	Courses							
1	21MA1255	Advanced Mathematics for VLSI	ES	3	2	1	0	3

List of Employability Enhancement Courses

S.No	Course Code	Course Name	Category	Contact Periods	L	Т	Р	C
Practic	al Courses							
1	21VL2911	Design and Analysis Laboratory	EEC	4	0	0	4	2
2	21VL3911	Term Paper Writing	EEC	2	0	0	2	1
3	21VL3912	Dissertation I	EEC	12	0	0	12	6
4	21VL4911	Dissertation II	EEC	24	0	0	24	12

List of Professional Electives Courses

S.No.	Code No.	Course	Semester	L	Т	Р	С	Stream/
	Coue No.	Course	Semester	L	I	r	C	Domain
Profess	sional Elective	eI		1		1		
1	21VL1701	Nano-Electronic Devices and Materials	Ι	3	0	0	3	Nano Technology
2	21VL1702	MEMS and NEMS	Ι	3	0	0	3	Nano Technology
3	21VL1703	Flexible Electronics	Ι	3	0	0	3	VLSI
4	21VL1704	Reliability of Devices and Circuits	Ι	3	0	0	3	Electronic Devices
Profess	sional Electiv	e II	·					
1	21VL1705	Graph Theory and Algorithms for CAD	Ι	3	0	0	3	CAD
2	21VL1706	Communication Buses and Interfaces	Ι	3	0	0	3	Communication
3	21VL1707	Mixed Signal Design	Ι	3	0	0	3	VLSI
4	21VL1708	VLSI Architectural Design and Implementation	Ι	3	0	0	3	VLSI
Profess	sional Electiv	e III						
1	21VL2701	VLSI Signal Processing	II	3	0	0	3	VLSI
2	21VL2702	Scripting Languages for VLSI	II	3	0	0	3	VLSI
3	21VL2703	Advanced Memory Technologies	II	3	0	0	3	VLSI
4	21VL2704	System on Chip Design	II	3	0	0	3	VLSI

S.No.	Code No.	Course	Semester	L	Т	Р	С	Stream/ Domain
Profes	sional Electiv	e IV	I	I	I	1		
1	21VL2705	VLSI Test and Testability	II	3	0	0	3	VLSI
2	21VL2706	VLSI Digital Design Verification	II	3	0	0	3	VLSI
3	21VL2707	Modern Computer Architecture	II	3	0	0	3	Computer Science
4	21VL2708	Electronic Design Automation	II	3	0	0	3	Electronics
Profes	sional Electiv	e V						
1	21VL2709	Modelling and Simulation of Solid-State Circuits	II	3	0	0	3	VLSI
2	21VL2710	Internet of Things	II	3	0	0	3	Embedded
3	21VL2711	Hardware/Software Co-design	II	3	0	0	3	Embedded
4	21VL2712	3D IC Design and Modeling	II	3	0	0	3	VLSI
Profes	sional Electiv	e VI		•	•	•		
1	21VL2713	Embedded System and RTOS	II	3	0	0	3	Embedded
2	21VL2714	VLSI for Biomedical Applications	II	3	0	0	3	VLSI
3	21VL2715	Advanced Microprocessors and Architectures	II	3	0	0	3	Embedded

SEMESTER I

S.No.	Course Code	Course	Contact Periods	L	Т	Р	C	
Theor	ry Courses							
1	21MA1255	Advanced Mathematics for VLSI	ES	3	2	1	0	3
2	21VL1601	CMOS VLSI Design	PC	3	3	0	0	3
3	21VL1602	Analog and Digital IC Design	PC	3	3	0	0	3
4	21VL1603	Advanced Digital System Design	PC	3	3	0	0	3
5		Professional Elective I	PE	3	3	0	0	3
6		Professional Elective II	PE	3	3	0	0	3
7	21CS1605	Research Methodology for Engineers	PC	3	3	0	0	3
Practi	ical Courses							
1	21VL1611	Advanced Digital System Design Laboratory	PC	4	0	0	4	2
		Zucorulory	Total	25	20	1	4	23
211	MA1255	ADVANCED MATHEMATICS	FOR VLSI		L	Τ	P	C
							Δ	2
Prer	equisites for		to study the			1	0	3
٠	The pre-rec mathematic	uisite knowledge required by the Students	s to study this				-	
• Obje 1. 2.	The pre-rec mathematic ctives To demons the statistic To identify tools To discuss To know th	uisite knowledge required by the Students	athematics an applicable in a electrical en adom variab	s Course is d extensive electronics gineering t	basi e exp s eng	c kn	owled	ge in th
• Obje 1. 2. 3. 4. 5.	The pre-rec mathematic ctives To demons the statistic To identify tools To discuss To know th	uisite knowledge required by the Students es. trate various analytical skills in applied ma s of problem solving and logical thinking , formulate, abstract and solve problems ir the linear algebra and linear programming ne importance of the probability and rar	athematics an applicable in a electrical en adom variab ag Models	s Course is d extensive electronics gineering t	basi e exp s eng	c kn perie ineer ; mat	owled	ge in th
• Obje 1. 2. 3. 4. 5. U Vector Eigen	The pre-rec mathematic ctives To demons the statistic To identify tools To discuss To know th To analyse JNIT I	puisite knowledge required by the Students es. trate various analytical skills in applied mass of problem solving and logical thinking , formulate, abstract and solve problems in the linear algebra and linear programming ne importance of the probability and rar the dynamic programming and queuein LINEAR ALGEBRA rms-Inner Products-Eigen Values using tra- nonical Forms-Single value decomposition	athematics an applicable in a electrical en adom variab ang Models	s Course is d extensive electronics gineering t les -QR Factor	basi e exp s eng ising	c kn perie ineer ; mat	owled nce wr ting. hema 9 Genera	ge in th ical lized
• Obje 1. 2. 3. 4. 5. Vecto Eigen Squar	The pre-rec mathematic ctives To demons the statistic To identify tools To discuss To know th To analyse JNIT I or Spaces-Nor Vectors-Car	puisite knowledge required by the Students es. trate various analytical skills in applied mass of problem solving and logical thinking , formulate, abstract and solve problems in the linear algebra and linear programming ne importance of the probability and rar the dynamic programming and queuein LINEAR ALGEBRA rms-Inner Products-Eigen Values using tra- nonical Forms-Single value decomposition	athematics an applicable in a electrical en adom variab ang Models ansformation on and Appl	s Course is d extensive electronics gineering t les -QR Factor	basi e exp s eng ising	c kn perie inee mat	owled nce wr ting. hema 9 Genera	ge in th ical lized
• Obje 1. 2. 3. 4. 5. Vecto Eigen Squar U	The pre-recommathematic mathematic ctives To demons the statistic To identify tools To discuss To know th To analyse JNIT I or Spaces-Nor Vectors-Car re approximat	puisite knowledge required by the Students es. trate various analytical skills in applied ma s of problem solving and logical thinking , formulate, abstract and solve problems in the linear algebra and linear programming ne importance of the probability and rar the dynamic programming and queuein LINEAR ALGEBRA rms-Inner Products-Eigen Values using tra nonical Forms-Single value decomposition	athematics an applicable in a electrical en adom variab ang Models ansformation on and Appl	s Course is ad extensive electronics agineering to les -QR Factor lications-Ps	basid e exp s eng using	c kn perie inee ; mat	owled nce witting. hema 9 Genera verse-2 9	ge in th ical lized Least

		robability function- Two dimension		
distribution – M Regression curv	-	nal distributions- Function of two di	imension	al Random variables-
UNIT IV	DY	NAMIC PROGRAMMING		9
		optimality- Forward and backward re	ecursion-	Applications of
Dynamic progra	mming- Problem of c	limensionality		
UNIT V		QUEUEING MODELS		9
-	- Markovian queues	- Single and Multi -server models-	Little's	formula Steady state
analysis				
		Total P	Periods	45
	sessment Methods			
	sessment Test	Formative Assessment Test		mester Exams
(30 Mar 1. Descript	tion Questions	(10 Marks) 1. Assignment	(60 Ma 1.	Description
-	ve Multiple Choice	2. Online Quizzes		Questions
Question	-	3. Problem Solving	2.	Formative Multiple
		Activities		Choice Questions
Outcomes				
		he students will be able to:		furgy logic
		ts, knowledge representation using fund and fuzzy quantifiers and applications	•	
			•	C
CO255. 2	Apply various metho	ds in matrix theory to solve system o	ot linear e	equations.
		ability and moments, standard distrib ariables and functions of a random v		f discrete and
		inciple of optimality and sub-optimiz dure of dynamic programming	ation, for	rmulation and
	Exposing the basic cl analyzing queuing m	haracteristic features of a queuing system odels.	stem and	acquire skills in
Text Books				
	r and Yuan, B., Fuzzy	v sets and fuzzy logic, Theory and ap	plication	s, Prentice Hall of
India Pvt. Ltd	•		•	
		ematical methods and algorithms for s	sional nr	Dressing Pearson
	-	marcar memous and argorithms for s	signai pro	Jeessing, 1 carson
Education, 20				
Reference Boo			7.1	Edition Desti
	-	's Probability and Statistics for Engin	ieers, 7th	Edition, Prentice –
Hall of India,	Private Ltd., New De	elhi (2007).		
2.Taha, H.A., O	perations Research, A	An introduction, 7thedition, Pearson e	education	editions, Asia, New
Delhi, 2002.				
3. Donald Gross	and Carl M. Harris, l	Fundamentals of Queuing theory, 2nd	dedition.	John Wiley and
Sons, New Y				
	0111 (1703)			

21VL1601		CMOS VLSI DESIGN		L	Τ	Р	C					
			-	3	0	0	3					
Prerequisites f	or the course											
• The pre-r	equisite knowledge r	equired by the Students to study th	is Course i	s bas	ic kn	owled	lge in					
Digital D	esign and Electron D	evices.										
Objectives												
		digital integrated circuits										
	-	cess in CMOS technologies.										
•	•	CMOS Design VLSI circuits.										
-	n and analyze digital											
5. To Descri	ibe the memory proce	ess for VLSI circuits										
UNIT I		S TRANSISTOR THEORY				9						
The MOS(FET)	Transistor, n MOS/p	MOS transistor, threshold voltag	ge equation	i, boc	ly ef	fect, L	Long					
		cteristics,Non ideal I-V Effects, DC				stics- S	Stati					
CMOS Inverter DC Characteristics- Beta Ratio Effects- Noise Margin, CMOS technologies												
UNIT II		GIES, CIRCUIT CHARACTERIZA	TION &			9						
11 / 11 /		DRMANCE ESTIMATION	CMOG			1						
-	-	Layout design rules, Stick diagram	i, CMOS p	roces	s en	nancei	men					
		Deless setting the trained offer				n						
		Delay estimation, Logical effor in, Reliability, scaling of MOS circ		sisto	r siz	ing, P						
	connect design margi			sisto	siz	ing, P 9						
dissipation, Inter-	connect design marg	in, Reliability, scaling of MOS circ	uits			9	owe					
dissipation, Inter- UNIT III Static CMOS E	connect design margi STATIC Design- Complemen	in, Reliability, scaling of MOS circ & DYNAMIC CMOS DESIGN	uits eudo NM	OS,	DCV	9 /SL)-	Powe					
dissipation, Interd UNIT III Static CMOS E Transistor Logic	connect design marging STATIC Complement - Transmission gate	in, Reliability, scaling of MOS circ & DYNAMIC CMOS DESIGN tary CMOS- Ratioed Logic (Ps	uits eudo NM	OS,	DCV	9 /SL)-	Powe					
dissipation, Interd UNIT III Static CMOS E Transistor Logic	connect design marging STATIC Consign- Complement - Transmission gate Issues in Dynamic Design- Design- Complement - Transmission gate Issues in Dynamic Design- Desig	in, Reliability, scaling of MOS circ & DYNAMIC CMOS DESIGN tary CMOS- Ratioed Logic (Ps logic - Dynamic CMOS Design, S	uits eudo NM	OS,	DCV	9 /SL)-	Powe					
dissipation, Interd UNIT III Static CMOS E Transistor Logic Dynamic Logic, I UNIT IV	Connect design marging STATIC Design- Complemen - Transmission gate Issues in Dynamic Do DI	in, Reliability, scaling of MOS circ & DYNAMIC CMOS DESIGN tary CMOS- Ratioed Logic (Ps logic - Dynamic CMOS Design, S esign, Cascading Dynamic Gates.	uits eudo NM Speed and I	OS, Powe	DCV er Dis	9 /SL)- ssipati 9	Powe Pas on c					
dissipation, Interd UNIT III Static CMOS E Transistor Logic Dynamic Logic, I UNIT IV Sequencing Station	Connect design marging STATIC Design- Complemen - Transmission gate Issues in Dynamic D D C Circuits-Static Late	in, Reliability, scaling of MOS circ & DYNAMIC CMOS DESIGN tary CMOS- Ratioed Logic (Ps logic - Dynamic CMOS Design, S esign, Cascading Dynamic Gates.	uits eudo NM Speed and E hes and Re	OS, Powe	DCV er Dis rs - F	9 /SL)- ssipati 9 Pulse F	Powe Pas on c Base					
dissipation, Interd UNIT III Static CMOS E Transistor Logic Dynamic Logic, I UNIT IV Sequencing Station	Connect design marging STATIC Design- Complemen - Transmission gate Issues in Dynamic D D C Circuits-Static Late	in, Reliability, scaling of MOS circ & DYNAMIC CMOS DESIGN tary CMOS- Ratioed Logic (Ps logic - Dynamic CMOS Design, S esign, Cascading Dynamic Gates. IGITAL CMOS DESIGN ches and Registers - Dynamic Late	uits eudo NM Speed and E hes and Re	OS, Powe	DCV er Dis rs - F	9 /SL)- ssipati 9 Pulse F	Powe Pas on c Base					
dissipation, Inter- UNIT III Static CMOS E Transistor Logic Dynamic Logic, I UNIT IV Sequencing Statio Registers - Sense	Connect design marging STATIC Design- Complemen - Transmission gate Issues in Dynamic D D C Circuits-Static Late	in, Reliability, scaling of MOS circ & DYNAMIC CMOS DESIGN tary CMOS- Ratioed Logic (Ps logic - Dynamic CMOS Design, S esign, Cascading Dynamic Gates. IGITAL CMOS DESIGN ches and Registers - Dynamic Late	uits eudo NM Speed and E hes and Re	OS, Powe	DCV er Dis rs - F	9 /SL)- ssipati 9 Pulse F	Powe Pas on c Base					
dissipation, Interd UNIT III Static CMOS E Transistor Logic Dynamic Logic, I UNIT IV Sequencing Static Registers - Sense and Arbiters UNIT V	Connect design marging STATIC Design- Complemen - Transmission gate Issues in Dynamic Do DI c Circuits-Static Lato e Amplifier based reg	in, Reliability, scaling of MOS circ & DYNAMIC CMOS DESIGN tary CMOS- Ratioed Logic (Ps logic - Dynamic CMOS Design, S esign, Cascading Dynamic Gates. IGITAL CMOS DESIGN thes and Registers - Dynamic Latch gisters -Latch vs. Register based pip	uits eudo NM Speed and E hes and Re peline struc	OS, Powe	DCV er Dis rs - F s, Syn	9 /SL)- ssipation 9 Pulse E nchror 9	Powee Passon c Base					
dissipation, Interd UNIT III Static CMOS E Transistor Logic, I UNIT IV Sequencing Static Registers - Sense and Arbiters UNIT V Semiconductor M	Connect design marging STATIC Design- Complemen - Transmission gate Issues in Dynamic Do DI c Circuits-Static Lato e Amplifier based reg	in, Reliability, scaling of MOS circ & DYNAMIC CMOS DESIGN tary CMOS- Ratioed Logic (Ps logic - Dynamic CMOS Design, S esign, Cascading Dynamic Gates. IGITAL CMOS DESIGN thes and Registers - Dynamic Latch gisters -Latch vs. Register based pip MEMORY ARRAY luction, The Memory Core, Memor	uits eudo NM Speed and E hes and Re peline struc	OS, Powe	DCV er Dis rs - F s, Syn	9 /SL)- ssipation 9 Pulse E nchror 9	Powe Pas on c Base					
dissipation, Interd UNIT III Static CMOS E Transistor Logic, I UNIT IV Sequencing Static Registers - Sense and Arbiters UNIT V Semiconductor M	connect design marging STATIC Design- Complemen - Transmission gate Issues in Dynamic De Di c Circuits-Static Late Amplifier based reg	in, Reliability, scaling of MOS circ & DYNAMIC CMOS DESIGN tary CMOS- Ratioed Logic (Ps logic - Dynamic CMOS Design, S esign, Cascading Dynamic Gates. IGITAL CMOS DESIGN thes and Registers - Dynamic Latch gisters -Latch vs. Register based pip MEMORY ARRAY luction, The Memory Core, Memor Memory Design	uits eudo NM Speed and E hes and Re peline struc	OS, Powe	DCV er Dis rs - H s, Syn cuitr	9 /SL)- ssipation 9 Pulse E nchror 9	Powe Pas on c Base					
dissipation, Interd UNIT III Static CMOS E Transistor Logic Dynamic Logic, I UNIT IV Sequencing Static Registers - Sense and Arbiters UNIT V Semiconductor M Reliability and Y	connect design marging STATIC Design- Complemen - Transmission gate Issues in Dynamic De Di c Circuits-Static Late Amplifier based reg	in, Reliability, scaling of MOS circ & DYNAMIC CMOS DESIGN tary CMOS- Ratioed Logic (Ps logic - Dynamic CMOS Design, S esign, Cascading Dynamic Gates. IGITAL CMOS DESIGN thes and Registers - Dynamic Latch gisters -Latch vs. Register based pip MEMORY ARRAY luction, The Memory Core, Memor Memory Design	uits eudo NM Speed and E hes and Re peline struc y Periphera	OS, Powe	DCV er Dis rs - H s, Syn cuitr	9 /SL)- ssipation 9 Pulse E nchror 9 y, Mer	Powe Passon of Comparison of C					
dissipation, Interd UNIT III Static CMOS E Transistor Logic, I UNIT IV Sequencing Static Registers - Sense and Arbiters UNIT V Semiconductor M Reliability and Y Suggestive Asso	STATIC STATIC Design- Complemen - Transmission gate Issues in Dynamic D DI c Circuits-Static Late Amplifier based reg Memories—An Introc Tield, Case Studies in essment Methods Sessment Test	in, Reliability, scaling of MOS circ & DYNAMIC CMOS DESIGN tary CMOS- Ratioed Logic (Ps logic - Dynamic CMOS Design , S esign, Cascading Dynamic Gates. GITAL CMOS DESIGN ches and Registers - Dynamic Latch gisters -Latch vs. Register based pip MEMORY ARRAY luction, The Memory Core, Memor Memory Design Total Formative Assessment Test	uits eudo NM ⁴ Speed and T Speed and T hes and Re peline struc y Periphera Periods End Ser	OS, Powe gister ctures al Cir nest	DCV er Dis rs - F s, Syn cuitr	9 /SL)- ssipation 9 Pulse E nchror 9 y, Mer 45	Powe Passon of Comparison of C					
dissipation, Interd UNIT III Static CMOS E Transistor Logic Dynamic Logic, I UNIT IV Sequencing Static Registers - Sense and Arbiters UNIT V Semiconductor M Reliability and Y Suggestive Asso (30 Mark	STATIC STATIC Design- Complemen - Transmission gate Issues in Dynamic Do DI c Circuits-Static Lato e Amplifier based reg Memories—An Introc field, Case Studies in essment Methods sessment Test (s)	in, Reliability, scaling of MOS circ & DYNAMIC CMOS DESIGN tary CMOS- Ratioed Logic (Ps logic - Dynamic CMOS Design , S esign, Cascading Dynamic Gates. GITAL CMOS DESIGN ches and Registers - Dynamic Latc gisters -Latch vs. Register based pip MEMORY ARRAY luction, The Memory Core, Memor Memory Design Total Formative Assessment Test (10 Marks)	uits eudo NM Speed and E bes and Re peline struc y Periphera Periods End Ser (60 Mar	OS, Powe gister ctures al Cir nest	DCV er Dis rs - F s, Syn cuitr er Ex	9 /SL)- ssipation 9 Pulse E nchror 9 y, Mer 45 xams	Powe Passon of Comparison of C					
dissipation, Interd UNIT III Static CMOS E Transistor Logic Dynamic Logic, I UNIT IV Sequencing Static Registers - Sense and Arbiters UNIT V Semiconductor N Reliability and Y Suggestive Asso (30 Mark 1. Descripti	STATIC STATIC Design- Complemen - Transmission gate Issues in Dynamic D D c Circuits-Static Lato e Amplifier based reg Memories—An Introc field, Case Studies in essment Methods sessment Test (s) ion Questions	in, Reliability, scaling of MOS circ & DYNAMIC CMOS DESIGN tary CMOS- Ratioed Logic (Ps logic - Dynamic CMOS Design , S esign, Cascading Dynamic Gates. IGITAL CMOS DESIGN ches and Registers - Dynamic Latc gisters -Latch vs. Register based pi MEMORY ARRAY luction, The Memory Core, Memor Memory Design Total Formative Assessment Test (10 Marks) 1. Assignment	uits eudo NM ⁴ Speed and I Speed and I hes and Re peline struc y Periphera Periods End Ser (60 Mai 1. I	OS, Powe gister ctures al Cir nest rks) Descr	DCV er Dis rs - F s, Syn cuitr er Ex iptic	9 /SL)- ssipation Pulse E nchror 9 y, Mer 45 45 kams	Powee Passon c Base					
dissipation, Interd UNIT III Static CMOS E Transistor Logic, I UNIT IV Sequencing Static Registers - Sense and Arbiters UNIT V Semiconductor M Reliability and Y Suggestive Asso (30 Mark 1. Descripti 2. Formativ	STATIC STATIC Design- Complemen - Transmission gate Issues in Dynamic D D C Circuits-Static Lato - Amplifier based reg Memories—An Introc Tield, Case Studies in essment Methods sessment Test a) on Questions re Multiple Choice	in, Reliability, scaling of MOS circ & DYNAMIC CMOS DESIGN tary CMOS- Ratioed Logic (Ps logic - Dynamic CMOS Design , S esign, Cascading Dynamic Gates. GITAL CMOS DESIGN ches and Registers - Dynamic Latch gisters -Latch vs. Register based pip MEMORY ARRAY luction, The Memory Core, Memor Memory Design Total Formative Assessment Test (10 Marks) 1. Assignment 2. Online Quizzes	uits eudo NM ⁴ Speed and 1 Speed and 1 hes and Re peline struc y Periphera Periods End Ser (60 Mar 1. [(0)	OS, Powe gister ctures al Cir nest rks) Descr Juest	DCV er Dis rs - H s, Syn cuitr cuitr er Ex iptic ions	9 /SL)- ssipation 9 Pulse E nchror 9 y, Mer 45 xams	Powee Passon of Common					
dissipation, Interd UNIT III Static CMOS E Transistor Logic Dynamic Logic, I UNIT IV Sequencing Static Registers - Sense and Arbiters UNIT V Semiconductor N Reliability and Y Suggestive Asso (30 Mark 1. Descripti	STATIC STATIC Design- Complemen - Transmission gate Issues in Dynamic D D C Circuits-Static Lato - Amplifier based reg Memories—An Introc Tield, Case Studies in essment Methods sessment Test a) on Questions re Multiple Choice	in, Reliability, scaling of MOS circ & DYNAMIC CMOS DESIGN tary CMOS- Ratioed Logic (Ps logic - Dynamic CMOS Design , S esign, Cascading Dynamic Gates. IGITAL CMOS DESIGN ches and Registers - Dynamic Latc gisters -Latch vs. Register based pi MEMORY ARRAY luction, The Memory Core, Memor Memory Design Total Formative Assessment Test (10 Marks) 1. Assignment	uits eudo NMe Speed and E hes and Re peline struc y Periphera Periods End Ser (60 Mai 1. [(2. F	OS, Powe egister ctures al Cir al Cir nest rks) Descr Quest Form	DCV er Dis rs - H s, Syn cuitr cuitr er Ex iptic ions ative	9 /SL)- ssipation Pulse E nchror 9 y, Mer 45 45 kams	Power Passon of Common Base nizer mory					

Outcomes

Upon completion of the course, the students will be able to:

- CO601.1 Describe basics of CMOS digital integrated circuits
- CO601. 2 Discuss the fabrication process in CMOS technologies.
- CO601.3 Analyze Static & Dynamic CMOS Design VLSI circuits.
- CO601.4 Design and analyze digital CMOS circuits.
- CO601.5 Describe the memory process for VLSI circuits

Text Books

- 1. CMOS VLSI Design-A Circuits and Systems Perspective, Fourth Edition, Neil H. E. Weste, David Money Harris, 2011
- 2. Digital Integrated Circuits A Design Perspective-Jan M. Rabaey, Anantha Chandrakasan, and Borivoje Nikolic

Reference Books

- 1. Wayne Wolf, "Modern VLSI Design: System on Silicon", 3rd Edition, PHI, 2008.
- 2. Douglas A Pucknell, Kamran Eshraghian, "Basic VLSI Design", PHI, 3rd Edition, 2009.
- 3. Sung Mo Kang, Yosuf Leblebici, "CMOS Digital Integrated Circuits: Analysis and Design", Tata McGraw-Hill, 3rd Edition, 2003.

Web Resources

- 1. <u>http://www.cmosvlsi.com/</u>
- 2. <u>https://www.pearson.com/us/higher-education/program/Weste-CMOS-VLSI-Design-A-</u> <u>Circuits-and-Systems-Perspective-4th-Edition/PGM289886.html</u>
- 3. <u>https://onlinecourses.nptel.ac.in/noc20_ee29/preview</u>

CO Vs PO Mapping and CO Vs PSO Mapping

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
1	2		1												
2	2	3											2		
3	3			1										2	
4	2	2											3		
5	1		2												

$1 \rightarrow Low 2 \rightarrow Medium 3 \rightarrow High$

21VL1602	ANALOG AND DIGITAL IC DESIGN	L	Т	Р	C
		3	0	0	3
Prerequisites f	or the course	•			•

• The pre-requisite knowledge required by the Students to study this Course is basic knowledge in Electronic circuits, digital circuits and VLSI Design.

Objectives

- 1. To study MOS devices modelling and scaling effects.
- 2. To familiarize the design of single stage and multistage MOS amplifier.
- 3. This course deals comprehensively with all aspects of transistor level design of all the digital building blocks common to all CMOS microprocessors, DPSs, network processors, digital backend of all wireless systems etc.
- 4. The focus will be on the transistor level design and will address all important issues related to size, speed and power consumption
- 5. To analyse the sequential logic circuits

UNIT I MOSFET METRICS 9 Simple long channel MOSFET theory -SPICE Models -Technology trend, Need for Analog design -Sub-micron transistor theory, Short channel effects, Narrow width effect, Drain induced barrier lowering, Sub-threshold conduction, Reliability, Digital metrics, Analog metrics, Small signal parameters, Unity Gain Frequency, Miller"s approximation

SINGLE STAGE AND TWO STAGE AMPLIFIERS UNIT II

Single Stage Amplifiers -Common source amplifier with resistive load, diode load, constant current load, Source degeneration Source follower, Input and output impedance, Common gate amplifier -Differential Amplifiers -differential and common mode response, Input swing, gain, diode load and constant current load -Basic Two Stage Amplifier, Cut-off frequency, poles and zeros 9

9

9

UNIT III CURRENT MIRRORS AND REFERENCE CIRCUITS

Cascode, Negative feedback, Wilson, Regulated cascode, Bandgap voltage reference, Constant Gm biasing, supply and temperature independent reference, curvature compensation, trimming, Effect of transistor mismatch in analog design

UNIT IV	COMBINATIONAL LOGIC CIRCUITS	9

Propagation Delays, Stick diagram, Layout diagrams, Examples of combinational logic design, Elmore"s constant, Dynamic Logic Gates, PassTransistor Logic, Power Dissipation, Low Power Design principles.

UNIT V

SEQUENTIAL LOGIC CIRCUITS

Static Latches and Registers, Dynamic Latches and Registers, Timing Issues, Pipelines, Pulse and sense amplifier based Registers, Non bistable Sequential Circuits.

	Total	Periods 45
Suggestive Assessment Methods		
Continuous Assessment Test	Formative Assessment Test	End Semester Exams
(30 Marks)	(10 Marks)	(60 Marks)
1. Description Questions	1. Assignment	1. Description
2. Formative Multiple Choice	2. Online Quizzes	Questions
Questions	3. Problem Solving	2. Formative Multiple
	Activities	Choice Questions
Outcomes		

Upon completion of the course, the students will be able to:

- Design MOS single stage, multistage amplifiers. CO602.1
- CO602.2 Analyze Stability in MOS amplifiers.
- CO602.3 Carry out transistor level design of the most important building blocks used in digital CMOS VLSI circuits.
- Discuss design methodology of arithmetic building block. CO602.4

CO602. 5 Analyze tradeoffs of the various circuit choices for each of the building block.

Text Books

- 1. Behzad Razavi, "Design of Analog CMOS Integrated Circuits", McGraw Hill, 2000
- 2. Jan Rabaey, Anantha Chandrakasan, B Nikolic, "Digital Integrated Circuits: A Design Perspective". Second Edition, Feb 2003, Prentice Hall of India

Reference Books

1. N.Weste, K. Eshraghian, "Principles of CMOS VLSI Design". Second Edition, 1993 Addision Wesley.

2.Philip E.Allen, "CMOS Analog Circuit Design", Oxford University Press, 2013

3.Paul R.Gray, "Analysis and Design of Analog Integrated Circuits", Wiley Student edition, 5th edition, 2009.

4.R.Jacob Baker, "CMOS: Circuit Design, Layout, and Simulation", Wiley Student Edition, 2009

Web Resources

- 1. https://nptel.ac.in/
- 2. https://nptel.ac.in/courses/117/106/117106030/
- 3. https://onlinecourses.nptel.ac.in/noc20_ee05/preview

CO Vs PO Mapping and CO Vs PSO Mapping

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
1	3			2											
2	3	2											3		
3	3	2													
4	3												2		
5	3	2												1	
6	1			2								3			

$1 \rightarrow Low 2 \rightarrow Medium 3 \rightarrow High$

21VL1603	
	ADVANCED DIGITAL SYSTEM DESIGN

L T P C 3 0 0 3

Prerequisites for the course

• Digital Electronics.

Objectives

- To get an idea about designing complex, high speed digital systems and how to implement such design.
- To understand the mapping algorithms into architectures
- To analyse the combinational network delay

e	he sequencing stat e data path and arr			
UNIT I	MAPPING AL	GORITHMS INTO ARCHITECT	TURES	9
Data path synthesis	s, control structure	s, critical path and worst case timing	ganalysis.	FSM and Hazards.
UNIT II	COMBIN	NATIONAL NETWORK DELAY		9
Power and energy for clocking. Perfo	-	ombinational logic circuit. Sequenti	al machin	e design styles. Rule
UNIT III	SEQU	JENCING STATIC CIRCUITS		9
Circuit design of circuits. Synchroni		ops. Static sequencing element met	hodology.	Sequencing dynami
UNIT IV	DATA PA	ATH AND ARRAY SUBSYSTEM	S	9
		s, counters, coding, multiplication addressable memory	and divis	ion. SRAM, DRAM
UNIT V		ONFIGURABLE COMPUTING		9
-	-	ures, Configuration architectures Sin onfigurable, Block Configurable, Par	allel proc	essing.
<u> </u>		Total	Periods	45
Suggestive Asses				
Continuous Asse (30 Marks)		Formative Assessment Test (10 Marks)	end Sei (60 Ma	nester Exams rks)
 Descriptio Formative Questions 	n Questions Multiple Choice	 Assignment Online Quizzes Problem Solving Activities 	(2. H	Description Questions Formative Multiple Choice Questions
Outcomes			1	
Upon completion	n of the course, t	he students will be able to:		
		gorithms into architectures.		
		delays in combinational circuit and i	ts optimiz	ation methods
		esign of latches and flip-flops.	_	
		onal and sequential circuits of medi	um compl	exity that is based
		ammable logic devices. nced topics such as reconfigurable c	omputing	nontially
		line reconfigurable architectures and		
Text Books				
1. W.Wolf, "I	5	em Design", Pearson, 2004.		
		OS VLSI Design (4th edition)", Pea		
	Dallan "Daaan	figurable computing: the theory	and prac	tice of FPGA-base
3. S.Hauck&A	n", Elsevier, 2008.			

- 1. F.P. Prosser & D. E. Winkel, "Art of Digital Design", 1987.
- 2. R.F.Tinde, "Engineering Digital Design", (2nd edition), Academic Press, 2000.
- 3. C. Bobda, "Introduction to reconfigurable computing", Springer, 2007.
- 4. M.Gokhale & P.S.Graham, "Reconfigurable computing: accelerating computation with field-programmable gate arrays", Springer, 2005.
- 5. C.Roth," Fundamentals of Digital Logic Design", Jaico Publishers, 5th edition., 2009.

Web Resources

- 1. https://www.coursera.org/learn/digital-systems
- 2. <u>https://nptel.ac.in/courses/108/106/108106177/</u>
- 3. <u>https://youtu.be/M0mx8S05v60</u>
- 4. <u>https://youtu.be/vsoYlH1_hbc</u>
- 5. https://www.udemy.com/course/learn-digital-system-design-module-1-from-basics/

CO Vs PO Mapping and CO Vs PSO Mapping

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
1	3	3	3	3	3						2	2		1	
2	3	3	3	3	3						2	2	2		
3	3	3	3	3	3						2	2			
4	3	3	3	3	3						2	2	2		
5	3	3	3	3	2						2	2	1		

$1 \rightarrow Low 2 \rightarrow Medium 3 \rightarrow High$

21CS1605	RESEARCH METHODOLOGY FOR ENGINEERS	L	Т	Р	С
21001002	KESEARCH WETHODOLOGI FOR ENGINEERS	3	0	0	3
D					

Prerequisites for the course

NIL

Objectives

- 1. To understand some basic concepts of engineering research and its methodologies.
- 2. To identify various sources of information for literature review.
- 3. To familiarize the various procedures for analysis and optimization of research techniques
- 4. To understand report writing and presentation skills.
- 5. To understand about intellectual property rights

UNIT I	INTRODUCTION TO RESEARCH METHODOLOGY	9
• -	of research-research process, engineering research- ob tion, formulating a research problem	jectives, motivation,
UNIT II	LITERATURE REVIEW	9

	ening College Depu		neulum	
Ũ	••••	sis and Synthesis, Types of Publica		0 1
		ords, Types of Plagiarism, Software	Used for	Identifying Plagiarism
_		ics in engineering research		
UNIT III		LYSIS AND OPTIMIZATION		9
		ional, two dimensional, multidimens	sional, Oj	pumization Methods –
Two parameter, m	ulti parameter, cost	function. Survey research methods		
UNIT IV		CALWRITING /PRESENTATION		9
		easons, writing strategies, Journal P		
Acknowledgment		Editing, Rules of Mathematical Writin	iig, Attrit	Jutions and Citations,
	-	LECTUAL PROPERTY RIGHTS		9
		ents for Patentability, Application P	reparation	-
IPR, IPR and Licer			opurution	i una i ming, i orms or
		-	Periods	45
Suggestive Asses				
Continuous Asse (30 Marks)		Formative Assessment Test (10 Marks)	End Sei (60 Ma	mester Exams rks)
1.Description Que	estions	1.Assignment	1.Descr	iption Questions
2.Formative Mult	iple choice	2.Online Quizzes		ative Multiple choice
questions		3.Problem solving Activities	questio	ns
Outcomes	<u> </u>			
		he students will be able to: cepts of engineering research and its	methodo	logies
				0
		ous methods used to collect the data f		
	ormulate appropria	te research problem and conduct the	experime	ents using analysis
	rite quality researc	h in engineering		
		epts of intellectual property rights.		
Text Books		<u> </u>		
		Dey, Valentina E. Balas."Engineering	Research	h Methodology A
	0	earchers",Springer.2019 ch Methods for Engineers",cambridg	e univers	sity press 2014
		ni V. Munot ,"Research Methodolog		
Appro	oach", CRC Press,	2019		
Reference Books	6			
1. RanjitKum Fifth editio		nodology a step-by-step guide for beg	ginners" S	SAGE publications,
Web Resources				
		courses/107/108/107108011/		
• <u>htt</u>	ps://onlinecours	ses.swayam2.ac.in/cec20_hs17/j	<u>preview</u>	
CO Vs PO Mapping	and CO Vs PSO Ma	apping		

Franc	ris Xavi	er Eng	ineerin	g Colle	ge De	partme	nt of E (CE /M.1	E-VLSI	R2019	/ Curric	ulum	and	l Syll	abi 2	2021	20
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	2 1	PSO1	PS	SO2	PSO3
1	3	3	1								3	3		2		1	1
2	3	3	1								3	3		2		1	1
3	3	3	1								3	3		2		1	1
4	3	3	1								3	3		2		1	1
5	3	3	1								3	3		2		1	1
1	l→Lov	w 2 → N	Mediu	m 3→1	High												
241	11 4 6 4	4		A .]		<u>): -: 4 - 1</u>	C 4		T 1				T		T		6
210	′L161	1		Adva	incea I	Jigital	Syster	m Desi	ign La	borator	У	-	L 0		<u>Т</u> 0	P 4	C 2
Pre	requi	sites f	or the	cours	se								0		U	Т	
	_		ics, VL														
	ective																
-		unders L leve		omple	x comb	oinatio	nal circ	cuits us	sing HI	DL at be	haviora	l, stru	ctur	al an	d		
				omple	x seque	ential c	ircuits	using	HDL a	t behav	ioral, sti	ructura	al ar	nd R'	ГL le	evels.	
										sequen				_			
										o simula ed and a		ynthe	size	the	digita	al sys	stem
S.N			st of E			TUAS	wittii i	especi			itca.		CC)			
				-													
	-			-		Ĩ			followi	ng with	a suitał	ole FP					
-	1.	8 to	o 3 pro	gramn	nable p	riority	encod	ers.					C	01			
	2.	Fu	ll Adde	er using	g struct	tural m	odelin	g					C	01			
	3.	Fli	p Flops	s (D, S	R, T, J	K)							C	02			
4	4.						-	1	wn/up-o BCD co	down co	ounter w	vith	C	02			
	5.) using	appropr	iate	C	02			
	6.	FS	M 8-b	it rippl	le carry	adder	and ca	arry sk	ip adde	er			C	03			
,	7.	8-t	oit Carr	y Sele	ct Add	er							C	03			
8	8.			al, Para	allel M	ultiplie	er and	genera	te repo	ort on ar	ea and		C	03			
	9.	del	2	the hel	naviou	al styl	e HDI	code	for A-	bit cour	ter Dev	elon	CC	<u>)</u> 4			
-			-			•				ing T Fl		-	u	74			
		of	genera	te stat	tement	, area-	perform	mancea	analysi	s after	synthes	ize).					
			• ·	•	esize an creatir				0	ntity an	d verify	the					
Usir	ng Syst				imulate	-											
			Ũ					0					<u> </u>	04			
	10.	Fu	u Subti		using s	iructur	al mod	leiing					C	04			
	11.	Fli	p Flops	s (D, S	R, T, J	K)							C	05			

Francis	s Xavi	er Engi	ineering	g Colle	ge De	partme	nt of E (CE /M.1	E-VLSI	R2019	/ Curric	culum a	nd Sylla	bi 2021	21
1	2.		-				tandar and Ex			v the la	yout fo	or D	CO5		
Tota	l Per	iods :(60												
Sugg	estive	Asses	sment	Meth	ods										
	Comp Mark		s Asse	ssmen	ts					End Se (50 Mai		Exams			
1.Exp 2.Mo		ent b exan	n							1.End se	emester	lab exa	m		
Outc	omes														
Upo	n con	pletio	n of th	ne cou	rse, th	e stude	ents wi	ill be a	ble to						
		-	uirem												
		-	and m	odel c	omple	x comb	oinatio	nal circ	cuits us	sing HD	L at beł	navioral	, structu	ral and	
RTL												_	_		
		Design	and m	odel c	omple	x seque	ential c	circuits	using	HDL at	behavio	oral, stru	actural a	ind RTL	,
levels		Develo	n the t	est her	nches t	o simu	late co	mhina	tional	and sequ	ential c	ircuits			
			-							o simula			ze the di	gital	
system				U	0				1			5		0	
CO61	1.5.1	Implen	nent an	d anal	yze the	e digita	ıl syste	ms usi	ng FP0	GAs wit	h respec	ct to spe	ed and a	area.	
Defe		DIL													
		Books		Digita	1 Dogi	an · An	Embo	ddad S	vatom	s Appro	och ugir	ag Varil	og" Ele	outor 1	010
				-		-			•	and Synt		-	-		
Editio			1, 10	1105 11	DL. 11	Guiac		Situr D	congin c	ind Sym		i curson	Laucut	1011, 211 0	
			nd, "R	TL Mo	odeling	g with S	System	n Verile	og for	Simulat	ion and	Synthes	sis:		
			0		C and	FPGA	Desig	n", Cre	eate Sp	ace Inde	ependen	nt Publis	hing		
			lition,	2017.											
		ources													
1							/105/1				l - /:l	:	0 2 /		
2.			vww.x ows-ov		-			menta	tion/s	w_mani	lais/xii	INX202	$0_2/uga$	388-717	ado-
3		0				-		menta	tion/u	niversi	v/Viva	do-Tea	ching/F	IDL-	
							ivado					uo reu	e		
		0 /				1 /									
COV		Ionni	ng and	COV		Ionnii	29								
	FUI	маррп	iig allu		5 F 30 F	маррп	iig								
	PO	РО	PO	РО	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO
CO	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
1	1		2							2					
	-														

со	PO	PO	РО	РО	РО	PO	PO	РО	PO	PO1	PO1	PO1	PSO	PSO	PSO
co	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
1	1		2							2					
2	2									2			3		
3		2												1	
4	1		2							1			2		
5		2	1												

SEMESTER II

	Course Code	Course	Category	Contact Periods		Т	Р	C
Theory	y Courses							
1	21VL2601	Low Power VLSI Design	PC	3	3	0	0	3
2		Professional Elective III	PE	3	3	0	0	3
3		Professional Elective IV	PE	3	3	0	0	3
4		Professional Elective V	PE	3	3	0	0	3
5		Professional Elective VI	PE	3	3	0	0	3
Theory	y cum Practi	cal Courses						_
1	21VL2602	IC Design for Communications	PC	5	3	0	2	4
Practio	cal Courses							
1	21VL2611	Analog and Digital IC Design Laboratory	PC	4	0	0	4	2
2	21VL2911	Advanced Design and Analysis Laboratory	EEC	4	0	0	4	2
			Total	28	18	0	10	23
<u> </u>		<u>.</u>			3	0	0	3
	uisites for t							
•	CMOS VLSI	Design						
Object								
1.	Identify source	ces of power in an IC.						
1. 2.	Identify source To identify the	ne power dissipation mechanisms in var	C C	c styles				
1. 2.	Identify source To identify the		C C	c styles				
1. 2.	Identify source To identify the To familiarize	ne power dissipation mechanisms in var	lissipation	-				
1. 2. 3. 4. 5.	Identify sourd To identify th To familiarize To know the To familiarize	ne power dissipation mechanisms in var e suitable techniques to reduce power d design concepts of micro sensors and n e concepts of quantum mechanics and r	lissipation nicro actuators. nano systems.	-				
1. 2. 3. 4. 5.	Identify source To identify the To familiarize To know the To familiarize	ne power dissipation mechanisms in var e suitable techniques to reduce power d design concepts of micro sensors and n e concepts of quantum mechanics and r POWER DISSIPATION I	lissipation nicro actuators. nano systems. IN CMOS				9	
1. 2. 3. 4. 5. U Physics	Identify source To identify the To familiarize To know the To familiarize NIT I s of power dia	ne power dissipation mechanisms in var e suitable techniques to reduce power d design concepts of micro sensors and n e concepts of quantum mechanics and r POWER DISSIPATION I ssipation in CMOS FET devices – So	lissipation nicro actuators. nano systems. IN CMOS purces of powe	r consum	-	– St	atic P	
1. 2. 3. 4. 5. U Physics Dissipa	Identify source To identify the To familiarize To know the To familiarize NIT I s of power distion, Active F	ne power dissipation mechanisms in var e suitable techniques to reduce power d design concepts of micro sensors and n e concepts of quantum mechanics and r POWER DISSIPATION I	lissipation nicro actuators. nano systems. IN CMOS purces of powe low power desi	r consum gn, Need	for lo	– St ow po	atic P ower '	VLS

Logic level power optimization – Circuit level low power design – Standard Adder Cells, CMOS Adders Architectures-BiCMOS adders - Low Voltage Low Power Design Techniques, Current Mode Adders -Types Of Multiplier Architectures, Braun, Booth and Wallace Tree Multipliers and their performance comparison

UNIT III

DESIGN OF LOW POWER CMOS CIRCUITS

9

9

9

Computer arithmetic techniques for low power system – low voltage low power static Random access and dynamic Random access memories – low power clock, Inter connect and layout design – Advanced techniques

UNIT IV

UNIT V

POWER ESTIMATION

Power Estimation techniques – logic power estimation – Simulation power analysis –Probabilistic power analysis.

SPECIAL TECHNIQUES

Power Reduction in Clock networks, CMOS Floating Node, Low Power Bus Delay balancing, and Low Power Techniques for SRAM..

	Total	Periods	45
Suggestive Assessment Methods			
Continuous Assessment Test (30 Marks)	Formative Assessment Test (10 Marks)	End Ser (60 Ma	mester Exams rks)
 Description Questions Formative Multiple Choice Questions 	 Assignment Online Quizzes Problem Solving Activities 	2. I	Description Questions Formative Multiple Choice Questions

Outcomes

Upon completion of the course, the students will be able to:

- CO601.1 Identify the sources of power dissipation in digital IC systems
- CO601.2 Understand the impact of power on system performance and reliability
- CO601.3 Understand leakage sources and reduction techniques
- CO601.4 Recognise advanced issues in VLSI systems, specific to the deep-submicron silicon technologies

CO601.5 Identify the mechanisms of power dissipation in CMOS integrated circuits

Text Books

1. Abdelatif Belaouar, Mohamed.I.Elmasry, "Low power digital VLSI design", Kluwer, 1995.

2. A.P.Chandrasekaran and R.W.Broadersen, "Low power digital CMOS design", Kluwer, 1995.

Reference Books

1. Dimitrios Soudris, C.Pignet, Costas Goutis, "Designing CMOS Circuits for Low Power" Kluwer, 2002.

2. Gary Yeap, "Practical low power digital VLSI design", Kluwer, 1998.

3. Kaushik Roy and S.C.Prasad, "Low power CMOS VLSI circuit design", Wiley, 2000.

4. Tai Ran Hsu ,"MEMS and Microsystems Design and Manufacture", Tata Mcraw Hill, 2002.

5. Anatha P Chandrakasan, Robert W Brodersen, Low power digital CMOS Design, Kluwer Academic, 1995

6. Christian Piguet, Low power CMOS circuits, Taylor & Francis, 2006

Web Resources

- 1. <u>https://www.youtube.com/watch?v=TF001JAll2Y</u>
- 2. <u>https://www.intechopen.com/books/very-large-scale-integration/low-power-design-methodology</u>
- 3. https://nptel.ac.in/courses/106/105/106105034/

CO Vs PO Mapping and CO Vs PSO Mapping

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
1	3		3	3	2	3		3	2				2		
2					3	3			1					1	
3			2	3	2			2	1		2				
4				3	3	2			1				1		
5			3	3	3	2			2						
	1→Lo	ow 2→	Mediu	$1 \text{m} \overline{3} \rightarrow$	High										
2	1VL2	602			IC D	ESIGN	FOR	COM	MUNI	CATIO	NS		L	T P	С
													3	0 2	4
P	rereq	uisite	s for t	he cou	urse								1		
		Analog	g and D	Digital	IC Des	ign									
C	bjecti														
								nmunica							
						-		oise Am	-	fior					
			•					d Powe	-	nunicat	ion				
			-									nunicati	on. and	to intro	duce
						cy synt		-	,				,		
I	NIT I				C	OMMI		TION	CON	TEPTS			9		
		w of V	Vireles	s Syst							nes. Wi	reless C	-	Descrip	tion.
												y Select			
U	NIT I	[TF	RANSN	(ITTE)	R ARC	HITEC	TURE	AND P	OWER	AMPLI	FIER	9		
				-			-		-			LC, R-			
	-	power E/E amp	-		lesign-	specif	ication	s, pow	er out	put con	trol, PA	A desig	n issue	s, Class	s A,
U	NIT I	I			R	RECEI	VER A	RCHI	TECT	URES			9		

Receiver Front End: General Design Philosophy, Super heterodyne and Other Architectures, Filter Design: Band Selection Filter, Image Rejection Filter, Channel Filter; Design parameters: Nonlinearity, Harmonic Distortion, Intermodulation, Gain compression, Blocking; Derivation of NF and IIP3 of Receiver Front End, Partitioning of receiver NF and IIP3 into individual stages

UNIT IV

LOW NOISE AMPLIFIER

9

Introduction, CS, CG, Cascaded and cascoded configurations of LNA, Wideband LNA Design, Narrow Band LNA: Impedance Matching, Core Amplifier

UNIT V MIXER AND FREQUENCY SYNTHESIZER

9

Mixer: Passive Down Conversion Mixers, Active Down conversion Mixers, Up conversion Mixers; Frequency synthesizer: PLL-based frequency synthesizer- phase detector- dividers- Oscillators- Loop filter- first-order, second order- higher order filters

S.No		List of Experiments	СО
1.	Introduction to Cac analysis and power	lence tool, schematic editor, ADE tool, analysis.	, transient CO1
2.	Schematic design a amplifiers	and transient analysis of CS and CG sin	ngle stage CO1
3.	Construction of two analysis, NF and G	o stage CS cascaded LNA with transien ain results	t CO2
4.		LNA with NF, Gain, Linearity (IIP3 and	nd P1dB) CO2
5.	Maximum-Power-G	Gain Output Impedance Matching	CO3
6.	Stability Analysis a	nd Source/Gate Degeneration	CO3
7.	Maximum-Power-O	Gain Input Impedance Matching	CO4
8.	Minimum-Noise-Fi	gure Input Impedance Matching	CO4
9.	Design and simulat	ion of Class A, B Power Amplifiers	CO4
10.	Class AB, C, E pov	ver amplifiers	CO5
11.	Design and analysis	s of active/passive down conversion mi	xer CO5
12.	Construction and an	nalysis of up conversion mixer	CO5
Total Perio	ods		45 Theory +15 Lab
Laboratory	Requirements		
Cadence Vi	rtuoso, RF Spectre		
	Assessment Methods		
Continuous	s Assessment Test	Lab Components Assessments (20 Marks)	End Semester Exams (50 Marks)

	2. F	ormat)uestic ultiple ions	ons			cord N odel La		nination	1		Descr Quest Forma Multij Quest	ions ative ple Choi	ce
0	utcom	es													
U	pon co	omple	tion o	f the c	ourse	, the s	tuden	ıts wil	l be al	ole to:					
(CO602	.1	Explai	n the b	asics o	f wirel	ess co	mmuni	cation	and IC	design				
(0602	. 2	Design	n a Low	v noise	Ampl	ifier fo	r wirel	ess coi	nmunic	ation				
(0602	. 3	Have a	clear	idea ab	out the	e transi	mitter a	archite	cture, ar	nd to de	sign a po	ower an	nplifier	
(0602	. 4	Gain k	nowled	dge on	receiv	er arch	itectur	e for w	vireless o	commu	nication			
0	CO602	. 5		be the								tions of	frequen	су	
T	ext Bo	oks													
	2 2. E	011. 8.Razav	vi, "RF		I for W						tion, Sp	oringer p	oublicat	ions, Ca	nada,
R	eferen														
		David ' Press, 2		nd Pra	modVi	swana	th, "F	undam	entals	of Wir	eless C	Commun	ication'	', Camb	ridge
	4. E	B.Razav	vi, "Fu	ndame	ntals o	f Micr	oelectr	onics"	, Wiley	, 2013.					
					, Rafae l Circu						ed Hier	archical	Synthe	sis of R	adio-
W	eb Re	1	2	0			2	, ,		,					
				http://v	www.e	e.scu.e	edu/cla	.sses/20)04win	ter/elen	351/lec	ture1.pd	f		
	2. A	dvanc	ed RF	and A	nalog	Integr	ated C	ircuits	for Fo	ourth Ge	eneratio	n Wirel	ess Cor	nmunica	ations
	a	nd Bey	ond, h	nttps://c	lownlo	ads.hi	ndawi.	com/jo	ournals/	speciali	ssues/4	27619.p	df		
														n-ic/wir	eless-
			nicatio			-	-			1					
CO	Vs PO	Mapp	ing and	d CO V	/s PSO	Mapp	oing								
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
1	3													2	
2	1	2		2											
3	2												1		
4	3	2	3										2		

2

1→Low 2→Medium 3→High

5

3

Digital	uisites for the course	0			
Digital	uisites for the course		0	4	2
Digital Object					
Object	System Design Laboratory				
	ives				
The stu	dent should be made:				
2. 3. 4.	To learn Hardware Descriptive Language (Verilog/VHDL) To learn the fundamental principles of VLSI circuit design in digital and a To familiarize fusing of logical modules on FPGAs To provide hands on design experience with professional design (EDA) p To get the basic idea about analog and digital system design			nain	
S.No	List of Experiments	CO			
EXPER	IMENTS PART I: Digital System Design using HDL and FPGA				<u>.</u>
	Design a Universal Shift Register using HDL. Simulate it using	CC)1		
	Xilinx/Altera Software and implement by Xilinx/Altera FPGA				
	Design Finite State Machine (Moore/Mealy) using HDL. Simulate it	CC)2		
	using Xilinx/Altera Software and implement by Xilinx/Altera FPGA IMENTS PART II: Digital Circuit Design				
3.	Design and simulate a CMOS inverter using digital flow	CC)3		
4.	Design and simulate a CMOS Basic Gates and Flip-Flops	CC)3		
5.	Design and simulate a 4-bit synchronous counter using a Flip-Flops	CC)4		
	Manual/Automatic Layout Generation and Post Layout Extraction for par	t II e	xperi	ments	
	Analyze the power, area and timing for part II experiments by performing Layout Simulations.	g Pre	Layo	ut and	l Post
	IMENTS PART III: Analog Circuit Design	00			
6.	Design and Simulate a CMOS Inverting Amplifier.	CC	15		
	Design and Simulate basic Common Source, Common Gate and Common Drain Amplifiers.	CC)5		
-	e the input impedance, output impedance, gain and bandwidth for the abo	ve tw	o exp	perime	ents b
-	ning Schematic Simulations.				
	Design and simulate simple 5 transistor differential amplifier. Analyze Gain, Bandwidth and CMRR by performing Schematic Simulations.	CO	5		

					ethod							_			
La	b Con	ipone	nts As	sessn	ients				E	nd Sen	nester l	Exams			
(5	0 Mai	r ks)							(5	0 Marl	ks)				
1.E	xperii	ment							1	End con	nester la	h or om			
2.N	Iodel	lab exa	am						1.	Ella sell	liester la	io exam			
Ou	tcom	es													
At	the en	d of th	e cour	se, the	studen	t shou	ld be a	ble to:							
	CO6	11.1. V	Vrite H	IDL co	de for	basic a	ıs well	as adv	anced	digital i	ntegrate	ed circui	it		
	CO6	11.2. I	mport (the log	ic mod	lules in	to FPC	GA Bo	ards	0	0				
			ynthes					0		ocke ne	ing EDA	A tools			
											using ED		s		
La	borat	ory R	equire	ement	S	-									
				-		-			ols 10	User Li	icense				
			Altera/e	-					uivolo	nt EDA	Tools 1	0 Usar	License		
			l Com			Grapin	C5/ 1 al	illei/eq	uivaic		10015 1	0 0 501	License		
Re	feren	ce Bo	oks												
1.1	leil H.	E. We	ste , D	avid M	oney	Harris	-CMO	S VLSI	Desig	n-A Cire	cuits an	d Syste	ms Per	spective	د د
_	weth D	1							0						-)
Fo	urun E	dition	,2011						0						-)
			-	n with	E. by S	Samir I	Palnitl		C	Hall , 2				1	-,
2.]	Desigr	n Verif	icatior	n with	E. by S	Samir I	Palnitl		C						.,
2.]	Desigr e b Re :	n Verif source	icatior es					kar, Pro	entice	Hall , 2	003				
2.]	Desigr 2 b Re : 1. h	n Verif sourc e ttps://	icatior e s /resou	rces.p	cb.cad			kar, Pro	entice	Hall , 2	003			-integra	
2.]	Desigr eb Re 1. h ci	n Verif source ttps://	icatior es /resou -in-you	rces.p ur-layo	cb.cad	ence.c	om/bl	kar, Pro	entice 19-wc	Hall , 2 orking-v	003 with-an	alog-vs	-digital	-integra	ited-
2.]	Design 2 b Re 1. h ci 2. h	n Verif source ttps:// ircuits ttps://	icatior es /resou -in-you	rces.p ur-layc .caden	cb.cad out ce.con	ence.c	om/bl	kar, Pro	entice 19-wc	Hall , 2 orking-v	003 with-an	alog-vs	-digital		ited-
2.]	Design 2b Re 1. h ci 2. h a	n Verif source ttps:// ircuits ttps:// nalog-	icatior es /resou -in-you /www rf-flow	rces.p ur-layc .caden /s.htm	cb.cad out ce.con l	ence.c n/ko_ŀ	om/bl KR/ho	kar, Pro log/20 me/to	entice 19-wc ols/cu	Hall , 2 orking-v	003 with-an c-analog	alog-vs	-digital	-integra	ited-
2.] Wo	Design 2 b Re 1. h ci 2. h a: 3. h	n Verif source ttps:// ircuits ttps:// nalog- ttps://	icatior es /resou -in-you /www rf-flow	rces.p ur-layo .caden /s.htm tu.edu	cb.cad out ce.con l .tr/~a	ence.c n/ko_ŀ teserd	om/bl KR/ho /CAD	kar, Pro log/20 me/to	entice 19-wc ols/cu	Hall , 2 orking-v stom-ic	003 with-an c-analog	alog-vs	-digital	-integra	ited-
2.] We	Design 2b Re 1. h ci 2. h a: 3. h s PO N	n Verif source ttps:// ircuits ttps:// nalog- ttps:// Mappin	icatior es /resou -in-you /www rf-flow /web.i ng and	rces.p ur-layo .caden /s.htm tu.edu CO Vs	cb.cad out ce.con l .tr/~a PSO M	ence.c n/ko_F teserd Ларріг	om/bl KR/ho //CAD	kar, Pro log/20 me/to ENCE%	entice 19-wc ols/cu %20Ma	Hall , 2 orking-v stom-ic	003 with-an c-analog df	alog-vs g-rf-des	-digital- ign/cus	-integra	ted-
2.] We	Design 2b Re 1. h ci 2. h a: 3. h s PO N PO	n Verif source ttps:// ircuits ttps:// nalog- ttps:// Mappin PO	icatior es /resou -in-you /www rf-flow /web.i ng and PO	rces.p ur-layo .caden /s.htm tu.edu CO Vs PO	cb.cad out ce.con l .tr/~a PSO N PSO N	ence.c n/ko_F teserd Aappin PO	om/bl KR/ho /CAD	car, Pro og/20 me/to ENCE%	entice 19-wc ols/cu %20Ma	Hall , 2 orking-v stom-ic anual.po PO1	003 with-an c-analog df PO1	alog-vs g-rf-des	-digital- ign/cus	-integra stom-ic-	ted-
2.1 We CO V	Design 2b Re: 1. h ci 2. h a: 3. h s PO N PO 1	n Verif source ttps:// ircuits ttps:// nalog- ttps:// Mappin PO 2	icatior es /resou -in-you /www rf-flow /web.i ng and	rces.p ur-layo .caden /s.htm tu.edu CO Vs	cb.cad out ce.con l .tr/~a PSO M	ence.c n/ko_F teserd Ларріг	om/bl KR/ho //CAD	kar, Pro log/20 me/to ENCE%	entice 19-wc ols/cu %20Ma	Hall , 2 orking-v stom-ic	003 with-an c-analog df	alog-vs g-rf-des	-digital- ign/cus	-integra	rted-
2.] We	Design 2b Re: 1. h ci 2. h a: 3. h s PO N PO 1 3	n Verif source ttps:// ircuits ttps:// nalog- ttps:// Mappin PO 2 3	icatior es /resou -in-you /www. rf-flow /web.i ng and PO 3	rces.p ur-layo .caden /s.htm tu.edu CO Vs PO	cb.cad out ce.con l .tr/~a PSO N PSO N	ence.c n/ko_F teserd Aappin PO	om/bl KR/ho /CAD	car, Pro og/20 me/to ENCE%	entice 19-wc ols/cu %20Ma	Hall , 2 orking-v stom-ic anual.po PO1	003 with-an c-analog df PO1	alog-vs g-rf-des	-digital- ign/cus PSO 1	-integra stom-ic-	ted-
2.1 W(CO V CO V	Design 2b Re: 1. h ci 2. h a: 3. h s PO N PO 1 3 2	n Verif source ttps:// ircuits ttps:// nalog- ttps:// Mappin PO 2 3 2	icatior es /resou -in-you /www rf-flow /web.i ng and PO 3 2	rces.p ur-layo .caden /s.htm tu.edu CO Vs PO	cb.cad out ce.con l .tr/~a PSO N PSO N	ence.c n/ko_F teserd Aappin PO	om/bl KR/ho /CAD	car, Pro og/20 me/to ENCE%	entice 19-wc ols/cu %20Ma	Hall , 2 orking-v stom-ic anual.po PO1	003 with-an c-analog df PO1	alog-vs g-rf-des	-digital- ign/cus	-integra stom-ic-	rted-
2.1 W(CO V CO V	Design 2b Re: 1. h ci 2. h a: 3. h s PO N PO 1 3	n Verif source ttps:// ircuits ttps:// nalog- ttps:// Mappin PO 2 3	icatior es /resou -in-you /www. rf-flow /web.i ng and PO 3	rces.p ur-layo .caden /s.htm tu.edu CO Vs PO	cb.cad out ce.con l .tr/~a PSO N PSO N	ence.c n/ko_F teserd Aappin PO	om/bl KR/ho /CAD	car, Pro og/20 me/to ENCE%	entice 19-wc ols/cu %20Ma	Hall , 2 orking-v stom-ic anual.po PO1	003 with-an c-analog df PO1	alog-vs g-rf-des	-digital- ign/cus PSO 1	-integra stom-ic-	rted-

1→Low 2→Medium 3→High

21VL29	11	Advan	ced Design	and Analysi	s Laboratory	L	Т	P	C
						0	0	4	2
Prerequ	isites for	the course							
Digital	System De	esign Laboratory							
Objectiv	ves								
1. To Co	nceptualiz	ze a novel idea /	technique						
2. To Us	e EDA too	ol to design com	plex combin	ational and se	equential circuits.				
					tation of the circuits				
		-	-	-	c circuits using various	cons	struct	s in	
Cadence	-	I		1 0	U				
		ne design using X	Kilinx and A	LTERA FPG	As.				
S.No	List of F	xperiments				CC)		
5.110	LISUUL	xperments					,		
1.	-	IIPS 32-Bit RISC IV FPGA and S		-	nt it using ALTERA	C	01		
2.	Design a	Reconfigurable	FIR Filter ar	nd verify it's	functionality through Cyclone IV FPGA	C	01		
3.	Design an		System for congested	C	02				
4.	Design an				using ALTERA	C	02		
5.	Design a character		AM cell usin	ng 180 nm tec	hnology and verify its	C	03		
6.	Design N character		Domino logic	c CMOS inve	rter and verify its	C	03		
7.	Design C its charac		on gate and	perform all th	e analysis to verify	C	04		
8.	-	OR and XNOR characteristics.	gate using d	ynamic CMC	S logic circuits and	C	04		
9.	-	ayout of CMOS arlo analysis, Co			t layout analysis,	C	05		
10.	-	ny one of the cor gy and verify the		-	-	C	05		
11.		ny one of the seq y the circuit usin			, 180 nm technology	C	05		
Total Pe	eriods :60		-	-					
Suggesti	ive Assess	ment Methods							
Lab Cor (50 Mar	-	Assessments			End Semester Exam (50 Marks)	IS			
1.Experi 2.Model	ment lab exam				1.End semester lab ex	am			

Outcomes

Upon completion of the course, the students will be able to:

CO911.1. Conceptualize a novel idea / technique

CO911.2. Use EDA tool to design complex combinational and sequential circuits.

CO911.3. Understand the management techniques for implementation of the circuits

CO911.4. Design the complex combinational and sequential logic circuits using various constructs in Cadence and kit.

CO911.5. Implement the design using Xilinx and ALTERA FPGAs.

Laboratory Requirements

ALTERA Cyclone IV FPGA-10 Nos Cadence -10 Users Xilinx

Reference Books

1.Neil H. E. Weste, David Money Harris -CMOS VLSI Design-A Circuits and Systems Perspective, Fourth Edition, 2011

2. Digital Integrated Circuits a Design Perspective-Jan M. Rabaey, Anantha Chandrakasan, and Borivoje Nikolic

Web Resources

- 1. https://web.itu.edu.tr/~ateserd/CADENCE%20Manual.pdf
- 2. https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_2/ug888-vivado-design-flows-overview-tutorial.pdf
- 3. https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/intro_to_qua rtus2.pdf

CO Vs PO Mapping and CO Vs PSO Mapping

PO	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PO1	PSO	PSO	PSO
1	2	3	4	5	6	7	8	9	10	11	2	1	2	3
3														
2		3										2		
2	2	2										3		
3													1	
1		3												
-	1 3 2 2	1 2 3	1 2 3 3	1 2 3 4 3	1 2 3 4 5 3	1 2 3 4 5 6 3	1 2 3 4 5 6 7 3	1 2 3 4 5 6 7 8 3 2 2 3 3	1 2 3 4 5 6 7 8 9 3	1 2 3 4 5 6 7 8 9 10 3	1 2 3 4 5 6 7 8 9 10 11 3 <	1 2 3 4 5 6 7 8 9 10 11 2 3 <td>1 2 3 4 5 6 7 8 9 10 11 2 1 3 </td> <td>1 2 3 4 5 6 7 8 9 10 11 2 1 2 3 </td>	1 2 3 4 5 6 7 8 9 10 11 2 1 3	1 2 3 4 5 6 7 8 9 10 11 2 1 2 3

 $1 \rightarrow Low 2 \rightarrow Medium 3 \rightarrow High$

SEMESTER III

S.No.	Cou Coc		Course	Category	Contact Periods	L	Т	Р	С
Theory	cum P	ractio	al Courses						
1	21VL	3601	Physical Design of Integrated Circuits	PC	5	3	0	2	4
2	21VL	3602	ASIC Design	PC	3	3	0	0	3
Practic	al Cour	ses		I	I				<u> </u>
1	21VL3	3911	Term Paper Writing	EEC	2	0	0	2	1
2	21VL	3912	Dissertation I	EEC	12	0	0	12	6
				Total	17 H + 8 W	3	0	14	14
	1				1	I	L]		L
21VL36	501		PHYSICAL DESIGN OF INTEGRAT	TED CIRCU	JITS	L	Т	P	С
						3	0	2	4
Prerequ	uisites f	or the	course						
• 1	Analog	and Di	gital IC Design						
Objecti	ves								
			the basic semiconductor device physics	of PN juncti	ons.				
			operational principles of MOSFET.						
			volution of MOSFET structure and Tech	0.					
	-		the designs using front end design enviro		.1				
		rstand	performance metrics associated with sin		-	5			
UNIT I		· ·	INTRODUCTION TO VLSI TEC					1 .	<u>. </u>
•			abstraction Cell generation using prog		•				0
Wein-B	erger a	rrays	and gate matrices-layout of standard	cells gate a	rrays and	sea c	of ga	tes, f	field
program	nmable	gate	array (FPGA)-layout methodologie	s-Packaging	-Computati	onal	Coi	npley	city-
Algorith	nmic Par	radign	15						
UNIT I	I		PARTITIONING USING TOP-DOW	N APPROA	СН	5			
Partitior	ning: Ap	proxi	mation of Hyper Graphs with Graphs, Ke	ernighan-Lin	Heuristic-	Ratic	o-cut-	parti	tion
with cap	pacity ar	nd i/o	constraints						
UNIT I	II	FLO	ORPLANNING AND PLACEMENT	USING TO	P-DOWN	5			

APPROACH

Floor planning: Rectangular dual floor planning- hierarchical approach- simulated annealing- Floor plan sizing; Placement: Cost function- force directed method- placement by simulated annealing- partitioning placement- module placement on a resistive network – regular placement- linear placement

UNIT IVROUTING USING TOP DOWN APPROACH5Fundamentals:Maze running- line searching- Steiner trees; Global Routing: Sequential Approaches-
hierarchical approaches- multi-commodity flow based techniques- Randomised Routing- One Step
approach- Integer Linear Programming; Detailed Routing: Channel Routing- Switch box routing;
Routing in FPGA: Array based FPGA- Row based FPGAs.

UNIT V

SINGLE LAYER ROUTING, CELL GENERATION AND COMPACTION

5

Lab

Planar subset problem (PSP) - Single layer global routing- Single Layer Global Routing- Single Layer detailed Routing- Wire length and bend minimization technique – Over the Cell (OTC) Routing-Multiple chip modules (MCM) - Programmable Logic Arrays- Transistor chaining- Wein-Burger Arrays-Gate matrix layout- 1D compaction- 2D compaction.

S.No	List of Experiments	СО
1.	Develop the behavioral style HDL code for 4-bit counter. Develop the structural style HDL code for 4-bit counter using T Flip Flop (use of generate statement, area- performance analysis after synthesize). Compile, synthesize and simulate each design entity and verify the functionality by creating vector waveform file.	CO1, CO2
2.	Design a traffic light controller for an intersection with a main street, a side street, and a pedestrian crossing (Implement it on FPGA).	CO2, CO3
3.	Design a Vending Machine (Implement it on FPGA).	CO3, CO4
4.	Using the NAND and NOR standard cells, draw the layout for D and SR latch. Do DRC, LVS and Extraction.	CO4, CO5
Total Periods		45 Theory +15

Laboratory Requirements

FPGA,

Xilinx,

Cadence

Suggestive Assessment Methods		
Continuous Assessment Test (30Marks)	Lab Components Assessments (20 Marks)	End Semester Exams (50 Marks)
 Description Questions Formative Multiple Choice Questions 	 Record Note Model Lab examination 	 Description Questions Formative Multiple Choice Questions
Outcomes		

Upon completion of the course, the students will be able to:

- CO601.1 Understand the basics of Semiconductor Physics
- CO601. 2 Understand working principles of MOSFET and evolution of MOSFET structure.
- CO601.3 Use the MOSFET for DC, I-V, CV characteristics and in Analog/RF Circuit
- CO601.4 Implement the designs using front end design environment using top down and bottom up approach.
- CO601. 5 Analyze the area, delay trade-offs and performance metrics associated with

Text Books

- 1. D.A.Neamen, Semiconductor Physics and Devices: Basic Principle, Third Edition, McGraw –Hill International, 2003.
- 2. B.G Streetman and S.K Banerjee, Solid State Electronic Devices, Seventh Edition, PrenticeHall India,2010.
- 3. Y.Taur and T.H. Ning, Fundamentals of Modern VLSI Devices, Second Edition, Cambridge University Press, 2009.

Reference Books

- 1. J. P. Collinge, FinFETs and Other Multi-Gate Transistors, Springer, 2008
- Sudeb Dasgupta, Brajesh Kumar Kaushik, Pankaj Kumar Pal Spacer, Engineered FinFET Architectures: High-Performance Digital Circuit Applications, CRC Press 2017.
- 3. S.M Sze and K.K Ng, Physics of Semiconductor Devices, Third Edition, John Wiley and Sons Inc., 2007.
- 4. Lab manuals and online manuals for tools usage and language reference manuals of HDLs.

Web Resources

- 1. https://semiengineering.com/knowledge_centers/eda-design/definitions/physical-design/
- 2. https://www.sciencedirect.com/topics/engineering/integrated-circuit-design

CO Vs PO Mapping and CO Vs PSO Mapping

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
1	3	3													
2	3	3											2		
3	3	3													
4	3	2												1	
5	3	2													

 $1 \rightarrow Low 2 \rightarrow Medium 3 \rightarrow High$

raneis Marter Engineer	ring conege Depu		meanam	unu oʻ	ynab	12021	
				L	Τ	Р	C
21VL3602		ASIC Design					
				3	0	0	3
Prerequisites for							
		required by the students to study th	is Course	is ba	sic ki	nowled	lge in
0	Digital Electronic	8					
Objectives							
1	• 1	d typical ASIC design Flow.					
		nding of HDL coding guidelines and		zable	HDL	constr	ucts.
-	-	ow with respect to different cost fun					•
		meter and how to perform Static Time	-	-			-
5. Discuss the	various abstractio	n levels in physical design and guid	ennes at e	ach ai	ostrac	ction le	vei.
UNIT I	ASIC D	esign Methodology & Design Flow	7			9	
Implementation Str	rategies for Digita	l ICs: Custom IC Design- Cell-base	ed Design	Meth	nodol	ogy - A	Array
based implementation	ion approaches - T	raditional and Physical Compiler ba	used ASIC	Flow	' .		
UNIT II	-	HDL Coding Style for Synthesis				9	
	- Guidelines and	Recommendation - FSM Coding	Guideline	and	Codii	ng Sty	le for
Synthesis							
UNIT III		RTL Synthesis				9	
RTL synthesis Flow	w – Synthesis Des	ign Environment & Constraints – A	rchitectur	e of L	ogic	Synthe	esizer
- Technology Libra	ary Basics- Compo	onents of Technology Library –Synt	hesis Opt	imizat	tion-	Techn	ology
		ent synthesis- Data path Synthesis –	-				
driven synthesis- F				Ĩ			
UNIT IV	Timing Pa	rameters and Static Timing Analy	sis			9	
Timing Parameter	Definition – Setup	Timing Check- Hold Timing Chec	k- Multic	ycle P	aths-	False	Paths
- Clocking of Sync	hronous Circuits.	Fiming Analysis - Clock skew optin	nization –	Clock	c Tree	e Syntł	nesis.
UNIT V	Р	hysical Design Verification				9	
Detailed step in Pl	nysical Design Flo	w- Guidelines for Floor plan, Plac	cement an	d rou	ting.	Condu	icting
~		based back-end design -ECO - Pac	00	yout I	ssues	s-Preve	nting
electrical overstress	s. Static verificatio	n techniques-Post-layout design ver		1			
a		Total	Periods			45	
Suggestive Asses							
Continuous Asse (30 Marks)		Formative Assessment Test (10 Marks)	End Se (60 Ma		er Ey	kams	
1. Description		1. Assignment		Descr	riptio	n	
	Multiple Choice	2. Online Quizzes	Quest				
Questions		3. Problem Solving				Multi	•
Outcomes		Activities		Choic	e Qu	estion	S
Outcomes	of the course t	he students will be able to:					
opon completion							

CO701.1 Analyze the different types of ASICs and design flows.

- CO701. 2 Design digital systems by adhering to synthesizable HDL constructs.
- CO701.3 Synthesize the given design by considering various constraints and to optimize the same.
- CO701.4 Perform physical design by adhering to guidelines.
- CO701.5 Apprehend the importance of physical design verification.

Text Books

1. HimanshuBhatnagar, Advanced ASIC Chip Synthesis, Kluwer Academic Publisher, Second Edition, 2012

Reference Books

- 1. Erik Brunvand, Digital VLSI Chip Design with Cadence and Synopsys CAD Tools, Addison Wesley, First Edition, 2010.
- 2. J. Bhasker and RakeshChadha, Static Timing Analysis for Nanometer Designs, Springer US, First Edition, 2010.

Web Resources

- 1. https://www.digimat.in/nptel/courses/video/117108047/L01.html
- 2. https://nptel.ac.in/courses/118/104/118104008/
- 3. <u>https://nptel.ac.in/courses/117/108/117108047/</u>

CO Vs PO Mapping and CO Vs PSO Mapping

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
1	3	2	1	1		1				2	1	2			
2	3	2	1	1						2	1	2	3		
3	3	2	2	1		1				2	1	2			
4	3	2	1	1						2	1	2		2	
5	3	2	2	1		1				2	1	2			

 $1 \rightarrow Low 2 \rightarrow Medium 3 \rightarrow High$

PROFESSIONAL ELECTIVES

PROFESSIONAL ELECTIVE I										
21VL1701	Nano-Electronic Devices and Materials	3	0	0	3					
21VL1702	MEMS and NEMS	3	0	0	3					
21VL1703	Flexible Electronics	3	0	0	3					
21VL1704	Reliability of Devices and Circuits	3	0	0	3					

Francis Xavier Engineering College	Department of ECE M.E-VLSI	R2019 Curriculum and Syllabi 2021	36
------------------------------------	-----------------------------	-------------------------------------	----

21VL1701	NANO-ELECTRONIC DEVICES AND MATERIALS	L	Т	Р	C
		3	0	0	3
Prerequisites for					
	uisite knowledge required by the Students to study this Course	is bas	ic kr	lowled	ge in
	Digital IC Design.				
Objectives					
	nts to learn the basic concepts of Nano-electronics.				
	students to understand the quantum devices.				
	students to know the tunneling devices and its uses.				
	udents to analyze the superconducting devices and photonics.				
10. Make the st	udents to understand nano-electronic materials.				
	DASICS OF NANOFLECTRONICS AND OUA NTUM			9	
UNIT I	BASICS OF NANOELECTRONICS AND QUANTUM DEVICES			9	
Physical fundamen	tals – basic information theory – data & bits – data processing	- Oua	ntum	n Elect	ronic
-	s in mesocopic structures – Short channel, MOS Transistor – s				
	sistor – Electron spin transistor – Quantum Dot array – Quant	-			
	notube based logic gates.		I ··		
UNIT II	TUNNELING DEVICES			9	
Tunneling element	- Tunnel Effect - Tunneling Diode - Resonant Tunneling Dio	de – '	Three	e -Teri	minal
Resonate Tunnelin	g Devices-Technology of RTD-Digital circuits design based on	RTD	s - B	asics I	Logic
Circuits - Single	Electron Transistor (SET) - Principle - Coulomb Block	kade-	Perf	orman	.ce –
Technology- Circu	it Design- Logic and Memory Circuits - SET adder as an Exa	ample	of a	Distri	buted
Circuit.					
		1			
UNIT III	SUPERCONDUCTING DEVICES AND PHOTONICS			9	
	pic model- Super conducting switching Devices - Cryotron-				
	ry circuits – Associative or Content – Addressable Memory - SC				
	- Magnetic Flux Quantum - Quantum cellular Automata- Qu	iantun	n cor	nputer	with
Single Flux devices	s – SFQD- RSFQD – Application of superconducting devices.				
UNIT IV	LIMITS OF INTEGRATED ELECTRONICS AND REPLACEMENT TECHNOLOGIES			9	
Survey about the l	imits- replacement technologies-energy supply and heat dissipa	L ation-r	aram	neter si	pread
-	imits due to thermal particle motion- reliability as limiting factor	-		-	-
-	ated chips and systems.	- piny	Jivul		
	NANO-ELECTRONIC MATERIALS			9	
-	onductors - Compound semiconductors MOSFETs in the				
	train, Hetero structure MOSFETs, exploiting novel materials			uantiza	ation.
Emerging nano ma	terials: CNT, Graphene, Nanotubes, nanorods and other nano-st	ructur	es.		
	Total Periods			15	
Suggestive Acces				45	
Suggestive Asses	Sment Methons				

		8			0: , = •]		, 2.	,	~-	,>	,				
C		ious A		nent [Гest	Fo				ent Tes			lester I	Exams	
		30 Mai						10 Ma			(6	60 Mar			
		Descrip		-				ssignm					escripti		
		Format		ıltiple	Choice	9		nline (-			· ·	uestion		
	()uestic	ons					roblem		ng				e Multij	
							A	ctivitie	es			C	hoice Q	uestions	S
	utcom			f the a		416.0.0	d	+	l b a a b	1					
U	<u> </u>	omple									ala atma.	nia dari			4
	0/	01.1							-			nic devi	ices, sei	nsors an	a
	005	01 0								chnolog		. 10.			
		01.2					•		0	ed on a				-	
	0/	01.3				U		-				Nano-sc	ale devi	ces, the	1r
	~~~									ricate th					
	C07	01.4		-		-	range	of d	levices	using	relevai	nt mec	hanical	electrica	al
			•	0	, princi	-									
		01.5	Unde	erstand	basic	of Nar	10-elec	tronic	materi	als.					
T	ext Bo														
							-				conduct	tor struc	ctures: I	Fundame	entals
	а	nd dev	ice app	olicatio	ons", C	ambric	lge Un	iversity	y Press	, 2001.					
	3. ŀ	K. Gose	er, P. C	Hoseka	otter ar	nd J. D	ienstul	hl, "Na	noelec	tronics	and Nar	nosyster	ns: Froi	n Trans	istors
	t	o Mole	cular (	Quantu	m Dev	ices",	Spring	er, 200	4.						
	4. H	HerveR	igneau	lt, Jea	n-Micl	hel Lo	ourtioz	, Clau	de De	lalande,	Ariel	Levens	on,"Nar	nophotor	nics",
	V	Wiley-I	STE, 2	2006.											
R	eferer	ice Bo	oks												
	3. \	N.R.Fa	hrner,	"Nane	otechno	ology	and N	Vanoele	ectroni	cs: Ma	terials,	Device	s and 1	Measure	ement
	]	Technic	jues" S	pringe	er, 2005	5.									
	4. 7	Tai–Rai	n Hsu,	"MEN	1S & N	licrosy	stems	Design	n and N	Aanufac	ture", T	ata McO	Graw-H	ill, 2001	
	5. F	P.Rai-C	houdh	ury, "N	MEMS	and M	IOEMS	S techn	ology	and app	lications	s", SPIE	Press, 1	2000.	
	6. Y	7. Taur	and T	. Ning,	"Fund	lament	als of I	Moderi	n VLSI	[ device	s" Camb	oridge U	Iniversit	ty Press	
				0,								U		ology" V	Viley
		Publish													-
	8. E	Brundle	e, C.R	ichard	; Evai	ns, Cł	narles	A. Jr	.; Wil	lson, S	haun "	Encyclo	pedia	of Mate	erials
		Charact								, -		5	•		
				·			noelect	tronics	A nev	v Prosp	ective o	on trans	port – I	Part A: ]	Basic
		Concep								·~r					
		-						-Gate '	Fransis	stors," S	pringer	2009			
		Related					01			, 0	8***				
W		sourc		1 ···P											
				<u>digi</u> ma	<u>t.in/</u> np	<u>tel/c</u> ou	<u>rses</u> /vi	<u>deo/</u> 11	<u>710</u> 80	47/L01.	<u>html</u>				
		https://		-	-						_				
		https://	-												
															]
CO	Vs PO	Маррі	ng and	l CO Vs	s PSO N	Маррії	ng								
CO	<b>PO1</b>	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
1															
	3	2	1	1		1				2	1	2			

Franc	is Xavi	er Eng	ineerin	g Colle _{	ge   Dep	artme	nt of E	CE /M.	E-VLSI	R2019	/ Curric	ulum	and Sy	vllab	i 2021	38
2	3	2	1	1						2	1	2	3	3		
3	3	2	2	1		1				2	1	2				
4	3	2	1	1						2	1	2			2	
5	3	2	2	1		1				2	1	2				
		w 2→N 1702		m 3 <b>→</b> I	ligh	N	MEMS	S AND	) NEM	5			L	T	Р	С
													3	0	0	3
Pr	-			ne cou				.1 . (	<b>1</b> . <b>1</b> .	1			• •	• •		
		-	-	site kno chnolog	U	e requ	ired b	y the S	Student	s to stud	ly this C	Course	is bas	sic ki	nowled	ge in
Oł	jectiv			21110108	3105.											
			duce t	he con	cepts of	micr	o elect	tromec	hanica	devices	5.					
	2. T	'o knov	v the f	abricati	ion prod	cess o	f Mici	rosyste	ms.							
					1			•		cro actu	ators					
				•	-					ano syste						
								mannes		iiio sysic						
			erstand	the etc	ching pr	ocess			<b>T T T T T T T T T T</b>				1			
IN		IT I	ON	Dofinit	ion of	ME		ERVI		ory and	daval	onmon	t mi	aro	9 machi	ning
										•						0
					ro mach					al mater GA.	iais, tiii	11 11111	r ucpo	551110	/11, 1111 <u>-</u>	Juiity
	LINI	T II		N	IEMS	FARI		TION	тесн	NOLO	CIES				9	
M			abricat							nplantati		fusion	. Oxid	latio	-	film
	•						-			g; Etchi						
				-	•	-			-	ning, Su	-	-	•			
	UNI	T III				I	MICR	O SEI	NSORS	5					9	
				-						sensor, V ind these			-	e, Caj	pacitiv	e and
	UNI	T IV				M	<b>CRO</b>	ACTU	U <b>ATO</b> I	RS					9	
usi	ing pie	zoelec	tric cr	ystals,		on us	ing El	ectrost		tion usin ces (Par			•	-		
	UN	IT V		NAN	<b>OSYS</b>	TEM	S ANI	D QUA	NTU	A MEC	HANIC	S			9	
										Vanostru cory, Nai		-			-	

		0		0			Ū						5	_	-
D	ynamio	es, Eleo	ctroma	gnetic	Fields	and th	eir qua	ntizati	on, Mo	lecular V	Wires a	nd Mole	cular C	ircuits.	
											4-1 P			45	
<b>c</b> -	10000	ivo Ar		nent M	lotha	le				TO	tal Per	10 <b>0</b> S		45	
	00			ment			rmati		COCCMO	ent Test	- <b>F</b>	nd Sem	octor E	vame	
		BO Mai		ment	1651	ru		ve Ass 10 Ma				50 Marl		1791115 179	
				Juestic	ons			ssignn					escripti	on	
				ultiple	Choic	e			)uizzes			-	uestion		
	(	)uestic	ons					roblen ctivitie	n Solvir	ıg				e Multip Jestions	
0	utcom	ies					A		:5				ioice Qi		)
			tion o	f the c	ourse	, the s	tuden	ts wil	l be ab	le to:					
	-	02.1								for micr	omachii	ning tecl	hniques		
	CO7	02.2	Unde	erstand	the pr	ocess (	of Bulk	Micro	Machi	ining tec	chniques	8			
		02.3			-					0	-		effect	s, Micr	0
			-			-								ems an	
				AEMS.											
	C07	02.4		-		velop	mode	ls for	differ	ent typ	bes of	Pressu	re Sens	sors and	d
	007	02 5		ereome		i	da - !	of -			<b>4</b> 1		<b></b> .		
Т	ext Bo	02.5	Acqı	ure exp	pertise	in the	design	or sen	SOLS IO	r any pra	actical a	ppiicati	OHS		
			eld Ie	ff MF	MS N	itaigo	Ir Pron	Ichand	Mahal	ik, TMF	I Public	hing co			
						-			educati		11 00115		•		
			2100, 1	0 411 444			,		• • • • • • • • • • • • •	011					
R	eferer														
	1. M	arc Ma	idou, "	Funda	mental	s of M	icro fa	bricatio	on", CR	C press	1997.				
	2. St	ephen	D. Sen	turia,"	Micro	system	n Desi	gn", Kl	luwer A	cademi	c Publis	shers,20	01		
	3. Se	rgey E	dward	Lyshe	vski, "	MEMS	S and N	NEMS:	System	ns, Devi	ces, and	l Structu	ures" CI	RC	
	Press	s, 2002													
	4. Ta	i Ran	Hsu "	MEMS	and N	ficrosy	stems	Design	1 and N	lanufact	ure" Ta	ata Mera	aw Hill	2002	
TA	/eb Re							81					···· •••••,		
VV				lboro.a	ac.uk/i	nicros	ites/n	nechm	an/res	earch/i	pm-				
					-		-		-	ms.pdf	•				
				0,		•				k07_lec	tures.p	df			
	<b>3.</b> ht	tps://	citese	erx.ist.	psu.ec	lu/vie	wdoc/	downl	oad?do	oi=10.1.	1.111.3	275&r	ep=rep2	1&type=	-pdf
CO 1	Vs PO	Маррі	ng and	d CO Vs	s PSO I	Mappi	ng								
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	<b>PO10</b>	PO11	PO12	PSO1	PSO2	PSO:
$\frac{co}{1}$	3	- 0 =									- 011				
2	3		2	3	2	2			3						
				2	1	3			2				2	1	
3				1	3	2		1	1					1	
4				3	2	3			2					2	
5				2	3	2			1						
	1→Lo	w 2→1	Mediu	m 3→]	High										

21VL1703	F	LEXIBLE ELECTRONICS		L	T	P	
Dronoquisitos for th	0.0011700			3	0	0	3
Prerequisites for th		required by the Students to study th	is Course	is has	vie kr		laa
	ectronic devices	· · ·		15 Ua	SIC KI	lowiet	ige i
Objectives							
	sics of organic	semiconductor materials.					
	e	es designed with organic materials					
•		exible electronics and improvement	s in mate	erials	com	oatible	. wi
	-	mperature processing methods like p			-	<i>culloid</i>	
		Transistors using organic materials		e tiro a	5		
5. To study printe							
UNIT I		SEMICONDUCTING MATERIA	LS			9	
	-	ronic structure: hybridization of ato relationships, Characterization: UV					
UNIT II Review of PN junction		ANIC ELECTRONIC DEVICES MOSFETs, Light-emitting diodes	(OLEDs)	), Sol	ar ce	9 Ills (in	nclue
Review of PN junction hybrid perovskite PV of the second s	on diodes and cells) (OPV), E	MOSFETs, Light-emitting diodes Electrical measurement, Device stabil	lity.	), Sol	ar ce	lls (in	nclua
Review of PN junction	on diodes and cells) (OPV), E	MOSFETs, Light-emitting diodes	lity.	), Sol	ar ce	-	ncluo
Review of PN junction hybrid perovskite PV of UNIT III	on diodes and cells) (OPV), E FLEXIBLE	MOSFETs, Light-emitting diodes Electrical measurement, Device stability ELECTRONICS AND HIGH-SPI	lity. E <b>ED</b>			lls (in 9	
Review of PN junction hybrid perovskite PV of UNIT III Organic devices on the	on diodes and cells) (OPV), E FLEXIBLE flexible substra	MOSFETs, Light-emitting diodes Electrical measurement, Device stability ELECTRONICS AND HIGH-SPI PRINTING ate, Technologies of roll-to-roll pr	lity. E <b>ED</b>			lls (in 9	
Review of PN junction hybrid perovskite PV of UNIT III Organic devices on the	on diodes and cells) (OPV), E FLEXIBLE flexible substra oparticles as co	MOSFETs, Light-emitting diodes Electrical measurement, Device stability ELECTRONICS AND HIGH-SPI PRINTING ate, Technologies of roll-to-roll pr	lity. E <b>ED</b>			lls (in 9	
Review of PN junction hybrid perovskite PV of UNIT III Organic devices on the Sintering of metal nan UNIT IV Performance on glass	on diodes and cells) (OPV), E FLEXIBLE flexible substra oparticles as co TI s and polymer	MOSFETs, Light-emitting diodes Electrical measurement, Device stabil ELECTRONICS AND HIGH-SPI PRINTING ate, Technologies of roll-to-roll prontacts. HIN FILM TRANSISTORS c, essential component of enabler	lity. E <b>ED</b> rinting, S	tretch	able	9 electr 9	onic
Review of PN junction hybrid perovskite PV of UNIT III Organic devices on the Sintering of metal nan UNIT IV Performance on glass	on diodes and cells) (OPV), E FLEXIBLE flexible substra oparticles as co TI s and polymer	MOSFETs, Light-emitting diodes Electrical measurement, Device stabil ELECTRONICS AND HIGH-SPI PRINTING ate, Technologies of roll-to-roll prontacts. HIN FILM TRANSISTORS c, essential component of enabler	lity. E <b>ED</b> rinting, S	tretch	able	9 electr 9	onic
Review of PN junction hybrid perovskite PV of UNIT III Organic devices on the Sintering of metal nan UNIT IV Performance on glass circuits for smart pack	on diodes and cells) (OPV), E FLEXIBLE flexible substra oparticles as co TI s and polymer aging, wearable	MOSFETs, Light-emitting diodes Electrical measurement, Device stabil ELECTRONICS AND HIGH-SPI PRINTING ate, Technologies of roll-to-roll prontacts. HIN FILM TRANSISTORS r, essential component of enabler e electronics, NFC.	lity. EED rinting, S circuitry,	tretch Targ	able et A	lls (in 9 electr 9 pplica 9	onic
Review of PN junction hybrid perovskite PV of UNIT III Organic devices on the Sintering of metal nan UNIT IV Performance on glass circuits for smart pack UNIT V Batteries for low-pow	on diodes and cells) (OPV), E FLEXIBLE flexible substra oparticles as co TI s and polymer aging, wearable	MOSFETs, Light-emitting diodes Electrical measurement, Device stabil ELECTRONICS AND HIGH-SPI PRINTING ate, Technologies of roll-to-roll prontacts. HIN FILM TRANSISTORS r, essential component of enabler e electronics, NFC. PRINTED BATTERIES	lity. EED rinting, S circuitry, t and in y	tretch Targ	able et A	lls (in 9 electr 9 pplica 9	onic
Review of PN junction hybrid perovskite PV of UNIT III Organic devices on the Sintering of metal nan UNIT IV Performance on glass circuits for smart pack UNIT V Batteries for low-pow	on diodes and cells) (OPV), E FLEXIBLE flexible substra oparticles as co TI s and polymer aging, wearable	MOSFETs, Light-emitting diodes Electrical measurement, Device stabil ELECTRONICS AND HIGH-SPI PRINTING ate, Technologies of roll-to-roll prontacts. HIN FILM TRANSISTORS c, essential component of enabler e electronics, NFC. PRINTED BATTERIES ctronics Thin, flexible, light-weight smart packaging and smart card, deco	lity. EED rinting, S circuitry, t and in y	tretch Targ	able et A s sha	lls (in 9 electr 9 pplica 9	onic
Review of PN junction hybrid perovskite PV of UNIT III Organic devices on the Sintering of metal nan UNIT IV Performance on glass circuits for smart pack UNIT V Batteries for low-pow Applications: Wearable	on diodes and cells) (OPV), E <b>FLEXIBLE</b> flexible substra oparticles as co <b>T</b> I s and polymer aging, wearable ver flexible electonics, s	MOSFETs, Light-emitting diodes Electrical measurement, Device stabil ELECTRONICS AND HIGH-SPI PRINTING ate, Technologies of roll-to-roll prontacts. HIN FILM TRANSISTORS r, essential component of enabler e electronics, NFC. PRINTED BATTERIES ctronics Thin, flexible, light-weight smart packaging and smart card, deco Total	lity. EED rinting, S circuitry, t and in v or.	tretch Targ	able et A s sha	9 electro 9 pplica 9 upes, 7	onic
Review of PN junction hybrid perovskite PV of UNIT III Organic devices on the Sintering of metal nan UNIT IV Performance on glass circuits for smart pack UNIT V Batteries for low-pow Applications: Wearable Suggestive Assessm	on diodes and cells) (OPV), E FLEXIBLE flexible substra oparticles as co TI s and polymer aging, wearable //er flexible electronics, s eent Methods	MOSFETs, Light-emitting diodes Electrical measurement, Device stabil ELECTRONICS AND HIGH-SPI PRINTING ate, Technologies of roll-to-roll prontacts. HIN FILM TRANSISTORS r, essential component of enabler e electronics, NFC. PRINTED BATTERIES ctronics Thin, flexible, light-weight smart packaging and smart card, deco Total	lity. EED rinting, S circuitry, t and in v or.	tretch Targ /ariou	able get A s sha	9 electr 9 pplica 9 upes, 7 45	onic
Review of PN junction         hybrid perovskite PV of         UNIT III         Organic devices on the         Sintering of metal name         UNIT IV         Performance on glass         circuits for smart pack         UNIT V         Batteries for low-pow         Applications: Wearable         Suggestive Assessm         Continuous Assessm	on diodes and cells) (OPV), E FLEXIBLE flexible substra oparticles as co TI s and polymer aging, wearable ver flexible electronics, s eent Methods nent Test	MOSFETs, Light-emitting diodes Electrical measurement, Device stabil ELECTRONICS AND HIGH-SPI PRINTING ate, Technologies of roll-to-roll prontacts. HIN FILM TRANSISTORS r, essential component of enabler e electronics, NFC. PRINTED BATTERIES ctronics Thin, flexible, light-weight smart packaging and smart card, deco Total	Lity. EED cinting, S circuitry, t and in v or. Periods [60 Ma	tretch Targ /ariou	able get A s sha er Ex	electro 9 pplica 9 upes, 7 45 xams	onic
Review of PN junction hybrid perovskite PV of UNIT III Organic devices on the Sintering of metal nan UNIT IV Performance on glass circuits for smart pack UNIT V Batteries for low-pow Applications: Wearable Suggestive Assessm (30 Marks) 1. Description Qi 2. Formative Mu	on diodes and cells) (OPV), E FLEXIBLE flexible substra oparticles as co TI s and polymer aging, wearable ver flexible electronics, s eent Methods nent Test uestions	MOSFETs, Light-emitting diodes Electrical measurement, Device stabil ELECTRONICS AND HIGH-SPI PRINTING ate, Technologies of roll-to-roll prontacts. HIN FILM TRANSISTORS r, essential component of enabler e electronics, NFC. PRINTED BATTERIES ctronics Thin, flexible, light-weight smart packaging and smart card, deco Total Formative Assessment Test (10 Marks) 1. Assignment 2. Online Quizzes	lity. EED rinting, S circuitry, t and in vor. Periods End Sei (60 Ma	tretch Targ Variou mesto rks) Descr Quest	able et A s sha er Ex iptio ions	electr 9 pplica 9 upes, 7 45 ams n	onic ttior
Review of PN junction hybrid perovskite PV of UNIT III Organic devices on the Sintering of metal nan UNIT IV Performance on glass circuits for smart pack UNIT V Batteries for low-pow Applications: Wearable Suggestive Assessm (30 Marks) 1. Description Q	on diodes and cells) (OPV), E FLEXIBLE flexible substra oparticles as co TI s and polymer aging, wearable ver flexible electronics, s eent Methods nent Test uestions	MOSFETs, Light-emitting diodes Electrical measurement, Device stabil ELECTRONICS AND HIGH-SPI PRINTING ate, Technologies of roll-to-roll prontacts. HIN FILM TRANSISTORS c, essential component of enabler e electronics, NFC. PRINTED BATTERIES ctronics Thin, flexible, light-weight smart packaging and smart card, deco Total Formative Assessment Test (10 Marks) 1. Assignment 2. Online Quizzes 3. Problem Solving	Lity. EED cinting, S circuitry, t and in vor. Periods [60 Ma [60 Ma 1. ]	tretch Targ variou mesta rks) Descr Quest Form	able get A s sha er Ex iptio ions ative	electro 9 pplica 9 pplica 45 xams n Multi	onic ation Targ
Review of PN junction         hybrid perovskite PV of         UNIT III         Organic devices on the         Sintering of metal name         UNIT IV         Performance on glass         circuits for smart pack         UNIT V         Batteries for low-pow         Applications: Wearable         Suggestive Assessme         (30 Marks)         1. Description Q         2. Formative Mu	on diodes and cells) (OPV), E FLEXIBLE flexible substra oparticles as co TI s and polymer aging, wearable ver flexible electronics, s eent Methods nent Test uestions	MOSFETs, Light-emitting diodes Electrical measurement, Device stabil ELECTRONICS AND HIGH-SPI PRINTING ate, Technologies of roll-to-roll prontacts. HIN FILM TRANSISTORS r, essential component of enabler e electronics, NFC. PRINTED BATTERIES ctronics Thin, flexible, light-weight smart packaging and smart card, deco Total Formative Assessment Test (10 Marks) 1. Assignment 2. Online Quizzes	Lity. EED cinting, S circuitry, t and in vor. Periods [60 Ma [60 Ma 1. ]	tretch Targ variou mesta rks) Descr Quest Form	able get A s sha er Ex iptio ions ative	electr 9 pplica 9 upes, 7 45 ams n	onic atior

CO703.1 Understnd the concepts of organic semiconductor materials.

CO703. 2 Understand the organic electronic devices.

CO703.3 Learn flexible electronics and high-speed printing.

CO703.4 Learn about Thin Film Transistors.

CO703. 5 Understand the concepts of paper batteries.

# Text Books

- 1. Zhenan Bao and Jason Locklin, Organic Field-Effect Transistors (Optical Science and Engineering), CRC Press, 2007
- 2. Ioannis Kymissis, Organic Field-Effect Transistors: Theory, Fabrication and Characterization (Integrated Circuits and Systems), Springer, 2009

# **Reference Books**

- 1. Qiquan Qiao (Editor), Organic Solar Cells: Materials, Devices, Interfaces, and Modeling (Devices, Circuits, and Systems), CRC Press, 2015
- 2. Christoph Brabec, Ullrich Scherf, Vladimir Dyakonov (Editors), Organic Photovoltaics: Materials, Device Physics, and Manufacturing Technologies, Wiley-VCH, 2014
- 3. Frederik C. Krebs, Stability and Degradation of Organic and Polymer Solar Cells, Wiley, 2012

# Web Resources

- 1. <u>https://www.youtube.com/watch?v=0_FjPqBqPec</u>
- 2. <u>https://www.edx.org/course/fundamentals-nanoelectronics-part-b-purduex-nano521x</u>.
- 3. <u>https://nanohub.org/courses/fon2</u>

# CO Vs PO Mapping and CO Vs PSO Mapping

СО	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
1	3	3										3	1		
2	3		3									3			
3				3								3		2	
4	3				3	3						3			
5				3	3	3	3					3		1	

# $1 \rightarrow Low 2 \rightarrow Medium 3 \rightarrow High$

21VL1704	RELIABILITY OF DEVICES AND CIRCUITS	L	Τ	Р	C
		3	0	0	3

# Prerequisites for the course

The pre-requisite knowledge required by the Students to study this Course is basic knowledge in Integrated circuits and electronic devices.

# Objectives

- 1. Know the basics of Devices and their Reliability.
- 2. Understand the fundamentals of Packaging Materials, Processes and Stresses.
- 3. Know the failure and reliability of optic materials and devices.
- 4. Study the characteriastion of failure and reliability of optic materials and devices.

Francis Xavier Engine	ering College   Depa	rtment of ECE  M.E-VLSI   R2019   Cur	riculum d	and Syllabi 2021 42
5. Understand	d the issues and fut	are directions of reliability.		
UNIT I	AN OVE	RVIEW OF DEVICES & THEIR RELIABILITY		9
products, Reliabil	ity –Brief history, l	ective, solid state devices, Integrate ong term non-operating reliability, A		
survivability, Fail	•		ND	
UNIT II	PACKAGIN	IG MATERIALS, PROCESSES A STRESSES	ND	9
		esses and .effects, solders and their R package structures, Degradation		
UNIT III	ELECTRO O	PTICAL MATERIALS AND DEV	ICES	9
	ure and Reliability ability of optical fib	of Lasers and LEDs, Thermal deg ers.	gradation	of lasers and optical
UNIT IV	FAILURE	ANALYSIS OF MATERIALS AN DEVICES	D	9
Overview of testi	ng and failure ana	lysis, Non-destructive Examination	and Dec	capsulation. Structural
		ation, Examining devices under elec		
UNIT V	FUTURE DIRI	ECTIONS AND RELIABILITY IS	SUES	9
Integrated circuit	Technology Trends	, Scaling, Fundamental limits, Impro	ving Reli	ability.
Compare the America		Total F	Periods	45
Continuous Asse	ssment Methods	Formative Assessment Test	End So	mester Exams
(30 Marks		(10 Marks)	(60 Ma	
1. Descriptio		1. Assignment		Description
	e Multiple Choice	2. Online Quizzes		Questions
Questions		<b>3.</b> Problem Solving Activities		Formative Multiple Choice Questions
Outcomes				
·		he students will be able to:		
		ntals of Devices and their Reliability		
	1	nentals of Packaging Materials, Proce		Stresses
		and reliability of optic materials and		
	ummarize the cha evices.	racteriastion of failure and reliabil	ity of op	otic materials and
		nd future directions of reliability.		
Text Books				
1998.	•	Felectronic Materials and Devices, Fin		
		s and Engineering, Second Edition, Sp tals of Modern VLSI Devices," Cambr		

4. J.Ross, Microelectronic Failure Analysis, Sixth Edition, ASTM International, 2011.

#### **Reference Books**

1. Behzad Razavi, "Design of Analog CMOS Integrated Circuits", Tata McGraw-Hill, 2002.

#### Web Resources

- 1. https://nptel.ac.in/courses/117/106/117106091/
- $2. \ https://m.eet.com/media/1120313/ic\%20 we arout\%20 edn\%20 v1-1\%20\%282\%29.pdf$
- 3. https://www.sciencedirect.com/book/9780120885749/reliability-and-failure-of-electronicmaterials-and-devices

# CO Vs PO Mapping and CO Vs PSO Mapping

СО	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
1	3	3										3		2	
2	3		3									3			
3				3								3		3	
4	3			3	3	3						3			
5	3			3	3	3	3					3			1
-	1 \ T .	2	1. 1.		T. 1										

# $1 \rightarrow Low 2 \rightarrow Medium 3 \rightarrow High$

PROFESSIONAL ELECTIVE II											
21VL1705	Graph Theory and Algorithms for CAD	3	0	0	3						
21VL1706	Communication Buses and Interfaces	3	0	0	3						
21VL1707	Mixed Signal Design	3	0	0	3						
21VL1708	VLSI Architectural Design and Implementation	3	0	0	3						

21VL1705	GRAPH THEORY AND ALGORITHMS FOR CAD	L	Τ	Р	C
					1

(	)	0	)	

				3	0	0	3
Prerequisites for the cours	se						
The pre-requisite know CMOS VLSI Design.	vledge	required by the Students to study t	his Course	is ba	asic k	nowle	dge in
Objectives							
1. To learn graph theory	concep	ts in VLSI Design.					
2. To study the design algorithm	ules a	nd implement the Layout with pr	oper place	ment	t and	partit	ioning
3. To learn algorithms to	perfor	m Floor planning					
4. To understand VLSI de	-						
5. To study modelling an	d simu			1			
UNIT I		GRAPH THEORY				9	
Cycles – Vertex Colourings – Formula– Dual Graphs -Data	Edge struc	Trees and their Characterization – Colourings – Vizing's Theorem – tures for graph representations – and shortest path algorithms.	Planar Gra	phs -	-Inclu	ding I	Euler's
UNIT II C	OMP	UTATIONAL COMPLEXITY O ALGORITHMS	F			9	
Tractable and Intractable pro notation- Class P- class NP -N		, General purpose methods for co l- NP-complete.	mbinatoria	l op	timiza	tion.	Big-C
UNIT III	LA	YOUT AND PARTITIONING				9	
Partitioning.		gration Algorithm: Kernighan-Li		ted	annea	aling	based
		SIGNMENT AND PLACEMENT				9	
		napping, Topological pin assignmen n models for placement - Quad					
UNIT V SI	MUL	ATION AND LOGIC SYNTHES	[S			9	
Simulation, Gate-level modell	ing an	d simulation, Switch-level modellin	g and simu	ılatic	on, Co	mbina	ational
Logic Synthesis, Binary De	ecision	Diagrams, Two Level Logic S	ynthesis.	Higł	n-leve	l syn	thesis
allocation, assignment and transformations.	sched	uling, scheduling algorithms, As	signment	prob	lem,	High	leve
		Tota	Periods			45	
Suggestive Assessment Me			1				
Continuous Assessment Te (30 Marks)		Formative Assessment Test (10 Marks)	End Se (60 Ma			kams	
1. Description Question		1. Assignment			riptic		
<b>2.</b> Formative Multiple C Questions	noice	<ol> <li>Online Quizzes</li> <li>Problem Solving</li> </ol>		-	tions	Mult	inle
Questions		Activities				estior	•
Outcomes		•			U		
Upon completion of the co	urse, t	the students will be able to:					

CO705.1 Understand graph theory concepts in VLSI Design.

- CO705.2 Understand the design rules and implement the Layout with proper placement and partitioning algorithm.
- CO705.3 Learn algorithms to perform Floor planning.
- CO705.4 Learn algorithms for Assignment and placement.
- CO705.5 Understand the scheduling algorithms Synthesis Simulation process.

# **Text Books**

- 1. Narasingh Deo, Graph Theory with Applications to Engineering and Computer Science, PHI Learning Pvt Ltd, 2004.
- 2. Gerez, Algorithms for VLSI Design Automation, John Wiley & Sons 2000.
- 3. Sadiq M. Sait, Habib Youssef, "VLSI Physical Design automation: Theory and Practice", World Scientific 1999.

# **Reference Books**

1. N.A. Sherwani, "Algorithms for VLSI Physical Design Automation", Kluwer Academic Publishers, 2002.

# Web Resources

- 1. https://nptel.ac.in/courses/106/106/106106088/
- https://gndec.ac.in/~librarian/web%20courses/IIT-MADRAS/CAD%20for%20VLSI%20DESIGN%20I/index1.html

# CO Vs PO Mapping and CO Vs PSO Mapping

CO	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
1	3	3													
2	3	3											2		
3	3	3													
4	3	2												2	
5	3	2											1		

# $1 \rightarrow Low 2 \rightarrow Medium 3 \rightarrow High$

21VL1706

COMMUNICATION BUSES AND INTERFACES

L T P C 3 0 0 3

# Prerequisites for the course

• The pre-requisite knowledge required by the Students to study this Course is basic knowledge in Microcontrollers and Interfacing.

#### **Objectives** 1. Learn to design RS232 based system. 2. Understand the APIs for configuration, reading and writing data onto serial bus. 3. Learn to design peripheral interfaces attached to desired serial bus 4. To understand the USB architecture 5. To analyse the CAN architecture LOW SPEED SERIAL BUS ARCHITECTURE 9 **UNIT I** Serial Buses RS232- I2C- SPI Features- Frame structure- Control signals- Limitations. **UNIT II** LOW SPEED SERIAL BUS PHYSICAL INTERFACE 9 Serial Bus RS232 - physical interface; RS485- I2C Physical Interface - SPI, Physical Interface; Configuration and applications of low speed serial bus. UNIT III **CAN ARCHITECTURE** 9 CAN Features -Architecture; Frame structure - Physical Interface of CAN; Data transmission-Applications of CAN protocol **USB ARCHITECTURE UNIT IV** 9 USB Architecture-Transfer types; Enumeration; Descriptor types and contents; Device driver. **PCIe ARCHITECTURE UNIT V** 9 PCIe Architecture - Revisions- Features; PCIe Configuration space; Hardware protocols, Applications **Total Periods** 45 Suggestive Assessment Methods **Continuous Assessment Test Formative Assessment Test End Semester Exams** (30 Marks) (10 Marks) (60 Marks) 1. Description Questions 1. Description 1. Assignment **2.** Formative Multiple Choice 2. Online Quizzes Questions **Ouestions 3.** Problem Solving **2.** Formative Multiple Activities **Choice Questions Outcomes** Upon completion of the course, the students will be able to: CO706.1 Select Low speed Serial buses for various applications. CO706.2 Demonstrate Low speed serial buses Configuration. CO706.3 Interpret Automotive Bus Frame structure. CO706.4 Analyze USB Descriptors. CO706.5 Describe high speed PCIe bus configuration space. **Text Books** 1. Jan Axelson, Jan. USB complete . Lakeview Research, 2015 2. Mike Jackson, Ravi Budruk, "PCI Express Technology", Mindshare Press **Reference Books** 1. Jan Axelson, J. Serial Port Complete: COM Ports, USB Virtual COM Ports, and Ports for Embedded Systems, ser, 2nd Edition, Complete Guides Series. Lakeview Research 2007. 2. Wilfried Voss, A Comprehensible Guide to Controller Area Network, Copperhill Media Corporation, 2nd Edition, 2005. 3. Serial Front Panel Draft Standard VITA 17.1 – 200x. 4. Shivendra S. Panwar, Shiwen Mao, Jeong-dong Ryoo, Yihan Li, "TCP/IP Essentials", Cambridge

#### University Press.

#### Web Resources

- 1. https://www.usb.org/
- 2. https://www.can-cia.org/

# CO Vs PO Mapping and CO Vs PSO Mapping

CO	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	<b>PO9</b>	<b>PO10</b>	PO11	PO12	PSO1	PSO2	PSO3
1	3	3												2	
2	2	1	2												
3	3	2											2		
4	1	2												3	
5	2	1											1		
-	1 <b>\</b> T .	2 \ 1	<b>T</b> 1.	2 \ 1	T. 1										

## $1 \rightarrow Low 2 \rightarrow Medium 3 \rightarrow High$

21VL1707	MIXED SIGNAL DESIGN	L	Т	Р	С
		3	0	0	3

#### **Prerequisites for the course**

• The pre-requisite knowledge required by the Students to study this Course is VLSI Design and Embedded systems.

#### Objectives

**UNIT I** 

- 1. To give the knowledge about various analog and digital CMOS circuits
- 2. To impart the skill in analysis and design of analog and digital CMOS circuits.
- 3. To design the amplifiers
- 4. To understand the principle of oscillators
- 5. To analyse the switched capacitor circuits and converters

#### CMOS AMPLIFIERS AND CASCODED STAGES

**CMOS Amplifiers-** Common Source with diode connected loads and current source load, CS stage with source degeneration, CG stage and Source Follower (Only Voltage Gain and Output impedance of circuits )

**Cascoded stages -** Cascoded amplifier, Cascoded amplifier with cascoded loads , Folded cascode Amplifier

UNIT II	MOS CURRENT MIRROR AND DIFFERENTIAL	9
	AMPLIFIERS	

**MOS Current Mirror**- Basic circuit, PMOS and NMOS current mirrors Current mirror copying circuits, MOSFET cascode current mirror Circuits

**Differential Amplifiers-**Differential Amplifier with MOS current source Load, with cascaded load and with current mirror load, MOS telescopic cascode amplifier. (Only Voltage Gain and Output impedance of circuits)

UNIT III

#### CMOS OP AMPS AND COMPARATOR

9

9

**CMOS OP AMPS-** Two Stage Operational Amplifiers - Frequency compensation of OPAMPS - miller compensation – Design of classical Two Stage OP AMP

Comparator- Characterization of a comparator-static and dynamic, A Two stage open loop comparator

	UNI	T IV		PHAS	E LO	CKED				AMIC	ANAL	OG		9					
DI		alzad	Loon	Cimn	lo DI I	Doci		RCUI		orgo Di	mp DI I	Decio	Charge	Dump I					
			_	-				-		-	-		itch, Re	-					
	chnique		lg th	uns – (	charge	njecu	on and	capac			ugii ili N	105 50	nen, Re	uuction					
ic	UNI			S	WITC	HED	САРА		R CIR	CUITS				9					
	UIU	L V		b				VERT		COND				,					
S	vitcheo	d Capa	acitor (	Circui	ts- sam	ple an				tched C	apacitor	Integra	tor, Lad	der filte	ers				
		-				+					+	0	DC Spe						
									<i>J</i> ,	, ,		0	1						
Quantization error, Aliasing, SNR, Aperture Error. <b>DAC Architecture -</b> Resistor String, Charge Scaling and Pipeline types. <b>ADC Architecture-</b> Flash and Pipe line types																			
A	DC Ar	chitec	<b>ture-</b> F	Flash ai	nd Pipe	line t	ypes	U	1	•	•								
Total Periods 45																			
Suggestive Assessment Methods																			
Suggestive Assessment Methods         Continuous Assessment Test       Formative Assessment Test       End Semester Exams																			
U		<b>30 Ma</b>			51	10		10 Ma		it itest				Aams					
	· · · · · · · · · · · · · · · · · · ·		tion Qu	lestion	IS			ssignm	,		(0	(60 Marks) 1. Description Questions							
					Choice				uizzes			2. Formative Multiple							
		uestio		1					-					-					
Questions     3. Problem Solving Activities     Choice Questions																			
Outcomes																			
Outcomes Upon completion of the course, the students will be able to:																			
CO707. 1 Can understand CMOS Amplifiers and Cascoded Stages																			
	CO7	07.2	Can ı	underst	tand M	OS Cu	rrent N	Airror a	and Di	fferentia	al Ampl	ifiers							
	CO7(	07.3	Can ı	underst	tand Cl	MOS	Dp Am	ps and	Comp	arator	•								
	CO7(						1		1		nalog C	ircuits							
	CO7(							-	•		nverters								
Т	ext Boo		Cuirt				. oupu	-1101 0	neuro			·							
			lon Do	nalaa		ory (	POM	Analo	Ciron	it Docid	gn, Oxfo	rd 200	1						
	-			-		•				-	n, 0xic	Jiu, 200	4.						
								•			cGraw ]	u;11 20	00						
					n Allai		105 11	legiale	u Chu	1115 , IVI	COIAW	1111, 20	00						
	eferen				<u> </u>		· •		1.0.	1	<u> </u>	TT 11	. 1:						
			•				-	•					India, 20	000					
				n Anai	log CIV	US In	legrale		uits, M	c Graw	Hill, 20	JUI.							
W	eb Res																		
		-							-	gnal-ciro									
		0					0			ïrefox-ł									
		-			-	0				-	page=sy								
	3. h	ttps://v	vww.kt	tustude	ents.in/	2020/0	)6/ec46	52-mix	ed-sigr	nal-circu	uit-desig	n.html							
3. https://www.ktustudents.in/2020/06/ec462-mixed-signal-circuit-design.html																			
						lannir	ופ												
:0 \	Vs PO I	Mappi	ng and	CO Vs	5 P 5 0 N	rappn	-0												
			0				<u> </u>								<u> </u>				
20 V 20	/s PO M PO1	Mappin PO2	ng and PO3	CO Vs PO4	P30 N	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PS				

Franc	eis Xav	ier Eng	gineerin	ng Colle	ege   Dej	partme	nt of E	СЕ /М.	E-VLSI	r   R2019	Curric	ulum (	and Sy	yllak	oi 2021	49
2	3	1	3										2	2		
3	2	2											3	3		
4	3	3	2												2	
5	2	1														
1	l→Lo	$w 2 \rightarrow 1$	Mediu	 m 3→	High											
				m 5 7									<b>.</b>			
	2111	<b>.1708</b>			VLSI			MEN]		ESIGN . NN	AND		L	Т	Р	C
						11			IAIR				3	0	0	3
Р	erea	uisite	s for tl	he coi	irse								5	U	U	5
						e requ	ired b	v the S	Student	s to stud	ly this C	lourse	is bas	sic k	nowled	ge in
	The pre-requisite knowledge required by the Students to study this Course is basic knowledge in CMOS VLSI Design.															
0	ojecti															
	1. To review the architectural design of VLSI systems as seen in complex SoCs.															
	<ol> <li>To review the architectural design of VLSI systems as seen in complex SoCs.</li> <li>To learn performance optimization techniques in VLSI signal processing.</li> </ol>															
	<ol> <li>To learn performance optimization techniques in VLSI signal processing.</li> <li>To understand the design of synchronous clocking and flow of asynchronous data processing.</li> </ol>															
	4. ]	Fo und	erstand	l the V	LSI cir	cuit flo	oorplar	n and c	hip as	sembly.						
	<ol> <li>To understand the VLSI circuit floorplan and chip assembly.</li> <li>To understand the physical design and verification</li> </ol>															
	UNIT I       INTRODUCTION TO VLSI ARCHITECTURE       9         Introduction: Review of VLSI Design flow. Goals of VLSI Design: Optimization of speed, power dissipation, cost															
V] - H	LSI ar Equiva	chitect lence t	ures, g transfo	raph b rms fo	ased for	rmalis inatior	m for o nal con	descrit nputati	oing pr ons: C	chitectu ocessing ommon	algoritl	nms, is	somor	phic	archite	ecture
tii		IT II	ssocial							ESIS A	ND				9	
								MIZA								
			•		-			-		ions for			•			
			•	-		-				uling, s				-	-	-
-	-				•		-			and per					-	n and
co		•	nthesis							ling, sch	0	of pip	elinec	l circ		
	UN	IT III		D	ESIGN	& CI		ING C RCUI		NCHRO	DNUUS				9	
Th	e gran	d alteri	natives	for reg	gulating	state cl				rous app	roach to	clockir	ng is e	ssent	ial in V	'LSI -
				-				-		g of Syr				liffic	ulty in	clock
dis			ew and	jitter v				-	-	ning - Clo		g prope	erly			
	UN	IT IV			ASYN			IS DA' ITEC'		AOCESS S	SING				9	
Da	ita con	nsistenc	cy prot	olem o	of vector					arallel s	ynchroni	zation,	Unit	dist	ance c	oding,
			-			-	-		-	Data con	•	-			-	
-	synchronization at single place, Synchronization at multiple places, Synchronization from a slow clock, Metastable synchronizer behaviour- Energy Efficiency and Heat Removal: Energy dissipated in CMOS circuits -															
		•						•		Removal	: Energy	dissip	ated in	n CM	IOS cire	cuits -
п	How to improve energy efficiency - Heat flow and heat removalUNIT VPHYSICAL DESIGN & VERIFICATION9															
C			vers an									loornle	anning	hI- t	-	maior
	Conducting layers and their characteristics - Cell-based back-end design - Floorplanning -Identify major building blocks and clock domains - Establish a pin budget- Find a relative arrangement of all major															
										Place a						

Francis Xavier Engineering College / Department of ECE |M.E-VLSI / R2019 / Curriculum and Syllabi 2021 50 **Total Periods** 45 Suggestive Assessment Methods **Continuous Assessment Test Formative Assessment Test End Semester Exams** (30 Marks) (10 Marks) (60 Marks) 1. Description Questions 1. Assignment 1. Description **2.** Formative Multiple Choice 2. Online Quizzes Questions **Ouestions 3.** Problem Solving **2.** Formative Multiple **Choice Questions** Activities Outcomes Upon completion of the course, the students will be able to: Understand transformation of VLSI from Algorithm to architecture. CO708.1 CO708.2 Analysis VLSI architectural synthsis and optimization. CO708.3 Design synchrouous clocking circuits CO708.4 Understand the process flow of asynchronous data. Get Strong foundation in VLSI circuit floorplanning and chip design. CO708.5 **Text Books** 1. Hubert Kaeslin, "Digital Integrated Circuit Design: From VLSI Architectures to CMOS Fabrication", Cambridge University Press (2009). 2. Giovanni De Micheli, "Synthesis and Optimization of Digital Circuits", McGraw Hill (2012). **Reference Books** 1. Peter Pirsch, "Architectures for Digital Signal Processing", John Willy & sons, 2nd Edition, 2014. 2. Behrooz Parhami, " Computer Arithmetic: Algorithm and Hardware Design", Behrooz Parhami, Oxford University Press, 2nd Edition, 2009. Web Resources 1. https://nptel.ac.in/courses/108/105/108105118/ 2. https://designnation.in/an-overview-on-vlsi-design-with-its-example/ 3. https://www.youtube.com/watch?v=cIlwGFcDLhI CO Vs PO Mapping and CO Vs PSO Mapping PO2 PO3 **PO4** PO5 **PO6 PO7** PO12 PSO1 PSO2 PSO3 CO **PO1 PO8** PO9 **PO10** PO11 2 1 3 2 2 2 3 2 2 3 2 3 3 2 3 2 4 3 2 3 2 3 5 1 3 3 2  $1 \rightarrow \text{Low } 2 \rightarrow \text{Medium } 3 \rightarrow \text{High}$ **PROFESSIONAL ELECTIVE III** 21VL2701 3 0 0 3 VLSI Signal Processing

21VL2702	Scripting Languages for VLSI	3	0	0	3	
21VL2703	Advanced Memory Technologies	3	0	0	3	
21VL2704	System on Chip Design	3	0	0	3	

21VL2701	VLSI SIGNAL PROCESSING	L	Т	Р	C
		3	0	0	3

#### Prerequisites for the course

• Analog and Digital IC

#### Objectives

- 1. To familiarize various representation methods of DSP algorithms, understand the significance of the iteration bound and to calculate the same for a given single-rate and/or multi-rate DFG.
- 2. To understand retiming and pipelining and parallel processing.
- 3. To understand algorithms unfolding and folding on a given DFG.
- 4. To understand the concepts of fast convolution, pipelining and parallel processing for FIR and IIR filters
- 5. To signify and calculate the effects of numerical strength reduction, scaling and round-off noise for a given digital filter with limited word length.

UNIT I	INTRO	DUCTI	ON TO SIG	GNAL PRO	OCES	SING		9					
Typical DSP Algorithms – DSP Application Demands and Scaled CMOS Technologies -													
Paprosentations of	Papersentations of DSP Algorithms Data Flow Graph Papersentations Introduction Loop Bound and												

Representations of DSP Algorithms - Data-Flow Graph Representations. Introduction -Loop Bound and Iteration Bound -Algorithms for Computing Iteration Bound: Longest Path Matrix and Multiple Cycle Mean algorithms - Iteration Bound of Multi-rate Data Flow Graphs.

	UNIT II		PIPELINING, PARALLEL PROCESSING AND	9
			RETIMING	
-		11 1		

Pipelining, Parallel processing and Retiming- Introduction to Retiming -Definitions and Properties -Solving Systems of Inequalities - The Bellman-Ford Algorithm - The Floyd Warshall Algorithm-Retiming Techniques.

UNIT III UNFOLDING AND FOLDING 9

Introduction, An Algorithm for Unfolding, Properties of Unfolding, Critical Path, Unfolding, and Retiming, Applications of Unfolding, Introduction, Folding Transformation, Register Minimization Techniques, Register Minimization in Folded Architectures.

UNIT IV	FAST CONVOLUTION, PIPELINING AND	9								
	PARALLEL PROCESSING FOR FIR AND IIR									
	FILTERS									
Fast convolution	- Cook-Toom algorithm, modified Cook-Toom algorithm, H	Pipelined and parallel								
recursive filters - Look-Ahead pipelining in first-order IIR filters, Look-Ahead pipelining with power-										
of-2 decomposition, Clustered look-ahead pipelining, Parallel processing of IIR filters, combined										
pipelining and para	allel processing of IIR filters.									
UNIT V	NUMERICAL STRENGTH REDUCTION, SCALING	9								
	AND ROUNDING NOISE									
Introduction, Numerical strength reduction – subexpression elimination, multiple constant multiplication,										
Scaling and Round	Scaling and Rounding Noise, State Variable Description of Digital Filters, Scaling and Rounding Noise									
Computation, Rou	nding Noise in Pipelined IIR Filters.	_								

**Total Periods** 45 **Suggestive Assessment Methods Formative Assessment Test Continuous Assessment Test End Semester Exams** (30 Marks) (10 Marks) (60 Marks) 1. Description Questions 1. Assignment 1. Description 2. Online Quizzes **2.** Formative Multiple Choice Questions **Ouestions 3.** Problem Solving **2.** Formative Multiple **Choice Questions** Activities Outcomes Upon completion of the course, the students will be able to: Compare various representation methods of DSP algorithms and find iteration bound of a CO701.1 given single and/or multi-rate DFG. Understand and transform the given DFG using retiming with constraints and pipelining and CO701.2 parallel processing. Apply unfolding and folding on the given DFG. CO701.3 Understand concepts of fast convolution, pipelining and parallel processing for FIR and IIR CO701.4 filters Understand and apply algorithmic and numerical strength reduction methods and calculate CO701.5 scaling and round-off noise of the given digital filter with limited word length. **Text Books** 1. Keshab K. Parhi, VLSI Digital Signal Processing Systems: Design and Implementation, Reprint, Wiley, Inter Science, 2014. 2. John G. Proakis, Dimitris K Manolakis, Digital Signal Processing: Principles, Algorithms and Applications, Prentice Hall, Fourth Edition, 2015. 3. Mohammed Ismail and Terri Fiez, Analog VLSI Signal and Information Processing, McGraw-Hill. 2014. 4. S.Y. Kung, H.J. White House, T. Kailath, VLSI and Modern Signal Processing, PHI, 2010. 5. S. K. Mitra, Digital Signal Processing –A Computer Based Approach, Fourth Edition, McGraw-Hill, 2010. **Reference Books** Web Resources 1. https://nptel.ac.in/courses/108/105/108105157/ 2. https://www.wiley.com/en-us/ VLSI+Digital+Signal+Processing+Systems%3A+Design+and+Implementation-p-9780471241867 3. https://www.classcentral.com/course/swayam-vlsi-signal-processing-17837 CO Vs PO Mapping and CO Vs PSO Mapping PO2 PO3 **PO4 PO10** PO12 PSO1 PSO3 CO **PO1** PO5 **PO6 PO7 PO8 PO9 PO11** PSO₂ 1 3 3

Francis Xavier Engineering College | Department of ECE |M.E-VLSI | R2019 | Curriculum and Syllabi 2021

52

Franc	cis Xa	vier Eng	gineerin	g Colle	ege   Depe	artment	of ECE	C /M.E	-VLSI	/ R201	9/0	Currio	culu	m and	Sylla	bi 2021	53
2	3	3	2												2		
3	3	3														1	
4	3	2	1								_				2		
5	-		1												2		
	3	2															
P1	21V rerec • bject	other p	s for tl e-requis rogram	ne cou site kn ming l	SCRI Irse owledge anguage	-							Cours	L 3 se is V	0	0	C 3 or any
	3. 4. 5.	Unders Learn t	concept tand th he Java	of TC e adva Scrip IN	L pheno nced per	l ICTIO								value		9 ariable	s and
as ar	signn rays,	nent, Sc	alar ex d hash	pressi es, Sir	ons, Con nple inp	trol stru	ictures	, Bui	lt-in f	functio	ns, (	Colle	ctior	ns of E	ata, V	Working	g with
	U	II TIN				AD	VANC	CED	PERI	Ĺ						9	
sy	stem,	, Type and mo	globs,	Eval,	Ibroutine Referen on, Tied	nces, D	eta sti es, Inte	ructu erfaci	res, I	Packag	ges,	Libra	aries	and	modu	les, Ol issues.	ojects,
71		IT III		DL !!	and	2+m		CL	Domes	a <b>1</b> 7*	ah 1	0.0	1 -1 - 1			9	flore
D	ata s xamp	tructure le code.	s, Sim		osophy, put/outp	ut, Pro	cedure	es, W	orkin	g with						s and	
		IT IV					DVAN				1		T		-	<u>9</u>	
Ev	vent-o	lriven j	program	ns, M	up-level aking ap trusted c	plicatio	ons 'In	iterne	t-awa	-				-			
-		NIT V		0			ND JA			<b>IPT</b>						9	
m	isual anage	tool k ers, PEF	RL-TK	JavaS	ental con Script – ( c concep	ncepts o Object r	of TK nodels	, TK , Des	by ign P	examp hiloso	phy	Vers	sion	s of Ja	vaScr	s, Geo ipt, The	e Java

Concepts Only): Objects, Classes, Encapsulation, Data Hierarchy. **Total Periods** 45 Suggestive Assessment Methods **Continuous Assessment Test Formative Assessment Test End Semester Exams** (30 Marks) (10 Marks) (60 Marks) 1. Description Questions 1. Assignment 1. Description **2.** Formative Multiple Choice 2. Online Quizzes Questions Questions **3.** Problem Solving **2.** Formative Multiple **Choice Questions** Activities Outcomes Upon completion of the course, the students will be able to: Understand scripting languages CO702.1 Understand security issues CO702.2 CO702.3 Explain concept of TCL phenomena CO702.4 Explain advanced TCL CO702.5 Discuss TK and Java script Text Books 1.Brent Welch,"Practical Programming in Tcl and Tk",Fourth Edition, 2003. 2. David Barron, "The World of Scripting Languages", Wiley Publications, 2000. **Reference Books** 1. Guido van Rossum, and Fred L. Drake ", Python Tutorial, Jr., editor, Release 2.6.4 2. Randal L. Schwartz, "Learning PERL", Sixth Edition, O"Reilly. Web Resources http://www.vlsi-expert.com/2018/11/tcl-practice-task-3.html CO Vs PO Mapping and CO Vs PSO Mapping PSO2 PSO3 CO **PO12** PSO1 **PO1** PO2 PO3 PO4 PO5 **PO6 PO7 PO8 PO9 PO10 PO11** 1 3 2 1 1 2 2 3 2 1 1 3 1 2 1 3 2 4 3 2 1 5 3 2 1  $1 \rightarrow Low 2 \rightarrow Medium 3 \rightarrow High$ 21VL2703 **ADVANCED MEMORY TECHNOLOGIES** Т Ρ L С 3 0 0 3

#### Prerequisites for the course

#### CMOS VLSI Design

#### **Objectives**

- 1. Expounding the basics and detailed architecture of SRAMs and DRAMs.
- 2. Model the memory fault and introduce the basic and advanced memory testing patterns.
- 3. To get an overview on reliability of semiconductors.
- 4. Review and discuss high performance memory subsystems, advanced memory technologies and contemporary issues.
- 5. To understand the advanced memory technologies
- UNIT I RANDOM ACCESS MEMORY TECHNOLOGIES

9

9

g

SRAM Cell Structures, MOS SRAM Architecture, MOS SRAM Cell and Peripheral Circuit Operation, Bipolar SRAM Technologies-Silicon On Insulator (SOI) Technology Operation, Advanced SRAM Architectures and Technologies-Application Specific SRAMs, DRAM Technology Development-CMOS DRAMs, DRAMs Cell Theory and Advanced Cell Structures - BiCMOS, DRAMs, Soft Error Failures in DRAMs, Advanced DRAM Designs and Architecture-Application Specific DRAMs

UNIT II	NONVOLATILE MEMORIES	9
Masked Read-Onl	y Memories (ROMs) - High Density ROMs, Programmable	Read-Only Memories
(PROMs) - Bipol	arPROMs-CMOS PROMs, Erasable (UV) - Programmable	Road-Only Memories
(EPROMs) - Floati	ng-Gate EPROM Cell-One-Time Programmable (OTP) Eproms	- Electrically Erasable
PROMs (EEPRON	As)-EEPROM Technology And Architecture, Nonvolatile SR	AM, Flash Memories
(EPROMs or EEPF	ROM), Advanced Flash Memory Architecture.	

UNIT III MEMORY FAULT MODELING AND TESTING

RAM Fault Modelling, Electrical Testing, Peusdo Random Testing-Megabit DRAM Testing, Nonvolatile Memory Modelling and Testing, IDDQ Fault Modelling and Testing, Application Specific Memory Testing

UNIT IV SEMICONDUCTOR MEMORY RELIABILITY
------------------------------------------

General Reliability Issues, RAM Failure Modes and Mechanism, Non-volatile Memory Reliability, Reliability Modelling and Failure Rate Prediction, Design for Reliability, Reliability Test Structures, Reliability Screening and Qualification.

UNIT VADVANCED MEMORY TECHNOLOGIES9Ferroelectric Random Access Memories (FRAMs), Gallium Arsenide (GaAs) FRAMs, Analog<br/>Memories-Magneto-resistive Random Access Memories (MRAMs), Experimental Memory Devices.<br/>Memory Hybrids and MCMs (2D) - Memory Stacks and MCMs (3D), Memory MCM Testing and<br/>Reliability Issues, Memory Cards, High Density Memory Packaging Future Directions.

	Total	Periods	45
Suggestive Assessment Methods			
Continuous Assessment Test	Formative Assessment Test	End Ser	mester Exams
(30 Marks)	(10 Marks)	(60 Ma	rks)
1. Description Questions	1. Assignment	1. I	Description
<b>2.</b> Formative Multiple Choice	2. Online Quizzes	(	Questions
Questions	<b>3.</b> Problem Solving	<b>2.</b> I	Formative Multiple
	Activities	(	Choice Questions
Outcomes			

Upon completion of the course, the students will be able to:

- CO703.1 Design SRAMs and DRAMs.
- CO703. 2 Design NVRAMs and Flash Memories..
- CO703.3 Model memory faults, select suitable testing patterns and develop testing patterns.
- CO703.4 Improve the reliability of semiconductor memories.
- CO703.5 Contribute to the development of high performance memory subsystems and use advanced memory technologies.

#### **Text Books**

- 1. Ashok K. Sharma, "Semiconductor Memories: Technology Testing and Reliability" Prentice Hall of India", 2007.
- 2. Ashok K. Sharma, "Semiconductor Memories Two Volume Set", Wiley, IEEE Press 2003.

# **Reference Books**

- 1. Brent Keeth, R. Jacob Baker, Brian Johnson, Freng Lin, "DRAM Circuit Design: Fundamental and High Speed Topics", Wiley-IEEE Press, Second Edition, 2008
- 2. Brent Keeth, R. Jacob Baker, "DRAM Circuit Design: A Tutorial", Wiley, IEEE Press, 2000
- 3. Betty Prince, "Emerging Memories Technologies and Trends", Kluwer Academic Publishers, 2002.

## Web Resources

- 1. Memory Technology, https://www.sciencedirect.com/topics/computer-science/memorytechnology
- 2. Reliability of Semiconductor Memories from a Practical Point of View, https://link.springer.com/chapter/10.1007%2F978-3-322-83629-8_22
- 3. Advanced memory—Materials for a new era of information technology, https://doi.org/10.1557/mrs.2018.96

# CO Vs PO Mapping and CO Vs PSO Mapping

СО	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
1	3	2												3	
2	2	2	3											2	
3	2	3	2											1	
4	1	1													1
5	2	3	1												2
		2 \ 1	<b>7</b> 1.	2		•	•	•	•	•	•	•	•	•	

 $1 \rightarrow Low 2 \rightarrow Medium 3 \rightarrow High$ 

Francis Xavier Engineering College / Department of ECE |M.E-VLSI / R2019 / Curriculum and Syllabi 2021 57 21VL2704 SYSTEMS ON CHIP DESIGN L Т Ρ С 3 0 0 3 Prerequisites for the course 1. Digital electronics 2. System architecture **Objectives** 1. To understand concept of Systems-on-Chip 2. To implement SoC on processors. 3. To obtain skills to design SoC using ADL. 4. To develop skills in applying SoC for real time applications 5. To understand the no instruction set computer UNIT I **INTRODUCTION TO SoC DESIGN** 9 Architecture of the Present Day SoC-Design Issues of SoC-Hardware Software Codesign-SoC Design Flow-General Guidelines for Design Reuse-Synchronous Design-Memory and Mixed-Signal Design-On-Chip Buses-Clock Distribution-Clear/Set/Reset Signals-Physical Design-Design Process for Soft and Firm Cores-System Integration-Designing With Hard Cores-Designing With Soft Cores **UNIT II PROCESSORS FOR SoC** g Processor Selection for SOC-Basic Concepts in Processor Architecture-Basic Concepts in Processor Microarchitecture-Basic Elements in Instruction Handling-Buffers: Minimizing Pipeline Delays-VLIW Processors-Superscalar Processors-Processor Evolution SoC MEMORY AND INTERCONNECT DESIGN **UNIT III** 9 Overview-Scratchpads and Cache Memory-Basic Notion-Cache Organization-Cache Data-Write Policies-Strategies for Line Replacement at Miss Time-Multilevel Caches-SOC (On-Die) Memory Systems-Simple DRAM and the Memory Array-Models of Simple Processor-Memory Interactions-Overview: Interconnect Architectures-Bus: Basic Architecture-SOC Standard Buses **UNIT IV** ADL AND NISC 9 Architecture Description Languages (ADL) for design and verification of Application Specific Instruction set Processors (ASIP), No-Instruction-Set-computer (NISC) - design flow, modeling NISC architectures and systems, use of Generic Netlist Representation - A formal language for specification, compilation and synthesis of embedded processors. UNIT V **SoC APPLICATION STUDY** 9 SOC Design Approach,-AES-3-D Graphics Processors-Image Compression-Video Compression-Further Application Studies-Challenges Ahead-Overview-Powering the ASOC-The Shape of the ASOC-Computer Module and Memory-RF or Light Communications-Pre-Deployment-Post-Deployment **Total Periods** 45 **Suggestive Assessment Methods Continuous Assessment Test Formative Assessment Test End Semester Exams** (30 Marks) (10 Marks) (60 Marks) 1. Description 1. Description Questions 1. Assignment 2. Formative Multiple Choice 2. Online Quizzes Questions **3.** Problem Solving **2.** Formative Multiple Questions Activities **Choice Questions** 

#### Outcomes

#### Upon completion of the course, the students will be able to:

CO704.1 To understand the concept of SoC and its design flow

- CO704.2 To learn and understand implementation of SoC on different processors.
- CO704.3 To learn and understand the memory design and interconnection architecture in SoC
- CO704.4 To learn and implement fault tolerance and monitoring services on NOC

CO704. 5 To apply the SoC concept for various eal time applications.

#### **Text Books**

- 1. RochitRajsuman, "System-on- a-chip: Design and test", Advantest America R & D center, 2000.
- 2. P Mishra and N Dutt, "Processor Description Languages", Morgan Kaufmann, 2008
- 3. Michael J. Flynn and Wayne Luk, "Computer System Design: System-on-Chip". Wiley, 2011.

#### **Reference Books**

- 1. Hubert Kaeslin, "Digital Integrated Circuit Design: From VLSI Architectures to CMOS Fabrication", Cambridge University Press, 2008.
- 2. B. Al Hashimi, "System on chip-Next generation electronics", The IET, 2006

#### Web Resources

- 1. https://www.cerc.utexas.edu/~jaa/soc/lectures/1-2.pdf
- 2. https://www.cl.cam.ac.uk/teaching/1516/SysOnChip/materials.d/socdam-notes00.pdf
- 3. https://nptel.ac.in/courses/108102045/10

# CO Vs PO Mapping and CO Vs PSO Mapping

СО	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
1	1		2		1		2		1	3		2		3	
2	1	2	2				2		1	3		2	2		
3	1		3	2	1	1	2		1	3		2			
4			3	2	1	1	2		1	3		2	3		
5			3	2	1	1	2		1	3		2		2	

# 1→Low 2→Medium 3→High

PROFESSIONAL	PROFESSIONAL ELECTIVE IV										
21VL2705	VLSI Test and Testability	3	0	0	3						
21VL2706	VLSI Digital Design Verification	3	0	0	3						
21VL2707	Modern Computer Architecture	3	0	0	3						
21VL2708	Electronic Design Automation	3	0	0	3						

21VL2705	VLSI TEST AND TESTABILITY	L	Т	Р	С
		3	0	0	3
Prerequisites for	• the course				

• The pre-requisite knowledge required by the Students to study this Course is basic knowledge in Digital Design and CMOS VLSI DESIGN

#### **Objectives**

- 1. To Identify the significance of testable design
- 2. To Generate optimized test patterns for combinational and sequential logic circuits
- 3. To Enables to design for testability
- 4. To Design scan chains and BIST modules for digital designs
- 5. To Understand boundary scan based test architectures

UNIT I

#### **BASICS OF TEST**

9

9

9

Design and Test, Test Concerns, HDLs in Digital System Test, ATE Architecture and Instrumentation, Challenges in VLSI Testing, Levels of Abstraction in VLSI Testing, Historical Review of VLSI Test Technology, Fault Modeling, Structural Gate Level Faults, Issues Related to Gate Level Faults, Fault Collapsing

UNIT II	TEST PATTERN GENERATION METHODS AND	
	ALGORITHMS	

Test Generation Basics, Controllability and Observability, Random Test Generation, Designing a Stuck-At ATPG for Combinational Circuits, Reed –Muller Expansion Technique, Designing a Sequential ATPG

#### UNIT III

#### **DESIGN FOR TESTABILITY**

Design for Testability Basics, Scan Cell Designs, Scan Architectures, Scan Design Rules, Scan Design Flow, Special-Purpose Scan Designs, Fault Simulation, Combinational Logic Diagnosis, Scan Chain Diagnosis

#### UNIT IV

**BUILT-IN SELF-TEST** 

____

g

BIST Design Rules, Test Pattern Generation, Output Response Analysis, Logic BIST Architectures, Digital Boundary Scan, Boundary Scan for Advanced Networks, Embedded Core Test Standard, IDDQ Testing, Logic BIST Diagnosis

	UN	IT V		ME	EMOR	Y TES				ECHNC	DLOG Y	7		9	
D		unatio	nol Fo	ult Ma	adala (	and To		REND		M Equ	lt Sim	lation	and Te	at Algo	rithm
													GA Tes		
			speed L					t-111 St	en-kep	all,Dela	iy Test	ing, rrv	GA IES	sung, M	EMS
16	sung,	nigii-s	speed I/	U les	ung, K	r resu	mg.								
										То	tal Pe	shoir		45	
Su	IGGEST	tive As	sessn	ient M	[ethor	lc				10		Ious		45	
			ssessi			1	rmati		eccm	ent Tes	t F	nd Som	nester E	lvame	
u		30 Mai		nene				LO Mai				60 Mar		Aums	
			otion Q	uestio	ns			ssignm					escripti	on	
		-	ive Mu			e		nline Q		5			uestion		
		Juestic					<b>3.</b> Pi	oblem	n Solvi	ng		<b>2.</b> Fo	ormativ	e Multi	ple
							A	ctivitie	es			C	hoice Q	uestion	S
	utcom														
Uj		-	tion o							le to:					
	C07	05.1	To Id	entify	the sign	nifican	ce of te	stable	design						
	C07	05.2	To G	enerate	e optin	nized to	est patt	erns fo	or coml	oination	al and s	equentia	al logic	circuits	
	CO7	05.3	To E	nables	to desi	ign for	testabi	ility							
	CO7	05.4	To D	esign s	scan ch	ains ai	nd BIS	T mod	ules fo	r digital	design	S			
	CO7	05.5	To U	ndersta	and bo	undary	v scan ł	based to	est arcl	nitecture	es				
						2									
			To A			•				mory ar	nd fault	diagno	sis.		
Te	ext Bo	oks	То А			•					nd fault	diagno	sis.		
Te				nalyse	the tes	st vecto	or tech	niques	for me	mory ar			sis. ing HDI	_ Model	s and
Te	1. Z	Zainala		nalyse Navabi	the test (auth.	st vecto ) - Dig	or tech	niques	for me	mory ar				2 Model	s and
Te	1. Z	Zainala Archite	bedin I ctures-	nalyse Navabi Spring	the tes (auth. er US	st vecto ) - Dig (2011)	or techn ital Sy	niques stem T	for me Test and	mory ar	le Desi	gn_ Usi			
Te	1. Z A 2. L	Zainala Archite Laung-'	bedin I ctures-	nalyse Navabi Spring Wang,	the tes (auth. er US Cheng	) - Dig (2011) g-Wen	or techn ital Sy Wu, X	niques stem T Kiaoqin	for me Test and g Wen	mory ar	le Desi	gn_ Usi	ing HDI		
	1. Z A 2. L L	Zainala Archite Laung-'	bedin I ctures- Terng ` for Tes	nalyse Navabi Spring Wang,	the tes (auth. er US Cheng	) - Dig (2011) g-Wen	or techn ital Sy Wu, X	niques stem T Kiaoqin	for me Test and g Wen	mory ar	le Desi	gn_ Usi	ing HDI		
	1. Z A 2. L L	Zainala Archite Laung-' Design	bedin I ctures- Terng ` for Tes	nalyse Navabi Spring Wang,	the tes (auth. er US Cheng	) - Dig (2011) g-Wen	or techn ital Sy Wu, X	niques stem T Kiaoqin	for me Test and g Wen	mory ar	le Desi	gn_ Usi	ing HDI		
	1. Z A 2. L L	Zainala Archite Laung-' Design	bedin I ctures- Terng ` for Tes	nalyse Navabi Spring Wang,	the tes (auth. er US Cheng	) - Dig (2011) g-Wen	or techn ital Sy Wu, X	niques stem T Kiaoqin	for me Test and g Wen	mory ar	le Desi	gn_ Usi	ing HDI		
Re	1. Z A 2. I Eferen	Zainala Archite Laung-' Design	bedin I ctures- Terng ` for Tes <b>oks</b>	nalyse Navabi Spring Wang,	the tes (auth. er US Cheng	) - Dig (2011) g-Wen	or techn ital Sy Wu, X	niques stem T Kiaoqin	for me Test and g Wen	mory ar	le Desi	gn_ Usi	ing HDI		
Re	1. Z A 2. I Eferen	Zainala Archite Laung-' Design <b>ICE BO</b>	bedin I ctures- Terng ` for Tes <b>oks</b>	nalyse Navabi Spring Wang, stabilit	the tes (auth. er US Cheng y-Morg	) - Dig (2011) g-Wen gan Ka	or techn ital Sy Wu, X ufman	niques stem T Xiaoqin n 2013	for me Test and g Wen	mory ar d Testab	le Desi Test P	gn_ Usi	ing HDI	rchitect	
Re	1. Z A 2. I Eferen	Zainala Archite Laung-' Design ICE BO ESOURC 1. 2.	bedin I ctures- Terng ` for Tes oks oks es https:/	nalyse Navabi Spring Wang, stability	the tes (auth. er US Cheng y-Morg	) - Dig (2011) g-Wen gan Ka	or techn ital Sy Wu, X ufman	niques stem T (iaoqin n 2013 n/scier li/vlsi2	for me Fest and g Wen	mory ar d Testab - VLS <u>ticle/pi</u>	ile Desi Test P i/S002 06.pdf	gn_ Usi Principle	ang HDI es and A	5 <u>4</u>	ures_
Re	1. Z A 2. I Eferen	Zainala Archite Laung-' Design <b>Ice Bo</b> esourc 1. 2. 3.	bedin I ctures- Terng `` for Tes oks oks es https:/ https:/	nalyse Navabi Spring Wang, stabilit <u></u> //www //www	the tes (auth. er US Cheng y-Morg v.scier .ee.ncu l.ac.in	) - Dig (2011) g-Wen gan Ka <u>ncedire</u> <u>1.edu.t</u>	ect.com	niques stem T (iaoqin n 2013 n/scier li/vlsi2 prage2,	for me Test and g Wen nce/ar 21/lec /cours	ticle/pi	i/S002 06.pdf	gn_ Usi Principle	ing HDI	5 <u>4</u>	ures_
Re	1. Z A 2. I Eferen	Zainala Archite Laung-' Design <b>ice Bo</b> esourc 1. 2. 3.	bedin I ctures- Terng `` for Tes oks oks es https:/ https:/	nalyse Navabi Spring Wang, stabilit <u></u> //www //www	the tes (auth. er US Cheng y-Morg v.scier .ee.ncu l.ac.in	) - Dig (2011) g-Wen gan Ka <u>ncedire</u> <u>1.edu.t</u>	ect.com	niques stem T (iaoqin n 2013 n/scier li/vlsi2 prage2,	for me Test and g Wen nce/ar 21/lec /cours	mory ar d Testab - VLS <u>ticle/pi</u>	i/S002 06.pdf	gn_ Usi Principle	ang HDI es and A	5 <u>4</u>	ures_
Re	1. Z A 2. I Eferen	Zainala Archite Laung-' Design <b>ice Bo</b> esourc 1. 2. 3.	bedin I ctures- Terng `` for Tes oks oks es https:/ https:/	nalyse Navabi Spring Wang, stabilit <u></u> //www //www	the tes (auth. er US Cheng y-Morg v.scier .ee.ncu l.ac.in	) - Dig (2011) g-Wen gan Ka <u>ncedire</u> <u>1.edu.t</u>	ect.com	niques stem T (iaoqin n 2013 n/scier li/vlsi2 prage2,	for me Test and g Wen nce/ar 21/lec /cours	ticle/pi	i/S002 06.pdf	gn_ Usi Principle	ang HDI es and A	5 <u>4</u>	ures_
Re	1. Z A 2. I Eferen	Zainala Archite Laung-' Design <b>Ice Bo</b> esourc 1. 2. 3.	bedin I ctures- Terng `` for Tes oks oks es https:/ https:/	nalyse Navabi Spring Wang, stabilit <u></u> //www //www	the tes (auth. er US Cheng y-Morg v.scier .ee.ncu l.ac.in	) - Dig (2011) g-Wen gan Ka	ect.con	niques stem T (iaoqin n 2013 n/scier li/vlsi2 prage2,	for me Test and g Wen nce/ar 21/lec /cours	ticle/pi	i/S002 06.pdf	gn_ Usi Principle	ang HDI es and A	5 <u>4</u>	ures_
W	1. Z A 2. L Eferen	Zainala Archite Laung-' Design <b>nce Bo</b> esourc 1. 2. 3.	bedin I ctures- Terng `` for Tes oks oks es https:/ https:/	nalyse Navabi Spring Wang, stabilit <u></u> (/www //www //npte LSI%2	the tes (auth. er US Cheng y-Morg v.scier .ee.ncu l.ac.in, 0Testi	st vecto ) - Dig (2011) g-Wen gan Ka gan Ka ncedire i.edu.t	ect.con	niques stem T (iaoqin n 2013 n/scier li/vlsi2 prage2,	for me Test and g Wen nce/ar 21/lec /cours	ticle/pi	i/S002 06.pdf	gn_ Usi Principle	ang HDI es and A	5 <u>4</u>	ures_
<b>R</b> <i>e</i> <b>W</b>	<ol> <li>I. Z</li> <li>A</li> <li>Z. I.</li> <li>Eferen</li> </ol>	Zainala Archite Laung-' Design <b>nce Bo</b> <b>sourc</b> 1. 2. 3. 3.	bedin I ctures- Terng ` for Tes oks oks es https:/ https:/ https:/ %20V	nalyse Navabi Spring Wang, stability //www //www //npte LSI%2	the tes (auth. er US Cheng y-Morg v.scien .ee.ncu l.ac.in, 0Testi	st vecto ) - Dig (2011) g-Wen gan Ka acedire i.edu.t /conte ing%2	ect.con	niques stem T (iaoqin n 2013 n/scien li/vlsi2 orage2, ment	for me Sest and g Wen nce/ar 21/lec /cours t%20S	mory ar d Testab - VLS <u>ticle/pi</u> <u>ture/ch</u> es/dow olution	i/S002 06.pdf s.pdf	gn_ Usi Principle	ang HDI es and A 388004!	rchitect	ures_
<b>R</b> e <b>W</b>	1. Z A 2. L Eferen	Zainala Archite Laung-' Design <b>nce Bo</b> esourc 1. 2. 3.	bedin I ctures- Terng ` for Tes oks oks es https:/ https:/ %20V	nalyse Navabi Spring Wang, stability //www //www //npte LSI%2	the tes (auth. er US Cheng y-Morg v.scier .ee.ncu l.ac.in, 0Testi	st vecto ) - Dig (2011) g-Wen gan Ka gan Ka ncedire i.edu.t	ect.con	niques stem T (iaoqin n 2013 n/scier li/vlsi2 prage2,	for me Test and g Wen nce/ar 21/lec /cours	ticle/pi	i/S002 06.pdf	gn_ Usi Principle	ang HDI es and A	5 <u>4</u>	ures_
<b>R w</b>	<ol> <li>I. Z</li> <li>A</li> <li>Z. I.</li> <li>Eferen</li> </ol>	Zainala Archite Laung-' Design <b>nce Bo</b> <b>sourc</b> 1. 2. 3. 3.	bedin I ctures- Terng ` for Tes oks oks es https:/ https:/ https:/ %20V	nalyse Navabi Spring Wang, stability //www //www //npte LSI%2	the tes (auth. er US Cheng y-Morg v.scien .ee.ncu l.ac.in, 0Testi	st vecto ) - Dig (2011) g-Wen gan Ka acedire i.edu.t /conte ing%2	ect.con	niques stem T (iaoqin n 2013 n/scien li/vlsi2 orage2, ment	for me Sest and g Wen nce/ar 21/lec /cours t%20S	mory ar d Testab - VLS <u>ticle/pi</u> <u>ture/ch</u> es/dow olution	i/S002 06.pdf s.pdf	gn_ Usi Principle	ang HDI es and A 388004!	rchitect	ures_
	1. Z A 2. I Eferen Teb Re 7eb Re 7s PO 2 PO1	Zainala Archite Laung-' Design <b>nce Bo</b> esourc 1. 2. 3. Mappi PO2 1	bedin I ctures- Terng ` for Tes oks oks es https:/ https:/ https:/ %20V	nalyse Navabi Spring Wang, stability //www //www //npte LSI%2	the tes (auth. er US Cheng y-Morg v.scien .ee.ncu l.ac.in, 0Testi	st vecto ) - Dig (2011) g-Wen gan Ka acedire i.edu.t /conte ing%2	ect.con	niques stem T (iaoqin n 2013 n/scien li/vlsi2 orage2, ment	for me Sest and g Wen nce/ar 21/lec /cours t%20S	mory ar d Testab - VLS <u>ticle/pi</u> <u>ture/ch</u> es/dow olution	i/S002 06.pdf s.pdf	gn_ Usi Principle	ing HDI is and A 388004! 17105:	rchitect	ures_
	1. Z A 2. L Eferen eb Re /s PO 3 2	Zainala Archite Laung-' Design <b>nce Bo</b> esourc 1. 2. 3. Mappi PO2 1 3	bedin I ctures- Terng ` for Tes oks oks es https:/ https:/ %20V ng and PO3	nalyse Navabi Spring Wang, stability //www //www //npte LSI%2	the tes (auth. er US Cheng y-Morg v.scien .ee.ncu l.ac.in, 0Testi	st vecto ) - Dig (2011) g-Wen gan Ka acedire i.edu.t /conte ing%2	ect.con	niques stem T (iaoqin n 2013 n/scien li/vlsi2 orage2, ment	for me Sest and g Wen nce/ar 21/lec /cours t%20S	mory ar d Testab - VLS <u>ticle/pi</u> <u>ture/ch</u> es/dow olution	i/S002 06.pdf s.pdf	gn_ Usi Principle	ang HDI es and A 388004!	rchitect	ures_
	1. Z A 2. I Eferen eb Re /s PO 3 2 3	Zainala Archite Laung-' Design <b>nce Bo</b> esourc 1. 2. 3. Mappi <b>PO2</b> 1 3 1	bedin I ctures- Terng ` for Tes oks oks es https:/ https:/ https:/ %20V	nalyse Navabi Spring Wang, stability //www //www //npte LSI%2	the tes (auth. er US Cheng y-Morg v.scien .ee.ncu l.ac.in, 0Testi	st vecto ) - Dig (2011) g-Wen gan Ka acedire i.edu.t /conte ing%2	ect.con	niques stem T (iaoqin n 2013 n/scien li/vlsi2 orage2, ment	for me Sest and g Wen nce/ar 21/lec /cours t%20S	mory ar d Testab - VLS <u>ticle/pi</u> <u>ture/ch</u> es/dow olution	i/S002 06.pdf s.pdf	gn_ Usi Principle	ing HDI is and A 388004! 17105:	rchitect	ures_
W	1. Z A 2. L Eferen eb Re /s PO 3 2	Zainala Archite Laung-' Design <b>nce Bo</b> esourc 1. 2. 3. Mappi PO2 1 3	bedin I ctures- Terng ` for Tes oks oks es https:/ https:/ %20V ng and PO3	nalyse Navabi Spring Wang, stability //www //www //npte LSI%2	the tes (auth. er US Cheng y-Morg v.scien .ee.ncu l.ac.in, 0Testi	st vecto ) - Dig (2011) g-Wen gan Ka acedire i.edu.t /conte ing%2	ect.con	niques stem T (iaoqin n 2013 n/scien li/vlsi2 orage2, ment	for me Sest and g Wen nce/ar 21/lec /cours t%20S	mory ar d Testab - VLS <u>ticle/pi</u> <u>ture/ch</u> es/dow olution	i/S002 06.pdf s.pdf	gn_ Usi Principle	ing HDI is and A 388004! 17105:	rchitect	ures_

21VL2706	VLSI DIGITAL DESIGN VERIFICATION	L	T	Р	C
		3	0	0	3
Prerequisites fo					
1	quisite knowledge required by the Students to study this Course sign and VLSI DESIGN.	is bas	sic kn	owled	lge i
Objectives					
1. To introdu	ce various verification techniques				
2. To Discuss	s the principle and importance of verification				
3. To Develo	p basic verification environment using System Verilog				
	p self-checking test environment				
5. To Create	random stimulus and track functional coverage using System Ver	rilog			
UNIT I	VERIFICATION CONCEPTS AND DATA TYPES			9	
The Verification	Process- Basic Testbench Functionality, Directed Testing,	Cons	strain	ed-Ra	ndo
Stimulus, Function	al Coverage, Testbench Components, Built-In Data Types, Fixed	d-Size	e Arra	iys,Qt	ieue
Associative Array	s, Array Methods, Streaming Operators, Enumerated Types				
UNIT II	SYSTEMVERILOG PROCEDURAL BLOCKS, TASKS AND FUNCTIONS			9	
Verilog general	AND FUNCTIONS purpose always procedural block, System Verilog specialize		ocedu	ral bl	
Verilog general Enhancements to	AND FUNCTIONS purpose always procedural block, System Verilog specialize tasks and functions, Task and Function Overview, Routine Argun		ocedu	ral bl	
Verilog general Enhancements to	AND FUNCTIONS purpose always procedural block, System Verilog specialize		ocedu	ral bl	
Verilog general Enhancements to	AND FUNCTIONS purpose always procedural block, System Verilog specialize tasks and functions, Task and Function Overview, Routine Argun		ocedu , Retu	ral bl	
Verilog general p Enhancements to p a Routine, Local D UNIT III	AND FUNCTIONS purpose always procedural block, System Verilog specialize tasks and functions, Task and Function Overview, Routine Argun Data Storage, Time Values	ments	ocedu , Retu	ral bl irning <b>9</b>	fro
Verilog general p Enhancements to t a Routine, Local D UNIT III Separating the Te	AND FUNCTIONS purpose always procedural block, System Verilog specialize tasks and functions, Task and Function Overview, Routine Argun Data Storage, Time Values TESTBENCH AND DESIGN	ments	ocedu , Retu face I	ral bl urning <b>9</b> Driving	fro:
Verilog general p Enhancements to t a Routine, Local D UNIT III Separating the Te Sampling, Progra	AND FUNCTIONS         purpose always procedural block, System Verilog specialized         tasks and functions, Task and Function Overview, Routine Argundata Storage, Time Values         TESTBENCH AND DESIGN         stbench and Design, The Interface Construct, Stimulus Timing,	ments Interf ur-Por	ocedu , Retu face I rt AT	ral bl urning <b>9</b> Driving	from g an
Verilog general p Enhancements to t a Routine, Local E UNIT III Separating the Te Sampling, Progra Common Random	AND FUNCTIONS         purpose always procedural block, System Verilog specialized tasks and functions, Task and Function Overview, Routine Argun Data Storage, Time Values         TESTBENCH AND DESIGN         stbench and Design, The Interface Construct, Stimulus Timing, m Block Considerations, System Verilog Assertions, The Formattion Processing Pro	ments Interf ur-Por	face I n	ral bl urning <b>9</b> Driving	fro:
Verilog general p Enhancements to t a Routine, Local D UNIT III Separating the Te Sampling, Progra	AND FUNCTIONS         purpose always procedural block, System Verilog specialized tasks and functions, Task and Function Overview, Routine Argun Data Storage, Time Values         TESTBENCH AND DESIGN         stbench and Design, The Interface Construct, Stimulus Timing, m Block Considerations, System Verilog Assertions, The Forization Problems, Atomic Stimulus Generation vs. Scenario Generation	ments Interf ur-Por	face I n	ral bl irning 9 Drivin 7M Re	from g an
Verilog general p Enhancements to t a Routine, Local E UNIT III Separating the Te Sampling, Progra Common Random	AND FUNCTIONS         purpose always procedural block, System Verilog specialized         tasks and functions, Task and Function Overview, Routine Argun         Data Storage, Time Values         TESTBENCH AND DESIGN         stbench and Design, The Interface Construct, Stimulus Timing,         m Block Considerations, System Verilog Assertions, The For         ization Problems, Atomic Stimulus Generation vs. Scenario Gene         THREADS AND INTERPROCESS         COMMUNICATION	Interf ur-Poi eration	face I n	ral bl irning 9 Drivin 7M Re	fro g ar oute
Verilog general p Enhancements to t a Routine, Local D UNIT III Separating the Te Sampling, Progra Common Random UNIT IV	AND FUNCTIONS         purpose always procedural block, System Verilog specialized         tasks and functions, Task and Function Overview, Routine Argundata         Storage, Time Values         TESTBENCH AND DESIGN         stbench and Design, The Interface Construct, Stimulus Timing,         m Block Considerations, System Verilog Assertions, The Forization Problems, Atomic Stimulus Generation vs. Scenario Generation         THREADS AND INTERPROCESS	Interf ur-Poi eration	face I n	ral bl urning 9 Drivin 7M R 9	fro g ar oute
Verilog general p Enhancements to t a Routine, Local E UNIT III Separating the Te Sampling, Progra Common Random UNIT IV	AND FUNCTIONS         purpose always procedural block, System Verilog specialized tasks and functions, Task and Function Overview, Routine Argun Data Storage, Time Values         TESTBENCH AND DESIGN         Stbench and Design, The Interface Construct, Stimulus Timing, m Block Considerations, System Verilog Assertions, The Forization Problems, Atomic Stimulus Generation vs. Scenario Generation Problems, Atomic Stimulus Generation vs. Scenario Generation Struct, Disabling Threads, Interprocess Communication, Threads, Disabling Threads, Interprocess Communication, Statement Struct,	Interf ur-Poi eration	face I rt AT n nts,	ral bl urning 9 Drivin 7M R 9	fro g ar oute
Verilog general p Enhancements to t a Routine, Local D UNIT III Separating the Te Sampling, Progra Common Random UNIT IV Working with T Semaphores, Build	AND FUNCTIONS         purpose always procedural block, System Verilog specialized         tasks and functions, Task and Function Overview, Routine Argun         Data Storage, Time Values         TESTBENCH AND DESIGN         stbench and Design, The Interface Construct, Stimulus Timing,         m Block Considerations, System Verilog Assertions, The For         ization Problems, Atomic Stimulus Generation vs. Scenario Gene         THREADS AND INTERPROCESS         COMMUNICATION         Threads, Disabling Threads, Interprocess Communication,         ding a Testbench with Threads and IPC.	Interf ur-Por eration Eve	face I n nts,	ral bl irning 9 Drivin 7M Ro 9 Mailb 9	from g arroute
Verilog general p Enhancements to t a Routine, Local D UNIT III Separating the Te Sampling, Progra Common Random UNIT IV Working with Semaphores, Build UNIT V Gathering Coverag Triggering a Cove	AND FUNCTIONS         purpose always procedural block, System Verilog specialized         tasks and functions, Task and Function Overview, Routine Argun         Data Storage, Time Values         TESTBENCH AND DESIGN         stbench and Design, The Interface Construct, Stimulus Timing,         m Block Considerations, System Verilog Assertions, The For         ization Problems, Atomic Stimulus Generation vs. Scenario Gene         THREADS AND INTERPROCESS         COMMUNICATION         Threads, Disabling Threads, Interprocess Communication,         ding a Testbench with Threads and IPC.	Interf ur-Poi eration Eve	face I face I rt AT n nts,	ral bl irning 9 Drivin CM Ro 9 Mailb 9 ver Gi	from g an oute

Su	ggest	ive As	sessn	nent M	ethod	S									
	ntinu		ssessi	nent 7		1		ve Ass L0 Mai		ent Tes		nd Ser 60 Mai	nester I 'ks)	Exams	
		-		uestio				ssignm					)escripti		
				ıltiple	Choice	9		nline Ç	-				uestion		
	Q	uestic	ons					oblem		ng			ormativ	-	•
0	tcom	05					A	ctivitie	es			C	hoice Q	uestions	5
			tion o	f the c	ourse	the s	tuden	ts will	l be ab	le to:					
• P	C07	-		duce v											
		06.2							•	erificati	on				
	CO7	06.3			-	-	-			g Syste		og.			
	CO7	06.4		lop se								C			
	CO7	06. 5	Creat	te rand	om stir	nulus a	and tra	ck fund	ctional	covera	ge using	g Syster	n Verilo	g	
Те	xt Bo	oks													
	1. C	hris S	pear, G	ireogor	y J Tu	mbush	, "Syst	tem Ve	rilog f	or Verif	ication	– A gui	de to lea	rning	
	te	est ben	ch lang	guage f	eatures	s", Spr	inger, i	2012							
	2. S	tuart S	Sutherl	and, S	imon I	Davidn	nann,	Peter I	Flake,	"Systen	n Veril	og for	Design -	– A gui	de to
		-	ystem	Verilo	g for l	nardwa	ire des	ign an	d mod	eling",	Spring	er Publi	cations,	2nd Ed	ition,
		006.													
Re		ce Bo													
						Funct	ional \	/erifica	ation v	vith Sys	tem Ve	erilog a	nd OVM	", Hanse	en
				hing, 2		Fastha	nchas i	ising S	vetom	Variloo	" Suno	neve In	c., Sprin	aar	
			tions, 2		Innig	cstoci	iches t	ising 5	ystem	veniog	, Syno	psys m	c., sprm	gei	
We		sourc	· · · · ·												
	1. w	ww.as	sic-wor	ld.											
	2. w	ww.te	stbenc	h.in											
CO V	s PO I	Manni	ng and	l CO Vs	PSO N	<i>l</i> annir	וס								
				-								-			
CO	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO:
1	3	3													1
2	2	2	2											2	2
3	3	3	3									1			
4	1											1		1	
5	2	1													2
	<b>\</b> -	• • •	<u> </u>	n 3 <b>→</b> I	T' - 1-			L	l	l	l	1	1	1	L

21VL2707	MODER	N COMPUTER ARCHITECTUR	Ε	L	Τ	Р	C
				3	0	0	3
Prerequisites for	the course						
• The pre-requ	uisite knowledge 1	required by the Students to study Co	mputer O	rganiz	ation	Cours	se
Objectives							
1. To provide	broad and deep kn	owledge of computer architecture is	sues and t	echnie	ques.		
		hniques for exploiting instruction le	-				
-		ecture and techniques used for build	ling High	perfo	rman	ce sca	alable
	ed and Multiproce	•					
	•	y and Storage System.					
	the instruction lev	1	NT			0	
UNIT I		NTALS OF COMPUTER DESIG Pipelining, Overview of Instruction S		tootur		9	
	nt classes of Com	puters, Definition: Computer Archite					gy,
UNIT II	INSTRUCT	TION LEVEL PARALLELISM (I	LP)			9	
	-	ompiler Techniques for ILP, Dynam		-			
Algorithm and Exam Multiple Issue.	mples, Statistic Sc	heduling, Exploiting ILP using Dyn	amic, Stat	tistic S	Sched	uling	and
UNIT III		LIMITATION ON ILP				9	
Introduction, Limita Speculations, Multi		Realization Processor, Crosscutting Level Parallelism.	lssues: Ha	rdwar	e and	l Softv	vare
UNIT IV	MULTIPR	OCESSOR AND THREAD-LEV PARALLELISM	EL			9	
Introduction Symm	netric Shared-Men	nory Architecture, Distributed Share	d Memor	v and	Direc	tory_]	Rased
		and Models for Memory Consisten		y and .	Direc	.tor y-1	Jased
UNIT V	MEN	IORY HIERARCHY DESIGN				9	
Introduction, Optim Crosscutting issues		Performance, SRAM and DRAM, V nory Hierarchies.	irtual Mer	nory a	and M	Iachin	ies,
		Total	Periods		4	ł5	
Suggestive Asses	sment Methods			·			
Continuous Asses (30 Marks)		Formative Assessment Test (10 Marks)	End Ser (60 Ma	emester Exams (arks)			
1. Description		<ol> <li>Assignment</li> <li>Online Quizzes</li> <li>Problem Solving Activities</li> </ol>	<b>2.</b>	Descri Quest Forma Choice	ions ative	Multi	-

#### Outcomes

#### Upon completion of the course, the students will be able to:

- CO707.1 Have broad understanding of the design of computer systems, including modern architectures and alternatives
- CO707.2 Be able to understand Instruction Level Parallelism at Hardware level.
- CO707.3 Be able to understand the limitations of Instruction Level Parallelism at Hardware level

CO707.4 Have knowledge of Multiprocessor and Thread-Level Parallelism

CO707.5 Be able to visualize the Memory structure

#### **Text Books**

- 1. Kai Hwang, "Advanced Computer Architecture", McGraw Hill Education, 1993.
- 2. Kai Hwang, Faye A. Briggs, "Computer Architecture and Parallel Processing" McGrawHill Education. 2012.

## **Reference Books**

- 1. William Stallings, "Computer Organization and Architecture, Designing for Performance", Prentice Hall, 6th edition, 2006.
- 2. Kai Hwang, "Scalable Parallel Computing", McGraw Hill Education, 1998.
- 3. Harold S. Stone "High-Performance Computer Architecture", Addison-Wesley, 1993.

## Web Resources

- 1. Parallelism-https://joehdesign.blogspot.com/2021/06/define-parallelism-in-computer.html.
- 2. Memory hierarchy-https://www.elprocus.com/memory-hierarchy-in-computer-architecture/

# CO Vs PO Mapping and CO Vs PSO Mapping

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
1	1	2	2	2	2	1					2	1			1
2	2	3	1	2	2		1		1		1	3		2	
3	2	2	1	2	1	2						2			2
4	3	3	2	2	1	1					1	1		3	
5	2	2	1	2	1	1					2	1			1

# $1 \rightarrow Low 2 \rightarrow Medium 3 \rightarrow High$

21VL2708	ELECTRONIC DESIGN AUTOMATION	L	Т	Р	С
		3	0	0	3
Objectives					

- 1. To understand the special features of VLSI back end and front end CAD tools and Unix shell script
- 2. To study the synthesizable verilog and VHDL code.
- 3. To understand the Pspice code for any electronics circuit and to perform montecarlo analysis and sensitivity/worst case analysis.
- 4. To understand the difference between verilog and system verilog and are able to write system verilog code.
- To understand Cypress PSOC structure, modules and interconnects. 5.

design automation         spectrum, ISE 13.1i         UNIT II         Logic synthesis         synthesis, Simulation         and transistor level         UNIT III         Circuit description.         for diodes, transistor         Design and analysis         UNIT IV         Introduction, Design         Assertions, Interface         System on chip         UNIT V         Structure of PSoC         Resources, and Design         Continuous Assessing         (30 Marks)         1. Description	nd configuration. tools. An overvie , Quartus II, VLS SYNTHESIS A using verilog ar on- Types of sin el simulation. CIRCUIT S AC, DC and tra ors and opamp. I of mixed signal c S n hierarchy, Data	AND SIMULATION USING HD nd VHDL. Memory and FSM mulation. Static timing analysis. Fo SIMULATION USING SPICE ansient analysis. Advanced spice c Digital building blocks. A/D, D/A circuits. SYSTEM VERILOG a types, Operators and language c	AD tools. M DLS synthesis. H formal verifi	Aodelsim, Leonard 9 Performance drive ication.Switch leve 9 Ind analysis. Model e and hold circuits	
design automation spectrum, ISE 13.1i UNIT II Logic synthesis u synthesis, Simulatio and transistor leve UNIT III Circuit description. for diodes, transisto Design and analysis UNIT IV Introduction, Desig Assertions, Interface System on chip UNIT V Structure of PSoC Resources, and Desi Suggestive Assess (30 Marks) 1. Description	tools. An overvie , Quartus II, VLS SYNTHESIS A using verilog ar on- Types of sin el simulation. CIRCUIT S AC, DC and tra ors and opamp. I of mixed signal c S n hierarchy, Data	iew of the features of practical CA I backend tools. AND SIMULATION USING HD nd VHDL. Memory and FSM mulation. Static timing analysis. Fe SIMULATION USING SPICE ansient analysis. Advanced spice c Digital building blocks. A/D, D/A circuits. SYSTEM VERILOG a types, Operators and language c	AD tools. M DLS synthesis. H formal verifi	Aodelsim, Leonard 9 Performance drive ication.Switch leve 9 Ind analysis. Model e and hold circuits	
spectrum, ISE 13.1i UNIT II Logic synthesis u synthesis, Simulatic and transistor leve UNIT III Circuit description. for diodes, transisto Design and analysis UNIT IV Introduction, Desig Assertions, Interface System on chip UNIT V Structure of PSoC Resources, and Desi Suggestive Assess (30 Marks) 1. Description	, Quartus II, VLS SYNTHESIS A using verilog ar on- Types of sin el simulation. CIRCUIT S AC, DC and tra ors and opamp. I of mixed signal c S n hierarchy, Data	AND SIMULATION USING HD nd VHDL. Memory and FSM mulation. Static timing analysis. For SIMULATION USING SPICE ansient analysis. Advanced spice of Digital building blocks. A/D, D/A circuits. SYSTEM VERILOG a types, Operators and language con	DLS synthesis. I formal verifi	9 Performance drive ication.Switch leve 9 and analysis. Model e and hold circuits	
UNIT II         Logic synthesis u         synthesis, Simulatic         and transistor leve         UNIT III         Circuit description.         for diodes, transistor         Design and analysis         UNIT IV         Introduction, Desig         Assertions, Interface         System on chip         UNIT V         Structure of PSoC         Resources, and Desi         Suggestive Assessm         (30 Marks)         1. Description	SYNTHESIS A using verilog ar on- Types of sin el simulation. CIRCUIT S AC, DC and tra ors and opamp. I of mixed signal c S n hierarchy, Data	AND SIMULATION USING HD nd VHDL. Memory and FSM mulation. Static timing analysis. Fo SIMULATION USING SPICE ansient analysis. Advanced spice c Digital building blocks. A/D, D/A circuits. SYSTEM VERILOG a types, Operators and language c	synthesis. I formal verifi	Performance drive ication.Switch leve 9 and analysis. Model e and hold circuits	
Logic synthesis u synthesis, Simulatic and transistor leve UNIT III Circuit description. for diodes, transisto Design and analysis UNIT IV Introduction, Desig Assertions, Interface System on chip UNIT V Structure of PSoC Resources, and Desi Suggestive Assess (30 Marks) 1. Description	using verilog ar on- Types of sin el simulation. <b>CIRCUIT S</b> AC, DC and tra ors and opamp. I of mixed signal c <b>S</b> n hierarchy, Data	nd VHDL. Memory and FSM mulation. Static timing analysis. For SIMULATION USING SPICE ansient analysis. Advanced spice of Digital building blocks. A/D, D/A circuits. SYSTEM VERILOG a types, Operators and language of	synthesis. I formal verifi	Performance drive ication.Switch leve 9 and analysis. Model e and hold circuits	
synthesis, Simulation and transistor level UNIT III Circuit description. for diodes, transistor Design and analysis UNIT IV Introduction, Desig Assertions, Interfact System on chip UNIT V Structure of PSoC Resources, and Desig Suggestive Assess (30 Marks) 1. Description	on- Types of sin el simulation. CIRCUIT S AC, DC and tra ors and opamp. I of mixed signal c S n hierarchy, Data	mulation. Static timing analysis. For SIMULATION USING SPICE ansient analysis. Advanced spice of Digital building blocks. A/D, D/A circuits. SYSTEM VERILOG a types, Operators and language co	commands a	ication.Switch leve 9 and analysis. Model e and hold circuits	
and transistor level         UNIT III         Circuit description.         for diodes, transistor         Design and analysis         UNIT IV         Introduction, Design         Assertions, Interface         System on chip         UNIT V         Structure of PSoC         Resources, and Design         Suggestive Assessment         (30 Marks)         1. Description	el simulation. CIRCUIT S AC, DC and tra ors and opamp. I of mixed signal c S n hierarchy, Data	SIMULATION USING SPICE ansient analysis. Advanced spice c Digital building blocks. A/D, D/A circuits. SYSTEM VERILOG a types, Operators and language c	commands a	<b>9</b> and analysis. Model e and hold circuits	
UNIT IIICircuit description.for diodes, transisteDesign and analysisUNIT IVIntroduction, DesigAssertions, InterfaceSystem on chipUNIT VStructure of PSoCResources, and DesigSuggestive Assess(30 Marks)1. Description	CIRCUIT S AC, DC and tra ors and opamp. I of mixed signal c S n hierarchy, Data	ansient analysis. Advanced spice c Digital building blocks. A/D, D/A circuits. SYSTEM VERILOG ca types, Operators and language co		and analysis. Model e and hold circuits	
Circuit description. for diodes, transiste Design and analysis UNIT IV Introduction, Desig Assertions, Interface System on chip UNIT V Structure of PSoC Resources, and Desi Suggestive Assess (30 Marks) 1. Description	AC, DC and tra ors and opamp. I of mixed signal c S n hierarchy, Data	ansient analysis. Advanced spice c Digital building blocks. A/D, D/A circuits. SYSTEM VERILOG ca types, Operators and language co		and analysis. Model e and hold circuits	
for diodes, transiste Design and analysis UNIT IV Introduction, Desig Assertions, Interface System on chip UNIT V Structure of PSoC Resources, and Desi Suggestive Assess (30 Marks) 1. Description	ors and opamp. I of mixed signal c S n hierarchy, Data	Digital building blocks. A/D, D/A circuits. SYSTEM VERILOG a types, Operators and language co		e and hold circuits	
Design and analysis UNIT IV Introduction, Desig Assertions, Interface System on chip UNIT V Structure of PSoC Resources, and Desi Suggestive Assess (30 Marks) 1. Description	of mixed signal c S n hierarchy, Data	circuits. SYSTEM VERILOG a types, Operators and language co	and sample		
UNIT IVIntroduction, DesigAssertions, InterfaceSystem on chipUNIT VStructure of PSoCResources, and DesiSuggestive AssessContinuous Assess(30 Marks)1. Description	s hierarchy, Data	SYSTEM VERILOG a types, Operators and language co			
Introduction, Desig Assertions, Interface System on chip UNIT V Structure of PSoC Resources, and Desi Suggestive Assess Continuous Assess (30 Marks) 1. Description	n hierarchy, Data	a types, Operators and language co		9	
Assertions, Interface System on chip UNIT V Structure of PSoC Resources, and Desi Suggestive Assess Continuous Assess (30 Marks) 1. Description	=		anotmiote F		
System on chip UNIT V Structure of PSoC Resources, and Desi Suggestive Assess Continuous Assess (30 Marks) 1. Description	es anu test contai	Arrientiree Mitted stonal circliff mo		-	
UNIT V Structure of PSoC Resources, and Desi Suggestive Assessn Continuous Assess (30 Marks) 1. Description		SUUCIUICS. WILLOU SIGNAL OFFICIAL INC.	Utility and a	llialysis, Concept C	
Structure of PSoC Resources, and Desi Suggestive Assess Continuous Assess (30 Marks) 1. Description	INTRODUCT	ION TO CYPRESS PROGRAMM	TARLE	9	
Resources, and Desi Suggestive Assess Continuous Assess (30 Marks) 1. Description	S	SYSTEM ON CHIP (PSOC)		-	
Suggestive Assessn Continuous Assess (30 Marks) 1. Description		er, PSoC Modules, Interconnects,	Memory M	lanagement, Globa	
Continuous Assess (30 Marks) 1. Description	ign Examples.				
Continuous Assess (30 Marks) 1. Description		Total	Periods	45	
( <b>30 Marks</b> ) 1. Description		· · · · · · · · · · · · · · · · · · ·			
1. Description	ment Test	Formative Assessment Test (10 Marks)	End Seme	ester Exams	
-	Ouestions	1. Assignment	· ·	s) escription Question	
	Iultiple Choice	2. Online Quizzes	2. Formative Multiple		
Questions	_	3. Problem Solving	Choice Questions		
<u> </u>		Activities			
Outcomes	ethe course the	4-d-m4a mill be able to			
		students will be able to: cial features of VLSI back end and fr	ront end CA	D toole and	
	ix shell script	liai italuites of villor buck one and h			
	•	verilog and VHDL code.			
	-	for any electronics circuit and to vity/worst case analysis.	perform m	onte-carlo	
	derstand the different term verilog code.	erence between verilog and system verilog a	erilog and ar	e able to write	
CO708. 5 Un	derstand Cypress	PSOC structure, modules and interc	connects.		
Text Books					
2. M.H.Rashid	, "Introduction to	pecific Integrated Circuits",Pearson, 2 PSpice using OrCAD for circuits an P. Flake, "System Verilog For Desig	nd electron		

# **Reference Books**

- 1. Z. Dr Mark, "Digital System Design with System Verilog ", Pearson, 2010.
- Robert Ashby, "Designer's Guide to the Cypress PSoC, Newnes (An imprint of Elsevier)", 2006
   O H. Bailay, "The Baginner's Guide to PSoC". Express Timelines Industries Inc.

# 3. O.H. Bailey, "The Beginner's Guide to PSoC", Express Timelines Industries Inc.

# Web Resources

- 1. https://nptel.ac.in/courses/106/105/106105083/
- 2. http://www.nptelvideos.in/2012/11/electronic-design-and-automation.html

# CO Vs PO Mapping and CO Vs PSO Mapping

СО	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	<b>PO8</b>	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
1	3	2	2	3	1							3			1
2	3	3	3	2	3							3		2	
3	3	3	3	2	1							3			2
4	3	3	3	3	1							3		1	
5	3	3	3	3	3							3			1

1→Low 2→Medium 3→High

21VL2709	Modelling and Simulation of Solid-State Circuits	3	0	0	3
21VL2710	Internet of Things	3	0	0	3
21VL2711Hardware/Software Co-design300					
21VL2712 3D IC Design and Modeling 3				0	3
21VL2709	MODELLING AND SIMULATION OF SOLID-STATE CIRCUITS	L 3	Т 0	P 0	
21VL2709	MODELLING AND SIMULATION OF SOLID-STATE	L	Т	P	
	CIRCUITS	L 3	Т 0	Р 0	3
21VL2709 rerequisites for • CMOS VLS	CIRCUITS r the course				
rerequisites for • CMOS VLS	CIRCUITS r the course				
rerequisites for • CMOS VLS bjectives	CIRCUITS r the course I Design				
rerequisites for • CMOS VLS bjectives 1. To study th	CIRCUITS r the course				
<ul> <li>rerequisites for</li> <li>CMOS VLS</li> <li>bjectives</li> <li>1. To study th</li> <li>2. To study an</li> </ul>	CIRCUITS r the course I Design e basics of various device modelling				
<ul> <li>rerequisites for</li> <li>CMOS VLS</li> <li>bjectives</li> <li>1. To study th</li> <li>2. To study an</li> <li>3. To study an</li> </ul>	CIRCUITS r the course I Design e basics of various device modelling nd model MOS Transistors and MOS Capacitors				
<ul> <li>rerequisites for</li> <li>CMOS VLS</li> <li>bjectives</li> <li>1. To study th</li> <li>2. To study an</li> <li>3. To study an</li> <li>4. To understa</li> </ul>	CIRCUITS r the course I Design e basics of various device modelling ad model MOS Transistors and MOS Capacitors ad model MOS structures				

Distribution in Silicon, Capacitances in an MOS Structure, MOS under Non-equilibrium and Gated Diodes, Charge in Silicon Dioxide and at the Silicon–Oxide Interface, Effect of Interface Traps and Oxide Charge on Device Characteristics, High-Field Effects, Impact Ionization and Avalanche Breakdown, Band-to-Band Tunnelling, Tunnelling into and through Silicon Dioxide, Injection of Hot Carriers from Silicon into Silicon Dioxide, High-Field Effects in Gated Diodes, Dielectric Breakdown

UNIT IIMOSFET DESIGN9The MOS Capacitor-The field effect in bulk semiconductors-The ideal two-terminal MOS structure, The<br/>Long-Channel MOSFET-Compact surface potential MOSFET models, Design-oriented MOSFET<br/>model, dc Models-Channel length modulation, Effect of source and drain resistances, Short and narrow<br/>channel effects, Stored charges, Transit time, Capacitive coefficients, Noise modeling using the<br/>impedance field method, The y-parameter model, Compact model for tunneling in MOS structures

UNIT III	ADVANCED MOSFET STRUCTURES AND MODELS FOR CIRCUIT SIMULATORS	9	
Doon submission nl	anar MOS transistor structures. Silicon on insulator (SOI) CM	) Strangistors	C

Deep submicron planar MOS transistor structures, Silicon-on-insulator (SOI) CMOS transistors, Surface potential- vs. inversion charge-based models ,Charge-based models -The ACM model -The EKV model-The BSIM5 model , Surface potential models -The HiSIM model-MOS model 11 -The SP model

# UNIT IVCMOS DESIGN9Basic CMOS Circuit Elements, CMOS Inverters, CMOS NAND and NOR Gates, Inverter and NAND<br/>Layouts, Parasitic Elements, Source–Drain Resistance, Parasitic Capacitances, Gate Resistance,<br/>Interconnect R and C, Sensitivity of CMOS Delay to Device Parameters, Propagation Delay and Delay<br/>Equation, Delay Sensitivity to Channel Width, Length, and Gate Oxide Thickness, Sensitivity of Delay<br/>to Power-Supply Voltage and Threshold Voltage, Sensitivity of Delay to Parasitic Resistance and<br/>Capacitance, Delay of Two-Way NAND and Body Effect, Performance Factors of Advanced CMOS<br/>Devices, Effect of Transport Parameters on CMOS Performance, Low Temperature CMOS

	UN	IT V	T V TRANSISTOR DESIGN 9												
n-	-p–n T	ransist	ors, B	asic O	peratio	n of a	Bipol	ar Tra	nsistor	, Modif	fying th	e Simp	le Diod	e Theor	y for
		<b>U</b> 1						0					urrent, E		
													Transist		
						,					0		or Curre	,	
													r Devic		
	Circuit and Time-Dependent Analyses Basic dc Model, Basic ac Model, Small-Signal Equivalent Circuit Model, Emitter Diffusion Capacitance, Charge-Control Analysis, Breakdown Voltages,								ircuit						
M	odel, E	emitter	Diffus	sion Ca	ipacitai	nce, Cr	harge-	Contro	I Analy				jes,	45	
C		A		and M						10	otal Per	1005		45	
				nent M							• <b>F</b>		<b>4 T</b>		
L		ous A 0 Mai		nent 7	est	FO		ve Ass 10 Mai		ent Tes		nd Sem 50 Mari	ester E	xams	
	· · · ·		· · · · ·	uestio	ns			ssignm	-				escripti	on	
		-		iltiple				0	)uizzes	5			uestion		
		uestic			0110100				n Solvii			•	ormativ		ole
	```							ctivitie		0			noice Qi	-	-
0	utcom	es													
U	pon co	omple	tion o	f the c	ourse	, the s	tuden	ts will	l be ab	ole to:					
	CO7			-							desired a	specific	ations		
	CO7									operation					
	CO7									in circui	it design	l			
	CO7			odel n											
	CO7		To ai	nalyse	the wo	rking c	of deep	submi	icron se	emicono	ductor d	evices			
Te	ext Bo														
													2nd Ed		08.
	2J	P Col	linge,	C A Co	ollinge,	, "Phys	sics of	Semico	onduct	or devic	es" Spr	inger 20	02 Edit	ion.	
D	- <b>f</b>	as Da													
K	eferen			1 Tal. I	I Ning		d	tala of	Mada		Device	all Carr	huidaal	[ T	4
				Edition	-	-	damen	itals of	wode	m vlsi	Device	s, Can	bridge	Universi	lty
							Choro	m Sch	noido	r "Mos	fot Mod	laling F	For Circ	uit Ana	lucie
			-	Norld				JIII JCI	menue	1, 1103		iching i	or circ	uit mia	119313
W	eb Re		0	voriu		1110,20	07								
				ication	s.marc	uette.	edu/ca	zi/view		nt.cgi?a	rticle=1	649&co	ntext=tł	neses o	pen
		-	-	eee.org			,	5.,							
		•		.ac.in/c		/117/	106/11	71060	Q1/						
	5. 1	ittp3./	/ iiptei.	ac.in/c	Jourses	,, .	100/11	71000	51/						
CO V	/s PO I	Mappi	ng and	l CO Vs	PSO N	<b>/</b> appir	ıg								
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	<b>PO10</b>	PO11	PO12	PSO1	PSO2	PSO3
				101	100	100	10/	100	107	1010				2	2
1	3	3	3								3	3	2		
2	3	3	3								3	3	2	2	2
3	3	3	3								3	3	2	1	2
4	3	3	3								3	3	2	2	2
5	3	3	3								3	3	2	2	2
-	l→Lov	w 2 <b>→</b> N	Mediu	m 3 <b>→</b> I	High										

21VL2710
----------

# INTERNET OF THINGS

9

9

9

9

#### Prerequisites for the course

• The pre-requisite knowledge required by the Students to study this Course is basic knowledge in Embedded Systems.

# Objectives

- 1. To understand characteristics and design of IoT.
- 2. To gain knowledge in IoT design Methodology.
- 3. To develop various applications in IoT using Python Programming.
- 4. To analyse the advancements of Internet in mobile Device, Cloud & amp; Sensor Networks.
- 5. To understand the need for security in IoT enabled systems.

# UNIT I INTRODUCTION TO INTERNET OF THINGS

Introduction – Physical Design of IoT – Logical Design of IoT – IoT Enabling Technologies – IoT Levels and Deployment Templates – Domain Specific IoTs: Home Automation, Cities, Environment, Energy, Retail, Logistics, Agriculture, Inductry, Healthcare and Lifestyle – IoT Design Methodology.

#### UNIT II

## IOT, M2M & IOT SYSTEM MANAGEMENT

Introduction – M2M, Difference between IoT and M2M – Software Defined Networking, Network Function Visualization – Need for IoT System Management – Simple Network Management Protocol – Network Operator Requirements – NETCONF – YANG, IoT System Management with NETCONF – YANG - NETOPEER.

UNIT III	IOT LOGICAL DESIGN USING PYTHON	9
Introduction – Pyth	non Datatypes and Structure – Control Flow – Functions – Mod	ules – Packages – File

Handling – Date/Time Operations – Classes – Python Packages for IoT: JSON, XML, HTTPLib, URLLib, SMTPLib.

UNIT IV	IOT PHYSICAL DEVICES, SERVERS AND CLOUD	
	OFFERINGS	

Basic Building Block of IoT, Exemplary Device: Raspberry Pi, Interfaces, Programming Raspberry Pi with PYTHON, Other IoT Devices: BeagleBone Black, Intel Galileo, Microcontroller, System on Chips - IoT system building blocks - Arduino, IDE programming - Introduction to Cloud Storage models & Communication APIs - Amazon Web Services for IoT.

# UNIT V

Need for encryption, standard encryption protocol, light weight cryptography, Quadruple Trust Model for IoT-A – Threat Analysis and model for IoT-A, Cloud security.

IoT SECURITY

	Total	Periods	45
<b>Suggestive Assessment Methods</b>			
<b>Continuous Assessment Test</b>	Formative Assessment Test	End Ser	mester Exams
(30 Marks)	(10 Marks)	(60 Ma	rks)
1. Description Questions	1. Assignment	1. l	Description
<b>2.</b> Formative Multiple Choice	2. Online Quizzes	(	Questions
Questions	<b>3.</b> Problem Solving	<b>2.</b> 1	Formative Multiple
	Activities	(	Choice Questions

Outcomes						
Upon completion of the course, the students will be able to:						
CO710.1 Understand the various design aspects of Internet of things						
CO710. 2 Critically evaluate ethical and potential security issues related to the Internet of						
Things						
CO710. 3 Design IoT system using Python Programming						
CO710.4 Implement new applications based on Raspberry Pi ,Intel Galileo and Arduino board						
CO710. 5 Analyse the need for security in Internet of Things						
Text Books						
1. Arshdeep Bahga, Vijay Madisetti —Internet of Things – A hands-on approach, Universities						
Press, 2015.						
2. Olivier Hersent, David Boswarthick, Omar Elloumi - The Internet of Things: Key Applications						
and Protocols, Wiley, 2012						
Reference Books						
3. Adrian McEwen, Hakim Cassimally - Designing the Internet of Things, Wiley, 2013						
4. Peter Waher - Mastering Internet of Things: Design and create your own IoT applications using						
Raspberry Pi 3, Packt, 2018.						
5. Gaston C. Hillar - Internet of Things with Python, Packt, 2016.						
6. RonaldL. Krutz, Russell Dean Vines, Cloud Security: A Comprehensive Guide to Secure Cloud						
Computing, Wiley-India, 2010						
Web Resources						
1. <u>https://onlinecourses.nptel.ac.in/noc21_cs17/preview</u>						
2. <u>https://www.coursera.org/specializations/iot</u>						
3. <u>https://www.edx.org/course/introduction-to-the-internet-of-things-iot</u>						
CO Vs PO Mapping and CO Vs PSO Mapping						

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
1	3	3	3		3					2	2			2	
2	3	3	3		3					2	2	2			
3	3	3	3		3					2	2		2		
4	3	3	3		3					2	2				
5	3	3	3		3					2	2		1		

 $1 \rightarrow Low 2 \rightarrow Medium 3 \rightarrow High$ 

#### HARDWARE/SOFTWARE CO-DESIGN

9

9

9

9

9

#### Prerequisites for the course

• System Design, Embedded Design and Development Systems

#### **Objectives**

- 1. To develop skills for taking best from software and hardware design methods to solve complex electronic design problem.
- 2. To familiarize tradeoffs between flexibility and performance.
- 3. To effectively use the sequential way of decomposition in time and the parallel way of decomposition with space using hardware.
- 4. To understand the data flow modeling and analysis
- 5. To study about system on chip and on-chip busses

## UNIT I CO-DESIGN CONCEPTS

Introducing Hardware/Software Codesign- The Quest for Energy Efficiency- The Driving Factors in Hardware/Software Codesign- The Hardware–Software Codesign Space- The Dualism of Hardware Design and Software Design- Abstraction Levels- Concurrency and Parallelism- Problems

UNIT II DATA FLOW MODELING AND ANALYSIS

The Need for Concurrent Models: An Example- Analyzing Synchronous Data Flow Graphs- Control Flow Modeling and the Limitations of Data Flow Models- Software Implementation of Data Flow-Hardware Implementation of Data Flow- Data and Control Edges of a C Program- Data and Control Edges of a C Program- Construction of the Control Flow Graph - Construction of the Control Flow Graph

#### UNIT III

**UNIT IV** 

# SYSTEM ON CHIP AND ON-CHIP BUSSES

The System-on-Chip Concept- SoC Architecture- Example: Portable Multimedia System- SoC Modeling in GEZEL- Connecting Hardware and Software, On-Chip Bus Systems- Bus Transfers- Multimaster Bus Systems- On-Chip Networks

# HARDWARE/SOFTWARE INTERFACES

Introduction to Hardware/Software Interface- Synchronization Schemes- Memory-Mapped Interfaces-Coprocessor Interfaces- Custom-Instruction Interfaces- Problems

UNIT V COPROCESSOR CONTROL SHELL DESIGN AND APPLICATIONS

The Coprocessor Control Shell- Data Design- Control Design- Programmer's Model = Control Design + Data Design- AES Encryption Coprocessor- Trivium Stream Cipher Algorithm- Coordinate Rotation Digital Computer Algorithm- Hardware Coprocessor for CORDIC- Handling Large Amounts of Rotations

Total Periods     45									
Suggestive Assessment Methods									
Continuous Assessment Test (30 Marks)	Formative Assessment Test (10 Marks)	End Ser (60 Ma	mester Exams rks)						
<ol> <li>Description Questions</li> <li>Formative Multiple Choice Questions</li> </ol>	<ol> <li>Assignment</li> <li>Online Quizzes</li> <li>Problem Solving</li> </ol>	(	Description Questions Formative Multiple						

Francis Xavier Engineering College / Department of ECE |M.E-VLSI / R2019 / Curriculum and Syllabi 2021 72 Activities **Choice Questions Outcomes** Upon completion of the course, the students will be able to: CO711.1 To acquire the knowledge about hardware/software codesign. CO711.2 To learn the formulation of partitioning the hardware and software. CO711.3 To learn the concept of system on chip and on chip buses. CO711.4 To study the hardware/software interfaces. CO711.5 To design hardware/software interfaces for different applications. **Text Books** 1. Patrick Schaumont "A Practical Introduction to Hardware/Software Co-design", Patrick Schaumont, Springer, 2012. **Reference Books** 1. Ralf Niemann, "Hardware/Software Co-Design for Data Flow Dominated Embedded Systems", Kluwer, 1998. 2. Alxel Jantsch, "Modeling Embedded Systems and SOC's. Concurrency and Time in Models of Computation", MK, 2004. Web Resources https://link.springer.com/book/10.1007/978-1-4614-3737-6#about CO Vs PO Mapping and CO Vs PSO Mapping **PO1** PO2 PO3 PO4 **PO5 PO6 PO7 PO8 PO9 PO10** PO11 **PO12** PSO1 PSO2 PSO3 CO 2 1 3 3 2 3 2 3 1 2 3 3 3 3 3 1 3 3 3 3 1 1 2 4 3 3 3 3 3 3 1 5 3 3 3 3 3 1 3 1  $1 \rightarrow Low 2 \rightarrow Medium 3 \rightarrow High$ 21VL2712 **3D IC DESIGN AND MODELING** L Т Р С 0 3 3 0 Prerequisites for the course The pre-requisite knowledge required by the Students to study this Course is basic knowledge in VLSI Design. **Objectives** 1. Understand the basics of 3D IC design. 2. Model the through silicon Vias.

- 3. To get an overview on electrical performance and signal integrity.
- 4. Review and discuss the power distribution in 3D ICs
- 5. To discuss the alternate methods for power distribution

UNIT I	SYSTEM INTEGRATION AND MODELING	
	CONCEPTS	

Moore's Law, IC Integration Vs System Integration, History of Integration, Primary Drivers for 3D Integration, Role of the Interposer in 3D Integration, Modeling and Simulation

9

UNIT II	ELECTRICAL MODELING OF THROUGH SILICON	9
	VIAS	

Benefits of Through Silicon Vias, Challenges in Modeling Through Silicon Vias, Propagating Modes in Through Silicon Vias, Physics Based Modeling of Through Silicon Vias, Modeling of Conical Through Silicon Via, MOS Capacitance Effect

UNIT III	ELECTRICAL PERFORMANCE AND SIGNAL	9
	INTEGRITY	

Process Optimization, Cross Talk in Interposers, Via Arrays, Interposers, Modeling and Design Challenges

UNIT IV	POWER	DISTRIBUTION,	RETURN	PATH	9
	DISCONTI	NUITIES AND THER	MAL MANAG	EMENT	

Power Distribution, Power Distribution for 3D Integration, Current Paths in IC and Package, Signal and Power Integrity, Challenges for Addressing Power Distribution in 3D ICs and Interposers, Thermal Management and its Effect on Power Distribution, .

UNIT V	ALTERNATE METHODS FOR POWER	9
	DISTRIBUTION	

Introducing Power Transmission Lines, Constant Current Power Transmission Line, Pseudo Balanced Power Transmission Line, Constant Voltage Power Transmission Line, Power Calculations, Application of Power Transmission Lines to FPGA, Managing Signal and Power Integrity for 3D ICs.

		Total	Periods	45	
Suggestive As	sessment Methods				
<b>Continuous</b> As	ssessment Test	Formative Assessment Test	End Sem	ester Exams	
(30 Mar	ks)	(10 Marks)	(60 Mark	ks)	
1. Descrip	tion Questions	1. Assignment	1. De	escription	
2. Formati	ve Multiple Choice	2. Online Quizzes	Qu	lestions	
Questio	ns	3. Problem Solving	<b>2.</b> Fo	ormative Multiple	
		Activities	Ch	oice Questions	
Outcomes					
Upon complet	ion of the course, t	he students will be able to:			
CO712. 1	Model through silico	on vias.			
CO712. 2	Analyse the electrica	ll performance.			
CO712. 3	Design the power dia	stribution architecture.			
CO712. 4	Perform the thermal	management.			
CO712. 5	Overcome the design	n challenges.			
Text Books					

- 1. Madhavan Swaminathan, Ki Jin Han, "DESIGN AND MODELING FOR 3D ICs AND INTERPOSERS" World Scientific Publishing, 2014.
- Paul D. Franzon, Erik JanMarinissen, andMuhannad S. Bakir, "Handbook of 3D Integration", Wiley, 2019

# **Reference Books**

- 1. Lajos Hanzo, "Electrical Modeling and Design for 3D System Integration", Wiley, IEEE Press, 2012
- 2. Anantha Chandrakasan, "Integrated Circuits and Systems", Springer, 2010

# Web Resources

- 1. https://www.gsaglobal.org/wp-content/uploads/2012/06/3D-IC-Architecture.pdf
- 2. https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/solutions/3d-ic-design-wp.pdf
- 3. https://blogs.synopsys.com/from-silicon-to-software/2021/03/04/3dic-design-tools
- 4. https://www.cadence.com/en_US/home/solutions/3dic-design-solutions.html

CO	Vs PO I	Mappi	ng and	CO Vs	s PSO N	Mappir	ıg								
CO	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	<b>PO9</b>	<b>PO10</b>	PO11	PO12	PSO1	PSO2	PSO3

co	PO1	PO2	PO3	PO4	P05	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PS01	PSO2	<b>PSO3</b>
1	3		2												3
2	3	3	2												2
3	3		2										1		
4	3		2	2											
5	3		2	2	2										2

# 1→Low 2→Medium 3→High

PROFESSIONAL	L ELECTIVE VI				
21VL2713	Embedded System and RTOS	3	0	0	3
21VL2714	VLSI for Biomedical Applications	3	0	0	3
21VL2715	Advanced Microprocessors and Architectures	3	0	0	3

21VL2713	EMBEDDED SYSTEMS AND RTOS	L	Т	Р	C
		3	0	0	3

#### Prerequisites for the course

• The pre-requisite knowledge required by the Students to study this Course is basic knowledge in Computer Architecture.

#### Objectives

- 1. To introduce the basics of embedded systems and ARM Processor.
- 2. To understand the basics of CPU and the bus operations.
- 3. To hone the process inside the processor and networking operations in embedded environment.
- 4. To master the basics of Realtime operating systems.
- 5. To design an Real time operating systems.

#### UNIT I EMBEDDED COMPUTING & ARM PROCESSOR

9

9

Embedding Computers - Characteristics of Embedded Computing Applications - Challenges in Embedded Computing System - The Embedded System Design Process - Formalisms for System Design -Computer Architecture Taxonomy - Assembly Language - ARM Processor: Memory Organization -Data Operations - Flow of Control.

UNIT II	9	
Programming Inpu	t and Output - Supervisor Mode, Exceptions, and Traps - Co	-Processors -Memor

System Mechanisms - CPU Performance - CPU Power Consumption - CPU Bus - Memory Devices - I/O devices - Component Interfacing - Designing with Microprocessors - Development and Debugging - System-Level Performance Analysis.

PROCESSES AND NETWORKS

Multiple Tasks and Multiple Processes - Preemptive Real-Time Operating Systems - Priority-Based Scheduling: Rate-Monotonic Scheduling, Earliest-Deadline-First Scheduling - Power Management and Optimization for Processes - Networks for Embedded Systems - Internet-Enabled Systems - Vehicles as Networks - Sensor Networks.

UNIT IV	INIT IV REAL TIME OPERATING SYSTEM										
Survey of Software Architectures: Round robin Architecture, Round robin with interrupt, Function queue											
scheduling archited	cture Realtime Operating system Architecture - Task and Task	s States – Semaphores									
and Shared Data -	and Shared Data - Message Queues, Mailboxes and Pipes - Timer Functions - Events - Memory										
Management – Inte	errupt Routine in RTOS environment.										

- UNIT V **DESIGNING USING RTOS** 9 Encapsulating Semaphores and Queues - Hard realtime scheduling considerations - Saving memory space - saving power - Software Development tools - Host machine and target machine - Linker Locator for Embedded Software – getting embedded softwares in to target systems – Testing your host machine – instruction set simulators. **Total Periods** 45 Suggestive Assessment Methods **Continuous Assessment Test Formative Assessment Test End Semester Exams** (30 Marks) (10 Marks) (60 Marks) 1. Description Questions 1. Assignment 1. Description **2.** Formative Multiple Choice 2. Online Quizzes **Ouestions 3.** Problem Solving **Ouestions 2.** Formative Multiple Activities Choice Questions Outcomes Upon completion of the course, the students will be able to: CO713.1 Analyse the functions of the components in Embedded Systems CO713.2 Design the hardware and software components in embedded field CO713.3 Design scheduling algorithms in multiprocessors and operating systems Understand the concept of Real Time Operating Systems CO713.4 CO713.5 Design a Real Time Operating systems **Text Books** 1. Wayne Wolf, "Computers as Components - Principles of Embedded Computer System Design", 2nd Edition, Morgan Kaufmann Publisher, 2008. 2. David E Simon, "An Embedded Software Primer", 2nd Edition, Pearson Education, 1999 **Reference Books** 1. Xiaocong Fan. "Real Time Embedded System - Design Principles and Engineering Practices", Newness Elsevier, 2015. 2. Jiacun wang, "Real Time Embedded Systems", John Wiley & Sons, Inc, 2017. 3. K.C. Wang. "Embedded and Real Time Operating Systems", Springer International Publishing, 2017. 4. Colin Walls, "Building a Real Time Operating System RTOS from the Ground Up", Elsevier Science & Technology Books, 2008. Web Resources 1. Introduction to embedded system design https://www.youtube.com/watch?v=0fSqoVwBj60&list=PLp6ek2hDcoNAxTQ7uyp68N_RpuUL V-zrX 2. https://nptel.ac.in/courses/108/102/108102045/
  - 3. https://nptel.ac.in/courses/106/105/106105193/

# CO Vs PO Mapping and CO Vs PSO Mapping

СО	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
1	3	3	3		3					2	3			2	
2	3	3	3		3					2	3				
3	3	3	3		3					2	3			3	
4	3	3	3		3					2	3				1
5	3	3	3		3					2	3				3
1	l→Lov	w 2→N	Aediur	n 3 <b>→</b> 1	High										

			1	I	
21VL2714	VLSI FOR BIOMEDICAL APPLICATIONS	L	Т	Р	С
			•	0	2
Prerequisites for	the course	3	0	0	3
-	Digital IC Design				
Analog and	Digital ic Design				
Objectives					
1. To study the	e biomedical amplifiers, filters and analog to digital converters.				
	and the structure and operation of implantable medical devices.				
-	verview on non invasive medical electronics.				
	he ultra-low-power analog and digital design principles.				
5. To discuss	the energy-harvesting circuits and energy sources				
UNIT I	LOW-POWER ANALOG BIOMEDICAL CIRCUITS			9	
-	npedance amplifiers and photoreceptors, Low power trans cond			-	
	ower in analog circuits, Low-power filters and resonators, Low	-			mode
circuits, Ultra-low-	power and neuron-inspired analog-to-digital conversion for bior	nedica	ıl sys	tem	
UNIT II	ULTRA-LOW-POWER IMPLANTABLE MEDICAL ELECTRONICS			9	
Introduction, Coch	lear implants or bionic ears, An ultra-low-power programma	ble ar	nalog	bioni	c ear
processor, Low-po	ower electrode stimulation, Highly miniature electrode-stimu	lation	circu	uits, E	3rain-
machine interfaces	for the blind, Brain-machine interfaces for paralysis, speech, and	d othe	r diso	orders.	
UNIT III	ULTRA-LOW-POWER NONINVASIVE MEDICAL ELECTRONICS			9	
Introduction, Anal	og integrated-circuit switched-capacitor model of the heart, the	e elect	roca	rdiogra	am. a
micropower electro	ocardiogram amplifier, Low-power pulse oximetry, Battery-free ly galvanic communication networks, Biomolecular sensing			-	
UNIT IV	PRINCIPLES FOR ULTRA-LOW-POWER ANALOG			9	
	AND DIGITAL DESIGN				
Sizing and topolog	gies for robust sub threshold operation digital design, Types	of po	wer	dissip	ation.
Energy efficiency	and optimization in digital systems, Varying the power-supply	voltag	ge an	d thre	shold
voltage, Gated cloc	ks, Basics of adiabatic computing, Architectures and algorithms	s for ir	nprov	ving ei	nergy
efficiency, Power	consumption in analog and digital systems, The optimum poir	nt for	digiti	ization	ı in a
	m, The Shannon limit for energy efficiency, Collective analog of	-		-	
	pose mixed-signal systems with feedback - General principles	for lo	w-po	wer m	ixed
signal system desig	n, Sensors and actuators.				
UNIT V	ENERGY-HARVESTING CIRCUITS AND ENERGY SOURCES			9	
Wireless inductive	power links for medical implants, Energy-harvesting RF anter	ina po	wer	links,	Low
power RF telemetr future of energy.	ry in biomedical implants, Batteries and electrochemistry, Ener	gy ha	rvest	ing an	d the
	Total Periods	1		45	

Sı	Suggestive Assessment Methods																
	ontinu		ssessr					ve Ass LO Mai		ent Tes		nd Sem 60 Mari		Exams			
			tion Q	uestio	ns			ssignm				1. Description					
		-	ive Mu			9		nline (		5			uestion				
	Q	uestic	ns	•			<b>3.</b> Pi	roblem	n Solvi	ng		<b>2.</b> Fo	ormativ	e Multip	ole		
							A	ctivitie	es			Cl	hoice Q	uestions	5		
0	Outcomes																
U	Upon completion of the course, the students will be able to:																
	CO714.1 Design biomedical amplifiers, filters and analog to digital converters																
	CO714.2 Explain the concept of implantable medical devices																
	CO714. 3 Understand the noninvasive medical electronics.																
	CO714. 4 Analyse the ultra-low-power analog and digital design principles.																
	CO714. 5 Contribute to the development energy-harvesting circuits for biomedical devices.																
T	Text Books																
	1. Rahul Sarpeshkar, 'Ultra Low Power Bioelectronics: Fundamentals, Biomedical Applications, and Bio-inspired Systems', Cambridge University Press, 2010																
R	eferen	ce Bo	oks														
			-									McGrav					
	2. K	Erzyszt	of Inie	wski, '	CMOS	Biom	icrosys	stems v	where H	Electron	ics Mee	et Biolog	gy', Wile	ey, 2011			
W	'eb Re	sourc	es														
	1. N	lemor	у	Т	echnol	ogy,ht	tps://w	ww.sc	ienced	irect.co	m/topics	s/compu	ter-scie	nce/men	nory-		
	te	echnol	ogy														
	2. R	eliabil	ity (	of S	emicor	nducto	r M	emorie	es fr	om a	n Prac	ctical	Point	of V	/iew,		
	h	ttps://l	ink.spr	inger.c	com/ch	apter/1	0.1007	7%2F9	78-3-3	22-836	29-8_22						
	3. A	dvanc	ed 1	nemor	y—Ma	terials	for	r a	new	era	of	inform	ation	techno	logy,		
	h	ttps://c	loi.org/	/10.155	57/mrs.	2018.9	96										
CO	Vs PO I	Mappi	ng and	l CO Vs	S PSO N	/lappir	ıg										
СО	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
1	3	2												2			
2	2	2	2														
3	3	3											1				
4	2		3											2			
5	1	1													1		
	1→Lov	w 2 <b>→</b> N	Mediu	m 3 <b>→</b> I	High				•								

21VL2715	)	L	Т	P	C									
		ARCHITECTURES												
				3	0	0	3							
Prerequisites for														
Analog and	Digital IC													
Objectives														
1. Study the A	Architecture of 808	6 microprocessor.												
2. Learn the design aspects of I/O and Memory Interfacing circuits.														
3. Study about communication and bus interfacing.														
4. Study the Architecture of 8051 microcontroller.														
5. Understand the advanced architectures														
UNIT I 8086 MICROPROCESSOR ARCHITECTURE 9														
		sor architecture – Addressing mode		uction	set-	-	embly							
	ming – Modular	Programming - Linking and Reloc					•							
UNIT II	ADV	ANCE ARCHITECTURES				9								
		- System bus timing -Introduction t	o Multip	rogran	nmin	$\frac{1}{10}$ - S ³	vstem							
		figurations – Coprocessor, Closely												
configurations – In														
UNIT III		<b>RFACING AND CASE STUDIES</b>				9								
interface – D/A an	d A/D Interface -	ng - Parallel communication interfac Timer – Keyboard /display controlle ications Case studies: Traffic Light	er – Interr	upt co	ontro	ller –	DMA							
UNIT IV		MICROCONTROLLER				9								
	051 – 8051 Pin	diagram, Special Function Regist	ters (SFR	(s) -	Inst	uctior	ı set-							
Addressing modes		•	× ×	,										
UNIT V	INTERI	FACING MICROCONTROLLER				9								
		Keyboard Interfacing - ADC, DAC and Waveform generation, Keyboar				-								
		Total I	Periods		4	45								
Suggestive Asses	sment Methods	Γ												
Continuous As	ann ant Tast	Formative Assagement Test	Ender	nect	The Property of the Property o									
Continuous Asse (30 Marks)		Formative Assessment Test (10 Marks)	End Sei (60 Ma		EI EX	ams								
1. Description		1. Assignment		Descri	intio	n								
-	Multiple Choice	2. Online Quizzes		Juest	-	11								
Questions	multiple choice	<b>3.</b> Problem Solving		•		Multi	nle							
Questions3. Problem Solving Activities2. Formative Multiple Choice Questions														

# Outcomes

#### Upon completion of the course, the students will be able to:

- CO716.1 Design and implement programs on 8086 microprocessor.
- CO716. 2 Design I/O circuits.
- CO716. 3 Design Memory Interfacing circuits.
- CO716.4 Design and implement 8051 microcontroller based systems.
- CO716.5 Interface microcontroller with keyboard, ADC, DAC and sensors

#### **Text Books**

1. Yu-Cheng Liu, Glenn A.Gibson, "Microcomputer Systems: The 8086 / 8088 Family -

Architecture, Programming and Design", Second Edition, Prentice Hall of India, 2007.

2. Mohamed Ali Mazidi, Janice GillispieMazidi, RolinMcKinlay, "The 8051 Microcontroller and Embedded Systems: Using Assembly and C" Second Edition, Berran Education, 2011

Embedded Systems: Using Assembly and C", Second Edition, Pearson Education, 2011

# **Reference Books**

1. Doughlas V.Hall, "Microprocessors and Interfacing, Programming and Hardware:, TMH, 2012

# Web Resources

- 1. <u>https://www.electronicdesign.com/technologies/microprocessors/article/2179972</u> 9/advanced-microprocessor-bus-architecture-amba-bus-system
- 2. <u>https://www.mheducation.co.in/advanced-microprocessor-and-peripherals-9781259006135-india</u>
- 3. <u>http://people.bu.edu/bkia/sc757.htm</u>

# CO Vs PO Mapping and CO Vs PSO Mapping

90	<b>D</b> O1	<b>D</b> O <b>A</b>	<b>D</b> O <b>A</b>	<b>DO</b> 4	<b>DO</b>	DO (		<b>D</b> 00	<b>D</b> O0	<b>D</b> O10	<b>DO11</b>	<b>D</b> O11	PCOA	DCO	DCOO
co	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
1	2		2											2	
2	3	3													1
3	1	2											2		
4	2		1												
5	2	1												3	

 $1 \rightarrow Low 2 \rightarrow Medium 3 \rightarrow High$