Francis Xavier Engineering College

(An Autonomous Institution) Tirunelveli 627 003 Tamil Nadu India

Department of EEE

M. E - Power Electronics & Drives

2021 CURRICULUM AND SYLLABI CHOICE BASED CREDIT SYSTEM

Regulations 2019

Vision of the Department

"To be a Centre of Excellence for Technology transformation in the field of Electrical and Electronics Engineering"

Mission of the Department

- 1. To empower the vibrant young leaders with technical skills and knowledge in the field of technology
- 2. To facilitate the industries to adopt effective solutions in the field of Electrical and Electronics Engineering through consultancy
- 3. To transform technology for rural needs.

Table of Content

S.No	Content	Page No
1	Programme Educational Outcomes (PEOs)	3
2	Programme Specific Objectives (PSOs)	3
3	Programme Outcomes(POs)	4
4	Mapping with PO Vs PEO, PSO	5
5	Summary Of Credit Distribution	6
6	I-IV Semester Curriculum and Syllabi	7
7	List of Professional Electives Courses	9
8	List of Open Electives Courses	10

Programme Educational Outcomes (PEOs)

PEO1: Graduates of this program will have technical knowledge, skills and ability to design, develop and test power electronic converters and drives using advanced tools.

PEO2: Graduates of this program will have skills and knowledge in the field of power electronics and drives to work in the design, fabrication industries and research organizations.

PEO3: Graduates of this program will show involvement and willingness in assuming responsibility in the domain of power electronics , electric drives and renewable energy systems for societal and environmental causes

Programme Specific Objectives (PSOs)

PSO 1: Integrate the knowledge of, power electronics and Drive systems for the controllability, reliability and sustainability of electrical systems.

PSO2: Contribute for the development of power grid and integrating green energy on it to meet the increasing demand of the society.

Programme Outcomes (POs)

Engineering Graduates will be able to:

- 1. Graduates will be able to demonstrate the principles and practices of the electrical power industry regarding generation, transmission, distribution and electrical machines and their controls.
- Graduates will be able to apply their knowledge of electrical power principles, as well as mathematics and scientific principles, to new applications in electrical power.
- 3. Graduates will be able to perform, analyze, and apply the results of experiments to electrical power application improvements.
- 4. Graduates will be able to look at all options in design and development projects and creativity and choose the most appropriate option for the current project.
- 5. Graduates will function effectively as a member of a project team.
- 6. Graduates will be able to identify problems in electrical power systems, analyze the problems, and solve them using all of the required and available resources.
- 7. Graduates will be able to effectively communicate technical project information in writing or in personal presentation and conversation.
- 8. Graduates will be engaged in continuously learning the new practices, principles, and techniques of the electrical power industry.
- 9. Graduates will work on application software packages for power system analysis and design.
- 10. Graduates will develop indigenous software packages for power system planning and operational problems of utilities.

Francis Xavier Engineering College/ Dept of EEE, R2019 ME- PED/2021-Curriculum and Syllabi Mapping with PO Vs PEO, PSO

PO	PEO1	PEO2	PEO3	PS01	PSO2
1	X	X	X	X	
2	X			X	X
3				X	X
4	X	X	X		
5	X	X	X	X	
6	X			X	X
7				X	X
8	X	X	X		
9	X	X	X	X	
10	X			X	X

FRANCIS XAVIER ENGINEERING COLLEGE M.E. – POWER ELECTRONICS & DRIVES REGULATIONS 2019 Choice Based Credit System and Outcome Based Education

S.No	Category	(Credit Distribution				Credits in %
		Ι	II	III	IV		
1	HSSM						
2	BS	4				4	5.4
3	EC						
4	РС	19	12			31	42.4
5	PE		9	9		18	24.6
6	OE						
7	EEC		2	6	12	20	27.3

SUMMARY OF CREDIT DISTRIBUTION

Minimum Number of Credits to be Acquired: 73

HSS - Humanities and Social Sciences including Management

- **BS Basic Science**
- **ES Engineering Sciences**
- PC Professional Core
- PE Professional Elective
- OE Open Elective/Programme Specific Elective for Expandable Scope
- EEC Employability Enhancement Course

FRANCIS XAVIER ENGINEERING COLLEGE

M.E. – POWER ELECTRONICS & DRIVES REGULATIONS 2021

Choice Based Credit System and Outcome Based Education

I-IV Semester Curricula and Syllabi

S.No	Course Code	Course Name	Catego ry	Contact Periods	L	Т	Р	С
Theo	ry Courses							
1	21MA1253	Advanced Engineering Mathematics	BS	4	3	1	0	4
2	21PE1601	Analysis and Design of Power Electronic Converters	PC	3	3	0	0	3
3	21PE1602	Computer Aided Design of Power Electronics Circuits	PC	4	3	1	0	4
4	21PE1603	Solid State DC Drives	PC	3	3	0	0	3
5	21PE1604	Power Quality Analysis and Mitigation Techniques	PC	4	3	1	0	4
6	21PE1605	Special Machines and Controllers	PC	3	3	0	0	3
Practical Courses								
1	21PE1611	Design of Power Electronics circuit Laboratory	PC	4	0	0	4	2
			Total	25	18	3	4	23

SEMESTER I

SEMESTER II

S.No	Course Code	Course Name	Catego ry	Contact Periods	L	Т	Р	С
Theo	ry Courses							
1	21PE2601	Generalized Machine Theory	PC	3	3	0	0	3
2	21PE2602	Solid State AC Drives	PC	4	3	1	0	4
3	21PE2603	Modern Control Theory	PC	3	3	0	0	3
4		Professional Elective –I	PE	3	3	0	0	3
5		Professional Elective –II	PE	3	3	0	0	3
6		Professional Elective -III	PE	3	3	0	0	3
Pract	ical Courses							
1	21PE2611	Solid state Drives and Control Laboratory	PC	4	0	0	4	2
2	21PE2911	Innovative Project	EEC	4	0	0	4	2
			Total	27	18	1	8	23

SEMESTER III

S.No	Course Code	Course Name	Catego ry	Contact Periods	L	Т	Р	С
Theo	ry Courses							
1		Professional Elective IV	PE	3	3	0	0	3
2		Professional Elective V	PE	3	3	0	0	3
3		Professional Elective VI	PE	3	3	0	0	3
Pract	Practical Courses							
1	21PE3911	Project Work Phase I	EEC	12	0	0	12	6
			Total	21	09	0	12	15

SEMESTER IV

S.No	Course Code	Course Name	Catego ry	Contact Periods	L	Τ	Р	С
Pract	Practical Courses							
1	21PE4911	Project Work Phase II	EEC	24	0	0	24	12
			Total	24	0	0	24	12

Minimum Number of Credits to be Acquired:73

S.No	Course Code	Course Name	Semes ter	L	Т	Р	C	Stream/ Domain
Profe	ssional Elec	tive I						
1	21PE2701	Solar Photo Voltaic Systems	II	3	0	0	3	Renewable Energy
2	21PE2702	Electromagnetic Field Computation and Modelling	II	3	0	0	3	Field Theory
3	21PE2703	Control System Design for Power Electronics	II	3	0	0	3	Control Engineerin g
4	21PE2704	Intelligent Control Techniques	II	3	0	0	3	Embedded System
Profe	ssional Electi	ive II					•	·
1	21PS2702	Flexible AC Transmission Systems	II	3	0	0	3	Power System
2	21PE2705	Modern Rectifiers and Resonant Converters	II	3	0	0	3	Power Electronics
3	21PE2706	Electromagnetic Interference and Compatibility	II	3	0	0	3	Field Theory
4	21PE2707	Robotics and Control	II	3	0	0	3	Control Engineerin g
Profe	ssional Electi	ive III	•				-	
1	21PS2703	Distributed Generation and Micro- grid	II	3	0	0	3	Power System
2	21PE2708	Nano Electronic devices and Nano sensors	II	3	0	0	3	Power Electronics
3	21PS2701	Principles of Smart Grid	II	3	0	0	3	Power System
4	21PE2709	Embedded System Design	II	3	0	0	3	Embedded System
Profe	ssional Electi	ive IV						
1	21PS3701	High Voltage Direct Current Transmission	III	3	0	0	3	Power System
2	21PE3701	Non Linear Control	III	3	0	0	3	Control Engineerin g
3	21PE3702	Wind Energy Technologies	III	3	0	0	3	Renewable Energy
4	21PE3703	Industrial Automation And Control	III	3	0	0	3	Control Engineerin g
Profe	ssional Electi	ive V						
1	21PE3704	Hybrid Electric Vehicles	III	3	0	0	3	Power Electronics
2	21PE3705	Advanced Power Electronic Devices	III	3	0	0	3	Power Electronics

List of Professional Electives Courses

Frar	icis Xav	vier Engineer	ing College Dept of EEE, R2019 ME- PE	D/2021-C	urricu	lum a	nd Sy	llabi	
	3	21PE3706	Integrated Circuits for Power Conversion	III	3	0	0	3	Power Electronics
	4	21PE3707	MEMS Technology	III	3	0	0	3	Power Electronics
Professional Elective VI									
	1	21PE3708	Power Electronics for Renewable Energy Systems	III	3	0	0	3	Renewable Energy
	2	21PE3709	Modelling and Simulation of Power Electronics Systems	III	3	0	0	3	Power Electronics
	3	21PE3710	Intelligent Control of Electric Drives	III	3	0	0	3	Embedded System
	4	21PE3711	Energy Storage Systems	III	3	0	0	3	Power Electronics

Francis Xavier Engineering College	Dept of EEE, R2019 ME-	· PED/2021-Curriculum and Syllabi
	Semester	I

21MA1253	ADVANCED MATHEMATICS FOR ELECTRICAL ENGINEERS	L	Τ	Р	C
		3	1	0	4

Preamble

An engineering PG student needs to have some basic mathematical tools and techniques to apply in diverse applications in Engineering. This emphasizes the development of rigorous logical thinking and analytical skills of the student and appraises him the complete procedure for solving different kinds of problems that occur in engineering. Based on this, the course aims at giving adequate exposure in Linear Algebra to find the singular value decomposition and Pseudo inverse of the matrix, Random Process to deal the Random Experiments with the state space S and parameter set T, stationary Functions, Gaussian Process..., Calculus of Variations to find the maximum or minimum value of a definite integral involving certain functions.

Prerequisites for the course

1. Students should have basic knowledge in Engineering Mathematics

Objectives

The main objective of this course is to demonstrate various analytical skills in applied mathematics and extensive experience with the tactics of problem solving and logical thinking applicable for the students of electrical engineering. This course also will help the students to identify, formulate, abstract, and solve problems in electrical engineering using mathematical tools from a variety of mathematical areas, including matrix theory, calculus of variations, probability, linear programming and Fourier series.

1 0	8							
UNIT I	MATRIX THEORY	9+3						
Cholesky decomposition – Generalized Eigen values and Generalized Eigen vectors - Canonical basis								
- QR Factorizati	ion - Least squares method - Singular value decomposition							

UNIT II CALCULUS OF VARIATIONS

9+3

Concept of variation and its properties – Euler's equation – Functional dependant on first and higher order derivatives – Variational problems with moving boundaries–Isoperimetric problems-Direct methods: Ritz and Kantorovich methods.

UNIT III PROBABILITY AND RANDOM VARIABLES

9+3

Probability – Axioms of probability – Conditional probability - Random variables - Probability function – Moments – Moment generating functions and their properties – Binomial, Poisson, Uniform and Normal distributions

UNIT IV LINEAR PROGRAMMING

9+3

Formulation of Linear Programming Problem – Graphical solution of LPP – Transportation Models – Degeneracy and Non-Degeneracy Transportation Problems - Assignment models – Balanced and Unbalanced Assignment Problems

ι	JNIT V FOURIER SERIES			9+3
Four odd prob	ier trigonometric series: Per function: Cosine and sine s lems and orthogonal functio	riodic function as power signals–C series – Parseval's theorem and ns–Generalized Fourier series.	Convergence o power spectr	f series– Even and rum – Eigen value
		Tot	al Periods	45+15
Sugg	estive Assessment Method	S		
Cont	inuous Assessment Test	Formative Assessment Test	End Semes	ter Exams
	(40 Marks)	(10 Marks)	(50 Marks))
WRI	TTEN TEST	1.ASSIGNMENT	WRITTEN '	TEST
		2. ONLINE QUIZZES		
		3.PROBLEM-SOLVING ACTIVITIES		
Outo	comes			
Upoi	n completion of the course,	, the students will be able to:		
1	Apply various methods in m	natrix theory to solve system of lin	lear equations	
2	Maximizing and minimizing	g the functional that occur in electi	rical engineeri	ng discipline
3	Computation of probability random variables and funct	and moments, standard distributi ions of a random variable.	ons of discret	e and continuous
4	Develop a linear programm	ing model from problem descripti	on	
5	Fourier series analysis and	its uses in representing the power	· signals	
Refe	rence Books			
1.	Andrews L.C. and Phillips R Prentice Hall of India Pvt. L	.L., "Mathematical Techniques for td., New Delhi, 2016.	Engineers and	l Scientists",
2.	Bronson, R. "Matrix Operati	on", Schaum's outline series, 2ndE	Edition, McGra	w Hill, 2016.
3.	Elsgolc, L. D. "Calculus of Va	ariations", Dover Publications, Nev	v York, 2017.	
4.	Johnson, R.A., Miller, I and F forEngineers", Pearson Edu	Freund J., "Miller and Freund's Pro .cation, Asia, 8thEdition, 2015.	bability and S	tatistics
5.	O'Neil, P.V., "Advanced Engi	neering Mathematics", Thomson A	Asia Pvt. Ltd., S	Singapore, 2016.
6.	Taha, H.A., "Operations Res	earch, An Introduction", 9thEditio	n, Pearson edı	acation, New Delhi

1.https://nptel.ac.in/courses/111102012/

CO Vs PO Mapping and CO Vs PSO Mapping

<u> </u>	PO	PSO	PSO									
	1	2	3	4	5	6	7	8	9	10	1	2
1	3	2										
2	3	2										
3	3	2										
4	3	2										
5	3	2										

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	10	10	5	5	10
UNDETSTAND	30	30	10	10	30
APPLY	60	60	10	10	60
ANALYZE	0	0	0	0	0
EVALUATE	0	0	0	0	0
CREATE	0	0	0	0	0
	100	100	25	25	100

1-Low , 2- Medium, 3- High

	ANALYSIS AND DESIGN OF POWER ELECTRONIC CONVERTERS	L	Τ	Р	С
		3	0	0	3
Preamble		1			
This course p course, stude hardware. By converter on	provides an introduction about the Power Converters and it nts will learn the important concepts needed to design pro- the end of course students should be able to design and test cheir own.	ts Con oper p t any j	npon powe powe	ents. er elec er elec	In th ctron ctron
Prerequisites	for the course				
1. Power I	Electronics				
2. Solid St	ate Drives				
3. Power I	Electronics for Renewable Energy Sources.				
)bjectives					
1. To dete	rmine the operation and characteristics of Power converters.				
2. To intro	duce the design of power converter components.				
3. To com	prehend the concepts of resonant converters and AC-AC power	r conv	ertei	ſS.	
4. To analy	rse and comprehend the various types of inverters.				
5. To impa	rt knowledge on multilevel inverters and Boost inverters.				
UNIT I	POWER CONVERTERS			9	
Single-phase a PWM rectifiers	nd Three phase full converter and semi converter (RL, RLE lo . Operation and analysis of Buck, Boost, Buck-Boost, Cuk& SEI ous operation – Isolated converters: basic operation of Fly ba	oad) - PIC – u ack, fo	Dual Inder rwar	conv r cont d and	erter inuo l Pus
and discontinu oull topologies	DECICIA OF DOMED CONVERTED COMPONENTS			9	
and discontinu pull topologies UNIT II	DESIGN OF POWER CONVERTER COMPONENTS		f co	res,	copp ign f
and discontinu oull topologies UNIT II Introduction t windings – De ouck/flyback c ilter design.	DESIGN OF POWER CONVERTER COMPONENTS o magnetic materials- hard and soft magnetic materials –ty sign of transformer –Inductor design equations –Examples onverter-selection of output filter capacitors – selection of rati	vpes of ind ings fo	lucto or dev	r des vices -	- inp

	Xavier Eng	ineering College 1	Dept of EEE, R2019 ME- PED/2021	1-Curriculum	and Syllabi										
Reson	nant swit	ch converters –	operation and analysis of ZVS	, ZCS conv	erters comparison o										
ZCS/Z	ZVS Intro	luction to ZVT/ZO	CT PWM converters. Single phas	se ac voltage	e controller – analysi										
with I	R & RL lo	ad – Three phase	ac voltage controller – principle	of operatio	n of cycloconverters -										
single	e phase an	d three phase cycl	oconverters – Introduction to ma	atrix conver	ters.										
UN	NIT IV	VOLTAGE SOUI	RCE AND CURRENT SOURCE IN	VERTERS	9										
Princi	iple of op	eration of single p	bhase full bridge inverters, Thre	e phase Inve	erter: 180 degree and										
120 degree conduction mode inverters - voltage control of inverters: Space vector modulation															
echni	iques .Op	eration of six-step	thyristor inverter load – comm	utated inver	ters – Auto sequentia										
curre	nt source	inverter (ASCI), P	WM techniques for current sourc	ce inverters.											
U	NIT V	MULTILEVI	EL INVERTERS, BOOST & RESO	NANT	9										
			INVERTERS												
Multil	level con	cept – diode clai	mped – flying capacitor – cas	cade type 1	nultilevel inverters										
Comp	arison of	multilevel invert	ters .Series and parallel resona	nt inverters	s - voltage control o										
eson	ant inver	ers – Class E resor	nant inverter – resonant DC - link	k inverters.											
			То	tal Periods	45										
Sugge	estive As	sessment Method	ls												
Conti	nuous As	sessment Test	Formative Assessment Test	End Sen	nester Exams										
	(30 Mar)	zc)	(10 Marks)	(60 Mar											
NKII	IEN IES	1	1.ASSIGNMEN I	WRITT	LN IESI										
			2. ONLINE QUIZZES												
			3.PROBLEM-SOLVING												
			ACTIVITIES												
Jutco	omes														
Jpon	complet	ion of the course,	, the students will be able to:												
1	Understa	nd and analyze vai	rious power converters working	5											
	Design th	e nower converter	r components.												
2		e power converter													
2 3	Understa	nd and analyse the	3 Understand and analyse the resonant converter and ac-ac converters.												
2 3 4	Understa Understa	nd and analyse the	e resonant converter and ac-ac co e resonant converter and ac-ac co	onverters.	inverter.										
2 3 4 5	Understa Understa Develop a	nd and analyse the nd and analyse the nd analyse Multile	e resonant converter and ac-ac co e resonant converter and ac-ac co evel Inverters and boost inverter	onverters. onverters of ^r s	inverter.										

- 1. Ned Mohan,T.MUndeland and W.P Robbin, "Power Electronics: converters, Application and design" John Wiley and sons.Wiley India edition, 2006.
- 2. Rashid M.H., "Power Electronics Circuits, Devices and Applications ", Prentice Hall India, Third Edition, New Delhi, 2004.

Reference Books

- 1. P.C. Sen, "Modern Power Electronics", Wheeler Publishing Co, First Edition, New Delhi, 1998.
- 2. P.S.Bimbra, "Power Electronics", Khanna Publishers, Eleventh Edition, 2003.
- 3. BimalK.Bose "Modern Power Electronics and AC Drives", Pearson Education, Second Edition, 2003.

Web Resources

- 1. https://nptel.ac.in/courses/108108035
- 2. https://nptel.ac.in/courses/108105066

CO Vs PO Mapping and CO Vs PSO Mapping

CO	PO	PSO	PSO									
	1	2	3	4	5	6	7	8	9	10	1	2
1	3	2									3	
2	3	2									3	
3	3	2									3	
4	3	2									3	
5	3	2									3	

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	10	10	05	05	10
UNDETSTAND	20	20	05	05	20

 		, === ; = ; = ; = ;	/		
APPLY	30	30	15	15	30
ANALYZE	30	30	20	20	30
EVALUATE	10	10	05	05	10
CREATE	0	0	0	0	0
	100	100	50	50	100

1-Low , 2- Medium, 3- High

21PE1602	COMPUTER AIDED DESIGN OF POWER ELECTRONICS CIRCUITS	L	Τ	Р	С
		3	0	0	3
Proamblo					
The objective	of the course is to review of newer electronic devices and	l aina		Annl	time
domain Analy	of the course is to review of power electronic devices and sis and Equipier Series analysis to model and analysis of vari		uits.	Appi r Flo	y unie ctronic
Devices.	sis and rounter series analysis to model and analysis of vari	005 1	0,000		
Prerequisites	for the course				
1. Fourier	Analysis				
2. Power s	emiconductor devices				
3. Transier	nts and time domain analysis				
Objectives					
1. To discu	ss about the implementation of high efficiency power electron	ics cir	cuit	5.	
2. To impa	rt knowledge on advance techniques and computing steady sta	te sol	utio	n.	
3. To perfo	orm time domain analysis and harmonic components of power	electr	onic	circu	its.
4. To Study	y the Fourier analysis of power electronic circuits.				
5. To learn	the computation of performance parameters using Simulation				
UNIT I	INTRODUCTION			9	
Importance of	simulation-General purpose circuit analysis-Methods o	f ana	lysis	s of	power
electronic syst	ems– Review of power electronic devices and circuits.				
UNIT II	ADVANCED TECHNIQUES IN SIMULATION			9	
Analysis of po	wer electronic systems in sequential manner-coupled and	deco	uple	d syst	tems –
Various algorit	hms for computing steady state solution in power electronic s	ysten	is-Fi	uture	trends
in computer sir	nulation.				
UNIT III	MODELING OF POWER ELCTRONIC DEVICES			9	
Introduction–A	C sweep and DC sweep analysis–Transients and the tim	e do	main	ana	lysis –
Fourier series	and harmonic components-BJT, FET, and MOSFET and its	mode	el-An	nplifie	rs and
4					

	INIT IV	SIMULATION OF CIRCUITS		9	
	Introduction– Schematic	capture and libraries-Time	domain ai	nalysis–System lev	
integ	gration and analysis–Monte	Carlo analysis–Sensitivity/stress ar	nalysis–Fou	rier analysis.	
ι	JNIT V	CASE STUDIES		9	
Simu	llation of Converters, Chopp	ers, Inverters, AC voltage controlle	rs, and Cycl	o- converters feedin	
R, R-	L, and R-L-E loads-computa	ation of performance parameters: H	larmonics,	power factor, angle	
over	lap.				
		Tot	al Periods	45	
Sugg	gestive Assessment Metho	ds			
Cont	tinuous Assessment Test	Formative Assessment Test	End Sem	iester Exams	
	(30 Marks)	(10 Marks)	(60 Mar	ks)	
WRI	TTEN TEST	1.ASSIGNMENT	WRITTEN TEST		
		2. ONLINE QUIZZES			
		3 PROBLEM-SOLVING			
		ACTIVITIES			
Outo	comes				
Outo	comes n completion of the course	e, the students will be able to:			
Outo Upo 1	comes n completion of the course	e, the students will be able to:	f high offici	ancu nowar	
Outo Upo 1	comes n completion of the course Introduce the design orien electronics circuits.	e, the students will be able to: ted analysis and implementation of	f high efficio	ency power	
Outo Upo 1 2	comes n completion of the course Introduce the design orien electronics circuits. Identify the advance techn	e, the students will be able to: ted analysis and implementation of iques and computing steady state s	f high efficio	ency power simulation.	
Outo	comes n completion of the course Introduce the design orien electronics circuits. Identify the advance techn Determine the time domai	e, the students will be able to: ted analysis and implementation of iques and computing steady state s n analysis and harmonic componen	f high efficio colution in s	ency power simulation. c electronic circuits.	
Duto	n completion of the course Introduce the design orien electronics circuits. Identify the advance techn Determine the time domai	e, the students will be able to: ted analysis and implementation of iques and computing steady state s n analysis and harmonic componen	f high efficio colution in s	ency power simulation. r electronic circuits.	
Outo	comes Introduce the design orien electronics circuits. Identify the advance techn Determine the time domai Perform the Fourier analys	e, the students will be able to: ted analysis and implementation of iques and computing steady state s n analysis and harmonic componen sis of power electronic circuits.	f high efficio colution in s	ency power simulation. r electronic circuits.	
Upo 1 2 3 4 5	n completion of the course Introduce the design orien electronics circuits. Identify the advance techn Determine the time domai Perform the Fourier analys Simulate the Power Electro Simulation	e, the students will be able to: ted analysis and implementation of iques and computing steady state s n analysis and harmonic componen sis of power electronic circuits. onic Circuits and to determine the p	f high efficie solution in s its of power	ency power simulation. r electronic circuits. e parameters using	
Upo 1 2 3 4 5	n completion of the course Introduce the design orien electronics circuits. Identify the advance techn Determine the time domai Perform the Fourier analys Simulate the Power Electro Simulation	e, the students will be able to: ted analysis and implementation of iques and computing steady state s n analysis and harmonic componen sis of power electronic circuits. onic Circuits and to determine the p	f high efficie solution in s its of power	ency power Simulation. r electronic circuits. e parameters using	
Upo 1 2 3 4 5 Fext	n completion of the course Introduce the design orien electronics circuits. Identify the advance techn Determine the time domai Perform the Fourier analys Simulate the Power Electro Simulation Books	e, the students will be able to: ted analysis and implementation of iques and computing steady state s n analysis and harmonic componen sis of power electronic circuits. onic Circuits and to determine the p	f high efficie solution in s its of power performanc	ency power simulation. r electronic circuits. e parameters using	
Duto Upo 1 2 3 4 5 5 Fext 1 2	n completion of the course Introduce the design orien electronics circuits. Identify the advance techn Determine the time domai Perform the Fourier analys Simulate the Power Electro Simulation Books Rashid,M.,"SimulationofP Rajagopalan, V. "Comput Inc., 1987	e, the students will be able to: ted analysis and implementation of iques and computing steady state s n analysis and harmonic componen sis of power electronic circuits. onic Circuits and to determine the p owerElectronicCircuitsusingpSPICI er Aided Analysis of Power Electr	f high efficie solution in s its of power performanc E",PHI,2006 onic syster	ency power simulation. r electronic circuits. e parameters using 5. ns"-Marcell – Dekk	
Duto Jpo 1 2 3 4 5 5 5 7 ext 2 2 7 8 efe	n completion of the course Introduce the design orien electronics circuits. Identify the advance techn Determine the time domai Perform the Fourier analys Simulate the Power Electro Simulation Books Rashid,M.,"SimulationofP Rajagopalan, V. "Comput Inc., 1987	e, the students will be able to: ted analysis and implementation of iques and computing steady state s n analysis and harmonic componen sis of power electronic circuits. onic Circuits and to determine the p owerElectronicCircuitsusingpSPICI er Aided Analysis of Power Electr	f high efficie solution in s its of power performanc E",PHI,2006 onic syster	ency power simulation. r electronic circuits. e parameters using 5. ns"-Marcell – Dekk	

- 1. https://onlinecourses.nptel.ac.in/noc22_ee33/preview
- 2. https://archive.nptel.ac.in/courses/108/107/108107127/
- 3. https://onlinecourses.nptel.ac.in/noc20_ee97/preview

CO Vs PO Mapping and CO Vs PSO Mapping

<u> </u>	PO	PSO	PSO									
	1	2	3	4	5	6	7	8	9	10	1	2
1	3	2									3	
2	3	2									3	
3	3	2									3	
4	3	2									3	
5	3	2									3	

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	10	10	05	05	10
UNDETSTAND	20	20	05	05	20
APPLY	30	30	15	15	30
ANALYZE	30	30	20	20	30

LVALUATE	.	10	10	05	05			10	
		10	10	05	05			10	
CREATE		0	0	0	0		0		
		100	100	50	50			100)
1-Low , 2	- Medium	, 3- High							
	1								1
21PE1603		SOLID) STATE DC D	RIVES		L	Т	Р	
					-	3	0	0	3
reamble									
his course p	rovides a	n introduction	to the operat	ion of electric	drives con	trolle	d fr	om a	pov
-	wanton d	osign conconte							1
lectronic cor rive	iverter, u	esign concepts	of controller	s and also pr	ovides the	digit	al co	ontro	l of
ectronic cor rive. erequisites	for the co	ourse	of controller	s and also pr	ovides the	digit	al co	ontro	l of
ectronic cor rive. erequisites • Power E	for the co	ourse	of controller	s and also pr	ovides the	digit	al co	ontro	lof
ectronic cor rive. erequisites • Power E • DC Macl	for the co	ourse s Transformers	of controller	s and also pr	ovides the	digit	al co	ontro	l of
ectronic cor rive. erequisites • Power E • DC Macl • AC Mach	for the control of th	ourse s Transformers	of controller	s and also pr	ovides the	digit	al co	ontro	lof
ectronic cor rive. erequisites • Power E • DC Macl • AC Mach	for the contract of the contra	ourse s Transformers	of controller	s and also pr	ovides the	digit		ontro	l of
 ectronic cor rive. erequisites Power E DC Macl AC Mach ojectives 	for the control of th	ourse s Transformers	of controller	s and also pr	rovides the			ontro	
 ectronic cor rive. erequisites Power E DC Macl AC Mach ojectives 1. To discu 	for the co Electronic hines and hines	ourse s Transformers eady state opera	of controller	s and also pr	ovides the	r load	al co	tem	
ectronic cor rive. erequisites • Power E • DC Macl • AC Mach • AC Mach • Jjectives 1. To discu 2. To study	for the co for the co flectronic hines and hines iss the ste y and ana	ourse s Transformers eady state opera	of controller ation and tran ion of the co	s and also pr sient dynamic nverter both	ovides the	r load	al co	tem	tive
 ectronic corrive. erequisites Power E DC Mach AC Mach ojectives 1. To discu 2. To study 3. To Lear 	for the co for the co Electronic hines and hines uss the ste y and ana n the oper	ourse s Transformers eady state opera lyze the operati	of controller ation and tran ion of the co topper fed D0	s and also pr sient dynamic nverter both C drive both c	cs of a moto qualitativel	r load y and	d sys	tem ntitat	tively
 ectronic corrive. erequisites Power E DC Mach AC Mach ojectives 1. To discu 2. To study 3. To Lears 4. To analy 	for the co for the co for the co clectronic hines and hines uss the stee y and ana n the open yze and de	ourse s Transformers eady state opera lyze the operati ration of the ch	of controller ation and tran ion of the co copper fed Do nt and speed c	s and also pr sient dynamic nverter both C drive both c ontrollers for	cs of a moto qualitativel ualitatively a closed loo	r load y and op so	l sys quar lid st	tem ntitati ntitati	tivel tivel
ectronic cor rive. erequisites • Power F • DC Mach • AC Mach • AC Mach • Jectives 1. To discu 2. To study 3. To Lear 4. To analy motor d	for the co for the co flectronic hines and hines uss the ste y and ana n the oper yze and de rive.	esign concepts ourse s Transformers eady state operation lyze the operation ration of the ch esign the currer	of controller ation and tran ion of the co copper fed Do nt and speed c	s and also pr sient dynamic nverter both C drive both c ontrollers for	cs of a moto qualitativel qualitatively a closed loo	r load y and op sol	d sys quar lid st	tem ntitati ntitati	tively tively
 ectronic corrive. erequisites Power E DC Mach AC Mach ojectives 1. To discu 2. To study 3. To Learristication of the state of the st	for the co for the co Electronic hines and hines uss the stee y and ana n the open yze and de rive. erstand th	esign concepts ourse s Transformers eady state operation lyze the operation ration of the ch esign the currer e implementati	of controller ation and tran ion of the co copper fed Do nt and speed co on of control	s and also pr sient dynamic nverter both C drive both c ontrollers for algorithms us	cs of a moto qualitativel ualitatively a closed loo	r load y and y and op sol	l sys quar lid st	tem ntitati ntitati ate D and p	tively ively C bhas
ectronic cor rive. erequisites • Power E • DC Macl • AC Mach • AC Mach • Jectives 1. To discu 2. To study 3. To Lear 4. To analy motor d 5. To unde locked I	for the contract of the contra	esign concepts ourse s Transformers eady state operation lyze the operation ration of the ch esign the currer e implementation	of controller ation and tran ion of the co hopper fed Do nt and speed co on of control	s and also pr sient dynamic nverter both C drive both c ontrollers for algorithms us	cs of a moto qualitativel ualitatively a closed loo	r load y and op sol	l sys quar lid st lers	tem ntitati ate D and p	tivel ively DC bhas

DC motor- Types, induced emf, speed-torque relations; Speed control – Armature and field speed control; Ward Leonard control – Constant torque and constant horse power operation – Introduction to high speed drives and modern drives. Characteristics of mechanical system – dynamic equations, components of torque, types of load; Requirements of drives characteristics – stability of drives – multi-quadrant operation; Drive elements, types of motor duty and selection of motor rating.

UNIT II	(9	
Principle of ph	ase control – Fun	damental relations; Analysis of s	eries and	separately excited DC
motor with si	ngle-phase and t	hree-phase converters – wavefo	orms, perf	ormance parameters,
performance cl	naracteristics. Con	tinuous and discontinuous armat	ure currer	t operations; Current
ripple and its	effect on perform	mance; Operation with freewhee	eling diod	e; Implementation of
braking scheme	es; Drive employin	g dual converter.		
UNIT III		CHOPPER CONTROL		9
Introduction to	o time ratio conti	rol and frequency modulation; C	lass A, B,	C, D and E chopper
controlled DC	motor – perfo	ormance analysis, multi-quadra	nt contro	l – Chopper based
implementation	n of braking schem	nes; Multi-phase chopper; Related	problems.	
UNIT IV	C	LOSED LOOP CONTROL		9
Modelling of d	rive elements – F	auivalent circuit transfer functio	on of self	senarately excited DC
motors: Linear	Transfer function	model of power converters: Sen	nsing and f	eeds back elements -
Closed loop sr	peed control – cu	irrent and speed loops. P. PI a	nd PID co	ontrollers – response
comparison. Si	nulation of conver	ter and chopper fed d.c drive.		
UNIT V	DIG	ITAL CONTROL OF D.C DRIVE		9
Phase Locked	Loop and micro-c	omputer control of DC drives – F	Program flo	ow chart for constant
horse power ar	nd load disturbed o	operations; Speed detection and cu	irrent sens	ing circuits.
		Tota	al Periods	45
Suggestive Ass	sessment Method	S		
Continuous As	sessment Test	Formative Assessment Test	End Sen	nester Exams
(30 Marl	ks)	(10 Marks)	(60 Mar	·ks)
WRITTEN TES	Т	1.ASSIGNMENT	WRITTI	EN TEST
		2. ONLINE QUIZZES		
		3.PROBLEM-SOLVING ACTIVITIES		
Outcomes				
_				

Upon completion of the course, the students will be able to:

- **2** Acquire knowledge about the operation of the converter fed DC drive.
- **3** Understand the concepts of chopper fed DC drive.
- **4** Expertise in design the current and speed controllers for a closed loop solid state DC motor drive.
- **5** Implement of control algorithms using microcontrollers and phase locked loop.

Text Books

- 1. Gopal K Dubey, "Power Semiconductor controlled Drives", Prentice Hall Inc., New Yersy, 1989.
- 2. Vedam Subramanyam, "Electric Drives Concepts and Applications", Tata McGraw-Hill publishing company Ltd., New Delhi, 2002.

Reference Books

1. R.Krishnan, "Electric Motor Drives – Modeling, Analysis and Control", Prentice-Hall of India Pvt. Ltd., New Delhi, 2010.

- 2. GobalK.Dubey, "Fundamentals of Electrical Drives", Narosal Publishing House, New Delhi, Second Edition ,2009
- 3. P.C Sen "Thyristor DC Drives", John wiely and sons, New York, 1981.

Web Resources

- 1. https://nptel.ac.in/courses/108104140
- 2. https://nptel.ac.in/courses/108106184

CO Vs PO Mapping and CO Vs PSO Mapping

0	PO	P01	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	2
1	3	2									3	
2	3	2									3	
3	3	2									3	
4	3	2									3	
5	3	2									3	

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
--------------------	-------	-------	-------	-------	-----------------

 		,	/		
REMEMBER	10	10	05	05	10
UNDETSTAND	20	20	05	05	20
APPLY	30	30	15	15	30
ANALYZE	30	30	20	20	30
EVALUATE	10	10	05	05	10
CREATE	0	0	0	0	0
	100	100	50	50	100

1-Low , 2- Medium, 3- High

21PE1604	POWER QUALITY ANALYSIS AND MITIGATION	L	L T P		C						
	TECHNIQUES	3	1	0	4						
Preamble											
It is needless A reasonable electricity is know differe about their so Prerequisites	to mention that how much we are dependent on electricity in understanding on the basics of different problems and their se therefore important for an electrical engineer. This course wil nt power quality problems occurring in power system and plutions with comparative study.	our d olutic l help provi	ay to ons to the de b	day l appl stude rief io	ife. ied nts lea						
1. Advanced Engineering Mathematics											
2. FACTS											
Objectives											
1. Analysi	s on the Electrical power quality issues and power quality stan	dard	5								
2. Investig	gation on the Analysis of various PQ issues										
3. Explora	ation on the power quality improvement										
4. Unders	tand the conventional compensation techniques used for pow	ver fa	ctor	correc	ction						
and loa	d voltage regulation.										
5. Recogn	ize the active compensation techniques used for load voltage r	egula	tion.								
UNIT I	POWER QUALITYAN OVERVIEW			12							

ancis 2	Xavier Eng	ineering College D	ept of EEE, R2019 ME- PED/2021-Cu	rriculum	and Syllabi
Intro	oduction -	- Characterization	of Electric Power Quality: Transie	ents, sho	rt duration and long
dura	tion volta	ge variations, Volta	ge imbalance, waveform distortior	n, Voltag	e fluctuations, Power
frequ	uency var	iation, Power acce	ptability curves – power quality	problen	ns: poor load power
facto	or, Non-lin	ear and unbalance	l loads, DC offset in loads, Notching	g in load	voltage, Disturbance
in su	pply volta	age – Power quality	as per IEEE standard		
U	NIT II	A	ANALYSIS OF PQ ISSUES		12
Anal	ysis of H	armonics distortio	n: Fourier series and Fourier T	ransform	n, Harmonic indices
Anal	ysis of po	wer outages, Analy	sis of voltage sag: Detroit Edison s	ag score	, Voltage sag energy
Volta	age Sag Lo	st Energy Index (VS	SLEI), Analysis of voltage flicker		
U	III TIN	POWI	ER QUALITY IMPROVEMENT		12
Pass	ive and ac	tive harmonic filter	s, phase multiplication, power con	ditioners	s, UPS, Constant
volta	age transfo	ormers, Introductio	n to custom power devices.		
U	NIT IV		DSTATCOM		12
Com	pensating	single phase loads	- Ideal three phase shunt compe	nsator s	tructure –Generating
refer	ence cur	rents using instant	taneous PQ theory – Instantaneo	us symr	netrical component
theo	ry – Gene	rating reference cu	rrents when the source is unbalan	ced – Re	alization and contro
of DS	STATCOM	- DSTATCOM in Vo	ltage control mode		
TT	NIT V		DVD		10
U			DVK		14
Rect	ifier supp	orted DVR – DC Cap	acitor supported DVR – DVR Struct	ture – vo	ltage Restoration –
Serie	es Active F	ilter. UPQC: Configu	arations and characteristics.		
			Total Pe	eriods	60
Sugg	gestive As	sessment Method	S		
Con	tinuous A	Assessment Test	Formative Assessment Test	End	Semester Exams
	(30	Marks)	(10 Marks)		(60 Marks)
	WRIT	TEN TEST	1.ASSIGNMENT	V	VRITTEN TEST
			2. ONLINE QUIZZES		
			3.PROBLEM-SOLVING		
			ACTIVITIES		
Outo	comes				
Upo	n comple	tion of the course,	the students will be able to:		
1	- To und	erstand various sou	rces, causes and effects of power q	uality is	sues,electrical
	System	s and their measure	es and mitigation.		
2	To Ana	lyse the various PQ	problems		
3	Explain	the conventional n	nitigation methods for PQ issues		
4	To und	erstand and design	load compensation methods useful	l for miti	gating power
	Quality	problems.			
	1				

5 To acquire knowledge on DVR

Text Books

- 1. ArindamGhosh "Power Quality Enhancement Using Custom Power Devices", Kluwer Academic Publishers, 2002
- 2. R.C. Duggan, Mark.F.McGranaghan,SuryaSantoas and H.WayneBeaty, Electrical Power System Quality", McGraw-Hill, 2017.

Reference Books

- 1. Jos Arrillaga and Neville R. Watson ," Power system harmonics", Wiley, 2015
- Derek A. Paice , "Power Electronics Converter Harmonics :Multipulse Methods for Clean Power", Wiley, 1999

Web Resources

- 1. <u>https://testguy.net/content/361-Power-Quality-Analysis-Basic-Theory-and-Applications-Explained</u>
- 2. https://nptel.ac.in/courses/108102179/

CO Vs PO Mapping and CO Vs PSO Mapping

CO	PO	PSO	PSO									
ιυ	1	2	3	4	5	6	7	8	9	10	1	2
1	2	2	2		2	1				2	2	
2	2	2	2		1	2				1	2	
3	2	2	2		2	1				2	2	
4	2		2		2	3				3		2
5	2	2	2		1	2				1		2

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	20	20	10	10	20
UNDETSTAND	30	30	10	10	30
APPLY	20	20	10	10	20
ANALYZE	15	15	10	10	15

EVALUATE	15	15	10	10	15
CREATE	0	0	0	0	0
	100	100	50	50	100

1-Low, 2- Medium, 3- High

Preamble Special electrical masystems, robotics and feature of this course goes on to cover restudents and researe prerequisites for the 1.Electrical Mach 2.Electrical Mach 2.Electrical Mach 0bjectives 1. Electrical Mach 2.Electrical Mach 2.Electrical mach 1. 1. To review th permanent masynchronous 3. To develop th 4. To introduce 1. 5. To understam 1. Fundamentals of Perecupation 1.	hachines are finding ever-increasing applications, typical nd mechatronics, electric vehicles, and high speed transp se is that it does not stop at the basic principles of these of ecent developments and current research, making it usefor the scholars in the field of electrical machines and drives. The course hines -II hines -II	3 lly in portation comp ul for	0 position. lex m	0 tion o A par nachir ior gra	3 control ticular ies but aduate
Preamble Special electrical m systems, robotics and feature of this course goes on to cover re students and resear Prerequisites for the 1.Electrical Mach 2.Electrical Mach 2.Electrical Mach 0bjectives 1. To review th permanent m 2. To introduce synchronous 3. To develop th 4. To introduce 5. To understand UNIT I Fundamentals of Pe EMF and Torque equ UNIT II	hachines are finding ever-increasing applications, typical nd mechatronics, electric vehicles, and high speed transp se is that it does not stop at the basic principles of these of ecent developments and current research, making it usefunction scholars in the field of electrical machines and drives. The course hines-I hines -II	lly in portation comp ul for	posi tion. lex m	tion o A par nachir ior gra	control ticular ies but aduate
Special electrical m systems, robotics and feature of this course goes on to cover re students and resear Prerequisites for th 1.Electrical Mach 2.Electrical Mach Objectives 1. To review th permanent m 2. To introduce synchronous 3. To develop th 4. To introduce 5. To understan UNIT I Fundamentals of Per EMF and Torque equ	hachines are finding ever-increasing applications, typical nd mechatronics, electric vehicles, and high speed transp se is that it does not stop at the basic principles of these of ecent developments and current research, making it usefor ecch scholars in the field of electrical machines and drives. The course hines -II hines -II	lly in cortation ul for	posi tion. lex n sen	tion o A par nachir ior gra	control ticular ies but aduate
 2. To introduce synchronous 3. To develop th 4. To introduce 5. To understan UNIT I Fundamentals of Pereception EMF and Torque equination 	agnet brushless DC motors.	the	ope	ratior	ı of
UNIT I Fundamentals of Pe EMF and Torque equ UNIT II	e the concepts of permanent magnet brushless synchr reluctance motors he control methods and operating principles of switched re the concepts of stepper motors and its applications. d the basic concepts of other special machines	onou elucta	s mo	moto	and rs.
Fundamentals of Pe EMF and Torque equ	PERMANENT MAGNET BRUSHLESS DC MOTORS			9	
UNIT II	ermanent Magnets- Types- Principle of operation- Mag ations- Characteristics and control.	netic	circ	uit ar	alysis
	PERMANENT MAGNET SYNCHROUNOUS MOTORS			9	
Principle of operatio speed characteristic characteristics of syr	on – EMF and Torque equations - Phasor diagram - Powe cs – Digital controllers – Constructional features, ope nchronous reluctance motor	er con eratin	itroll ig pi	ers – rincip	Гогque le and
UNIT III	SWITCHED RELUCTANCE MOTORS			9	
Constructional feat controllers – Control	tures –Principle of operation- Torque prediction– l of SRM drive- Sensor less operation of SRM – Application	Chara 1s.	acter	istics-	Power
UNIT IV				9	

Consti Nonlir	ructional near anal	features –Principl ysis – Characteristic	e of operation –Types – Torqu s – Drive circuits – Closed loop con	ie predi trol–Ap	ctions – Linear an plications.		
UN	NIT V	ОТ	HER SPECIAL MACHINES		9		
Princi	ple of op	eration and charact	eristics of Hysteresis motor – AC s	eries mo	otors – Linear motor		
Applic	cations.						
			Total P	eriods	45		
Sugge	estive As	sessment Methods					
Con	tinuous	Assessment Test	Formative Assessment Test	End	Semester Exams		
	(30	Marks)	(10 Marks)		(60 Marks)		
	WRIT	TEN TEST	1.ASSIGNMENT 2 ONLINE OUI77ES	И	RITTEN TEST		
			3.PROBLEM-SOLVING				
			ACTIVITIES				
Outco	omes						
Upon	complet	ion of the course, t	he students will be able to:				
1	Understand the Characteristics of Permanent magnet Brushless DC motors.						
2	Recognize the concept of Permanent magnet Synchronous DC motors.						
3	Realize t	the Concept of Switc	hed Reluctance motors.				
4	Develop	the Concept of Step	per motors.				
5	Interpre	et the various types o	of special motor for a certain job Co	onditions	5.		
Text I	Books						
1.	T.J.E. Mi	ller, 'Brushless mag	net and Reluctance motor drives', (Clare dor	n press, London,1989		
2.	R. Krish	nan, 'Switched Relu	ctance motor drives', CRC press, 20	01.			
Refer	ence Boo	oks					
1.	T.Kenjo,	'Stepping motors a	nd their microprocessor controls',	Oxford	University press, Ne		
	Delhi, 20	000.					
2.	T.Kenjo	and S.Nagamori,	'Permanent magnet and Brush	less DC	motors', Clarendo		
	press, Lo	ondon, 1988.					
3.	R.Krishr	nan, 'Electric motor	drives',prentice hall of India, 2002.				
4.	D.P.Kotł	nari and I.J.Nagra v New Delhi Third	th, 'Electric machines', Tata Edition 2004	Mc G	raw hill publishir		
Weh I	Resource						
	2 h+	the //waanar brainly	rt com /subject /Special Electrical	Machina	c 185/		
	J. 11(1 h4	tps://www.DIallika	ursos /108105121 /	macinite	5_105/		
	4. nt	.ups://nptei.ac.in/co	JUISES/108105131/				

CO	PO	PSO	PSO									
LU	1	2	3	4	5	6	7	8	9	10	1	2
1	3	2			2			2		1		2
2	3	2			2			2		1		2
3	3	2	1		2			2		1		2
4	3	2	1		2			2		1		2
5	3	2			2			2		1		2

CO Vs PO Mapping and CO Vs PSO Mapping

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	20	20	10	10	20
UNDETSTAND	30	30	10	10	30
APPLY	20	20	10	10	20
ANALYZE	15	15	10	10	15
EVALUATE	15	15	10	10	15
CREATE	0	0	0	0	0
	100	100	50	50	100

1-Low, 2- Medium, 3- High

21PE2601	Generalized Machine Theory	L	Τ	Р	С
		3	0	0	3
Preamble					

The aim of the subject is to develop an understanding of the basic concepts of synchronous machine, Magnetic circuits, permanent magnet, stored magnetic energy, Transfer function for DC machine, Transient Power Angle characteristics. Phases diagram for cylindrical rotor and salient pole machine. Apply this knowledge to develop modelling of major machine components Prerequisites for the course 1. Fundamentals of Applied Electromagnetics 2. DC Machines and Transformers Objectives 1. To discuss the fundamentals of magnetic circuits, energy, force and torque of multi-excited systems 2. To impart the general equations for voltages of all type of rotating machines 3. To impose the general equations for torque of all type of DC machines 4. To acquire the simulation model of Synchronous machines 5. To provide adequate knowledge the simulation model of three-phase AC machines PRINCIPLES OF ELECTROMAGNETIC ENERGY **UNIT I** 9 **CONVERSION** Magnetic circuits, permanent magnet, stored magnetic energy, co-energy - force and torque in singly and doubly excited systems – machine windings and air gap mmf - winding inductances and voltage equations. UNIT II **REFERENCE FRAME THEORY** 9 Reference frame theory, $3-\Phi \rightarrow 2-\Phi$ transformation, Physical concept of park's transformation, Voltampere and torque equations, Space vector concept. **MODELLING OF DC MACHINE UNIT III** 9 Transfer function for DC machine, (Shunt, Series and compound), Linearization technique, Analysis under motoring and generating mode, Dynamic analysis. UNIT IV MODELLING OF SYNCHRONOUS MACHINE 9 General machine equation in different frame, Dynamic analysis, Transient Power Angle characteristics, Phases diagram for cylindrical rotor and salient pole machine, Electromagnetic and reluctance torque, Electric braking of synchronous machine. UNIT V **MODELLING OF THREE PHASE INDUCTION MACHINE** 9 Performance equations in different rotating frames, Equivalent circuit, Different inductance, Effect of voltage and frequency on the performance, Braking, Unbalance operations. **Total Periods** 45 Suggestive Assessment Methods **Continuous Assessment Test Formative Assessment Test** End Semester Exams (30 Marks) (10 Marks) (60 Marks)

WRITTEN TEST	1.ASSIGNMENT	WRITTEN TEST
	2. ONLINE QUIZZES	
	3.PROBLEM-SOLVING ACTIVITIES	
0		

Outcomes

Upon completion of the course, the students will be able to:

- **1** Derive the various electrical parameters of electromagnetic conversion in mathematical form
- **2** Formulate the parameters in different reference frame of Electrical Machines.
- **3** Investigate the transient performance of different DC machines.
- **4** Assess the special purpose small machines for different applications.
- **5** Develop mathematical model of three-phase AC machines

Text Books

- 1. Bimbhra, P.S., Generalized Theory of Electric Machines, Khanna Publishers (2010).
- 2. Kraus, P.C., Analysis of Electric Machine, McGraw–Hill (2000).

Reference Books

- 1. Charles V. Johnes, "Unified Theory of Electrical Machines". New York, Plenum Press, 2008
- 2. Charles Concordia," Synchronous Machines- Theory and Performance", John Wiley and Sons Incorporate, Newyork.2009.

Web Resources

- 1. https://www.academia.edu/4644500/GENERALIZED_THEORY_OF_ELECTRICAL_MAC HINES
- 2. https://easyengineering.net/generalized-theory-of-electrical-machines-by-bimbhra/
- 3. https://www.youtube.com/watch?v=iDBeDHGSaPE

CO Vs PO Mapping and CO Vs PSO Mapping

СО	PO	PO	PO	PO	PO	P0	PO	PO	P0	РО	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	1	2
1	3	3										3
2	3	3										3

3	3	3	1					3
4	3	3						3
5	3	3	1					3

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	10	10	10	10	10
UNDETSTAND	30	30	10	10	30
APPLY	30	30	10	10	30
ANALYZE	20	20	10	10	15
EVALUATE	10	10	10	10	15
CREATE	0	0	0	0	0
	100	100	50	50	100

1-Low , 2- Medium, 3- High

21PE2602	SOLID STATE AC DRIVES	L	Τ	Р	С
		3	1	0	4

Preamble

The aim of the subject is to develop an understanding of the basic concepts Induction motor steady state performance equations, rotating magnetic field, CSI fed IM variable frequency drives comparison, static scherbius drives – power factor considerations – modified Kramer drives introduction to the operation of electric drives controlled from a power electronic converter and also provides the design concepts of controllers

Prerequisites for the course

- 1. Power Electronics
- 2. AC Machines

Objectives

- **1**. To review various operating regions of the induction motor drives.
- 2. To study and analyze the operation of VSI & CSI fed induction motor control.

3. 10 acqu 4. To impa	· · · · · · · · · · · · · · · · · · ·							
4. To impa	ire the speed contr	of techniques of induction motor	arive from	the rotor side.				
	rt knowledge on fi	eld oriented control of induction	machine.					
5. To enlig	hten the control of	synchronous motor drives						
UNIT I	INTROD	UCTION TO INDUCTION MOTOR	S	12				
Steady state p	erformance equati	ions – Rotating magnetic field -	- torque p	roduction, Equivale				
circuit– Variab	le voltage, constar	nt frequency operation – Variabl	e frequenc	y operation, consta				
Volt/Hz opera	tion. Drive operati	ing regions, variable stator curr	ent operat	ion, different brakir				
methods.								
UNIT II	VSI AND CSI	I FED INDUCTION MOTOR CONT	ROL	12				
AC voltage controller circuit – six step inverter voltage control-closed loop variable frequency PWM								
inverter with d	ynamic braking-CS	SI fed IM variable frequency drives	s comparis	on				
UNIT III ROTOR CONTROLLED INDUCTION MOTOR DRIVES 12								
Static Totol Te		injection of voltage in the fotor	circuit -	static scherblus				
drives – power	factor consideration	ons – modified Kramer drives						
UNIT IV	FI	IELD ORIENTED CONTROL		12				
Field oriented	control of induction	on machines – Theory – DC driv	ve analogy	- Direct and Indire				
methods – Fli	ux vector estimati	ion – Direct torque control of	Induction	Machines – Torq				
expression wit	h stator and rotor f	luxes, DTC control strategy.						
•								
UNIT V	UNIT V SYNCHRONOUS MOTOR DRIVES 12							
UNIT V Wound field cy	lindrical rotor mo	tor – Equivalent circuits – perfor	mance equ	12 nations of operation				
UNIT V Wound field cy from a voltage	/lindrical rotor mo source – Power fa	tor – Equivalent circuits – perfor	mance equ	12 nations of operation raking, self-control -				
UNIT V Wound field cy from a voltage Load commuta	/lindrical rotor mo source – Power fa ted Synchronous m	tor – Equivalent circuits – perfor ctor control and V curves – star	mance equ ting and bi	12 nations of operation raking, self-control -				
UNIT V Wound field cy from a voltage Load commuta	/lindrical rotor mo source – Power fa ted Synchronous m	tor – Equivalent circuits – perfor ctor control and V curves – star notor drives – Brush and Brushles	mance equ ting and bi s excitation	12 nations of operation raking, self-control - n				
UNIT V Wound field cy from a voltage Load commuta	/lindrical rotor mo source – Power fa ted Synchronous m	tor – Equivalent circuits – perfor ctor control and V curves – star notor drives – Brush and Brushles Tot	mance equ ting and bi s excitation al Periods	12 nations of operation raking, self-control - n 60				
UNIT V Wound field cy from a voltage Load commuta Suggestive As	/lindrical rotor mo source – Power fa ted Synchronous m sessment Method	tor – Equivalent circuits – perfor ctor control and V curves – star notor drives – Brush and Brushles Tot	mance equ ting and bi s excitation al Periods	12 nations of operation raking, self-control - n 60				
UNIT V Wound field cy from a voltage Load commuta Suggestive As Continuous As	/lindrical rotor mo source – Power fa ted Synchronous m sessment Method sessment Test	tor – Equivalent circuits – perfor ctor control and V curves – star notor drives – Brush and Brushles Tot S Formative Assessment Test	mance equ ting and bi s excitation al Periods End Sen	12 nations of operation raking, self-control - n 60 mester Exams				
UNIT V Wound field cy from a voltage Load commuta Suggestive As Continuous As (30 Mar	/lindrical rotor mo source – Power fa ted Synchronous m sessment Method ssessment Test ks)	tor – Equivalent circuits – perfor ctor control and V curves – star notor drives – Brush and Brushles Tot s Formative Assessment Test (10 Marks)	mance equ ting and bi s excitation al Periods End Sen (60 Mar	12 nations of operation raking, self-control - n 60 nester Exams rks)				
UNIT V Wound field cy from a voltage Load commuta Suggestive As Continuous As (30 Mar WRITTEN TES	/lindrical rotor mo source – Power fa ted Synchronous m sessment Method sessment Test ks) T	tor – Equivalent circuits – perfor ctor control and V curves – star notor drives – Brush and Brushles Tot s Formative Assessment Test (10 Marks) 1.ASSIGNMENT	mance equ ting and bi s excitation al Periods End Sen (60 Mar WRITTI	12 nations of operation raking, self-control - n 60 nester Exams rks) EN TEST				
UNIT V Wound field cy from a voltage Load commuta Suggestive As Continuous As (30 Mar WRITTEN TES	/lindrical rotor mo source – Power fa ted Synchronous m sessment Method ssessment Test ks) T	tor – Equivalent circuits – perfor ctor control and V curves – star notor drives – Brush and Brushles Tot s Formative Assessment Test (10 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES	mance equ ting and bi s excitation al Periods End Sen (60 Mar WRITTI	12 nations of operation raking, self-control - n 60 nester Exams rks) EN TEST				
UNIT V Wound field cy from a voltage Load commuta Suggestive As Continuous As (30 Mar WRITTEN TES	/lindrical rotor mo source – Power fa ted Synchronous m sessment Method sessment Test ks)	tor – Equivalent circuits – perfor ctor control and V curves – star notor drives – Brush and Brushles Tot s Formative Assessment Test (10 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES	mance equ ting and bi s excitation al Periods End Sen (60 Mar WRITTI	12 nations of operation raking, self-control - n 60 nester Exams rks) EN TEST				

Francis Xavier Engineering Colleg	e Dept of EEE	C, R2019 ME- PED	/2021-Curriculi	ım and Syllabi

	ACTIVITIES
Outco	omes
Upon	completion of the course, the students will be able to:
1	Apply the basic concept of induction motors
2	Analyze about the operation of VSI & CSI fed induction motor drive.
3	Interpret the concepts of rotor controlled drive.
4	Articulate the field oriented control of induction machine
5	Examine the concepts of synchronous motor from the mathematical equation
[ext]	Books
1.	Bimal K Bose, "Modern Power Electronics and AC Drives", Pearson Education Asia
	2002.
2.	Vedam Subramanyam, "Electric Drives – Concepts and Applications", Tata McGraw Hill,
	1994.
Refer	rence Books
1.	Gopal K Dubey, "Power Semiconductor controlled Drives", Prentice Hall Inc., Ne Yersy,1989
2.	R.Krishnan, "Electric Motor Drives – Modeling, Analysis and Control", Prentice-Hall of Inc.

3. W.Leonhard, "Control of Electrical Drives", Narosa Publishing House, 1992

Web Resources

- **1.** <u>https://www.vssut.ac.in/lecture_notes/lecture1424084684.pdf</u>
- 2. <u>https://www.scribd.com/document/253784176/Solid-State-Dc-Drives-Part1-PDF</u>

CO Vs PO Mapping and CO Vs PSO Mapping

<u> </u>	PO	РО	PSO	PSO								
	1	2	3	4	5	6	7	8	9	10	1	2
1	3	3									3	3
2	3	3	1								3	3
3	3	3									3	3
4	3	3	1								3	3

Francis Xavier Engineering College Dept of EEE, R2019 ME- PED/2021-Curriculum and Syllabi												
	5	3	3								3	3

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	10	10	10	10	10
UNDETSTAND	30	30	10	10	30
APPLY	30	30	10	10	30
ANALYZE	20	20	10	10	15
EVALUATE	10	10	10	10	15
CREATE	0	0	0	0	0
	100	100	50	50	100

1-Low, 2-Medium, 3-High

21PE2603	Modern Control Theory	L	Τ	Р	С
		3	0	0	3

Preamble

This course is to impart in students a good understanding of fundamental principles in Modern Control Theory. The course includes: Nonlinear systems and their properties, Common Nonlinearities, Optimal control problems, Mathematical procedures for optimal control design, sampling and data hold, Reconstructing original signal from sampled signals, Stability analysis of closed-loop systems in the z-plane, Lyapunov stability analysis, Controllability and Observability, Design via pole placement, State observer design.

Prerequisites for the course

- 1. Control systems
- 2. Digital Signal Processing

Objectives

- 1. To study the fundamentals of physical systems in terms of its modern control system for the real time analysis and design of control systems
- 2. To educate on representing optimal control to any system.
- 3. To impart knowledge on Z-Plane Analysis of Discrete-Time Control Systems
- 4. To apply the comprehensive knowledge of optimal theory for Control Systems.
- 5. To enlighten the concept on stability analysis of systems using Lyapunov's theory.

INCIS 2		Ν	Nonlinear Control System		9
	-		toninear control system		
Introc	duction to	o Nonlinear syste	ems and their properties, Com	mon Non-l	inearities, Describing
uncu	ions, Phas	e plane method, Ly	vapounov's method for stability si	ludy, conce	pt of Limit Cycle.
U	NIT II		Optimal Control Theory		9
Introd	duction, (Optimal control p	roblems, Mathematical procedu	res for op	timal control design
Calcul	lus of vari	ations, Pontryagin	's optimum policy, Bang-Bang Co	ntrol, Hami	lton-Jacobi Principle.
UN	NIT III	Z-Plane Analy	ysis of Discrete-Time Control Sy	stems	9
íntroc	duction, Ir	npulse sampling a	nd data hold, Reconstructing orig	ginal signal	from sampled signal
conce	ept of puls	e transfer function	n, Realization of digital controllers	5.	
UN	NIT IV	Design o	of Discrete-time Control System	IS	9
Introc	duction, S	tability analysis o	f closed-loop systems in the z-p	lane, Trans	ient and steady stat
respo	nse analv	sis, Design based o	on the rootlocus method, Design l	based on th	e frequency-respons
netho	od.				
U	NIT V		State-Space Analysis		9
State	observer	ounov stability ana design.	lysis, Controllability and Observa	bility, Desig al Periods	gn via pole placemen 45
State Sugge	observer estive Ass nuous As	ounov stability ana design. sessment Method sessment Test	lysis, Controllability and Observa Tot s Formative Assessment Test	bility, Desig al Periods End Sen	gn via pole placement 45 nester Exams
State Sugge	estive Ass nuous As (30 Mar	ounov stability ana design. sessment Method sessment Test ks)	Ilysis, Controllability and Observa Tot s Formative Assessment Test (10 Marks)	bility, Desig al Periods End Sen (60 Mar	45 Hester Exams ks)
Sugge Conti WRIT	estive Ass nuous As (30 Mar)	ounov stability ana design. sessment Method sessment Test ks) T	Ilysis, Controllability and Observa Tot S Formative Assessment Test (10 Marks) 1.ASSIGNMENT	bility, Desig al Periods End Sen (60 Mar WRITTE	45 45 nester Exams ks) EN TEST
Sugge Conti	estive Ass nuous As (30 Mar)	ounov stability ana design. sessment Method sessment Test ks) T	Ilysis, Controllability and Observa Tot S Formative Assessment Test (10 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES	bility, Desig al Periods End Sen (60 Mar WRITTE	45 A5 nester Exams ks) EN TEST
Sugge Conti WRIT	estive Ass nuous As (30 Mar)	ounov stability ana design. sessment Method sessment Test ks) T	Ilysis, Controllability and Observa Tot S Formative Assessment Test (10 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES	bility, Desig al Periods End Sen (60 Mar WRITTE	45 hester Exams ks)
Sugge Conti WRIT	estive Ass nuous As (30 Mar) TTEN TES	ounov stability ana design. sessment Method sessment Test ks) T	Ilysis, Controllability and Observa Tot S Formative Assessment Test (10 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES	bility, Desig al Periods End Sen (60 Mar WRITTE	45 hester Exams ks) EN TEST
Sugge Sugge Conti WRIT	estive Ass nuous As (30 Mar) TTEN TES	ounov stability ana design. sessment Method sessment Test ks) T	Ilysis, Controllability and Observa Tot S Formative Assessment Test (10 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES	bility, Desig al Periods End Sen (60 Mar WRITTE	45 nester Exams ks) EN TEST
Sugge Conti WRIT	estive Ass nuous As (30 Mar) TTEN TES omes complet	bunov stability ana design. sessment Method sessment Test ks) T ion of the course, rate non-linear sys	Ilysis, Controllability and Observa Tot s Formative Assessment Test (10 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES the students will be able to: stem behavior by phase plane and	bility, Desig al Periods End Sen (60 Mar WRITTE WRITTE	45 hester Exams ks) EN TEST
Sugge Conti WRIT	estive Ass nuous As (30 Mar) TTEN TES omes complet Demonstr Perform t optimal c	ounov stability ana design. sessment Method sessment Test ks) T ion of the course, rate non-linear sys che stability analys ontrol problems.	Tot S Formative Assessment Test (10 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES the students will be able to: stem behavior by phase plane and sis nonlinear systems by lyapunov	bility, Desig al Periods (60 Mar (60 Mar WRITTE WRITTE	45 hester Exams ks) EN TEST function methods. evelop design skills i
Sugge Conti WRIT	estive Ass nuous As (30 Mar) TTEN TES Demonstr Demonstr Demonstr Perform t optimal c Derive di equations	and the stability ana design.	Tot S Formative Assessment Test (10 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES the students will be able to: stem behavior by phase plane and sis nonlinear systems by lyapunov ematical models in both time dor ransfer function using z-transform	bility, Desig al Periods End Sen (60 Mar (60 Mar WRITTE WRITTE describing v method do main (differ n).	45 A5 A5 A5 A5 A5 A5 A5 A5 A5 A
Sugge Conti WRIT Outco Upon 1 2 3 4	estive Ass nuous As (30 Mar) TTEN TES Demonstr Demonstr Perform t optimal c Derive di equations Predict an open-loop	essment Method sessment Method sessment Test ks) T ion of the course, rate non-linear sys che stability analys ontrol problems. screte-time mathe s) and z-domain (tr nd analyze transier and closed-loop l	Tot S Formative Assessment Test (10 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES the students will be able to: stem behavior by phase plane and sis nonlinear systems by lyapunov ematical models in both time dor ransfer function using z-transform nt and steady-state responses an linear, time-invariant discrete-time	bility, Desig End Sen (60 Mar (60 Mar WRITTE WRITTE describing v method do main (differ n). d stability a ne control s	45 nester Exams ks) EN TEST function methods. evelop design skills i rence equations, stat und sensitivity of bot vstems.

placement, design of state observers and output feedback controllers.

Text Books

- 1. Slotine & Li, Applied Non-Linear Control, Englewood Cliffs, NJ: Prentice-Hall, (1991).
- 2. Bandyopadhyay, M.N., Control Engineering: Theory and Practice, Prentice-Hall of India Private Limited (2003)

Reference Books

1. Ogata, K., Discrete-time Control Systems, Pearson Education (2005).

Web Resources

- 1. <u>https://nptel.ac.in/courses/108/101/108101037/</u>
- 2. <u>https://freevideolectures.com/course/2337/control-engineering/5</u>

CO Vs PO Mapping and CO Vs PSO Mapping

СО	PO	PSO	PSO									
	1	2	3	4	5	6	7	8	9	10	1	2
1	3	3									3	
2	3	3									3	
3	3	3	2								3	
4	3	3	2								3	
5	3	3	2								3	

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	10	10	10	10	10
UNDETSTAND	30	30	10	10	30
APPLY	30	30	10	10	30
ANALYZE	20	20	10	10	15
Francis Xavier Engineering College	Dept of EEE, R2019 ME- PED	/2021-Curriculum and Syllabi			
------------------------------------	----------------------------	------------------------------			

 		,	/		
EVALUATE	10	10	10	10	15
CREATE	0	0	0	0	0
	100	100	50	50	100

1-Low , 2- Medium, 3- High

21PE2611	SOLID STATE DRIVES AND CONTROL LABORATORY	L	Т	Р	С
		0	0	4	2

Preamble

To get exposure about the DC and AC drives and their speed control techniques.

Prerequisites for the course

- Power electronics
- Solid state drives
- Power electronics laboratory

Objectives

- 1. To design and analyse the various DC and AC drives.
- 2. To Study the performance of Induction motor drives.
- 3. To discuss the hardware and software simulation of Special Machines.
- 4. To design the multi level inverter and three-phase Synchronous Generator.
- 5. To learn the basic concepts of Power Quality Anayzer.

S.No	List of Experiments	СО
1	Speed control of Converter fed DC motor.	1
2	Speed control of Chopper fed DC motor.	1
3	V/f control of three-phase induction motor.	2
4	Micro controller based speed control of Stepper motor.	3
5	Speed control of BLDC motor.	3
6	DSP based speed control of SRM motor.	3
7	Voltage Regulation of three-phase Synchronous Generator.	4
8	Cyclo-converter fed Induction motor drives.	2
9	Single phase Multi Level Inverter based induction motor drive.	4

10	Study of power quality analyzer.	5					
Suggest	ive Assessment Methods						
Lab Con	nponents Assessments	End Semester Exams					
(60 Ma	rks)	(40 Marks)					
Observa	ation	End semester Examination					
Record		Viva-voce					
Viva-vo	ce						
Outcom	ies						
Upon c	ompletion of the course, the students	will be able to:					
CO1	Ability to simulate different types of	machines, converters in a system.					
CO2	Analyze the performance of Inductio	n motor drives.					
CO3	Ability to perform both hardware an	d software simulation of Special Machines.					
C O 4	Ability to simulate the multi level inverter and three-phase Synchronous Generator						
C O 5	To understand the basic concepts of	Power Quality Anayzer.					
Laborat	tory Requirements						
Convert Chopper Cyclo co Three pl SRM Dri PMBLD(Stepper Single p Power Q Tachom Ammete Voltmet Digital s Referen	er fed DC motor drive-1 r fed DC motor drive-1 crol based Induction motor devices-1 onverter fed induction motor drive-1 hase synchronous generator-1 ive with DSP controller-1 C Drive-1 motor drive with microprocessor based hase multilevel inverter fed with motor of Quality Analyser-1 eters-10 ers-10 ers-10 torage oscilloscope-5 nce Books	control-1 drive-1					
1. N	led Mohan,T.M Undeland and W.P Robb	oin, "Power Electronics: converters, Application a					
d	lesign" John Wiley and sons.Wiley India e	edition, 2006.					
2. R T	Rashid M.H., "Power Electronics Circuit Third Edition, New Delhi, 2004.	s, Devices and Applications ", Prentice Hall Ind					
3. V g	vedam Subramanyam, "Electric Drives Sublishing company Ltd., New Delhi, 2002	– Concepts and Applications", Tata McGraw-H 2.					

- 1. https://www.youtube.com/playlist?list=PLUSE6w0Kh7fI86nz-q35hwG8NCHRvvKEY
- 2. https://nptel.ac.in/courses

CO Vs PO Mapping and CO Vs PSO Mapping

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	PSO1	PSO2
1	3	2							2		3	
2	3	2							2		3	
3	3	2							2		3	
4	3	2							2		3	
5	3	2							2		3	

1-Low, 2- Medium, 3- High

21PE2911	INNOVATIVE PROJECT	L	Τ	Р	C
		0	0	4	2

Preamble

Innovative Project has been proven to be the most effective method of delivering products within cost, schedule, and resource constraints. It provides the skills to ensure that the projects are completed on time and on budget while giving the user the product, they expect.

Prerequisites for the course

NIL

Objectives

- 1. To develop the ability to solve a specific problem right from its identification and literature review till the successful solution of the same.
- 2. To explain the organizational structure for projects to develop a product with a given specification.
- 3. To discuss the cost required to complete a given project
- 4. To Introduce about the work breakdown structure for a given Solutions.
- 5. To train the students in preparing project reports and to face reviews and viva voce examination.

A project to be developed based on one or more of the following concepts.

Rectifiers, DC-DC Converters, Inverters, cyclo-converters, DC drives, AC drives, Special Electrical

industrial and ot	wable Energy Systems, Linear and non-linear control systems, Pe her applications, AC-DC power factor circuits, micro grid, smart gr	ower	supp d rob	oly des otics.	ign f
Speed control o	f Converter fed DC motor.				
	PROFESSIONAL ELECTIVES				
21PE2701	SOLAR PHOTOVOLTAIC SYSTEMS	L	Т	Р	С
		3	0	0	3
Preamble					
PV systems. Th alone PV schen Prerequisites	e course will cover the characteristics of solar radiation, PV cells, modes with battery energy storage and grid-connected PV schemes. for the course	dules	and a	arrays,	stan
Advance	ed Engineering Mathematics				
• Physics	For Engineers				
Objectives					
1. To unde	rstand the Basics of solar photovoltaic systems.				
2 To stud	v components of standalone PV systems				
3. To learn	the Necessity of grid connected PV systems.				
4. To anal	ze the Need and type of Hybrid systems.				
r To diag	uss the designing of the System Components for different PV Ar	oplica	tion	s.	
5. 10 uisci	iss the designing of the system components for unreferrer in Ap	•	tion		
UNIT I	PHOTOVOLTAIC BASICS			9	
UNIT I Structure and	PHOTOVOLTAIC BASICS vorking of Solar Cells - Types, Electrical properties and Behavio	our of	Sola	9 Ir Cell	<u>s - C</u>
UNIT I Structure and v properties and Basics of Load	PHOTOVOLTAIC BASICS vorking of Solar Cells - Types, Electrical properties and Behavio design - PV Cell Interconnection and Module Fabrication - PV Estimation.	our of Mod	f Sola ules	9 or Cell and a	s - C rray
UNIT I Structure and v properties and Basics of Load UNIT II	PHOTOVOLTAIC BASICS vorking of Solar Cells - Types, Electrical properties and Behavic design - PV Cell Interconnection and Module Fabrication - PV Estimation. STAND ALONE PV SYSTEMS	our of Mod	Sola	9 ur Cell and a 9	s - C rray
UNIT I Structure and v properties and Basics of Load UNIT II Schematics, Co	PHOTOVOLTAIC BASICS vorking of Solar Cells - Types, Electrical properties and Behavic design - PV Cell Interconnection and Module Fabrication - PV Estimation. STAND ALONE PV SYSTEMS mponents, Batteries, Charge Conditioners - Balance of system	our of Mod	Sola ules	9 ar Cell and a 9 nents	s - C rray for 1
UNIT I Structure and v properties and Basics of Load UNIT II Schematics, Co and/or AC App	PHOTOVOLTAIC BASICS vorking of Solar Cells - Types, Electrical properties and Behavic design - PV Cell Interconnection and Module Fabrication - PV Estimation. STAND ALONE PV SYSTEMS mponents, Batteries, Charge Conditioners - Balance of system lications - Typical applications for lighting, water pumping etc.	n cor	Sola ules	9 ar Cell and a 9 nents	s - C rray for 1
UNIT I Structure and v properties and Basics of Load UNIT II Schematics, Co and/or AC App UNIT III	PHOTOVOLTAIC BASICS vorking of Solar Cells - Types, Electrical properties and Behavic design - PV Cell Interconnection and Module Fabrication - PV Estimation. STAND ALONE PV SYSTEMS mponents, Batteries, Charge Conditioners - Balance of system lications - Typical applications for lighting, water pumping etc. GRID CONNECTED PV SYSTEMS	n cor	Sola ules	9 ar Cell and a 9 nents 9	s - C rray for 1
UNIT I Structure and v properties and Basics of Load UNIT II Schematics, Co and/or AC App UNIT III Schematics, C Components -	PHOTOVOLTAIC BASICS vorking of Solar Cells - Types, Electrical properties and Behavic design - PV Cell Interconnection and Module Fabrication - PV Estimation. STAND ALONE PV SYSTEMS mponents, Batteries, Charge Conditioners - Balance of system lications - Typical applications for lighting, water pumping etc. GRID CONNECTED PV SYSTEMS omponents, Charge Conditioners, Interface Components - V System in Buildings.	n cor	Sola ules npor	9 ar Cell and a 9 nents 9 of s	s - C rray for I

UNIT V		DESIGN OF PV SYSTEMS		9
Radiation and	load data - Desigi	n of System Components for differ	ent PV Appli	cations - Sizing and
Reliability - Sir	nple Case Studies.			
		Tota	al Periods	45
Suggestive As	sessment Method	ls		
Continuous As	ssessment Test	Formative Assessment Test	End Seme	ster Exams
(30 Mar	ks)	(10 Marks)	(60 Marks	5)
WRITTEN TES	T	1.ASSIGNMENT	WRITTEN	TEST
		2. ONLINE QUIZZES		
		3.PROBLEM-SOLVING		
		ACTIVITIES		
Outcomes				
Upon complet	ion of the course	, the students will be able to:		
1 Explain t	he basics of Photo	voltaic systems.		
2 Provide a	accurate schematio	c of stand-alone PV systems.		
3 Provide a	accurate schematio	c of grid-connected PV systems.		
4 Select ap	propriate hybrid s	system for different applications.		
5 Design ar	nd simulate the sta	and-alone and grid connected syste	em.	
Text Books				
1. CS Sola	anki: Solar Photo	ovoltaics – Fundamentals, Techr	nologies and	Applications, PH
Learnin	g Pvt. Ltd., 2013.			
2. Stuart l	R. Wenham, Mart	in A. Green, Muriel E. Watt, Ricl	nard Corkish	(Editors), Applie
Photovo	oltaics, Earthscan,	2011.		
Reference Bo	oks			
1. Michael	Boxwell, The Sola	r Electricity Handbook, Code Gree	n Publishing,	UK, 2012.
2. RikDeG	unther, Solar Pow	er Your Home for Dummies, Wiley	Publishing In	ic, 2010.
3. Photovo	oltaics: Design	and Installation Manual, P	Published b	y Solar Energ
Internat	tional 2004			

Web Resources

1. <u>https://nptel.ac.in/courses/117/108/117108141/</u>

CO Vs PO Mapping and CO Vs PSO Mapping

60	PO	P01	PSO	PSO								
LU	1	2	3	4	5	6	7	8	9	0	1	2
1	3	2									3	
2	3	2									3	
3	3	2									3	
4	3	2									3	
5	3	2									3	

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	10	10	05	05	10
UNDETSTAND	20	20	05	05	20
APPLY	30	30	15	15	30
ANALYZE	30	30	20	20	30
EVALUATE	10	10	05	05	10
CREATE	0	0	0	0	0
	100	100	50	50	100

1-Low , 2- Medium, 3- High

21PE2702	ELECTROMAGNETIC FIELD COMPUTATION AND MODELLING	L	Т	Р	С
		3	0	0	3
Preamble					

The Course is o	lesigned to impart knowledge of fundamentals of vector calculus	. concent of electr
and magnetic f	ields (both static and time varying) applicable to electrical	, concept of ciccu
engineering. T	he course exposes the students to the concept of resistance, canad	citance.
and Inductance		
Prerequisites	for the course	
Control	System Design	
• Electro	nagnetic Fields	
Objectives		
1. To refre	esh the fundamentals of Electromagnetic Field Theory	
2. To impa	art foundation in formulation	
3. To Eval	uate Electromagnetic Fields using analytical and numerical methods	ods.
4. To impa probler	art in-depth knowledge on Finite Element Method in solving Elect ns	tromagnetic field
5. To intro	oduce the concept of mathematical modeling and design of electri	ical apparatus
5. To intro UNIT I Review of bas	oduce the concept of mathematical modeling and design of electri INTRODUCTION ic field theory – Maxwell's equations – Constitutive relations	ical apparatus 9 hips and Continu
5. To intro UNIT I Review of bas equations – I force/torque c	oduce the concept of mathematical modeling and design of electri INTRODUCTION ic field theory – Maxwell's equations – Constitutive relations Laplace, Poisson and Helmholtz equation – principle of er alculation	ical apparatus 9 hips and Continu nergy conversion
5. To intro UNIT I Review of bas equations – 1 Force/torque c UNIT II	oduce the concept of mathematical modeling and design of electri INTRODUCTION ic field theory – Maxwell's equations – Constitutive relations Laplace, Poisson and Helmholtz equation – principle of er alculation BASIC SOLUTION METHODS FOR FIELD EQUATIONS	ical apparatus 9 hips and Continu nergy conversion 9
5. To intro UNIT I Review of bas equations – 1 force/torque c UNIT II	Deduce the concept of mathematical modeling and design of electri INTRODUCTION ic field theory – Maxwell's equations – Constitutive relations Laplace, Poisson and Helmholtz equation – principle of er alculation BASIC SOLUTION METHODS FOR FIELD EQUATIONS the conventional design procedure, need for the field analysis ba	ical apparatus 9 hips and Continu nergy conversior 9 nsed design, probl
5. To intro UNIT I Review of bas equations – 1 Force/torque c UNIT II Limitations of definition, boy	oduce the concept of mathematical modeling and design of electri INTRODUCTION ic field theory – Maxwell's equations – Constitutive relations Laplace, Poisson and Helmholtz equation – principle of eralculation BASIC SOLUTION METHODS FOR FIELD EQUATIONS the conventional design procedure, need for the field analysis baundary conditions, solution by analytical methods-direct interval	ical apparatus 9 hips and Continu nergy conversior 9 sed design, probl tegration method
5. To intro UNIT I Review of bas equations – 1 force/torque c UNIT II Limitations of definition, boo	Deduce the concept of mathematical modeling and design of electri INTRODUCTION ic field theory – Maxwell's equations – Constitutive relations Laplace, Poisson and Helmholtz equation – principle of er alculation BASIC SOLUTION METHODS FOR FIELD EQUATIONS the conventional design procedure, need for the field analysis ba undary conditions, solution by analytical methods-direct int able method – method of images, solution by numerical method	ical apparatus 9 hips and Continu nergy conversion 9 sed design, probl tegration methoo ds- Finite Differen
5. To intro UNIT I Review of bas equations – 1 force/torque c UNIT II Limitations of definition, boo variable separ Method.	Deduce the concept of mathematical modeling and design of electri INTRODUCTION ic field theory – Maxwell's equations – Constitutive relations Laplace, Poisson and Helmholtz equation – principle of er alculation BASIC SOLUTION METHODS FOR FIELD EQUATIONS the conventional design procedure, need for the field analysis ba undary conditions, solution by analytical methods-direct int able method – method of images, solution by numerical method	ical apparatus 9 hips and Continu nergy conversion 9 sed design, probl tegration method ds- Finite Differen
5. To intro UNIT I Review of bas equations – 1 force/torque c UNIT II Limitations of definition, boo variable separ Method. UNIT III	oduce the concept of mathematical modeling and design of electri INTRODUCTION ic field theory – Maxwell's equations – Constitutive relations Laplace, Poisson and Helmholtz equation – principle of eralculation BASIC SOLUTION METHODS FOR FIELD EQUATIONS the conventional design procedure, need for the field analysis ba undary conditions, solution by analytical methods-direct int able method – method of images, solution by numerical method FORMULATION OF FINITE ELEMENT METHOD (FEM)	ical apparatus 9 chips and Continu nergy conversior 9 sed design, probl tegration method ds- Finite Differen 9
5. To intro UNIT I Review of bas equations – 1 force/torque c UNIT II Limitations of definition, boo variable separ Method. UNIT III Variational For -1D and 2D pla	oduce the concept of mathematical modeling and design of electri INTRODUCTION ic field theory – Maxwell's equations – Constitutive relations Laplace, Poisson and Helmholtz equation – principle of er alculation BASIC SOLUTION METHODS FOR FIELD EQUATIONS the conventional design procedure, need for the field analysis ba undary conditions, solution by analytical methods-direct int able method – method of images, solution by numerical method FORMULATION OF FINITE ELEMENT METHOD (FEM) rmulation – Energy minimization – Discretization – Shape function anar and axial symmetry problems	ical apparatus 9 chips and Continu nergy conversion 9 sed design, probl tegration method ds- Finite Differen 9 ons –Stiffness mat
5. To intro UNIT I Review of bas equations – 1 force/torque c UNIT II Limitations of definition, bouvariable separ Method. UNIT III Variational Fou- 1D and 2D pla UNIT IV	Deduce the concept of mathematical modeling and design of electri INTRODUCTION ic field theory – Maxwell's equations – Constitutive relations: Laplace, Poisson and Helmholtz equation – principle of eralculation BASIC SOLUTION METHODS FOR FIELD EQUATIONS the conventional design procedure, need for the field analysis ba undary conditions, solution by analytical methods-direct int able method – method of images, solution by numerical method FORMULATION OF FINITE ELEMENT METHOD (FEM) rmulation – Energy minimization – Discretization – Shape function and axial symmetry problems COMPUTATION OF BASIC QUANTITIES USING FEM PACKAGES	ical apparatus 9 chips and Continu nergy conversion 9 sed design, probl tegration method ds- Finite Differen 9 ons –Stiffness mat 9
5. To intro UNIT I Review of bas equations – 1 force/torque c UNIT II Limitations of definition, boo variable separ Method. UNIT III Variational For –1D and 2D pla UNIT IV Basic quantitie Inductance – F	Deduce the concept of mathematical modeling and design of electri INTRODUCTION ic field theory – Maxwell's equations – Constitutive relations Laplace, Poisson and Helmholtz equation – principle of eralculation BASIC SOLUTION METHODS FOR FIELD EQUATIONS the conventional design procedure, need for the field analysis ba undary conditions, solution by analytical methods-direct int able method – method of images, solution by numerical method FORMULATION OF FINITE ELEMENT METHOD (FEM) Tmulation – Energy minimization – Discretization – Shape function anar and axial symmetry problems COMPUTATION OF BASIC QUANTITIES USING FEM PACKAGES es – Energy stored in Electric Field – Capacitance – Magnetic F orce – Torque – Skin effect – Resistance.	ical apparatus 9 chips and Continu nergy conversion 9 sed design, probl tegration method ds- Finite Differen 9 ons –Stiffness mat 9 ield – Linked Flu

		То	otal Periods	45
Sugg	estive Assessment Method	ls	·	
Cont	inuous Assessment Test	Formative Assessment Test	End Semester	Exams
	(30 Marks)	(10 Marks)	(60 Marks)	
WRI	FTEN TEST	WRITTEN TES	БТ	
		2. ONLINE QUIZZES		
		3.PROBLEM-SOLVING ACTIVITIES		
Outc	omes			
Upor	n completion of the course	, the students will be able to:		
1	Demonstrate the concepts of	of electromagnetic Field		
2	Ability to formulate the FEI	M method and use of the package		
3	Build the concepts in the de	esign of rotating machines		
4	Ability to acquire in-depth field problems	knowledge on Finite Element Meth	nod in solving Ele	ctromagnetic
5	To construct the concept of	mathematical modelling of electri	ical apparatus	
Гext	Books			
1.	Matthew. N.O. Sadiku, "E	lements of Electromagnetics", Fo	ourth Edition, Ox	ford Univers
	Press, First Indian Edition	2007		
2.	Nicola Biyanchi , "Electri	cal Machine analysis using Finite	e Elements", Tay	lor and Fran
	Group, CRC Publishers, 20	05.		
Refe	rence Books			
1.	K.J.Binns, P.J.Lawrenson, (C.W Trowbridge, "The analytical a	nd numerical solu	ution of Elect
	and magnetic fields", John	Wiley & Sons, 1993.		
2.	Nathan Ida, Joao P.A.Basto	s , "Electromagnetics and calculat	ion of fields",	
	SpringerVerlage, 1992.			
2	S I Salon "Finite Elemen	t Analysis of Electrical Machines	" Kluwer Acade	mic Puhlishe

1. https://nptel.ac.in/courses/108106023/

CO Vs PO Mapping and CO Vs PSO Mapping

60	PO	P01	PSO	PSO								
LU	1	2	3	4	5	6	7	8	9	0	1	2
1	3		3		2			2			3	
2	3		3		2			2			3	
3	3		3		2			2			3	
4	3		3		2			2			3	
5	3		3		2			2			3	

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	20	20	10	10	20
UNDERSTAND	40	40	20	20	40
APPLY	20	20	10	10	20
ANALYZE	20	20	10	10	20
	100	100	50	50	100

1-Low, 2-Medium, 3-High

21PE2703	CONTROL SYSTEM DESIGN FOR POWER	L	Τ	Р	С
	ELECIKUNICS	3	0	0	3
Preamble	•		•		
This course is	to impart in students a good understanding of fundamental	nrin	ciple	o in d	control

This course is to impart in students a good understanding of fundamental principles in control system. The course includes Mathematical Modelling of Linear Continuous and Analysis and Design of Closed Loop Control Systems. Power electronics involves the study of electronic circuits intended to control the flow of electrical energy. It deals with the processing and control of 'raw' electrical

gineering College Dept of EEE, R2019 ME- PED/2021-Curriculum	and Syllabi
electrical source such as an AC mains supply, a battery bank,	
for the course	
Systems Electronics	
ו the model DC-DC Converter	
y the conceptual design of Sliding Mode controller	
ו the linear controller design in converter	
the techniques relevant to the design of feedback controllers i	n Power Electronics
gn appropriate controllers for power converters	Γ
MODELLING OF DC-TO-DC POWER CONVERTERS	9
Buck Converter , Boost Converter ,Buck-Boost Converter,	Cuk Converter, Sep
a Converter, Quadratic Buck Converter ,Double Buck-Boost Co	onverter, Boost- Boo
eral Mathematical Model for Power Electronics Devices	
SLIDING MODE CONTROLLER DESIGN	9
L ture Systems. Single Switch Regulated Systems Sliding Surface	es, Accessibility of th
e Sliding Mode Control Implementation of Boost Converter, E	Buck-Boost Converte
· ,Sepic Converter, Zeta Converter, Quadratic Buck Converte	r ,Double Buck-Boo
ost-Boost Converter	
APPROXIMATE LINEARIZATION CONTROLLER DESIGN	9
ck Control, Pole Placement by Full State Feedback , Pole	Placement Based o
ign ,Reduced Order Observers , Generalized Proportional	Integral Controller
d Control , Sliding Mode Control Implementation of Buck Conve	erter , Boost Converte
onverter	
NONLINEAR CONTROLLER DESIGN	9
earization Isidori's Canonical Form ,Input-Output Feedback	د Linearization ,Sta
earization Isidori's Canonical Form ,Input-Output Feedback arization, Passivity Based Control , Full Order Observers , Reduc	c Linearization ,Stat ced Order Observers
	gintering Conget Diplete, R2019 ME- FED/2021-Curriculation electrical source such as an AC mains supply, a battery bank, for the course Systems Electronics n the model DC-DC Converter y the conceptual design of Sliding Mode controller n the linear controller design in converter y the techniques relevant to the design of feedback controllers i gn appropriate controllers for power converters MODELLING OF DC-TO-DC POWER CONVERTERS Buck Converter , Boost Converter ,Buck-Boost Converter, a Converter, Quadratic Buck Converter ,Double Buck-Boost Converter, a Converter, Quadratic Buck Converter ,Double Buck-Boost Converter, a Converter, Quadratic Buck Converter ,Double Buck-Boost Converter, ture Systems. Single Switch Regulated Systems Sliding Surface e Sliding Mode Control Implementation of Boost Converter, Fr r ,Sepic Converter APPROXIMATE LINEARIZATION CONTROLLER DESIGN ack Control, Pole Placement by Full State Feedback , Pole ign ,Reduced Order Observers , Generalized Proportional d Control , Sliding Mode Control Implementation of Buck Converter

		Tot	al Periods	45
Sugge	estive Assessment Metho	ds		
Conti	nuous Assessment Test	End Seme	ester Exams	
	(30 Marks)	(10 Marks)	(60 Mark	s)
WRIT	TEN TEST	1.ASSIGNMENT	WRITTEN	TEST
		2. ONLINE QUIZZES		
		3.PROBLEM-SOLVING		
		ACTIVITIES		
Outco	omes			
Upon	completion of the course	, the students will be able to:		
1	Improve the model DC-DC	Converter		
2	Enhance the design of Slidi	ng Mode controller		
	To understand on outprise	-	antral strat	
3	electronics devices.	v on modern inear and noninear (control strate	egies for power
4	Gain acknowledgeson over	view of the techniques relevant to	the design of	f feedback
	controllers in Power Electr	onics	C	
5	To learn the design of appr	opriate controllers for power conv	verters	
Text I	Books			
1.	Patil. PankaiRodev. "Con	trol Systems for Power Electroni	cs: A Practio	cal Guide". Spring
	India, 2015. Mahesh	, , , , , , , , , , , , , , , , , , ,		
2.	Blaabjerg José Rodrígue	z, "Advanced and Intelligent Cor	ntrol in Pov	ver Electronics ar
	Drives", Springer,			
Refer	ence Books			
1.	HeberttSira-Ramírez PhI), Ramón Silva-Ortigoza, "Contro	ol Design Te	chniques in Pow
	Electronics Devices", Spri	nger 2012		
2.	Enrique Acha, VassiliosA	gelidis, Olimpo Anaya, TJE Mille	r, "Power E	lectronic Control
	Electrical Systems", Newr	nes, 2002		
3	Marija D. Aranya Chakra	abortty, Marija , "Control and Op	timization N	lethods for Elect

Smart Grids", Springer, 2012

WEB RESOURCES

1.https://www.digimat.in/nptel/courses/video/108101002/L01.html

CO Vs PO Mapping and CO Vs PSO Mapping

<u> </u>	PO	P01	P01	P01	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	2	1	2
1	3		3		2			2						3
2	3		3		2			2						3
3	3		3		2			2						3
4	3		3		2			2						3
5	3		3		2			2						

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	25	25	15	15	25
UNDERSTAND	40	40	15	15	35
APPLY	20	20	10	10	20
ANALYZE	15	15	10	10	20
EVALUATE					
CREATE					

Franc	Francis Xavier Engineering College Dept of EEE, R2019 ME- PED/2021-Curriculum and Syllabi								
		100	100	50	50	100			
	1-Low , 2- Medium, 3- High								

21PI	E2704	INTELLIGENT CONTROL TECHNIQUES	L	Т	Р	С
			3	0	0	3
Droar	mblo					
This c	nourse is	to impart in students a good understanding of fundamental	nrin	cinle	es in a	rontro
engine Single Perfor	eering. T e Input - rmance S	The course includes: Mathematical modelling of Linear Contine Single Output Dynamical Systems, Transfer Functions and Specifications, Analysis and Design of Closed Loop Control System	nuou: Stat	s Tir e Sp	ne Inv ace N	varian Iodels
Prerec	quisites	for the course				
	1.Power 2.Moder	Quality Analysis and Mitigation Techniques n Control Theory				
Object	tives					
1.	To unco	ver the concepts and Design of ANN and fuzzy set theory.				
2.	To impa control	rt adequate knowledge on Analysis and implementation of ANI of Non-linear system and to get familiarized with the Matlab to	N for olbox	mod	eling	and
3.	To teach and con	n about the concept of on Analysis and implementation of Fuz trol of Non-linear system and to get familiarized with the Matla	zzy lo Ib too	gic f lbox	for mo	delin
4.	To unco	ver the ideas about genetic algorithm				
5.	To Impa ANFIS to	ort the knowledge of various optimization techniques and hybool box.	orid s	cher	nes w	ith th
UN	NIT I	OVERVIEW OF ARTIFICIAL NEURAL NETWORK (ANN) & FUZZY LOGIC			9	
Review Percep theory interse compo	v of fund tron – L – Fuzzy ection, c sition, fu	damentals - Biological neuron, Artificial neuron, Activation f imitations – Multi Layer Perceptron – Back propagation algor v sets – Operation on Fuzzy sets - Scalar cardinality, fuzzy o omplement (yager and sugeno), equilibrium points, agg zzy relation – Fuzzy membership functions.	functi ithm cardir gregat	on, S (BPA ality tion,	Single A); Fu 7, unio proj	Laye zzy se on and ectior
ÛN	IT II	NEURAL NETWORKS FOR MODELLING AND CONTROL			9	
Genera using A Familia	ation of t ANN- Din arization	raining data - optimal architecture – Model validation- Contro rect and Indirect neuro control schemes- Adaptive neuro con of Neural Network Control Tool Box.	l of n ntroll	on li er –	near Case	systen study
		ENGENT OCICEOR MORELLING AND CONTROL				

ancis .	Xavier Eng	gineering College L	0ept of EEE, R2019 ME- PED/2021-0	Curriculum	and Syllabi
Mode	eling of no	nlinear systems us	ing fuzzy models(Mamdani and Su	geno) –TS	SK model - Fuzzy Logi
contr	oller – Fu	ızzification – Knov	vledge base – Decision making lo	ogic – Def	uzzification- Adaptiv
fuzz y	y systems-	Case study-Familia	rization of Fuzzy Logic Tool Box.		
U	NIT IV		GENETIC ALGORITHM		9
Basic	concept	of Genetic algorith	m and detail algorithmic steps,	adjustmen	t of free parameter
Solut	ion of ty	pical control prob	lems using genetic algorithm. (oncept of	n some other searc
techn	niques like	Tabu search, Ant-o	colony search and Particle Swarm	Optimizat	ion.
	•		-	•	
			ADID CONTROL COLEMES		0
U			BRID CONTROL SCHEMES		9
Fuzzi	ification a	nd rule base using	ANN-Neuro fuzzy systems-ANFI	S –Optimiz	zation of membershi
funct	ion and r	ule base using Ge	netic Algorithm and Particle Swa	rm Optim	ization - Case study
Famil	liarization	of ANFIS Tool Box	Tota	l Poriode	45
			100	i i ci ious	45
Sugg	estive Ass	sessment Method	5		
Conti	inuous As	ssessment Test	Formative Assessment Test	End Sen	nester Exams
	(30 Mar	ks)	(10 Marks)	(60 Mar	·ks)
WRI	FTEN TES	Т	1.ASSIGNMENT	WRITTI	EN TEST
			2. ONLINE QUIZZES		
			3.PROBLEM-SOLVING		
			ACTIVITIES		
Outco	omes				
Upon	n complet	ion of the course,	the students will be able to:		
1	Derive th	e basic architectur	es of Neural Network and Fuzzy se	ets.	
2	Construc	t and implement A	NN architectures, algorithms and l	know their	r limitations.
3	Examine	and work with diff	erent operations on the fuzzy sets		
4	Create A	NN and fuzzy logic	based models and control scheme	s for non-l	linear systems.
5	Classify a	and explore hybrid	control schemes and Particle Swa	rm Optimi	zation.
Text	Books	1 2			
ТСАС	DUURS				
1.	Laurene	V. Fausett, "Fun	damentals of Neural Networks:	Architect	ures, Algorithms an
-	Applicat	tions", Pearson Edu	ication.		
2.	Timothy	7 J. Ross, "Fuzzy Log	gic with Engineering Applications"	Wiley Ind	lia, 2008.
Refei	rence Boo	oks			
1.	Zimmer	mann H.J. "Fuzzy	set theory and its Applications"	Springer	international edition
-	2011.				
2.	David E Pearson	.Goldberg, "Genet Education, 2009.	c Algorithms in Search, Optimiz	ation, and	d Machine Learning
					50

3. W.T.Miller, R.S.Sutton and P.J.Webrose, "Neural Networks for Control" MIT Press", 1996.

Web Resources

- 1. https://nptel.ac.in/courses/106/105/106105173/
- 2. <u>https://nptel.ac.in/content/storage2/nptel_data3/html/mhrd/ict/text/106105173/lec1.pd</u>

CO Vs PO Mapping and CO Vs PSO Mapping

CO	PO	P01	PSO	P01	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	2	1	2
1	3	2			2			1	2	3	2			
2	3	2			2			1	2	3	2			
3	3	2			2			1	2	3	2			
4	3	2			2			1	2	3	2			
5	3	2			2			1	2	3	2			

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	30	30	10	10	30
UNDETSTAND	35	35	20	20	35
APPLY	20	20	10	10	20

Franc	rancis Xavier Engineering Collegel Dent of EEE, R2019 ME- PED/2021-Curriculum and Svllabi											
rune	ancis navier Engineering Generge, Dept of DEE, REOT/ME-TED/2021 Currentant and Synabl											
	ANALYZE	15	15	10	10	15						
	Εναιμάτε	0	0	0	0	0						
	LVALUATL	U	0	U	0	U						
	CREATE	0	0	0	0	0						
		100	100	50	50	100						
		100	100	50	50	100						

1-Low , 2- Medium, 3- High

ŀ

21PS2702	FLEXIBLE AC TRANSMISSION SYSTEMS	L	Т	Р	C
		3	0	0	3
Preamble					
This course w	ill describe about basic concepts, different types, scope and a	applic	catio	ns of	FACTS
controllers in J	oower transmission system				
Prerequisites	for the course				
1. High Vo	ltage Engineering.				
2. High Vo	ltage Direct Current Engineering				
Objectives					
1. To know	w the importance of compensation in transmission lines and t	he co	ncep	ots of	FACTS
	the design modeling and employed on CUC				
2. To mus	trate the design, modeling and applications of SVC				
3. To lear	n the operation, modes, modeling and applications of TCSC.				
4. To stud	y the principle, characteristics, modeling and applications of ST	ATCO)M ai	nd SSS	SC.
5. To sum	marize about the importance in coordination of FACTS controll	ers.			
UNIT I	INTRODUCTION			9	
Review of bas	ics of power transmission networks-control of power flow in	AC t	rans	missi	on line
Analysis of un	compensated AC Transmission line- Passive reactive power co	mpe	nsati	on: Ef	ffect of
series and shu	nt compensation at the mid-point of the line on power tran	sfer-	Nee	d for	FACTS
controllers- ty	pes of FACTS controllers.				

ancis Xavier Ei	ngineering College I	Dept of EEE, R2019 ME- PED/2021-	Curriculum	and Syllabi
UNIT II	STAT	IC VAR COMPENSATOR (SVC)		9
Configuration	of SVC- voltag	e regulation by SVC- Model	ling of	SVC for load flo
analysis Mode	elling of SVC for sta	bility studies-Design of SVC to re	gulate the	mid-point voltage o
SMIB system-	Applications: transi	ent stability enhancement and po	wer oscilla	ation damping of SM
system with S	VC connected at the	mid-point of the line.		
UNIT III	THYRISTOR ANI	D GTO THYRISTOR CONTROLLE	D SERIES	9
	CAI	PACITORS (TCSC and GCSC)		-
Concentra of C				
Modelling o	ontrolled Series Col	load flow studios, modelling TCS	nu GUSU- A	Allalysis of TUSU-GUS
- Mouening o	of TCSC and CCSC 101	Toau now studies- modeling 103	c allu GCS	c for stability studied
Applications				
UNIT IV	VOLTAGE S	SOURCE CONVERTER BASED FA	CTS	9
		CONTROLLERS		
Static svnchi	onous compensate	or(STATCOM)- Static synchrono	ous series	compensator(SSSC
Operation of	STATCOM and SSS	SC-Power flow control with STA	TCOM an	d SSSC- Modelling
STATCOM an	d SSSC for power	flow and transient stability stu-	dies –ope	ration of Unified ar
Interline pow	ver flow controllers	(UPFC and IPFC)- Modelling of U	PFC and II	PFC for load flow ar
transient stab	ility studies- Applic	ations.		
UNIT V	CONTROL	LERS AND THEIR COORDINATIO	DN	9
		Tota	al Periods	45
Suggestive A	ssessment Method	S		
Continuous A	Assessment Test	Formative Assessment Test	End Ser	nester Exams
(30 Ma	rks)	(10 Marks)	(60 Mai	rks)
WRI	TTEN TEST	1.ASSIGNMENT	v	VRITTEN TEST
		2 ONLINE OUUZZES		
		2. ONLINE QUIZZES		
		3.PROBLEM-SOLVING		
		ACTIVITIES		
Outcomes			-	
Upon comple	etion of the course,	the students will be able to:		
1 Evolain	, the basic fundamen	tal of FACTS controllers		
2 Summar	rize about Static VAI	Compensators		
3 Underst SVC	and about Modeling	, Uperation and control strategies	of Static s	eries compensation-
4 Explain	the voltage source b	based FACTS controllers		

5 Analyse the modeling and design of Coordinating multiple FACTS controllers using control techniques

Text Books

- Bjarne R. Andersen Stig L. Nilsson Flexible AC Transmission Systems: FACTS (CIGRE Green Books) July 2020
- 2. Sheikh M. Nawaz "Flexible AC Transmission System " January 2016

Reference Books

- 1. K.R.Padiyar," FACTS Controllers in Power Transmission and Distribution", New Age International(P) Ltd., Publishers New Delhi, Reprint 2008.
- 2. V. K.Sood, "HVDC and FACTS controllers- Applications of Static Converters in Power System", 2004, Kluwer Academic Publishers.

Web Resources

1. https://nptel.ac.in/courses/108107114

2. https://onlinecourses-archive.nptel.ac.in/noc18_ee44/preview

60	PO	P01	PSO	PSO								
ιυ	1	2	3	4	5	6	7	8	9	0	1	2
1	2	2	1	2				2				3
2	2	2	1	2				2			2	
3	2	2	1	2				2			3	
4	2	2	1	2				2				2
5	2	2	1	2				2				3

CO Vs PO Mapping and CO Vs PSO Mapping

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	20	20	10	10	20
UNDETSTAND	30	30	10	10	30
APPLY	20	20	10	10	20

10	is numer ingineering	donege pept of	LLL, N2017 IV.			Synabl
	ANALYZE	15	15	10	10	15
	EVALUATE	15	15	10	10	15
	CREATE	0	0	0	0	0
		100	100	50	50	100

1-Low, 2-Medium, 3-High

21PE2705	Modern Rectifiers and Resonant Converters	L	Τ	Р	С
		3	0	0	3
Preamble					
It is an introd	uctory course which emphasize the fundamental concepts of	harn	noni	cs sta	ndards
and operation	of rectifiers and overview of Rectifiers along with series resor	iant c	onve	erter	
Prerequisites	for the course				
1. Power e	lectronics				
Objectives					
1. To gain	knowledge about the harmonics standards and operation of re-	ctifier	's in	CCM &	&DCM.
2. To study	y the operation of pulse width modulated rectifiers.				
3. To impa	rt knowledge on operation of resonant converters for SMPS ap	oplica	tion	s.	
4. To carry	out dynamic analysis of DC- DC Converters.				
5. To intro	duce the source current shaping methods for rectifiers.				
UNIT I	POWER SYSTEM HARMONICS & LINE COMMUTATED RECTIFIERS			9	
Average powe	er-RMS value of waveform–Effect of Power factor o	currei	nt a	and v	voltage
harmonics –	Effect of source and load impedance - AC line current	harr	noni	c sta	ndards
IEC1000-IEEE	519-CCM and DCM operation of single phase full wave rect	ifier-	Beh	aviou	r offull
wave rectifier f wave rectifier-	12 pulse converters - Harmonic trap filters.	tion o	f thr	ee pna	ase full
UNIT II	PULSE WIDTH MODULATED RECTIFIERS			9	
Properties of converter syst rectifiers -singl PWM rectifier applications of	Ideal single phase rectifiers-Realization of nearly ideal re ems incorporating ideal rectifiers - Losses and efficiency e-phase PWM rectifier -PWM concepts - device selection for r , comparison with SCR based converters with respect to rectifiers	ectifie in Co rectifi haru	er CM ers - noni	Single high IGBT ic cor	-phase quality based itent -
UNIT III	RESONANT CONVERTERS			9	
L		I		5	5

ancis Soft	<i>Xavier Eng</i> Switching	<i>gineering College L</i> - classification of r	Dept of EEE, R2019 ME- PED/2021 esonant converters - Quasi reson	- <i>Curriculum a</i>	ind Syllabi rs- basics of ZVS an					
ZCS-	half wav	e and full wave o	peration (qualitative treatment	t) - multi re	sonant converters					
oper	ation and	analysis of ZVS a	nd ZCS multi resonant converte	er - zero volt	age transition PW					
conv	erters -zer	o current transitio	n PWM converters.		0					
U	INIT IV	DYNAMIC AN	ALYSIS OF SWITCHING CONVE	RTERS	9					
Revi	ew of line	ar system analysis	s-State Space Averaging-Basic S	State Space A	verage Model Sta					
Spac	e Average	d model for an i	deal Buck Converter, ideal Boo	ost Converte	r, ideal Buck Boo					
Conv	verter and	an ideal Cuk Con	verter. Pulse Width modulation	- Voltage M	ode PWM Scheme					
Curr	ent Mode I	PWM Scheme - desi	ign of PI controller.							
UNIT VSOURCE CURRENT SHAPING OF RECTIFIERS9										
Need	l for curre	ent shaping - pow	er factor - functions of current	shaper - in	put current shapi					
meth	ods - pass	sive shaping metho	ds -input inductor filter - resona	ant input filte	er - active method					
boos	t rectifier	employing peak	current control - average curre	ent control -	Hysteresis control					
Nonl	inear carri	ier control								
			Tot	tal Periods	45					
Sugg	gestive As	sessment Method	S							
Cont	tinuous As	ssessment Test	Formative Assessment Test	End Seme	ester Exams					
	(30 Mar	ks)	(10 Marks)	(60 Mark	s)					
WRI	TTEN TES	T	1.ASSIGNMENT	WRITTEN	I TEST					
			2. ONLINE QUIZZES							
			3.PROBLEM-SOLVING ACTIVITIES							
Outo	comes		I							
Upo	n complet	ion of the course,	the students will be able to:							
1	Analyse t	he Harmonic analy	sis in various types of rectifiers.							
2	Compare	the different types	of PWM rectifiers.							
3	Identify t	he importance reso	onant converter							
4	Design th	e various DC-DC co	onverter techniques.							
5	Demonst	rate the source cur	rent shaping for rectifiers.							
Text	Books									
1.	Andrzej M	4. Trzynadlowski,	" Introduction To Modern Powe	r Electronics'	', John Wiley &Soi					
	2016.									
2.	Marian.K.	Kazimierczuk and	DariuszCzarkowski, "Resonant I	Power Conve	rters", John Wiley					

1. Abraham I.Pressman, Keith Billings and Taylor Morey, "Switching Power Supply Design" McGraw-Hill ,2009.

2. Simon Ang and Alejandro Oliva, "Power Switching Converters", Taylor & Francis Group, 2010.

Web Resources

1. https://nptel.ac.in/courses/108108036

CO Vs PO Mapping and CO Vs PSO Mapping

<u> </u>	PO	P01	P01	P01	PSO	PSO								
U	1	2	3	4	5	6	7	8	9	0	1	2	1	2
1	3		2		3			2	3				2	
2	3		2		2			2	3				2	
3	3		2		3			2	3				2	
4	3		2		2			2	3				2	
5	3		2		3			2	3				2	

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	20	20	10	10	20
UNDETSTAND	30	30	10	10	30

10	is navier Engineering	doneger Dept of	EEE, 1(201) 10		Jui i i cuium ana	bynabi
	APPLY	20	20	10	10	20
	ANALYZE	15	15	10	10	15
	EVALUATE	15	15	10	10	15
	CREATE	0	0	0	0	0
		100	100	50	50	100

1-Low, 2- Medium, 3- High

21PE2706	Electromagnetic Interference and Compatibility	L	Τ	Р	С
		3	0	0	3
Dressrahls					

Preamble

It is an introductory course which emphasize the fundamental concepts of electromagnetic interference and EMC design components.

Prerequisites for the course

- Electromagnetic Theory
- Transmission and Distribution
- Power System Analysis

Objectives

- 1. To provide fundamental knowledge on electromagnetic interference
- 2. To provide fundamental knowledge on electromagnetic compatibility.
- 3. To study the important techniques to control EMI
- 4. To study the important techniques to control EMC.

5. To expose the knowledge on testing techniques as per Indian and international standards in EMI measurement.

UNIT IINTRODUCTION9Definitions of EMI/EMC -Sources of EMI- Inter systems and Intra system- Conducted and radiated
interference- Characteristics - Designing for electromagnetic compatibility (EMC)- EMC regulation
typical noise path- EMI predictions and modelling, Cross talk - Methods of eliminating
interferences.

UNIT II		GROUNDING AND CABLING									9		
Cabling- typ	pes d	of	cables,	mechanism	of	EMI	emission	/	coupling	in	cables	-capacitive	
coupling ind	luctiv	e c	oupling-	shielding to	pre	event	magnetic	rad	iation- shi	eld	transfer	impedance,	
Grounding –	safet	y g	grounds	 signal grou 	inds	s- sing	gle point a	nd	multipoint	gro	und sys	tems hybrid	

	Maviel Dilg	jineering conege	Dept of EEE, R2019 ME- PED/2021	-curriculum	unu synubi
grour	nds- func	tional ground la	ayout –grounding of cable shi	eldsguar	d shields- isolation
neutr	ralizing t	ransformers, shi	eld grounding at high frequer	ncies, digit	al grounding- Eart
meas	surement l	Methods.			
U	NIT III	BALANCING, I	FILTERING AND SHIELDING		9
Powe	er supply o	l lecoupling- decou	pling filters-amplifier filtering –hi	gh freauena	v filtering- EMI filter
chara	acteristics	of LPF. HPF. BPF	. BEF and power line filter design	-Choice of	capacitors, inductor
trans	formers a	and resistors EM	C design components -shielding	– near an	d far fields shieldin
offoct	tivonose a	absorption and re	flection loss- magnetic materials	as a shiald	chield discontinuitie
slots	and holes	seams and joints	conductive gaskets-windows and	l coatings - g	prounding of shields
II		EMI	LIN FLEMENTS AND CIRCUITS	8- 8	9
Elect	romagnet	ic emissions, noise	e from relays and switches, non-li	nearities in	circuits, passive inte
modu	ulation, tr	ansients in powe	er supply lines, EMI from powe	er electroni	c equipment, EMI a
comb	oination of	radiation and cor	nduction.		
U	JNIT V	ELECTROSTATI	C DISCHARGE, STANDARDS AND) TESTING	9
			TECHNIQUES		
Static	c Generati	ion- human body	v model- static discharges- ESD	versus EM	C ESD protection
oquir	$amont_{-}$	standarde – ECC	roquiromonts – FMI mossure	omonte -	Opon area tost sit
mone	uromonto	and proceptions	Padiated and conducted inter	rforonco m	open area test si
meas		and precautions			easurements, contro
reau	iromonte a	na rocting motion			
1	n ements a	ind testing metho	us		
-1			us To t	tal Periods	45
Sugg	gestive As	sessment Method	as Tot ds	tal Periods	45
Sugg	gestive Ass	sessment Method	as To ds Formative Assessment Test	tal Periods End Sen	45 nester Exams
Sugg	estive Ass inuous As (30 Mar	sessment Method sessment Test ks)	Tot ds Formative Assessment Test (10 Marks)	tal Periods End Sen (60 Mar	45 nester Exams ks)
Sugg Conti	estive As: inuous As (30 Mar TTEN TES	sessment Method sessment Test ks)	Tot ds Formative Assessment Test (10 Marks) 1.ASSIGNMENT	tal Periods End Sen (60 Mar WRITTH	45 nester Exams ks) EN TEST
Sugg Conti	estive Ass inuous As (30 Mar TTEN TES	sessment Method ssessment Test ks) T	Tot ds Formative Assessment Test (10 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES	tal Periods End Sen (60 Mar WRITTH	45 nester Exams ks) EN TEST
Sugg Conti	estive As: inuous As (30 Mar TTEN TES	sessment Method sessment Test ks) T	Tot ds Formative Assessment Test (10 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES 3 PROBLEM-SOLVING	tal Periods End Sen (60 Mar WRITTE	45 nester Exams ks) EN TEST
Sugg Conti	estive Ass inuous As (30 Mar) TTEN TES	sessment Method ssessment Test ks) T	Tot ds Formative Assessment Test (10 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES	tal Periods End Sen (60 Mar WRITTH	45 nester Exams ks) EN TEST
Sugg Conti	estive Ass inuous As (30 Mar TTEN TES	sessment Method ssessment Test ks) T	Tot ds Formative Assessment Test (10 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES	tal Periods End Sen (60 Mar WRITTH	45 nester Exams ks) EN TEST
Sugg Conti WRIT	estive Ass inuous As (30 Mar TTEN TES	sessment Method sessment Test ks) T	Tot ds Formative Assessment Test (10 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES	tal Periods End Sen (60 Mar WRITTH	45 nester Exams ks) EN TEST
Sugg Conti WRIT	estive As: inuous As (30 Mar TTEN TES	sessment Method sessment Test ks) T	Tot ds Formative Assessment Test (10 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES e, the students will be able to:	tal Periods End Sen (60 Mar WRITTH	45 nester Exams ks) EN TEST
Sugg Conti WRI Outco Upon 1	estive As: inuous As (30 Mar TTEN TES omes n complet Recogniz	sessment Method sessment Test ks) T ion of the course e the sources of the source	Tot ds Formative Assessment Test (10 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES e, the students will be able to: Conducted and radiated EMI in F	tal Periods End Sen (60 Mar WRITTE	45 nester Exams ks) EN TEST ronic Converters an
Sugg Conti WRI Outco Upon 1	estive Ass inuous As (30 Mar TTEN TES comes n complet Recogniz consume	sessment Method sessment Test ks) T ion of the course e the sources of or appliances and s	Tot ds Formative Assessment Test (10 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES e, the students will be able to: Conducted and radiated EMI in Figure 5 to miting suggest remedial measures to miting	End Sen (60 Mar WRITTH Power Elect gate the pro	45 nester Exams ks) EN TEST ronic Converters an blems.
Sugg Conti WRI Outco Upon 1 2	comes Recogniz Consume Assess th	sessment Method sessment Test ks) T ion of the course e the sources of or appliances and s e insertion loss ar	Tot ds Formative Assessment Test (10 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES e, the students will be able to: Conducted and radiated EMI in F suggest remedial measures to mitig and design EMI filters to reduce the	tal Periods End Sen (60 Mar WRITTH WRITTH	45 nester Exams ks) EN TEST ronic Converters an blems.
Sugg Conti WRI Outco Upon 1 2 3	estive Ass inuous As (30 Mar TTEN TES comes n complet Recogniz consume Assess th Design El	sessment Method sessment Test ks) T ion of the course e the sources of or appliances and s e insertion loss ar MI filters, common	Tot ds Formative Assessment Test (10 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES e, the students will be able to: Conducted and radiated EMI in H suggest remedial measures to miti- nd design EMI filters to reduce the n-mode chokes and RC-snubber ci	tal Periods End Sen (60 Mar WRITTH WRITTH	45 nester Exams ks) EN TEST ronic Converters an blems.
Sugg Conti WRI Outco Upon 1 2 3	sestive Ass inuous As (30 Mar TTEN TES comes n complet Recogniz consume Assess th Design El interferen	sessment Method sessment Test ks) T ion of the course e the sources of of r appliances and s e insertion loss ar MI filters, common nce within tolerab	Tot ds Formative Assessment Test (10 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES e, the students will be able to: Conducted and radiated EMI in F suggest remedial measures to miti- nd design EMI filters to reduce the n-mode chokes and RC-snubber ci- ble limits.	tal Periods End Sen (60 Mar WRITTH WRITTH Power Elect gate the pro- loss. rcuits meas	45 nester Exams ks) EN TEST ronic Converters an blems. ures to keep the
Sugg Conti WRI Outco Upon 1 2 3 4	sestive Ass inuous As (30 Mar) TTEN TES comes n complet Recogniz consume Assess th Design El interferen Analyze t	sessment Method sessment Test ks) T ion of the course e the sources of of r appliances and s e insertion loss ar MI filters, common nce within tolerab he parameters of	Tot ds Formative Assessment Test (10 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES e, the students will be able to: Conducted and radiated EMI in F suggest remedial measures to miti- nd design EMI filters to reduce the n-mode chokes and RC-snubber ci- ble limits. grounding and cables.	tal Periods End Sen (60 Mar WRITTH WRITTH	45 nester Exams ks) EN TEST ronic Converters an blems. ures to keep the
Sugg Conti WRI Outco Upon 1 2 3 4 5	estive Ass inuous As (30 Mar TTEN TES TTEN TES comes n complet Recogniz consume Assess th Design El interferer Analyze t	sessment Method sessment Test ks) T ion of the course e the sources of of r appliances and s e insertion loss ar MI filters, common nce within tolerab he parameters of e different stando	Tot ds Tot ds Formative Assessment Test (10 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES c, the students will be able to: conducted and radiated EMI in H suggest remedial measures to mitig ind design EMI filters to reduce the n-mode chokes and RC-snubber ci ole limits. grounding and cables.	tal Periods End Sen (60 Mar WRITTH WRITTH Power Elect gate the pro- loss. rcuits meas	45 nester Exams ks) N TEST ronic Converters an blems. ures to keep the

- 1. Stuart Borlase "Smart Grid : Infrastructure, Technology and Solutions", CRC Press 2012.
- Janaka Ekanayake, Nick Jenkins, Kithsiri Liyanage, Jianzhong Wu, Akihiko Yokoyama, "Smart Grid: Technology and Applications", Wiley 2012.

Reference Books

- Vehbi C. Güngör, DilanSahin, TaskinKocak, Salih Ergüt, ConcettinaBuccella, Carlo Cecati, and Gerhard P. Hancke, "Smart Grid Technologies: Communication Technologies and Standards" IEEE Transactions On Industrial Informatics, Vol. 7, No. 4, November 2011.
- 2.Xi Fang, SatyajayantMisra, Guoliang Xue, and Dejun Yang "Smart Grid The New and Improved Power Grid: A Survey", IEEE Transaction on Smart Grids, vol. 14, 2012.

Web Resources

https://archive.nptel.ac.in/courses/108/106/108106138

CO Vs PO Mapping and CO Vs PSO Mapping

60	PO	P01	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	2
1	3									2	2	
2	3		2		2					2	2	
3	3		3							2	2	
4	3	3								2	2	
5	3				3					2	2	

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	20	20	10	10	20

 to marrier Engineering	deneger zepeej			same and	Gynabi
UNDETSTAND	30	30	10	10	30
APPLY	20	20	10	10	20
ANALYZE	15	15	10	10	15
EVALUATE	15	15	10	10	15
CREATE	0	0	0	0	0
	100	100	50	50	100

1-Low , 2- Medium, 3- High

21PE2707	ROBOTICS AND CONTROL	L	Т	Р	С
		3	0	0	3

Preamble

The purpose of this course is to introduce the student to the basics of robotics and control. This course will enable learners to understand an overview of robotics in practice and research with topics including sensors, actuators, Robot path planning, transformation and its control techniques.

Prerequisites for the course

- 1. Mathematics
- 2. Engineering Mechanics
- 3. Control systems

Objectives

- 1. To introduce robot terminologies and robotic sensors.
- 2. To educate direct and inverse kinematic relations.
- 3. To educate on formulation of manipulator Jacobian's and introduce path planning techniques.
- 4. To educate on robot dynamics.

5. To introduce robot control techniques.

UNIT I INTRODUCTION AND TERMINOLOGIES	UNIT I	INTRODUCTION AND TERMINOLOGIES
---------------------------------------	--------	--------------------------------

Definition-Classification-History- Robots components-Degrees of freedom-Robot jointscoordinates-Reference frames-workspace-Robot languages-actuators-sensors-Position, velocity and acceleration sensors-Torque sensors-tactile and touch sensors-proximity and range sensors-

9

UNIT II Mechanism-m kinematics so UNIT III acobian-diffe	atrix representat	KINEMATICS		9
UNIT II Mechanism-m kinematics so UNIT III acobian-diffe	atrix representat	KINEMATICS		9
Mechanism-m kinematics so UNIT III acobian-diffe	atrix representat			-
UNIT III	lution and program	tion-homogenous transformatio	on-DH re	epresentation-Inver
UNIT III acobian-diffe		ming-degeneracy and dexterity		
acobian-diffe	DIFFERENT	TIAL MOTION AND PATH PLANN	ING	9
Robot Path pl	rential motion of anning	frames-Interpretation-calculation	of Jacob	ian-Inverse Jacobia
UNIT IV		DYNAMIC MODELLING		9
Lagrangian n formulation –	nechanics- Two-DC Inverse dynamics	DF manipulator- Lagrange-Euler	formulatio	on – Newton- Eu
UNIT V	F	ROBOT CONTROL SYSTEM		9
Linear contro	l schemes- joint acti	uators- decentralized PID control-	computed	torque control –for
control- hybri	d position force con	trol- Impedance/ Torque control		
		Tota	l Periods	45
Suggestive A	ssessment Method	S		
Continuous A	ssessment Test	Formative Assessment Test	End Sen	iester Exams
(30 Ma	rks)	(10 Marks)	(60 Mar	ks)
1. WRITTEN	TEST	1.ASSIGNMENT	1. WRIT	TEN TEST
		2. ONLINE QUIZZES		
Outcomes				
Upon comple	tion of the course,	the students will be able to:		
1 Underst	and the component	s and basic terminology of Robotic	S.	
2 Model tl	ne motion of Robots	and analyze the workspace and tr	ajectory pa	anning of robots.
3 Develop	application based F	Robots.		
4 Create d	ynamic modelling.			
5 Formula	ate models for the co	ontrol of mobile robots in various i	ndustrial a	applications.
Reference Bo	ooks			
1. R.K. Mi	ttal and I J Nagrath,	" Robotics and Control", Tata Mac	Graw Hill, 1	2017.
	R Niku "Introducti	on to Robotics analysis and contro	l" Pearson	Education 2011

approach", Prentice Hall of India, 2003.

4. A.J. Koivo, "Fundamentals for Control of Robotic Manipulation", John Wiley Inc. New York, 2001.

Web Resources

1. https://nptel.ac.in/courses/112107289/

2. https://nptel.ac.in/courses/112101099/

3.<u>https://swayam.gov.in/nd1_noc20_me03/preview</u>

CO Vs PO Mapping and CO Vs PSO Mapping

<u> </u>	PO	P01	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	2
1	2	2	2	2		2	2	2			3	
2	2	3					2				3	
3	2	2	2			2	2	2			3	
4	2	2	2	2		2	2	2			3	
5	2	2	2	2	2	2	2	2			3	

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	20	20	10	10	20
UNDETSTAND	30	30	10	10	30
APPLY	20	20	10	10	20
ANALYZE	15	15	10	10	15
EVALUATE	0	0	0	0	0

<u></u>					V
CREATE	0	0	0	0	0
	100	100	50	50	100

1-Low , 2- Medium, 3- High

21PS2703	DISTRIBUTED GENERATION AND MICROGRID	L	T	Р	C
		3	0	0	3
Proamblo					

Preamble

This course emphasizes the platform for the use of renewable sources which are the key to a sustainable energy supply infrastructure since they are both inexhaustible and non-polluting. The concepts discussed herein are intended to provide clarification on basic integration, control and operation of micro grid for electrical engineering graduates.

Prerequisites for the course

- **1.** Power Electronics
- **2.** Power Generation Systems
- **3.** Solid state drives
- **4.** Power system operation and control

Objectives

- **1.** To illustrate the concept of distributed generation
- 2. To impart knowledge on Distributed Generation
- **3.** To analyse the impact of grid integration.
- **4.** To study concept of Micro grid and its configuration

5. To impart knowledge on Microgrid

UNIT I INTRODUCTION 9

Conventional power generation: advantages and disadvantages, Energy crises, Nonconventional energy (NCE) resources: review of Solar PV, Wind Energy systems, Fuel Cells, micro-turbines, biomass, and tidal sources.

UNIT II DISTRIBUTED GENERATIONS (DG)	9

Concept of distributed generations, topologies, selection of sources, regulatory standards framework, Standards for interconnecting Distributed resources to electric power systems: IEEE 1547. DG installation classes, security issues in DG implementations. Energy storage elements: Batteries, ultra-capacitors, flywheels. Captive power plants.

UNIT III	IMPACT OF GRID INTEGRATION	9
----------	----------------------------	---

THD, integ issue	, response gration wit es.	e to grid abnorn h NCE sources on	nal operating conditions, island existing power system: reliabilit	ding issue y, stability	s. Impact of gr and power quali			
U	NIT IV	В	ASICS OF A MICROGRID		9			
Conc micro Elect	ept and o ogrids, typ ronics inte	definition of micro bical structure and erfaces in DC and AC	ogrid, microgrid drivers and be configuration of a micro grid, A Cmicrogrids.	enefits, rev	riew of sources microgrids, Pow			
U	JNIT V)	9					
react comr issue micro	tive powe nunication es in mic ogrids.	er control, prote based technique crogrids, regulator	ction issues, anti-islanding scl es, microgrid communication i ry standards, Microgrid econor	hemes: pa nfrastructu nics, Intro	assive, active a are, Power qual oduction to sma			
			Total	Periods	45			
Sugg	estive Ass	essment Methods						
Со	ntinuous A	Assessment Test	Formative Assessment Test	End S	emester Exams			
	(30 Marks)		(30 Marks)		(10 Marks)	((60 Marks)	
1 WF	RITTEN TE	EST	1. WRITT	EN TEST				
			2. ONLINE QUIZZES					
			3.PROBLEM-SOLVING ACTIVITIES					
Outc	omes		I					
Upor	n completi	ion of the course, t	the students will be able to:					
1	Make use	of various schemes	of conventional and nonconvention	onal power	generation.			
2	Identify to	opologies and energ	gy sources of distributed generatio	n.				
3	Discover	about the requirem	ents for grid interconnection and i	ts impact w	vith NCE sources.			
4	Interefere	ence the fundament	al concept of Microgrid.					
5	Inspect co	ontrol and operation	n of Microgrid.					
Refe	rence Boo	lks						
1. S <u>y</u>	Amirnas ystems: Mo	erYezdani, and odeling, Control and	Reza Iravani, "Voltage Sou d Applications", IEEE John Wiley Pu	rce Conv ıblications,	erters in Pow 2010.			

Francis Xavier Engineering College Dept of EEE, R2019 ME- PED/2021-Curriculum and Syllabi								
3.	Chetan Singh Solanki, "Solar Photo Voltaics", PHI learning Pvt. Ltd., New Delhi,2009.							
4.	J.F. Manwell, J.G. McGowan "Wind Energy Explained, theory design and applications" Wiley publication 2010							
	applications, whey publication 2010.							
5.	Gevork B. Gharehpetian, S. Mohammad Mousavi Agah, Distributed Generation Systems:							
	Design, Operation and Grid Integration, Butterworth Heinemann, 2017							
W	eb Resources							
	1. <u>https://nptel.ac.in/courses/108/108/108034/</u>							
	2. <u>https://nptel.ac.in/courses/108107143/</u>							
	CO Vs PO Mapping and CO Vs PSO Mapping							

60	PO	P01	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	2
1	2	2				2		2				3
2	2	3	2				2	2				3
3	2	2						3				3
4	2							2				3
5	2	2	2					3				3

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	20	20	10	10	20
UNDETSTAND	50	50	10	10	50
APPLY	30	30	05	05	30
ANALYZE	0	0	0	0	0

\mathbf{P} · · · · · · · · · · · · · · · · · · ·	$I_{-} = I D_{-} = I_{-} I C D D D D D D D D D D D D D D D D D D$	
μ	10001 11007 07 666 0 /1110 ME 061	1 1 1 1 1 1 1 1 1 1
	IEUEI IJEIN (II 15151) - NZ(119 WIE-1151)	7 2.072.1 = 0.1111110.1111111111111111111111111
Thankers have being been higher being been		
0 0		

<u> </u>	01 []		1		<u> </u>
EVALUATE	0	0	0	0	0
CREATE	0	0	0	0	0
	100	100	25	25	100

1-Low, 2- Medium, 3- High

21PE2708	NANO ELECTRONIC DEVICES AND NANO SENSORS	L	Т	Р	C
		3	0	0	3
D 11					

Preamble

This course have the concept of Nano materials, Which are playing a critical role in the development of novel devices. Nano materials have unique characteristics which differ greatly from those of their bulk counterparts. These unique characteristics provide the basis for novel nanoelectronics, nanosensors and nanodevices which are able to overcome the limitations of current devices.

Prerequisites for the course

- 1. Electronic Devices and Circuits
- 2. Power Semiconductor Devices

Objectives

- **1.** The students earn the basic understanding of nano electronics and followed the advanced understanding of the nano-photonics.
- **2.** To understand the theory of nano devices.
- **3.** To understand and familiarize the manufacturing process of nano devices.
- **4.** To provide the recent advancement of nano transistors.
- **5.** To find various application in the field of sensors technology, optoelectronics, communication and nano technology etc.

UNIT I	9						
Tunnel junction and applications of tunneling, Tunneling Through a Potential Barrier, Metal—							
Insulator, Metal-Semiconductor, and Metal-Insulator-Metal Junctions, Coulomb Blockade, Tunnel							
Junctions, Tun	nel Junction Excited by a Current Source. Spintronics and I	Foundations of nano-					
photonics.							

UNIT II	INTRODUCTION TO NANO DEVICES	9
---------	------------------------------	---

Field Emission, Gate—Oxide Tunneling and Hot Electron Effects in nano MOSFETs, Theory of Scanning Tunneling Microscope, Double Barrier Tunneling and the Resonant Tunneling Diode.

UNIT III	MANUFACTURING OF NANO DEVICES	9
----------	-------------------------------	---

Francis Xavier Engineering College| Dept of EEE, R2019 ME- PED/2021-Curriculum and Syllabi Introduction to lithography- Contact, proximity printing and Projection Printing, Resolution Enhancement techniques, overlay-accuracies, Mask-Error enhancement factor (MEEF), Positive and negative photoresists, Electron Lithography, Projection Printing, Direct writing, Electron resists. Lithography based on Surface Instabilities: Wetting, De-wetting, Adhesion, Limitations, Resolution and Achievable / line widths etc. Lift off process, Bulk Micro machining. NANO TRANSISTORS 9 **UNIT IV** Introduction – Scaling of physical systems – Geometric scaling & Electrical system scaling. The Single-Electron Transistor: The Single- Electron Transistor Single-Electron Transistor Logic, Other SET and FET Structures, Carbon Nanotube Transistors (FETs and SETs), Semiconductor Nanowire FETs and SETs,Coulomb Blockade in a Nanocapacitor, Molecular SETs and Molecular Electronics. 9 UNIT V MEMORY DEVICES AND SENSORS Memory devices and sensors – Nano ferroelectrics – Ferroelectric random access memory –Fe-RAM circuit design –ferroelectric thin film properties and integration – calorimetric -sensors electrochemical cells – surface and bulk acoustic devices– resistive semiconductor gas sensors electronic noses – identification of hazardous solvents and gases – semiconductor sensor array. **Total Periods** 45 Suggestive Assessment Methods **Continuous Assessment Test Formative Assessment Test** End Semester Exams (30 Marks) (60 Marks) (10 Marks) **1 WRITTEN TEST 1.ASSIGNMENT 1. WRITTEN TEST 2. ONLINE QUIZZES 3.PROBLEM-SOLVING** ACTIVITIES Outcomes Upon completion of the course, the students will be able to: 1 Identify the nano electronics. Make use of the technical knowledge in the theory of nano devices. 2 3 Identify the concepts of manufacturing process in nano devices 4 Interact with the advancement of nano transistors. Analyse various application in the field of sensors technology, optoelectronics, 5 communication and nanotechnology etc. **Reference Books** 1.Marc Madou, Fundamentals of microfabrication & Nanofabrication, 2011 2.Evgeni Gusev, Eric Garfunkel, Advanced Materials and Technologies for Micro/Nano-Devices, Sensors and Actuators, 2010

3. Julian W.Gardnes, Vijay K. Varda, Micro sensors MEMS & Smart Devices, 20.

Web Resources

- 1. <u>https://www.youtube.com/watch?v=wdNFCWLuC10</u>
- 2. <u>https://www.coursera.org/learn/nanotechnology1</u>
- 3. https://nptel.ac.in/courses/117/108/117108047/

PO PSO PSO CO

CO Vs PO Mapping and CO Vs PSO Mapping

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	20	20	10	10	20
UNDETSTAND	50	50	10	10	50

ne									
	APPLY	30	30	05	05	30			
	ANALYZE	0	0	0	0	0			
	EVALUATE	0	0	0	0	0			
	CREATE	0	0	0	0	0			
		100	100	25	25	100			

1-Low , 2- Medium, 3- High

21PS2701	PRINCIPLES OF SMART GRID	L	T	Р	C
			0	0	3
Preamble					
This course imparts	the conceptual knowledge on new smart grid technolog	gies ir	n pov	ver sy	vstem.
future.	gnificant to construct and expand a Micro-grid and Nand	o-gria	tecr	10108	gies in
Prerequisites for th	ie course				
Transmission	& Distribution				
Power System	1 Analysis				
Power System	n Operation and Control				
Objectives					
1. To study abo	ut Smart Grid technologies, different smart meters and	d adv	ance	d me	tering
infrastructure	2.				
2. To understan	d about new smart grid technologies and power control	1	1		
3. To acquire th	e knowledge on sensors and transducers in smart grid to	ecnno	logie	es	
5. To categorize	the power quality issues in Smart Grid.	grau	011		
UNIT I	INTRODUCTION			9	
Evolution of Electric	Grid - Definitions, Architecture and Concept of Smart	Grid	- Nee	ed of	Smart
Grid - Functions of	Smart Grid - Opportunities & Barriers of Smart Grid	- Diff	eren	ce bet	tween
conventional & smar	t grid - Difference between smart grid and Micro-grid -	Prese	nt de	evelor	oment
& International poli	cies in Smart Grid - Smart grid economic and environm	iental	ben	efits	- Case
study of Smart Grid.	6				
UNIT II	SMART GRID TECHNOLOGIES			9	

Francis Xavier Engineering College| Dept of EEE, R2019 ME- PED/2021-Curriculum and Syllabi Technology Drivers, Smart energy resources, Smart substations, Substation Automation, Feeder Automation , Transmission systems: EMS, FACTS and HVDC, Wide area monitoring, Protection and control, Distribution systems: DMS, Volt/VAR control, Fault Detection, Isolation and service restoration, Outage management, High-Efficiency Distribution Transformers, Phase Shifting Transformers, Plug in Hybrid Electric Vehicles (PHEV). UNIT III SENSORS AND MEASUREMENT 9 Sensors for Smart Grid, Monitoring and Measurement Technologies, PMU, Smart meters, Smart Appliances, Multi Agent Systems (MAS) Technology, Micro grid and Smart grid comparison, Wide Area Measurement. **UNIT IV** 9 **ENERGY MANAGEMENT SYSTEM(EMS)** Energy Management System (EMS) - Smart substations - Substation Automation - Feeder Automation, SCADA – Remote Terminal Unit – Intelligent Electronic Devices – Protocols, Phasor Measurement Unit – Wide area monitoring protection and control, Smart integration of energy resources – Renewable, intermittent power sources – Energy Storage. FACTS AND ENERGY STORAGE IN THE SMART GRID UNIT V 9 Introduction – Renewable energy generation – Fault current limiting – Shunt compensation – Series compensation – FACTS devices – HVDC-Energy storage-applications and technologies. **Total Periods** 45 **Suggestive Assessment Methods Continuous Assessment Test Formative Assessment Test End Semester Exams** (30 Marks) (10 Marks) (60 Marks) **1. DESCRIPTIVE QUESTIONS** 1.ASSIGNMENT **1. DESCRIPTIVE 2. FORMATIVE MULTIPLE** 2. ONLINE QUIZZES **OUESTIONS CHOICE QUESTIONS 3.PROBLEM-SOLVING 2. FORMATIVE MULTIPLE ACTIVITIES CHOICE QUESTIONS Outcomes** Upon completion of the course, the students will be able to: Understand the concept of Smart Grid and its present developments. 1 Categorize the different Smart Grid technologies of EMS, DMS, FACTS, HVDC and PHEV 2 Interpret the smart meters and advanced metering infrastructure in smart grid 3 Understand the knowledge on power quality management in Smart Grids. 4 Determine the Fault current and power quality issues in Smart Grid operation. 5 **Text Books** 1. Stuart Borlase "Smart Grids: Advanced Technologies and Solutions", CRC Press 2017 second edition.

2. JanakaEkanayake, Nick Jenkins, KithsiriLiyanage, Jianzhong Wu, Akihiko Yokoyama, "Smart Grid: Technology and Applications", Wiley 2017.

Reference Books

- 1. Mini S Thomas & John D Mcdonald, "Power System SCADA and Smart Grids" CRC Press 2017.
- 2. SawanSen ,SamarjitSengupta, AbhijitChakrabarti , "Electricity pricing- regulated,

deregulated and smart grid systems", CRC press, 2014

Web Resources

- 1. https://nptel.ac.in/courses/108/107/108107113/
- 2. <u>https://onlinecourses.nptel.ac.in/noc21_ee68/preview</u>

CO Vs PO Mapping and CO Vs PSO Mapping

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	PSO1	PSO2
1	3	3		2		3		3				2
2	3	3		2		3	3	3				3
3	3	2	2	2		3		3				3
4	3	3	2			3		3				3
5	3	3				3		3				2

1-Low , 2- Medium, 3- High

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	10	10	2	3	10
UNDETSTAND	10	10	3	2	10
APPLY	30	30	10	10	30
ANALYZE	50	50	10	10	50
EVALUATE	0	0	0	0	0
CREATE	0	0	0	0	0
	100	100	25	25	100
Francis Xavier Engineering College| Dept of EEE, R2019 ME- PED/2021-Curriculum and Syllabi 21PE2709 EMBEDDED SYSTEM DESIGN L Т Ρ С 3 3 0 0 **Preamble** This advanced course embraces the microcontroller and computer programming to design &operate large, medium and small scale electronic devices. This embedded platform deals with system design and real time operating systems. **Prerequisites for the course** Microprocessor & Microcontroller concepts and applications • Assembly languageconcepts **Operating system concepts** Computer organization and architectureconcepts Basics of all electronicscomponents • **Objectives** 1. To impart knowledge on basic functions, structure, concepts and applications of embedded systems. 2. To develop familiarity with 8051 Microcontrollers and their applications in an embeddedenvironment. 3. To learn the method of designing and program an Embedded Systems for real timeapplications. 4. To understand the concept of operating system, types and choosing RTOS. 5. To determine the Issues in the TaskCommunication and Synchronization UNIT I INTRODUCTION TO EMBEDDED SYSTEMS 9 Definition of Embedded System, Embedded Systems VsGeneral Computing Systems, Historyof Systems, Classification, Major Application Areas, Purpose of Embedded Systems, Embedded Characteristics and Quality Attributes of EmbeddedSystems. **UNIT II** TYPICAL EMBEDDED SYSTEM 9 Core of the Embedded System: General Purpose and Domain Specific Processors, ASICs, PLDs, Commercial Off-The-Shelf Components (COTS), Memory: ROM, RAM, Memory according to the type of Interface, Memory Shadowing, Memory selection for Embedded Systems, Sensors and Actuators, Communication Interface: On-board and External Communication Interfaces. **UNIT III EMBEDDED FIRMWARE** 9 73

Reset Embe	t Circuit, edded Firr	Brown-out Protect	tion Circuit, Oscillator Unit, Rea	al Time Cl	ock, Watchdog Timer
UN	NIT IV	RTOS BA	SED EMBEDDED SYSTEM DESIGN		9
Opera Multi	ating Syst -tasking, T	em Basics, Types of (Fask Scheduling.	Operating Systems, Tasks, Process ar	nd Threads	s, Multi processing and
U	NIT V		TASK COMMUNICATION		9
Share Comr Choo	ed Memor nunication se an RTO	y, Message Passing, n/Synchronization I S.	Remote Procedure Call and Sock ssues, Task Synchronization Tech	æts, Task niques, De	Synchronization: Tas evice Drivers, How t
			Total	Periods	45
Sugg	sestive As	ssessment Method	S		
Cont	inuous A	ssessment Test	Formative Assessment Test	End Se	mester Exams
	(30 Ma	rks)	(10 Marks)	(60 Ma	rks)
2. FO CHOI CO2(DRMATIV ICE QUES 05-4.1	E MULTIPLE TIONS	2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES	QUEST 2. FOR CHOICI	IONS MATIVE MULTIPLE E QUESTIONS
Outc	omes				
Upor	n comple	tion of the course,	, the students will be able to:		
1 2	Unders applica Analyze Externa Actuato	tand the conceptua tions the concept of Mer l Communication Int rs	l knowledge on embedded system mory Shadowing, Memory selection rerfaces, On-board Communication Ir	s function for Embenterfaces, t	s, structure and dded Systems, Sensors and
3	Develop	o the embedded ha	rdware and software cycles and to	ols.	
4	Unders actions	tand the concept	of real-time operating systems,	types, is	sues and remedial
5	To iden	tify the issues in th	e Task Communication, Task Sync	hronizatio	on, Memory sharing

- 1. K. V Shibu, "Introduction To Embedded Systems", McGraw Hill India, 2016.
- Raj Kamal, "Embedded Systems Architecture Programming and Design", The McGraw Hill Companies, 2nd Edition, 2017.

Reference Books

- 1. Frank Vahid, Tony Givargis, "Embedded System Design", Wiley, 2001
- 2. Lyla B Das, "Embedded Systems", Pearson Education, 2013

Web Resources

http://nptel.ac.in/courses/10810205/

CO Vs PO Mapping and CO Vs PSO Mapping

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	PS01	PSO2
1	3	3				2	2	3				3
2	3	3	3			3	3	3		2		2
3	3	3				3	2	3		3		3
4	3	3				3		3				2
5	3	3				3		3		3		3

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	10	10	2	3	10
UNDETSTAND	10	10	3	2	10
APPLY	30	30	10	10	30
ANALYZE	50	50	10	10	50
EVALUATE	0	0	0	0	0
CREATE	0	0	0	0	0
	100	100	25	25	100

21PS3701	HIGH VOLTAGE DIRECT CURRENT TRANSMISSION	L	Τ	Р	C
		3	0	0	3
Prerequisites for t	he course				
Power Elect	onics and Drives				
Power Syste Dever syste	ms Analysis				
• Power syste	n operation and control				
Objectives					
1. To impart kno	wledge on DC Power Transmission Technology				
2. To apply the k transmission	nowledge of converter bridge operation, modelling and c system.	ontro	ol in I	HVDC	
3. To understand	l the knowledge on Multi-Terminal system of Direct Curr	ent			
4. To perform st	eady state analysis of AC/DC system.				
5. To design the	different HVDC links using simulators.				
UNIT I	DC POWER TRANSMISSION TECHNOLOGY			9	
Introduction - Cor Description of DC t	nparison of AC and DC transmission – Application of an answission system - Planning for HVDC transmission –	f DC Mode	tran ern fr	smiss ends	ion in D
Introduction - Cor Description of DC t transmission – DC b	nparison of AC and DC transmission – Application of ransmission system - Planning for HVDC transmission – preakers – Cables, VSC based HVDC.	f DC Mode	tran ern ti	smiss ends	ion in D
Introduction - Cor Description of DC t transmission – DC b UNIT II	nparison of AC and DC transmission – Application of ransmission system - Planning for HVDC transmission – oreakers – Cables, VSC based HVDC. THYRISTOR BASED HVDC CONVERTERS AND HVDC SYSTEM CONTROL	f DC Mode	tran ern tr	smiss ends	ion in D
Introduction - Cor Description of DC t transmission – DC t UNIT II Pulse number, choio bridge characteris converters. General control hierarchy - harmonics and filte	nparison of AC and DC transmission – Application of ransmission system - Planning for HVDC transmission – oreakers – Cables, VSC based HVDC. THYRISTOR BASED HVDC CONVERTERS AND HVDC SYSTEM CONTROL ce of converter configuration – Simplified analysis of Grae tics – characteristics of a twelve pulse converter- principles of DC link control – Converter control cha Firing angle control – Current and extinction angle con ring - power control – Higher level controllers-Valve tests	f DC Mode etz cir detail racter ntrol	tran ern tr cuit led a ristic – Ge	smiss ends ends 9 - Conv analys s – Sy nerat	verte sis o yster ion o
Introduction - Cor Description of DC t transmission – DC k UNIT II Pulse number, choi bridge characteris converters. General control hierarchy - harmonics and filte UNIT III	Inparison of AC and DC transmission - Application of ransmission system - Planning for HVDC transmission - oreakers - Cables, VSC based HVDC. Image: The transmission - Cables, VSC based HVDC. Image: The transmissin - Cables, VSC based HVDC.	f DC Mode etz cir detail racter ntrol s.	tran ern tr cuit led a ristic – Ge	smiss rends 9 - Conv analys s – Sy nerat 9	verte sis o yster ion o
Introduction - Cor Description of DC t transmission – DC t UNIT II Pulse number, choid bridge characterist converters. General control hierarchy - harmonics and filte UNIT III Introduction – Pote	Imparison of AC and DC transmission – Application of ransmission system - Planning for HVDC transmission – oreakers – Cables, VSC based HVDC. Imparison of AC and DC transmission – Planning for HVDC transmission – oreakers – Cables, VSC based HVDC. Imparison of AC and DC transmission – Planning for HVDC transmission – oreakers – Cables, VSC based HVDC. Imparison of AC and DC transmission – Planning for HVDC transmission – oreakers – Cables, VSC based HVDC. Imparison of AC and DC transmission – Planning for HVDC transmission – oreakers – Cables, VSC based HVDC. Imparison of AC and DC transmission – Planning for HVDC transmission – oreakers – Cables, VSC based HVDC. Imparison of AC and DC transmission – Planning for HVDC transmission – oreakers – Cables, VSC based HVDC. Imparison of AC and DC transmission – Planning for HVDC transmission – oreakers – Cables, VSC based HVDC. Imparison of DC transmission – Simplified analysis of Graetics – characteristics of a twelve pulse converter-principles of DC link control – Converter control characteristics and extinction angle control – Current and extinction angle control ring - power control – Higher level controllers-Valve tests Imparison of MTDC systems - Types of MTDC systems - Types of MTDC systems - Types of MTDC systems	f DC Mode Mode etz cir detail racter ntrol s.	tran ern tr cuit led a ristic – Ge	smiss rends 9 - Conv analys s – Sy nerat 9 Contro	verte sis o yster ion o
Introduction - Cor Description of DC t transmission – DC t UNIT II Pulse number, choir bridge characteris converters. General control hierarchy - harmonics and filte UNIT III Introduction – Pote protection of MTDC	Deficition of AC and DC transmission - Application of ransmission system - Planning for HVDC transmission - oreakers - Cables, VSC based HVDC. THYRISTOR BASED HVDC CONVERTERS AND HVDC SYSTEM CONTROL ce of converter configuration - Simplified analysis of Graetics - characteristics of a twelve pulse converter-principles of DC link control - Converter control characteristic analysis control - Converter control characteristic and extinction angle control - Higher level controllers-Valve tests MULTITERMINAL DC SYSTEMS ential applications of MTDC systems - Types of MTDC systems - Study of MTDC systems.	f DC Mode Mode etz cir detail racter ntrol s. vstem	tran ern tr cuit led a ristic – Ge	smiss rends 9 - Conv analys s – Sy nerat 9 Contro	verte sis o yster ion o
Introduction - Cor Description of DC t transmission – DC t UNIT II Pulse number, choid bridge characteris converters. General control hierarchy - harmonics and filte UNIT III Introduction – Pote protection of MTDC UNIT IV	Inparison of AC and DC transmission – Application of ransmission system - Planning for HVDC transmission – oreakers – Cables, VSC based HVDC. THYRISTOR BASED HVDC CONVERTERS AND HVDC SYSTEM CONTROL ce of converter configuration – Simplified analysis of Graetics – characteristics of a twelve pulse converter-principles of DC link control – Converter control characteristic angle control – Current and extinction angle control – Higher level controllers-Valve tests MULTITERMINAL DC SYSTEMS ential applications of MTDC systems - Types of MTDC systems - Study of MTDC systems. POWER FLOW ANALYSIS IN AC/DC SYSTEMS	f DC Mode Mode etz cir detail racter ntrol s.	tran ern tr rcuit led a ristic - Ge s - (smiss rends 9 - Conv analys s - Sy nerat 9 Contro 9	verte sis o yster ion o
Introduction - Cor Description of DC t transmission – DC t UNIT II Pulse number, choid bridge characteris converters. General control hierarchy - harmonics and filte UNIT III Introduction – Pote protection of MTDC UNIT IV Per unit system for	Deficient of the formation	f DC Mode Mode etz cir detail racter ntrol s. vstem	tran ern tr cuit led a ristic – Ge s – (smiss rends 9 - Conv analys s – Sy nerat 9 Contro 9 Solut	verte sis o yster ion o ol an
Introduction - Cor Description of DC t transmission – DC k UNIT II Pulse number, choid bridge characterist converters. General control hierarchy - harmonics and filte UNIT III Introduction – Pote protection of MTDC UNIT IV Per unit system for AC-DC power flow -	aparison of AC and DC transmission - Application or ransmission system - Planning for HVDC transmission - breakers - Cables, VSC based HVDC. THYRISTOR BASED HVDC CONVERTERS AND HVDC SYSTEM CONTROL ce of converter configuration - Simplified analysis of Graetics - characteristics of a twelve pulse converter-principles of DC link control - Converter control cha Firing angle control - Current and extinction angle control - Higher level controllers-Valve tests MULTITERMINAL DC SYSTEMS ential applications of MTDC systems - Types of MTDC systems - Study of MTDC systems. POWER FLOW ANALYSIS IN AC/DC SYSTEMS DC Quantities - Modeling of DC links - Solution of DC loc - Unified, Sequential and Substitution of power injection resources	f DC Mode Mode etz cir detail racter ntrol s. vstem pad flo netho	tran ern tr cuit led a ristic – Ge s – (s – (smiss rends 9 - Conv analys s – Sy nerat 9 Contro 9 Solut	verte sis o yster ion o ol an

Francis Xavier Engineering College| Dept of EEE, R2019 ME- PED/2021-Curriculum and Syllabi Introduction – DC LINK Modelling, Converter Modeling and State Space Analysis, Philosophy and tools - HVDC system simulation, Online and OFF line simulators -- Dynamic interactions between DC and AC systems. **Total Periods** 45 **Suggestive Assessment Methods Continuous Assessment Test Formative Assessment Test End Semester Exams** (30 Marks) (10 Marks) (60 Marks) **1. DESCRIPTION QUESTIONS** 1.ASSIGNMENT **1. DESCRIPTION** 2. FORMATIVE MULTIPLE 2. ONLINE OUIZZES **OUESTIONS CHOICE QUESTIONS 3.PROBLEM-SOLVING** 2. FORMATIVE MULTIPLE **ACTIVITIES CHOICE QUESTIONS Outcomes** Upon completion of the course, the students will be able to: Understand knowledge on operation, modeling and control of HVDC link 1 2 Understand knowledge on thyristor based HVDC converters 3 Understand knowledge on multi terminal DC systems Understand knowledge on power flow analysis in AC/DC systems 4 Expose various HVDC simulators. 5 **Text Books** 1. P. Kundur, "Power System Stability and Control", McGraw-Hill, 1994 2. K.R.Padiyar, , "HVDC Power Transmission Systems", New Age International (P) Ltd., New Delhi, 2010 **Reference Books** 1. J.Arrillaga, , "High Voltage Direct Current Transmission", Institution of Engineering and Technology, London, 2008 2. Ahmed, Khaled, Jovcic, Dragan, "High voltage direct current transmission : converters, systems and DfC grids", Wiley, 2015. Web Resources

• https://nptel.ac.in/courses/108104013

CO Vs PO Mapping and CO Vs PSO Mapping

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	PS01	PSO2
1	3	3				2	2	3				3
2	3	3	3			3	3	3		2		2
3	3	3				3	2	3		3		3
4	3	3				3		3				2
5	3	3				3		3		3		3

1-Low, 2- Medium, 3- High

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	10	10	2	3	10
UNDETSTAND	10	10	3	2	10
APPLY	30	30	10	10	30
ANALYZE	50	50	10	10	50
EVALUATE	0	0	0	0	0
CREATE	0	0	0	0	0
	100	100	25	25	100

21PE3701	NON LINEAR CONTROL	L	Τ	Р	С
		3	0	0	3

Preamble

Most systems are nonlinear, and therefore, it is of general interest to investi-gate possible behaviours of nonlinear systems, investigate their stability, and to design control schemes. This course will be a core requirement for all postgraduate students in Control. This will probably be a highly useful acquirement for postgraduate students in Power Systems, in Robotics, and in Differential equations.

Prerequisites for the course

1. Control System

Francis Xavier Engineering College| Dept of EEE, R2019 ME- PED/2021-Curriculum and Syllabi Objectives 1. To analyse the Linear and Non linear systems in phase plane. To compute the Describing functions of the system. 2. 3. To analyse the system based on Lyapunov's Theory To linearization of SISO and MIMO by feedback linearization. 4. 5. To apply sliding mode control in different control application. UNIT I PHASE PLANE ANALYSIS 9 Concepts of phase plane analysis- Phase portraits- singular points- Symmetry in phase plane portraits-Constructing Phase Portraits- Phase plane Analysis of Linear and Nonlinear Systems-Existence of Limit Cycles. simulation of phase portraits in MATLAB. **UNIT II DESCRIBING FUNCTION** 9 Describing Function Fundamentals-Definitions-Assumptions-Computing Describing Functions-Common Nonlinearities and its Describing Functions-Nyquist Criterion and its Extension- Existence of Limit Cycles-Stability of limit Cycles. simulation of limit cycles in MATLAB. **UNIT III** LYAPUNOV THEORY 9 Nonlinear Systems and Equilibrium Points-Concepts of Stability-Linearization and Local Stability-Lyapunov's Direct Method-Positive definite Functions and Lyapunov Functions-Equilibrium Point Theorems-Invariant Set Theorems-LTI System Analysis based on Lyapunov's Direct Method-Krasovski's Method-Variable Gradient Method-Physically – Control Design based on Lyapunov's Direct Method. **UNIT IV** FEEDBACK LINEARIZATION 9 Feedback Linearization and the Canonical Form-Mathematical Tools-Input-State Linearization of SISO Systems- input-Output Linearization of SISO Systems-Generating a Linear Input-Output Relation-Normal Forms-The Zero-Dynamics-Stabilization and Tracking-Inverse Dynamics and Non-Minimum-Phase Systems-Feedback Linearization of MIMO Systems Zero-Dynamics and Control Design. Simulation of tracking problems in MATLAB **UNIT V SLIDING MODE CONTROL** 9 SlidingSurfaces-Continuous approximations of Switching Control laws The Modelling/Performance Trade-Offs- MIMO Systems. simulation of sliding mode controller in MATLAB

										Total	Periods	5	45	
Sugg	gestive As	ssessn	nent	Metho	ods									
Cont	tinuous A	ssess	ment	Test	Fo	rmativ	ve Ass	essm	ent Te	est	End Sei	nester	Exams	
	(30 Ma	r ks)				(1	l O Ma	rks)			(60 Ma)	rks)		
WRI	TTEN TE	ST			1.4	ASSIGN	MEN'	Г			WRITT	EN TES	T	
					2.	ONLIN	IE QUI	ZZES						
							-							
Dute	comes													
Ino	n comple	tion o	of the	cours	e. the	stude	nts w	ill he :	able t	<u>n:</u>				
1	Constru	$\frac{1}{1}$	alvse :	and Si	nulate	the P	hase n	ortrai	$\frac{1}{1}$ ts in M					
2	Apply th		rihina	funct	ion_ha	sod ar	nuse p	b to p	on_lin	har evet	ome			
2							.,		<u>. (t</u>		ems.			
3	Apply th	ie Lya	puno	v's the	oryon	stabil	ity and	alysis	of syst	ems.				
4	Impleme	ent the	e feed	back li	neariz	zation	of SIS	0 and	MIMO	system	S.			
5	Simulat	e the s	liding	g mode	e cont	roller i	n MA'	ΓLAB.						
ſext	t Books													
1	. Nonlinea	ır Syst	ems, l	H. Kha	lil, 3ro	d editio	on, 20	14, Pea	arson					
Refe	erence Bo	oks												
1	. Torkel	Gla	d a	ind	Lenna	art I	.jung,	"Co	ntrol	Theo	ry –	Multi	ivariabl	e a
2	Nonlin KPM	earMe ohand	thods	",Tayl Idern	or& Fi Contr	rancis, ol Eng	2002. ineerii	no Sar	างแทค	India	2006			
-				Juern	Gontr	or Eng	meern	iig, bui	guine	, maia,	2000			
Veb	Resourc	es												
1	. https:/	/nptel	l.ac.in	/cour:	ses/1()8106	024							
2	2. https:/	/nptel	l.ac.in	/cour:	ses/1(081022	113							
<u>CO</u>	Vs PO Ma	pping	and	CO Vs	PSO M	Mappi	ng							
_		L L9	,		1	rr	-9							
	DO	DU	DU	DΟ	DΟ	DΟ	ΡΛ	ΡΛ	DΟ	DO1	DU1	DU1	DCO	DCO

<u> </u>	PO	РО	РО	PO	РО	РО	РО	РО	PO	P01	P01	P01	PSO	PSO
ιυ	1	2	3	4	5	6	7	8	9	0	1	2	1	2
1	1	2	2											3
2	1	2	3											3
3	1	2	3											3
4	1	2	3											3

⁵ 1	2 2								3
BLOOMS	LEVEL A	SSESSMENT PA	ATTERN		1				
BLOOMS CATEGORY	,	CAT 1	CAT 2	FAT 1	FAT 2		END EXAI	SEM M	
REMEMBE	R	10	10	10	10		20		
UNDETSTA	ND	20	20	10	10		20		
APPLY		40	30	10	10			30	
ANALYZE		30	40	10	10			30	
EVALUATE		0	0	0	0			0	
CREATE		0	0	0	0			0	
		100	100	50	50			100)
1-Low , 2	- Medium,	, 3- High							
1-Low , 2	- Medium,	, 3- High WIND EN	ERGY TECHN	OLOGIES		L	Т	Р	
1-Low , 2 21PE3702	- Medium,	, 3- High WIND EN	ERGY TECHN	NOLOGIES		L	Т	Р	(
1-Low , 2	- Medium,	, 3- High WIND EN	ERGY TECHN	NOLOGIES		L 3	T 0	P 0	
1-Low , 2 21PE3702 Preamble	- Medium,	, 3- High WIND EN	ERGY TECHN	NOLOGIES		L 3	T 0	P 0	
1-Low , 2 21PE3702 Preamble Wind energy i a broad overv Prerequisites	- Medium, is the fast- iew of wir	, 3- High WIND EN -growing renev nd energy techr Durse	ERGY TECHN vable source a nology	NOLOGIES	generation	L 3 . This	T 0	P 0 rse pi	rese
1-Low , 2 21PE3702 Preamble Wind energy i a broad overv Prerequisites 1. Power F	- Medium, is the fast- iew of wir for the co	, 3- High WIND EN -growing renev nd energy techr ourse s for Renewable	ERGY TECHN vable source a nology e Energy Syste	NOLOGIES	generation	L 3 . This	T 0	P 0 rse pr	rese
1-Low , 2 21PE3702 Preamble Wind energy i a broad overv Prerequisites 1. Power E Dbjectives	- Medium, is the fast- iew of wir for the co	, 3- High WIND EN -growing renew nd energy techr ourse s for Renewable	ERGY TECHN	NOLOGIES	generation	L 3 . This	T 0	P 0 rse pr	rese
1-Low , 2 21PE3702 Preamble Wind energy i a broad overv Prerequisites 1. Power E Dbjectives 1. To learn	- Medium,	, 3- High WIND EN -growing renew nd energy techr ourse s for Renewable	ERGY TECHN vable source to tology e Energy Syste	NOLOGIES	generation	L 3 . This	T 0	P 0 rse pr	rese
1-Low , 2 21PE3702 Preamble Wind energy i a broad overv Prerequisites 1. Power E Dbjectives 1. To learn 2. To Intro	- Medium,	, 3- High WIND EN -growing renew nd energy techr ourse s for Renewable wer extraction	ERGY TECHN vable source to tology e Energy Syste from wind er	NOLOGIES	generation	L 3 . This	T 0 cour	P 0 rse pr	rese
1-Low , 2 21PE3702 Preamble Wind energy i a broad overv Prerequisites 1. Power E Dbjectives 1. To learn 2. To Intro	- Medium, is the fast- iew of wir for the co Electronics	, 3- High WIND EN -growing renew nd energy techr ourse s for Renewable wer extraction concepts of mat	ERGY TECHN vable source in nology e Energy Syste from wind er thematical me	NOLOGIES	generation	L 3 . This e Win	T 0	P 0 rse pr	rese
1-Low , 2 21PE3702 Preamble Wind energy i a broad overv Prerequisites 1. Power E Dbjectives 1. To learn 2. To Intro 3. To Acqu	- Medium, is the fast- iew of wir for the co Electronics	, 3- High WIND EN -growing renew nd energy techr ourse s for Renewable wer extraction concepts of mat	ERGY TECHN vable source in nology e Energy Syste from wind er thematical me of Fixed spee	NOLOGIES	generation ontrol of th	L 3 . This e Win	T 0	P 0 rse pr	rese
1-Low , 2 21PE3702 Preamble Wind energy i a broad overv Prerequisites 1. Power E Dbjectives 1. To learn 2. To Intro 3. To Acqu 4. To impa	- Medium, is the fast- iew of wir for the co for the co	, 3- High WIND EN -growing renew nd energy techr ourse s for Renewable wer extraction concepts of mat edge on design	ERGY TECHN vable source in nology e Energy Syste from wind er thematical mo of Fixed spee e speed syste	NOLOGIES	generation ontrol of th elling.	L 3 . This e Win	T 0	P 0 rse pr	rese
1-Low, 2 21PE3702 Preamble Wind energy i a broad overv Prerequisites 1. Power E Dbjectives 1. To learn 2. To Intro 3. To Acqu 4. To impa 5. To learn intercov	- Medium, is the fast- iew of wir for the co for the co Electronics a about po oduce the o uire knowle irr knowle	, 3- High WIND EN -growing renew nd energy techr ourse s for Renewable wer extraction concepts of mat edge on design edge on Variable Grid integrati	ERGY TECHN vable source in nology e Energy System from wind er thematical model of Fixed speed e speed system ion issues a	NOLOGIES	generation ontrol of th elling. actices of	L 3 . This e Win	T 0 cour	P 0 rse pr	rese
1-Low , 2 21PE3702 Preamble Wind energy i a broad overv Prerequisites 1. Power E Dbjectives 1. To learn 2. To Intro 3. To Acqu 4. To impa 5. To lear intercon UNIT I	- Medium, is the fast- iew of wir for the co for the co	, 3- High WIND EN -growing renew nd energy techr ourse s for Renewable wer extraction concepts of mat edge on design edge on Variable Grid integrati with power sys	ERGY TECHN vable source in nology e Energy System from wind er thematical mo of Fixed speed e speed system ion issues a stem.	NOLOGIES	generation ontrol of th elling. actices of	L 3 . This e Win	T 0 count d	P 0 rse pr	rese

ancis Xavier Eng	gineering College Dept of EEE, R2019 ME- PED/2021	l-Curriculum	unu synubi
Components o	of wells-wells schemes-power obtained from	wind-simple	momentum theory
	ent-Sabinin stheory-Aerodynamic Principles – Desig	gn – Betz IIm	
UNIT II	WIND TURBINES		9
HAWT- VAWT	-Power developed- Thrust- Efficiency- Rotor selec	tion-Rotor d	lesign considerations
Tip speed ratio	-No. of Blades-Blade profile-Power Regulation-yav	w control-Pit	ch angle control- sta
control-Electric	cal braking – mechanical braking-MPPT Schemes.		
UNIT III	FIXED SPEED SYSTEMS		9
Generating Sys	stems- Constant speed constant frequency system	is -Choice of	f Generators Decidin
factors-Synchro	onous Generator-Squirrel Cage Induction Generat	or- Model o	f Wind Speed- Mod
wind turbine r	otor - Drive Train model- Generator model for St	eady state a	nd Transient stabili
analysis.			
IINIT IV	VADIADIE CDEED SVCTEMS		0
UNIT IV	VARIABLE SF EED STSTEMS		7
speed generato	ors modeling- Variable speed variable frequency scl	hemes Rea	l Power Control.
speed generato	ors modeling- Variable speed variable frequency scl	hemes Rea	l Power Control.
speed generato	GRID CONNECTED SYSTEMS	hemes Rea	l Power Control. 9
speed generato UNIT V Wind intercom	GRID CONNECTED SYSTEMS nection requirements, low-voltage ride through (larv services for frequency and voltage control, cur	hemes Rea LVRT), ramp rent practice	Power Control. 9 o rate limitations, and
speed generato UNIT V Wind interconi supply of ancill wind interconi	GRID CONNECTED SYSTEMS nection requirements, low-voltage ride through (lary services for frequency and voltage control, cur nection -impact on steady-state and dynamic pe	hemes Rea LVRT), ramp rent practice erformance	Power Control. 9 o rate limitations, ar es and industry trend of the power syste
speed generato UNIT V Wind interconi supply of ancill wind interconi including mode	GRID CONNECTED SYSTEMS GRID CONNECTED SYSTEMS nection requirements, low-voltage ride through (lary services for frequency and voltage control, cur nection -impact on steady-state and dynamic pe	hemes Rea LVRT), ramp rent practice erformance	Power Control. 9 o rate limitations, an es and industry trend of the power syste
speed generato UNIT V Wind interconi supply of ancill wind interconi including mode	GRID CONNECTED SYSTEMS GRID CONNECTED SYSTEMS nection requirements, low-voltage ride through (lary services for frequency and voltage control, cur nection -impact on steady-state and dynamic pe eling issue.	hemes Rea LVRT), ramp rent practice erformance otal Periods	Power Control. 9 o rate limitations, an es and industry trend of the power system 45
speed generato UNIT V Wind intercom supply of ancill wind intercom including mode Suggestive Ass	GRID CONNECTED SYSTEMS GRID CONNECTED SYSTEMS nection requirements, low-voltage ride through (lary services for frequency and voltage control, cur nection -impact on steady-state and dynamic pe eling issue. To Sessment Methods	hemes Rea LVRT), ramp rent practice erformance otal Periods	Power Control. 9 o rate limitations, an es and industry trend of the power system 45
speed generato UNIT V Wind intercom supply of ancill wind intercom including mode Suggestive Ass Continuous As	GRID CONNECTED SYSTEMS GRID CONNECTED SYSTEMS nection requirements, low-voltage ride through (lary services for frequency and voltage control, cur nection -impact on steady-state and dynamic per eling issue. To sessment Methods Seessment Test Formative Assessment Test	hemes Rea LVRT), ramp rent practice erformance otal Periods	Power Control. 9 o rate limitations, an es and industry trend of the power system 45 A5
speed generato UNIT V Wind intercom supply of ancill wind intercom including mode Suggestive Ass Continuous As	GRID CONNECTED SYSTEMS nection requirements, low-voltage ride through (lary services for frequency and voltage control, curnection -impact on steady-state and dynamic period dynamic dynam	hemes Rea LVRT), ramp rent practice erformance otal Periods End Sen (60 Mar	Power Control. 9 o rate limitations, an es and industry trend of the power syste 45 Hester Exams
speed generato UNIT V Wind intercom supply of ancill wind intercom including mode Suggestive Ass Continuous As (30 Marl	GRID CONNECTED SYSTEMS GRID CONNECTED SYSTEMS nection requirements, low-voltage ride through (lary services for frequency and voltage control, curnection -impact on steady-state and dynamic pelling issue. To Sessment Methods Sessment Test Formative Assessment Test (10 Marks)	hemes Real LVRT), ramp rent practice erformance otal Periods (60 Mar	Power Control. 9 o rate limitations, ar es and industry trend of the power syste 45 A5 hester Exams ks)
speed generato UNIT V Wind intercom supply of ancill wind intercom including mode Suggestive Ass Continuous As (30 Marl WRITTEN TES	GRID CONNECTED SYSTEMS GRID CONNECTED SYSTEMS nection requirements, low-voltage ride through (lary services for frequency and voltage control, curnection -impact on steady-state and dynamic peeling issue. To Sessment Methods Sessment Test (10 Marks) T. I.ASSIGNMENT	hemes Rea LVRT), ramp rent practice erformance otal Periods (60 Mar (60 Mar WRITTE	9 o rate limitations, ar es and industry trend of the power syste 45 Mester Exams rks) EN TEST
speed generato UNIT V Wind intercom supply of ancill wind intercom including mode Suggestive Ass Continuous As (30 Marl WRITTEN TES	GRID CONNECTED SYSTEMS GRID CONNECTED SYSTEMS nection requirements, low-voltage ride through (lary services for frequency and voltage control, cur nection -impact on steady-state and dynamic peeling issue. To Sessment Methods Sessment Test (10 Marks) T 1.ASSIGNMENT 2. ONLINE QUIZZES	hemes Rea LVRT), ramp rent practice erformance otal Periods (60 Mar (60 Mar WRITTH	9 o rate limitations, ar es and industry trend of the power syste 45 Mester Exams rks) EN TEST
speed generato UNIT V Wind intercom supply of ancill wind intercom including mode Suggestive Ass Continuous As (30 Marl WRITTEN TES	GRID CONNECTED SYSTEMS nection requirements, low-voltage ride through (lary services for frequency and voltage control, curnection -impact on steady-state and dynamic peeling issue. To Sessment Methods Sessment Test (10 Marks) T. ASSIGNMENT T. ONLINE QUIZZES	hemes Real LVRT), ramp rent practice erformance otal Periods (60 Mar (60 Mar	9 o rate limitations, ar es and industry trend of the power syste 45 mester Exams rks) EN TEST
speed generato UNIT V Wind intercom supply of ancill wind intercom including mode Suggestive Ass Continuous As (30 Marl WRITTEN TES Outcomes	GRID CONNECTED SYSTEMS GRID CONNECTED SYSTEMS nection requirements, low-voltage ride through (lary services for frequency and voltage control, curnection -impact on steady-state and dynamic peeling issue. To Sessment Methods Sessment Test Kormative Assessment Test (10 Marks) To Sessment Test Kormative Assessment Test (10 Marks) To Sessment Test (Source Colspan="2">Sessment Test (Source Colspan="2">Superior	hemes Real LVRT), ramp rent practice erformance otal Periods (60 Mar (60 Mar WRITTH	9 o rate limitations, ar es and industry trend of the power syste 45 As hester Exams rks) EN TEST
speed generato UNIT V Wind intercom supply of ancill wind intercom including mode Suggestive Ass Continuous As (30 Marl WRITTEN TES Outcomes Upon complet	GRID CONNECTED SYSTEMS GRID CONNECTED SYSTEMS nection requirements, low-voltage ride through (lary services for frequency and voltage control, curnection -impact on steady-state and dynamic pelling issue. To Sessment Methods Sessment Test Ks) I.ASSIGNMENT I.ASSIGNMENT I.ASSIGNMENT I.ONLINE QUIZZES	hemes Real LVRT), ramp rent practice erformance otal Periods (60 Mar (60 Mar WRITTH	9 o rate limitations, an es and industry trend of the power syste 45 mester Exams rks) EN TEST
speed generato UNIT V Wind interconn supply of ancill wind interconn including mode Suggestive Ass Continuous As (30 Marl WRITTEN TES Outcomes Upon completi 1 Acquire l	GRID CONNECTED SYSTEMS GRID CONNECTED SYSTEMS nection requirements, low-voltage ride through (lary services for frequency and voltage control, curnection -impact on steady-state and dynamic peeling issue. To Sessment Methods Sessment Test Kormative Assessment Test (10 Marks) To Sessment Test Ks) I.ASSIGNMENT 2. ONLINE QUIZZES ion of the course, the students will be able to: knowledge on the basic concepts of Wind energy colspan="2">Concepts of Wind energy colspan"	hemes Real LVRT), ramp rent practice erformance otal Periods (60 Mar (60 Mar WRITTH	Power Control. 9 o rate limitations, and industry trends of the power syste 45 A5 A5 SN TEST Stem.
speed generato UNIT V Wind interconn supply of ancill wind interconn including mode Suggestive Ass Continuous As (30 Marl WRITTEN TES Outcomes Upon completi 1 Acquire l 2 Understa	GRID CONNECTED SYSTEMS GRID CONNECTED SYSTEMS nection requirements, low-voltage ride through (I ary services for frequency and voltage control, cur nection -impact on steady-state and dynamic performance on steady-state on the basic concepts of Wind energy colored and the mathematical modelling and control of the V	hemes Real LVRT), ramp rent practice erformance otal Periods (60 Mar (60 Mar WRITTH WRITTH	9 o rate limitations, ar es and industry trend of the power syste 45 45 Associate Statements Statem
speed generato UNIT V Wind interconn supply of ancill wind interconn including mode Suggestive Ass Continuous As (30 Marl WRITTEN TES Outcomes Upon completi 1 Acquire l 2 Understa	GRID CONNECTED SYSTEMS nection requirements, low-voltage ride through (I ary services for frequency and voltage control, cur nection -impact on steady-state and dynamic period To sessment Methods Sessment Test Ks) To Sessment Test (10 Marks) To Sessment Test Ks) To Sessment Test (10 Marks) To Sessment Test Ks) Colspan="2">Sessment Test Iso of the course, the students will be able to:	hemes Real LVRT), ramp rent practice erformance otal Periods (60 Mar (60 Mar WRITTH WRITTH	9 o rate limitations, an es and industry trend of the power syste 45 45 ester Exams eks) EN TEST stem. e.

- **4** Study about the need of Variable speed system and its modelling.
- **5** Able to learn about Grid integration issues and current practices of wind interconnections with power system.

Text Books

- 1. S.N.Bhadra, D.Kastha ,S.Banerjee, "Wind Electrical Systems", Oxford UniversityPress,2010.
- 2. N. Jenkins," Wind Energy Technology" John Wiley & Sons, 1997

Reference Books

- 1. S.Heir "Grid Integration of WECS", Wiley 1998.
- 2. Ion Boldea, "Variable speed generators", Taylor & Francis group, 2006

Web Resources

1. <u>https://nptel.ac.in/courses/108/105/108105058/</u>

CO Vs PO Mapping and CO Vs PSO Mapping

<u> </u>	PO	P01	P01	P01	PSO	PSO								
ιυ	1	2	3	4	5	6	7	8	9	0	1	2	1	2
1	3	2	1	3		1							3	
2	2	2	1	3		2							3	
3	2	2	1	3		2							3	
4	1	2	3	3		2							3	
5	1	2	2	3		2							3	

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	20	20	10	10	20
UNDETSTAND	40	35	10	10	30

 is navier Engineering	dollege pept of	LLL, 1(201) 10		Juilleuluin una	bymabi
APPLY	30	30	10	10	35
ANALYZE	10	15	20	20	15
EVALUATE	0	0	0	0	0
CREATE	0	0	0	0	0
	100	100	50	50	100

1-Low , 2- Medium, 3- High

21PE3703	INDUSTRIAL AUTOMATION AND CONTROL	L	Т	Р	С
		3	0	0	3
Droamblo					

Preamble

The purpose of this course is provide the knowledge of PLC, DCs and SCADA and computer aided measurement and control system.

Prerequisites for the course

- Modern control systems
- Instrumentation and control

Objectives

- 1. To introduce the need of automation and concept of PLC
- 2. To impart knowledge on different types of transmitters, Final Control elements and actuators
- 3. To know about the role of computers in Process Industries
- 4. To familiarize students on Programming of PLC with typical case studies
- 5. To expose students about the various sub-systems of DCS and role of SCADA in industrial automation

UNIT I	IT I INTRODUCTION 9									
Need and benefits of automation – PLC system: Introduction to PLC - PLC modules - I/O module -										
Communication	n module - PID module - Input analog and digital devices - Out	put analog and digital								
devices - Introduction to Industrial Data Networks - Foundation Field Bus and Profibus										
UNIT II	FIELD DEVICES	9								

rancis Xavier Eng	gineering College 1	Dept of EEE, R2019 ME- PED/2021-0	Curriculum	and Syllabi				
Conventional/S	Smart Process Tr	ansmitters - Temperature – Pre	essure – F	low - Level and pH				
Measurement ·	- Final Control Ele	ements – Actuators - Pneumatic	and electri	c actuators - Control				
Valves - Thyris	tor Power Control	ller - Introduction to DC and AC S	ervo Drives	for motion control -				
Interfacing Fiel	d devices with I/O	Sub Systems						
UNIT III	COMPUTER A	AIDED MEASUREMENT AND CON	TROL	9				
		SYSTEMS						
Role of compu	ters in measurem	ent and control - Elements of con	nputer aid	ed measurement and				
control:- Man-	Machine interface	e - Computer aided process con	trol hardw	vare and software -				
Industrial Inter	net of things (I²oT	') – Cyber Security for Industrial a	utomation					
UNIT IVPROGRAMMABLE LOGIC CONTROLLERS (PLC)9								
Programmable	Logic Controllers	:- Hardware of PLC - PLC progr	amming -	Ladder diagram with				
examples - PL	C Communication	and networking - Case studies	- Bottle fi	lling application and				
Elevator contro	ol							
UNIT V)	9						
		AND SCADA						
Introduction -	Concent of DCS -	I CII - Shared communication fa	cility - Dier	lav Hierarchy - High				
Level and Low	Level interfaces	- Case studies - DCS in coment n	lant and th	hay merareny men				
Introduction to	supervisory Cont	rol and Data Acquisition system (SCADA Architecture				
Interfacing SCA	DA with PLC	i or and Data nequisition system (Jonin					
		Tota	al Periods	45				
Suggostivo As	socomont Mothod							
Suggestive As:			7 10					
Continuous As	sessment Test	Formative Assessment Test	End Sem	ester Exams				
(30 Mar)	ks)	(10 Marks)	(60 Mar	ks)				
WRITTEN TES	Т	1.ASSIGNMENT	WRITTE	N TEST				
		2. ONLINE QUIZZES						
		3.PROBLEM-SOLVING						
		ACTIVITIES						
Outcomes								
Upon complet	ion of the course,	the students will be able to:						
1 Understa	nd the need of auto	omation and concept of PLC in pra	ctical appli	cations				
2 Understa	nd the different ty	pes of transmitters, Final Control e	elements ar	id actuators				
3 Understa	nd the role of Com	puters in Process Industries and a	nalyse its p	erformance				
4 Develop t	1							
	the Programming of	of PLC with typical case studies						

5 Analyze about the various sub-systems of DCS and role of SCADA in industrial automation

Text Books

- 1. Webb John W. and Reis A. Ronald, "Programmable Logic Controllers Principles and applications" PHI, New Delhi, 2016.
- 2. Popovic &Bhatkar, "Distributed Computer Control for Industrial Automation", CRC Press, New Delhi, Latest edition.

Reference Books

- 1. S.K.Singh, "Industrial Instrumentation", Tata Mcgraw Hill, 2nd edition, 2003.
- Gary Dunning, Thomson Delmar, "Programmable Logic Controller", Cengage Learning, 3rd Edition, 2005.
- 3. E.A.Parr, Newnes, "Industrial Control Handbook", 3rd Edition, 2000

Web Resources

- 1. https://nptel.ac.in/courses/108/105/108105088/
- 2. https://www.automation.com/en-us/automation-control-resources

CO Vs PO Mapping and CO Vs PSO Mapping

<u> </u>	PO	PSO	PSO									
	1	2	3	4	5	6	7	8	9	10	1	2
1	3	2	2	1		1			1	1	2	
2	3	3	2	1		1			1	1	2	
3	3	3	2	2		2			3	3	2	
4	3	2	3	2		1			3	3	2	
5	3	3	3	2		1			3	3	2	

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	20	20	10	10	20

ne	is nuvier ingineering	dollege pept of	LLL, 112017 10		Jui i i cui unu	Syllabl
	UNDETSTAND	30	30	10	10	30
	APPLY	35	35	20	20	35
	ANALYZE	15	15	10	10	15
	EVALUATE	0	0	0	0	0
	CREATE	0	0	0	0	0
		100	100	50	50	100

1-Low, 2-Medium, 3-High

21PF3	8704	HVBRID FLECTRIC VEHICLES	L	Τ	Р	С					
	,,,,,		3	0	0	3					
Pream	ble										
This course introduces the fundamental concepts, principles, analysis and design of hybrid, electric and fuel cell vehicles. It is an introductory course which emphasize the fundamental concepts and overview of Electric and Hybrid vehicles. The concepts discussed herein are intended to provide clarification on basic of Electric and Hybrid vehicles.											
Prerequ	uisites	for the course									
1. B	asic Ele	ectrical and Electronics Engineering									
Objectiv	ves										
1. E	lucidat	e electric, hybrid electric and plug-in hybrid electric vehicle (P	HEV)	, thei	r						
a	rchitec	ture, technologies and fundamentals									
2. V	'alidate	different energy storage technologies used for hybrid electric	vehic	les a	nd the	eir					
C	ontrol a	and energy balancing techniques									
3. D	emons	trate different configurations of electric vehicles and charging	techn	ique	S						
4. E	xplicat	e the design, component sizing of the power electronics conver	ters								
5. D	evelop	various electric drives suitable for hybrid electric vehicles									
UNI	TI	HEV FUNDAMENTALS AND HYBRIDIZATION OF THE AUTOMOBILE			9						
HEV F Aerody Tractiv	HEV Fundamentals : Vehicle Basics, vehicle model, Vehicle Resistance: Rolling Resistance, Aerodynamic Drag, Grading Resistance, Dynamic Equation Tire–Ground Adhesion and Maximum Tractive Effort Dewen Train Tractive Effort and Vehicle Speed, EV Dewentrain Component Sizing										

Hył	bridizatio	n of the Automobi	le: Basics of the EV, Basics of the H	HEV, Bas	ics of Plug-In Hybr
Eleo	ctric Vehic	le (PHEV) and vehi	cle architectures: Series Hybrid Vel	hicle, Pa	rallel Hybrid Vehic
Bas	ics of Fuel	Cell Vehicles (FCVs).		
U	JNIT II	POW	VER ELECTRONICS IN HEVS		9
Pov elec Elec Ind Sizi	ver Electro ctric po ctric Machi uction Mot ng of Tract	onics in HEVs: Pow ower in DC-D ines and Drives in F tor, Permanent Mag tion Motors.	wer electronics circuits used for DC, AC-DC, DC-AC conver HEVs: Fundamental of Drives and C gnet Motor, Switched Reluctance Mo	control ters ontrol o otor, BLE	and distribution used for HE f EV Using DC moto DC motor, Design ar
U	NIT III		BATTERY		9
Rati	torios IIlt	ra capacitor Fuel	Cells and Controls: Introduction	Difforo	nt batteries for F
Batt Batt Syst	tery Chara tery Chara tem, Fuel (acterization, Comp ging Control, Charg Cells and Hybrid Fue	parison of Different Energy Stora ge Management of Storage Device el Cell Energy Storage System and E	age Tech es, Flyw Battery M	nnologies for HEV heel Energy Stora Janagement Systen
U	NIT IV	EV C	CHARGING TECHNOLOGIES		9
stat	tion, introc	duction to Grid-to-V	Vehicle, Vehicle to Grid (V2G) or V	Vehicle to	o Buildings (V2B)
Veh stra cha	nicle to Ho ategies use rging.	ome (V2H) operations and in hybrid and ele	ons, bi-directional EV charging sy ectric vehicle, Wireless power tran	ystems, sfer (WI	energy manageme PT) technique for l
Veh stra cha U	nicle to Ho ategies use rging. J NIT V	ome (V2H) operation	ons, bi-directional EV charging sy ectric vehicle, Wireless power tran ENERGY STORAGE	ystems, (sfer (WI	energy manageme PT) technique for I 9
Veh stra cha: U Intr ene ana	nicle to Ho ategies use rging. JNIT V roduction orgy Storag lysis. Hybr	ome (V2H) operations of in hybrid and elector to energy storage ge and its analysis, fi dization of differer	ons, bi-directional EV charging sy ectric vehicle, Wireless power tran ENERGY STORAGE requirements in hybrid and Elec fuel cell based and super capacitor nt energy storage devices.	ystems, o sfer (WI ctric veh based er	energy manageme PT) technique for I 9 hicles, Battery base hergy storage and i
Veh stra cha U Intr ene ana	nicle to Ho ategies use rging. JNIT V roduction argy Storag lysis. Hybr	ome (V2H) operations of in hybrid and electronic to energy storage ge and its analysis, for the total storage of tot	ons, bi-directional EV charging sy ectric vehicle, Wireless power tran ENERGY STORAGE requirements in hybrid and Elec fuel cell based and super capacitor nt energy storage devices. Total P	ystems, sfer (WI ctric veh based er eriods	energy manageme PT) technique for H 9 nicles, Battery base nergy storage and i 45
Veh stra cha U Intr ene ana	nicle to Ho ategies use rging. JNIT V roduction argy Storag lysis. Hybr	ome (V2H) operations ed in hybrid and electric to energy storage ge and its analysis, for idization of differer sessment Methods	ons, bi-directional EV charging sy ectric vehicle, Wireless power tran ENERGY STORAGE requirements in hybrid and Elec fuel cell based and super capacitor nt energy storage devices. Total P	ystems, o sfer (WI ctric veh based er eriods	energy manageme PT) technique for F 9 nicles, Battery base nergy storage and i 45
Veh stra cha U Intr ene ana ugg Coi	nicle to Ho ategies use rging. JNIT V roduction argy Storag lysis. Hybr gestive Ass ntinuous A (30	ome (V2H) operations of in hybrid and electric to energy storage ge and its analysis, for idization of differer sessment Methods Assessment Test Marks)	ons, bi-directional EV charging sy ectric vehicle, Wireless power tran ENERGY STORAGE requirements in hybrid and Elec fuel cell based and super capacitor int energy storage devices. Total P Formative Assessment Test (10 Marks)	ystems, o sfer (WI ctric veh based er eriods End	energy manageme PT) technique for H 9 nicles, Battery base nergy storage and i 45 Semester Exams (60 Marks)
Veh stra cha U Intr ene ana Gugg	iicle to Ho ategies use rging. JNIT V roduction rgy Storag lysis. Hybr gestive Ass ntinuous A (30 WRIT	ome (V2H) operations of in hybrid and electric din hybrid and electric din the second different second different dif	ons, bi-directional EV charging sy ectric vehicle, Wireless power tran ENERGY STORAGE requirements in hybrid and Elec- uel cell based and super capacitor int energy storage devices. Total P Formative Assessment Test (10 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES	ystems, or sfer (WI ctric veh based er eriods End V	energy manageme PT) technique for H 9 Nicles, Battery base nergy storage and i 45 Semester Exams (60 Marks) VRITTEN TEST
Veh stra cha U Intr ene ana ugg Cor	icle to Ho ategies use rging. JNIT V roduction rgy Storag lysis. Hybr gestive Ass ntinuous A (30 WRIT	ome (V2H) operations of in hybrid and electric din hybrid and electric din hybrid and electric din energy storage ge and its analysis, for idization of different diff	ons, bi-directional EV charging sy ectric vehicle, Wireless power tran ENERGY STORAGE requirements in hybrid and Elec- uel cell based and super capacitor int energy storage devices. Total P Formative Assessment Test (10 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES	ystems, o sfer (WI ctric veh based er eriods End V	energy manageme PT) technique for H 9 Nicles, Battery base nergy storage and i 45 Semester Exams (60 Marks) VRITTEN TEST
Veh stra cha U Intr ene ana ugg Cor	icle to Ho ategies use rging. JNIT V roduction ergy Storag lysis. Hybr gestive Ass ntinuous A (30 WRIT comes	ome (V2H) operations ed in hybrid and electric to energy storage ge and its analysis, f dization of differer sessment Methods Assessment Test Marks) TEN TEST	ons, bi-directional EV charging sy ectric vehicle, Wireless power tran ENERGY STORAGE requirements in hybrid and Elec- uel cell based and super capacitor int energy storage devices. Total P Formative Assessment Test (10 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES	ystems, o sfer (WI ctric veh based er eriods End	energy manageme PT) technique for H 9 Nicles, Battery base nergy storage and i 45 Semester Exams (60 Marks) VRITTEN TEST

rancis 2	Xavier Engineering College Dept of EEE, R2019 ME- PED/2021-Curriculum and Syllabi
2	Analyse the use of different power electronics converters and electrical machines in hybrid electric vehicles.
3	Able to interpret the working of different configurations of electric vehicles and its components, hybrid vehicle configurations
4	Explain the use of different energy storage systems used for hybrid electric vehicles, their control techniques, and select appropriate energy balancing technology
5	Ability to understand the control and configurations of HEV charging stations.
Text	Books
1.	Mehrdad Ehsani, Yimi Gao, Sebastian E. Gay, Ali Emadi, Modern Electric, Hybrid Electric
	and Fuel Cell Vehicles: Fundamentals, Theory and Design, CRC Press , 2004
2.	Iqbal Hussein, Electric and Hybrid Vehicles: Design Fundamentals, CRC Press , 2003
Refer	rence Books
1.	James Larminie, John Lowry, Electric Vehicle Technology Explained, Wiley , 2003
2.	Chris Mi, M. Abul Masrur, David Wenzhong Gao, Hybrid Electric Vehicles: Principles and
	Applications with Practical Perspectives, John Wiley & Sons Ltd. , 2011
Web	Resources
1.	https://nptel.ac.in/courses/108103009
2.	https://nptel.ac.in/courses/108102121

3. <u>https://nptel.ac.in/courses/108106170</u>

CO Vs PO Mapping and CO Vs PSO Mapping

CO	PO	P01	P01	P01	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	2	1	2
1	2	2					1	2						2
2	2	3					2							2
3	2	2					1	2						2
4	2		3				1	1					2	
5	1		3				3	1					1	

BLOOMS CAT 1 CATEGORY	CAT 2	FAT 1	FAT 2	END SEM EXAM
--------------------------	-------	-------	-------	-----------------

Francis Xavier Engineering College	Dept of EEE, R2019 ME- PED	/2021-Curriculum and Syllabi

nc.	Lis Auver Engineering conege pept of EEE, K2019 ME-1 ED/2021 Curriculum und Synabl							
	REMEMBER	20	20	10	10	20		
	UNDETSTAND	30	30	10	10	30		
	APPLY	20	20	10	10	20		
	ANALYZE	15	15	10	10	15		
	EVALUATE	15	15	10	10	15		
	CREATE	0	0	0	0	0		
		100	100	50	50	100		

1-Low, 2- Medium, 3- High

21PE3705	ADVANCED POWER ELECTRONIC DEVICES	L	Τ	Р	С
211 107 00		3	0	0	3
Preamble					
Upon comple- practical know an application practicum con project work.	tion of this program, the students are expected to acquire vledge in Power Electronics and Drives (PED). The program st n oriented manner through specialized core-courses with a nponent, research and development (R&D) oriented advance	both ructu signif ed-lev	ana re is fican zel c	lytica planr t han ourse	l and ned in ds-on s and
Prerequisites	for the course				
1. Power E	lectronic Devices				
2. Linear a	nd Integrated Circuits				
Objectives					
1. Select and	design power electronic converter topologies for a broad	ad ra	nge	of e	nergy
conversion	applications.				
2. Analyse an	d simulate the performance of power electronic conversion sys	stems	•		
3. Ability to m	nodel and design controllers for the closed loop operation of po	ower	conv	erters	5.
4 Apply the k	asic concepts of nower electronics to design the circuits in th	e field	ls of		nd DC
drives new	variable concepts of power electromes to design the encutes in the	outro			
drives, pow	er generation and energy conversion, industrial applications,	extra		i oi ei	lergy
from renew	vable sources.				
5. Build and t	roubleshoot power electronics circuits.		_		

Introduction; Linear p basic dc-dc voltage analysis for continuc	oower supply (volt regulator configur us and discontinu	age regulators); Switching ations -Buck, Boost, Buck ous mode; Other converter	voltage r -Boost c r configu	egulators; Review o onverters and thei irations like Flybacl
converter, Forward c converter, SEPIC Conv	onverter, Half brid verter; Design crite	ge, Full bridge configuratio ria for SMPS; Multi-output s	ns, Push switch m	-pull converter, C'ul ode regulator
UNIT II	RESONANT AND M	S	9	
Resonant Converters converters, Load reso converters, zero curre	: Introduction, Ne nant converters, R ent switching dc-dc	ed of resonant converter esonant switch converters, converters, clamped voltag	s, Classi zero-vol se topolo	fication of resonan tage switching dc-d gies
Multi-level Converter multi-level: Diode Cl configurations; Feat Introduction to carrie	s: Need for multi amped, Flying ca ures and relative r based PWM techr	level inverters, Concept opacitor and Cascaded H-b comparison of these nique for multi-level conver	f multi-l oridge m configur ters	evel, Topologies fo ultilevel Converter ations applications
UNIT III	MULTIPU	LSE CONVERTERS		9
Concept of multi-puls shifting transformer Applications	e, Configurations f (Y-?1, Y-?2, Y-Z1	or m-pulse (m=12,18,24 and Y-Z2) configurations	.) conver for mu	ters, Different phas lti-pulse converters
UNIT IV	HVDC '	FRANSMISSION		9
system, Equipment re transmission, Control	equired for HVDC S of HVDC transmiss	System and their significant	ce, Comp	parison of AC and D
UNIT V	FAC	TS DEVICES		9
control mechanisms, description, possible Thyristor-Controlled Switched capacitor-	Definition of Fl benefits from FACT Reactor (FC-TCR),	exible ac Transmission S S, Thyristor- Controlled Re Thyristor-Switched capac	Systems actor (To itor and	(FACTS) and brie CR), Fixed Capacitor
operating principle, STATCOM, Principle Compensator, Advant	Thyristor-Controlle Static characteris of series compe ages and limitation	ed Reactor (TSCTCR), ST tics of SVC and STATCO ensation, Introduction to of SSSC, Introduction to UF	FATCOM M Comp Static PFC and c	Reactor, Thyriston configuration an parison of SVC and Synchronous Serie operating principle
operating principle, STATCOM, Principle Compensator, Advant	Fhyristor-Controlle Static characteris of series compe ages and limitation	ed Reactor (TSCTCR), ST tics of SVC and STATCO ensation, Introduction to of SSSC, Introduction to UF Total P	FATCOM M Comp Static PFC and c Periods	Reactor, Thyriston configuration an parison of SVC an Synchronous Serie operating principle 45
operating principle, STATCOM, Principle Compensator, Advant	Thyristor-Controlle Static characteris of series compe ages and limitation nt Methods	ed Reactor (TSCTCR), ST tics of SVC and STATCO ensation, Introduction to of SSSC, Introduction to UF Total P	FATCOM M Comp Static PFC and c P eriods	Reactor, Thyriston configuration an parison of SVC an Synchronous Serie operating principle 45
operating principle, STATCOM, Principle Compensator, Advant Suggestive Assessmen Continuous Assessm (30 Marks)	Thyristor-Controlle Static characteris of series compe ages and limitation nt Methods nent Test Form	ed Reactor (TSCTCR), ST tics of SVC and STATCO ensation, Introduction to of SSSC, Introduction to UF Total P native Assessment Test (10 Marks)	FATCOM M Comp Static PFC and c Periods End	Reactor, Thyristor configuration and parison of SVC and Synchronous Serie operating principle 45 Semester Exams (60 Marks)
operating principle, STATCOM, Principle Compensator, Advant Suggestive Assessmen Continuous Assessm (30 Marks) WRITTEN TE	Fhyristor-Controlle Static characteris of series competition ages and limitation nt Methods nent Test Form ST 3	ed Reactor (TSCTCR), ST tics of SVC and STATCO ensation, Introduction to of SSSC, Introduction to UF Total P native Assessment Test (10 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES .PROBLEM-SOLVING ACTIVITIES	FATCOM M Comp Static PFC and c PFC and c Periods End	Reactor, Thyristor configuration and parison of SVC and Synchronous Serie operating principle 45 Semester Exams (60 Marks) VRITTEN TEST
operating principle, STATCOM, Principle Compensator, Advant Suggestive Assessmen Continuous Assessm (30 Marks) WRITTEN TE	Fhyristor-Controlle Static characteris of series compensation ages and limitation nt Methods nent Test Form ST 3	ed Reactor (TSCTCR), ST tics of SVC and STATCO ensation, Introduction to of SSSC, Introduction to UF Total P native Assessment Test (10 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES .PROBLEM-SOLVING ACTIVITIES	FATCOM M Comp Static PFC and c Periods End	Reactor, Thyristo configuration an parison of SVC an Synchronous Serie operating principle 45 Semester Exams (60 Marks) VRITTEN TEST

ancis X	avier Engineering College Dept of EEE, R2019 ME- PED/2021-Curriculum and Syllabi
Upon	completion of the course, the students will be able to:
1	Evaluate different DC-DC voltage regulators
2	Simulate and analyse resonant converters
3	Illuminate the cause and effect of appropriate phase shifting converter for a multi-pulse converter
4	Evaluate various multi-level inverter configurations
5	Compare various FACTS devices for VAR compensation
Text l	Books
1.	High-Power Converters and AC Drives (IEEE Press Series on Power and Energy Systems), b
	Bin Wu, 2017
2.	Power Electronics: Converters Applications and Design, Media Enhanced, Third Editio
	Robbins Mohan 2007
Refer	ence Books
1.	Power electronics handbook by Rashid, 2017
2.	L. Umanand, "Power Electronics Essentials and Applications", Wiley India Ltd., 2009
3.	P.C.Sen, "Modern Power Electronics", S. Chand and Co. Ltd., New Delhi, 2000.
Web l	Resources
1.	https://nptel.ac.in/courses/108107128
2.	Free Online Course: Advance power electronics and Control from YouTube Class Central

60	PO	P01	P01	P01	PSO	PSO								
ιυ	1	2	3	4	5	6	7	8	9	0	1	2	1	2
1	3	2	2										2	
2	3	2	2										2	
3	3	2	1										3	
4	3	2		2										2
5	3	2		3										2

CO Vs PO Mapping and CO Vs PSO Mapping

	BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
	REMEMBER	20	20	10	10	20
	UNDETSTAND	30	30	10	10	30
	APPLY	20	20	10	10	20
	ANALYZE	15	15	10	10	15
	EVALUATE	15	15	10	10	15
	CREATE	0	0	0	0	0
ſ		100	100	50	50	100

1-Low, 2- Medium, 3- High

21PF3706	INTEGRATED CIRCUITS FOR POWER CONVERSION	L	Τ	Р	С			
211 13700	INTEGRATED CIRCOTTS FOR TOWER CONVERSION	3	0	0	3			
Preamble								
By the end of this course, students would understand the concept behind power management circuits and be able to design a dc-dc converter for a specific system using behavioural and circuit level simulators such as MATALB/Simulink, LTSpice and Cadence. One would be able to select various parameters such as switching frequency, inductor and capacitor values for best performance and efficiency.								
Prerequisites	for the course							
1. Analog I 2. Power E	 Analog Electronics Power Electronics 							
Objectives								
1. Review	of modern power management converters and circuits;							
2. Elucidat	e the Modeling and control of converters;							
3. Feature	discussion of voltage and current mode controllers;							
4. Underst	and the power converter losses and optimization method, as w	vell as	mar	nagem	ient			
of powe	r							
5. Interpre	t the IC implementation of power management chip							
UNIT I	INTRODUCTION TO POWER MANAGEMENT AND VOLTAGE REGULATORS			9				
Need of power management, power management applications, classification of power management, power delivery of a VLSI system, power conversion, discrete vs. integrated power management, types of voltage regulators (switching vs linear regulators) and applications, converter's performance parameters (voltage accuracy, power conversion efficiency, load								
				9	3			

regulation, line regulation, line and load transient response, settling time, voltage tracking), local Vs remote feedback, kelvin sensing, Point-of-Load (POL) regulators.

		-
UNIT II	LINEAR REGULATORS	9
_		

Bandgap Voltage Reference, Low Drop-Out Regulator (LDO), Source and sink regulators, shunt regulator, pass transistor, error amplifier, small signal model and stability analysis, compensation techniques, current limiting, power supply rejection ratio (PSRR), NMOS vs. PMOS regulator, current regulator.

UNIT III SWITCHING DC - DC CONVERTERS	9	

Types (Buck, boost, buck-boost), power FETs, choosing L and C, PWM modulation, leading, trailing and dual edge modulation, Losses in switching converters, output ripple, voltage Vs current mode control, CCM and DCM modes, hysteretic control, switched capacitor DC-DC converters.

UNIT IV	SIGNAL MODEL OF DC-DC CONVERTER	9

Small signal model of DC-DC converter, loop gain analysis of un-compensated DC-DC converter, type-I, type-II and type-III compensation, compensation of a voltage mode DC-DC converter, compensation of a current mode DC-DC converter, Selecting topology, selecting switching frequency and external components, sizing power FETs, segmented power FET, designing gate driver, PWM modulator, error amplifier, oscillator, ramp generator, feedback resistors, current sensing, PFM/PSM mode for light load, effect of parasitic on reliability and performance, current limit and short circuit protection, soft start control, chip level layout and placement guidelines, board level layout guidelines, EMI considerations.

UNIT V	INTRODUCTION TO ADVANCED TOPICS IN POWER	9
	MANAGEMENT	

Digitally controlled DC-DC converters, digitally controlled LDOs, time-based control for voltage regulators, adaptive compensation, dynamic voltage scaling (DVS), Single-Inductor Multiple-Outputs (SIMO) Converters, dc-dc converters for LED lighting, Li-ion battery charger.

	Total Per	riods	45
Suggestive Assessment Methods			
Continuous Assessment Test	Formative Assessment Test	End S	Semester Exams
(30 Marks)	(10 Marks)		(60 Marks)
WRITTEN TEST	1.ASSIGNMENT	W	RITTEN TEST
	2. ONLINE QUIZZES		
	3.PROBLEM-SOLVING		
	ACTIVITIES		
outcomes			
Jpon completion of the course, t	he students will be able to:		
1 Demonstrate a power mana	gement voltage and current mode co	ntroller	[•] circuit
2 Develop an integrated powe	er stage		

3	Interpret the supervisory circuitry – under voltage lockout, bandgap references
	morproveno supervisor y en en uy en une vormge roone uy sun ugup vorereneos
4	Analyse and Explain a complete power management integrated circuit
5	Formulate the Integrated circuits without any Flaws
Tex	kt Books
1. l	Power Management Techniques for Integrated Circuit Design, Author: Ke-Horng Chen,
l	Publisher: Wiley-Blackwell (29 July 2016)
2. 1	Erickson, "Fundamentals of Power Electronics", 2001.
Ref	ference Books
1.	Behazad Razavi," Design of Analog CMOS Integrated Circuits", 2003.
2.	David A. Johns and Ken Martin," Analog Integrated Circuit Design", 2005.
3.	Gray and Meyer," Analog Integrated Circuits", 3rd or 4th editions, 1996.
We	b Resources:

2. <u>Power Management Integrated Circuits - Course (nptel.ac.in)</u>

CO Vs PO Mapping and CO Vs PSO Mapping

60	PO	PO	PO	PO	PO	PO	РО	PO	PO	P01	P01	P01	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	2
1	2	2					1	2						2
2	2	3					2							2
3	2	2					1	2						2
4	2		3				1	1					2	
5	1		3				3	1					1	

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
--------------------	-------	-------	-------	-------	-----------------

 is navier Engineering	deneger zept oj			sainteataint ana	bymabi
REMEMBER	20	20	10	10	20
UNDETSTAND	30	30	10	10	30
APPLY	20	20	10	10	20
ANALYZE	15	15	10	10	15
EVALUATE	15	15	10	10	15
CREATE	0	0	0	0	0
	100	100	50	50	100

1-Low, 2- Medium, 3- High

21PE3707	MEMS TECHNOLOGY	L	Т	Р	С
		3	0	0	3
D 11					

Preamble

The rapid development of the integrated circuit (IC) industry has led to the emergence of micro electronics process engineering as a new advanced discipline. The combination of MEMS and integrated intelligence has been put forward as a disruptive technology. This provides an advanced level, vast understanding to the device electronics for integrated circuits, a foundation for the device fabrication and various applications in the field of sensors, actuators, optoelectronics, biomedical, communication and nanotechnology

Prerequisites for the course

1.Engineering Physics

2. Measurements and Instrumentation

Objectives

UNIT I

- 1. To define properties of materials ,microstructure and fabrication methods..
- 2. To design and modeling of Electrostatic sensors and actuators.
- 3. To Build thermal sensors and actuators through design and modelling.
- 4. To familiarise the fundamentals of piezoelectric sensors and actuators through exposure to different MEMS and NEMS devices.

5. To Revise the concept acquired over the 5 Units of the subject for improved employability skil	ls.
---	-----

MICRO-FABRICATION, MATERIALS AND

ELECTROMECHANICAL CONCEPTS

Overview of micro fabrication – Silicon and other material based fabrication processes – Concepts: Conductivity of semiconductors-Crystal planes and orientation-stress and strain-flexural beam

9

	meening concycl Di	epi oj eee, k2019 me- PED/2021-0	urricuium	and Syllabi
ıg analysi	s-torsional deflecti	ons-Intrinsic stress- resonant fre	quency and	d quality factor
IT II	ELECTROS	TATIC SENSORS AND ACTUATIO)N	9
le mate	rial design and fak	prication of parallel plate capacit	ors as elec	trostatic sensors a
ors-Appli	cations	inclution of parallel place capacit		ti ostatie sensors a
IT III	THERM	AL SENSING AND ACTUATION		9
ole, mate	rial, design and fal	prication of thermal couples, the	rmal bimo	orph sensors, therm
r sensors	-Applications.			
IT IV	PIEZOELE	CTRIC SENSING AND ACTUATIO	N	9
	Coot contilence aire			
lectric ef	fect-cantilever plea	zoelectric actuator model-prope	rties of ple	ezoelectric materia
ations.				
IT V		CASE STUDIES		9
ocictivo	oncora Magnatia	actuation Migro fluiding and	ications	Madical application
esistive	sensors, magnetic	actuation, micro nuidics appl	ications, 1	medical application
I MEMS	NEMS Devices Note	e: Class room discussions and tut	orials can	include the followi
ines for in	nproved teaching	/learning process: Discussions/E	kercise/Pra	actice on Workbend
			,	
basics / c	evice model design	a aspects of thermal/peizo/resist	ve sensors	s etc.
		Tota	l Poriode	45
		1002	i i ci ious	43
stive Ass	essment Methods			
uous As	sessment Test	Formative Assessment Test	End Sem	nester Exams
(20 Marl	ve)	(10 Marks)	(60 Mar	le)
[30 Mai F	.5)	(10 Marks)	(OU Mai	къј
WRIT	ren test	1.ASSIGNMENT	W	RITTEN TEST
		2. ONLINE QUIZZES		
		3 PROBLEM-SOLVING		
		3.PROBLEM-SOLVING ACTIVITIES		
		3.PROBLEM-SOLVING ACTIVITIES		
mes		3.PROBLEM-SOLVING ACTIVITIES		
mes completi	on of the course, t	3.PROBLEM-SOLVING ACTIVITIES the students will be able to:		
mes completi	on of the course, t	3.PROBLEM-SOLVING ACTIVITIES the students will be able to:	models a	nd simulate
mes completi	on of the course, t Understand b electrostatic a	3.PROBLEM-SOLVING ACTIVITIES the students will be able to: asics of micro fabrication develop and electromagnetic sensors and a	o models an	nd simulate
mes completi	on of the course, t Understand b electrostatic a Understand m	3.PROBLEM-SOLVING ACTIVITIES the students will be able to: asics of micro fabrication develop and electromagnetic sensors and a material properties important for	o models an actuators. MEMS syst	nd simulate rem
mes completi	on of the course, t Understand b electrostatic a Understand m performance,	3.PROBLEM-SOLVING ACTIVITIES the students will be able to: asics of micro fabrication develop and electromagnetic sensors and a naterial properties important for analyze dynamics of resonant mi	o models an actuators. MEMS syst cromechar	nd simulate Tem nical
mes completi	on of the course, t Understand b electrostatic a Understand m performance, structures	3.PROBLEM-SOLVING ACTIVITIES the students will be able to: asics of micro fabrication develop and electromagnetic sensors and a naterial properties important for analyze dynamics of resonant mi	o models an actuators. MEMS syst cromechan	nd simulate em nical
mes completi	on of the course, t Understand b electrostatic a Understand m performance, structures The learning p	3.PROBLEM-SOLVING ACTIVITIES the students will be able to: asics of micro fabrication develop and electromagnetic sensors and a naterial properties important for analyze dynamics of resonant mi	o models an actuators. MEMS syst cromechan gn of micro	nd simulate rem nical
mes completi	on of the course, t Understand b electrostatic a Understand m performance, structures The learning p embedded ser	3.PROBLEM-SOLVING ACTIVITIES	o models an actuators. MEMS syst cromechan gn of micro systems li	nd simulate em nical o sensors, ke grid.
mes completi	on of the course, t Understand b electrostatic a Understand m performance, structures The learning p embedded sen Understand th	3.PROBLEM-SOLVING ACTIVITIES the students will be able to: asics of micro fabrication develop and electromagnetic sensors and a naterial properties important for analyze dynamics of resonant mi process delivers insight onto desi nsors & actuators in power aware ne design process and validation f	o models an actuators. MEMS syst cromechan gn of micro systems li or MEMS o	nd simulate rem nical o sensors, ke grid. devices and
	IT II ole, mater ors-Appli IT III ole, mater r sensors IT IV lectric ef ations. IT V esistive s l MEMS1 nes for ir basics /d stive Ass uous Ass (30 Mark WRIT	IT II ELECTROS ole, material, design and fabors-Applications IT III IT III THERM ole, material, design and fabors-Applications. IT HERM ole, material, design and fabors-Applications. IT IV PIEZOELE0 It IV It IV PIEZOELE0 lectric effect-cantilever piezations. It IV IT V It IV esistive sensors, Magnetic MEMSNEMS Devices Note nes for improved teaching / basics /device model design stive Assessment Methods It III III III III III III IIII IIII	IT II ELECTROSTATIC SENSORS AND ACTUATION ole, material, design and fabrication of parallel plate capacity ors-Applications IT III THERMAL SENSING AND ACTUATION ole, material, design and fabrication of thermal couples, the r sensors-Applications. IT IV PIEZOELECTRIC SENSING AND ACTUATION lectric effect-cantilever piezoelectric actuator model-properations. IT V CASE STUDIES esistive sensors, Magnetic actuation, Micro fluidics appl I MEMSNEMS Devices Note: Class room discussions and tut nes for improved teaching /learning process: Discussions/Epi basics /device model design aspects of thermal/peizo/resisti Tota stive Assessment Methods uous Assessment Test (10 Marks) WRITTEN TEST 1.ASSIGNMENT 2. ONLINE QUIZZES	IT II ELECTROSTATIC SENSORS AND ACTUATION ole, material, design and fabrication of parallel plate capacitors as electors-Applications IT III THERMAL SENSING AND ACTUATION ole, material, design and fabrication of thermal couples, thermal bimorer sensors-Applications. IT IV PIEZOELECTRIC SENSING AND ACTUATION lectric effect-cantilever piezoelectric actuator model-properties of piedations. IT V CASE STUDIES esistive sensors, Magnetic actuation, Micro fluidics applications, I I MEMSNEMS Devices Note: Class room discussions and tutorials can nes for improved teaching /learning process: Discussions/Exercise/Prabasics /device model design aspects of thermal/peizo/resistive sensors Stive Assessment Methods Formative Assessment Test (30 Marks) (30 Marks) I.ASSIGNMENT (60 Mar WRITTEN TEST 1.ASSIGNMENT (80 Mar)

5	Improved Employability and entrepreneurship capacity due to
	knowledge up gradation on recent trends in embedded systems
	design.

Text Books

- 1. Tai Ran Hsu, "MEMS and Microsystems design and manufacture", Tata McGraw Hill Publishing Company, New Delhi, 2016.
- 2. 2. Chang Liu, "Foundations of MEMS," Pearson Prentice Hall, 2019.

Reference Books

- 1. Chang Liu, "Foundations of MEMS", Pearson International Edition, 2019.
- 2. Marc Madou , "Fundamentals of microfabrication", CRC Press, 1997.
- 3. Boston, "Micromachined Transducers Sourcebook", WCB McGraw Hill, 1998.
- 4. M.H.Bao "Micromechanical transducers :Pressure sensors, accelerometers and gyroscopes", Elsevier, Newyork, 2000

Web Resources

- 1. https://www.mems-exchange.org/MEMS/what-is.html
- 2. https://nptel.ac.in/courses/108108113/

CO Vs PO Mapping and CO Vs PSO Mapping

<u> </u>	PO	P01	P01	P01	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	2	1	2
1			3	1	2			2		2				3
2			3	1	2			2		2				3
3			3	1	2			2		2				3
4			3	1				2		2				3
5			3		2			2		2				3

č				,			- / -		
BLOOMS CATEGORY	,	CAT 1	CAT 2	FAT 1	FAT 2		END EXA	SEM M	
REMEMBE	R	20	20	0	0			20	
UNDETSTA	ND	30	30	10	10			30	
APPLY		20	20	10	10			20	
ANALYZE		30	30	5	5			30	
EVALUATE		0	0	0	0			0	
CREATE		0	0	0	0			0	
		100	100	25	25			100)
1-Low , 2	- Medium	, 3- High							
						-	т	р	
21052700	DOV	VED EI ECTDC	NICC EOD DEI	NIEW/A DI E ENII	COTV				
21PE3708	POV	VER ELECTRO	NICS FOR RE	NEWABLE ENI	ERGY	L	I	Р	
21PE3708	POV	VER ELECTRO	ONICS FOR RE	NEWABLE ENI	ERGY	L 3	0	P 0	
21PE3708	POV	VER ELECTRO	ONICS FOR RE	NEWABLE ENI	ERGY	L 3	0	P 0	
21PE3708 Preamble	POV	VER ELECTRO	ONICS FOR REI SYSTEMS	NEWABLE ENI	ERGY	L 3	0 DE b	P 0	
21PE3708 Preamble The PE plays onverters are	POV crucial rc e also wi	VER ELECTRO	ONICS FOR REI SYSTEMS on and contro	NEWABLE ENI	ver. There	L 3 efore,	I O	P 0 Dased	po ^v
21PE3708 Preamble The PE plays onverters are vind and sol	POV crucial rc e also wi lar-PV sy	VER ELECTRO ole of conversi dely used in 1 stems as the	ONICS FOR REI SYSTEMS on and contro renewable ene y are the mo	NEWABLE ENI	ver. There This paper renewable	L 3 efore, rs dea e ene	PE bals or	P 0 Dased nly w source	po vith ces
21PE3708 Preamble The PE plays onverters are vind and sol eneration of	POV crucial rc e also wi lar-PV sy electricity	VER ELECTRO ole of conversi dely used in 1 stems as the 7.	ONICS FOR REL SYSTEMS on and contro renewable ene y are the mo	NEWABLE ENI	ver. There This paper renewable	L 3 efore, rs dea e ene	I O PE bals on ergy	P 0 Dased nly w source	po vith ces
21PE3708 Preamble The PE plays onverters are vind and sol eneration of	POV crucial rc e also wi lar-PV sy electricity	VER ELECTRO ole of conversi dely used in 1 stems as the 7.	ONICS FOR REI SYSTEMS on and contro renewable ene y are the mo	NEWABLE ENI	ver. There This paper renewable	L 3 efore, rs dea e ene	PE bals or	P 0 Dased nly w source	po ^r vith ces
21PE3708 Preamble The PE plays onverters are vind and sol eneration of	POV crucial rc e also wi lar-PV sy electricity	ver electric ole of conversi dely used in 1 stems as the 7.	ONICS FOR REI SYSTEMS on and contro renewable ene y are the mo	NEWABLE ENI	ver. There This paper renewable	L 3 efore, rs dea e ene	O PE bals on ergy	P 0 Dased nly w source	po vith ces
21PE3708 Preamble The PE plays onverters are vind and sol eneration of Perequisites	POV crucial rc e also wi lar-PV sy electricity for the co	VER ELECTRO ole of conversi dely used in 1 stems as the 7.	ONICS FOR REI SYSTEMS on and contro renewable ene y are the mo	NEWABLE ENI	ver. There This paper renewable	L 3 efore, rs dea e ene	PE bals or	P 0 Dased nly w source	po vith ces
21PE3708 Preamble The PE plays onverters are vind and sol eneration of Perequisites 1.Engineeri	POV crucial rc e also wi lar-PV sy electricity for the co	VER ELECTRO ole of conversi dely used in r stems as the 7. Durse matics	ONICS FOR REI SYSTEMS on and contro renewable ene y are the mo	NEWABLE ENI	ver. There This paper renewable	L 3 efore, rs dea e ene	PE tals or	P 0 Dased nly w source	po vith ces
21PE3708 Preamble The PE plays onverters are vind and sol eneration of Perequisites 1.Engineeri 2.Engineeri	POV crucial rc e also wi lar-PV sy electricity for the co ng Mathe ng Physic	ver electric ole of conversi dely used in 1 stems as the 7. Durse matics	on and contro renewable ene y are the mo	NEWABLE ENI	ver. There This paper renewable	L 3 efore, rs dea e ene	PE bals on ergy	P 0 Dased nly w source	po
21PE3708 Preamble The PE plays onverters are vind and sol eneration of rerequisites 1.Engineeri 2.Engineeri	POV crucial rc e also wi lar-PV sy electricity for the co ng Mathe ng Physic	VER ELECTRO	ONICS FOR REI SYSTEMS on and contro renewable ene y are the mo	NEWABLE ENI	ver. There This paper renewable	L 3 efore, rs dea e ene	PE bals or	P 0 Dased nly w source	po vith ces
21PE3708 Preamble The PE plays onverters are vind and sol eneration of Terequisites 1.Engineeri 2.Engineeri ojectives:	POV crucial rc e also wi lar-PV sy electricity for the co ng Mathe ng Physic	VER ELECTRO	on and contro renewable ene y are the mo	NEWABLE ENI	ver. There This paper renewable	L 3 efore, rs dea e ene	I PE k als on ergy	P 0 Dased nly w source	po vith ces
21PE3708 Preamble The PE plays onverters are vind and sol eneration of rerequisites 1.Engineeri 2.Engineeri ojectives:	POV crucial rc e also wi lar-PV sy electricity for the co ng Mathe ng Physic	ver electric ole of conversi dely used in 1 stems as the 7. Durse matics	on and contro renewable ene y are the mo	NEWABLE ENI	ver. There This paper renewable	L 3 efore, 's dea e ene	PE bals onergy	P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	po vith ces
21PE3708 Preamble The PE plays onverters are vind and sole eneration of Prerequisites 1.Engineeri 2.Engineeri ojectives: o impart know 1. Illustrat	POV crucial rc e also wi- lar-PV sy electricity for the co ng Mathe ng Physic wledge on re the basi	VER ELECTRO	on and contro renewable ene y are the mo	NEWABLE ENI	ver. There This paper renewable	L 3 efore, rs dea e ene	PE bals onergy	P 0 Dased nly w source	pov vith ces
21PE3708 Preamble The PE plays onverters are vind and sol eneration of rerequisites 1.Engineeri 2.Engineeri ojectives: impart know 1. Illustrat 2 Design o	POV crucial rc e also wie lar-PV sy electricity for the co ng Mathe ng Physic wledge on re the basi	VER ELECTRO	on and contro enewable ene y are the mo	NEWABLE ENI	ver. There This paper renewable	L 3 efore, rs dea e ene	I PE bals on ergy	P 0 Dased nly w source	povith ces
21PE3708 Preamble The PE plays onverters are vind and sole eneration of Perequisites 1.Engineeri 2.Engineeri ojectives: o impart know 1. Illustrat 2 Design of 3 Identify	POV crucial rc e also wi lar-PV sy electricity for the co ng Mathe ng Physic wledge on the the basi of various the neces	VER ELECTRO	on and contro enewable ene y are the mo	NEWABLE ENI	ver. There This paper renewable	L 3 efore, rs dea e ene	I PE k als on ergy	P 0 Dased nly w source	po vith ces
21PE3708 Preamble The PE plays onverters are vind and sol eneration of Perequisites 1.Engineeri 2.Engineeri 0jectives: 0 impart know 1. Illustrat 2 Design of 3 Identify 4 Explain	POV crucial rc e also wi lar-PV sy electricity for the co ng Mathe ng Physic wledge on the the basi of various the neces the need	VER ELECTRO	on and contro renewable ene y are the mo otovoltaic syste ected systems.	NEWABLE ENI	ver. There This paper renewable	L 3 efore, rs dea e ene	PE bals onergy	P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	po ^v ith ces
21PE3708 Preamble The PE plays onverters are vind and sole eneration of Perequisites 1.Engineeri 2.Engineeri ojectives: 0 impart know 1. Illustrat 2 Design of 3 Identify 4 Explain 5 Develop	POV crucial rc e also will lar-PV sy electricity for the conng Matheng Physic wledge on the the basis of various the necess the need to the Syste	VER ELECTRO	on and contro renewable ene y are the mo otovoltaic syste ected systems. onnected PV rbrid systems ts for different	NEWABLE ENI	wer. There This paper renewable	L 3 efore, rs dea e ene	I PE bals on ergy	P 0 Dased nly w source	po'vith ces

Over view of conventional & renewable energy sources, need, potential &development of renewable energy sources, types of renewable energy systems, Future of Energy Use, Global and Indian Energy scenario, Energy for sustainable development, renewable electricity and key elements, Global climate change, CO2 reduction potential of renewable energy- concept of Hybrid systems.

UNIT II SOLAR ENERGY 9									
Solar energy s	system, Solar Radi	ation, Availability, Measurement	and Estim	nation, Solar Therma					
Conversion De	evices and Storage,	, Solar-Electrical Power Generation	on, genera	l Solar Photo Voltaic					
(SVP) system,	Different configura	ations, SPV system components a	nd their c	characteristics, Stand					
Alone and Grid	Connected SPV sys	stems, other Miscellaneous Applica	ations of So	olar Energy.					
UNIT III	WIND, HYD	EL AND TIDAL POWER SYSTEMS	5	9					
Wind Energy C	onversion, Potentia	al, Nature of the wind, Site selectio	n, Types o	f wind turbines, Wind					
farms, Wind Ge	eneration and Cont	rol., classification of wind, characte	eristics, off	fshore wind energy .					
Hydel- Basic w of head and flo equation – Way	orking principle, C ow – Energy equat ve power – Basics –	lassification of Hydel systems: Lar ion – Types of turbines – Tidal p Kinetic energy equation.	ge, small, 1 ower – Ba	micro – measurement asics – Kinetic energy					
UNIT IV	BIOMASS, (GEOTHERMAL AND OCEAN ENER	GY	9					
combustion ch aspects. Geothe in India.Ocean UNIT V Introduction, Integrated ene	aracteristics of bio ermal Energy: Reso Energy: OTEC, Prin INTE Integrated Smart rgy schemes, their o	o-gas, utilization for cooking, I.C. I ources, types of wells, methods of H aciples utilization, setting of OTEC GRATED ENERGY SYSTEMS infrastructure, Integrated Energy cost benefit analysis.	Engine openarnessing plants, the grants and	eration and economic g the energy, potential rmodynamic cycles. 9 n Modelling, Various					
		Tota	l Periods	45					
Suggestive As	sessment Method	S							
Continuous As	ssessment Test	Formative Assessment Test	End Sen	nester Exams					
(30 Mar	ks)	(10 Marks)	(60 Mar	ks)					
WRITTEN TES	ST	1.ASSIGNMENT	WRITTE	EN TEST					
		2. ONLINE QUIZZES							
		3.PROBLEM-SOLVING ACTIVITIES							
Outcomes			1						
Unon complet	ion of the course	the students will be able to:							

1	Analyse the impacts o	f renewable energy generation on environment.
---	-----------------------	---

2 Explain the working principle of solar energy system.

3 Understand the importance about wind, tidal and Hydel power systems.

4 Select appropriate renewable energy system for different applications

5 Capable to carry out basic design of renewable energy systems

Text Books

- 1. Renewable Energy Resources, John Twidell and Tony Weir, Taylor and Francis -second edition, 2013.
- 2. Integrated energy systems modeling--Karlsson, Kenneth Bernard; Skytte, Klaus Morthorst; Publishedin: DTU International Energy Report 2015.

Reference Books

- 1. Solar Energy: Principles of Thermal Collection and Storage, S. P. Sukhatme and J. K. Nayak, TMH, New Delhi, 3rd Edition.
- 2. Non conventional energy source –B.H. Khan- TMH-2nd edition.
- 3. Renewable energy technologies A practical guide for beginners Chetong Singh Solanki, PHI.
- 4. Renewable Energy- Edited by Godfrey Boyle-oxford university, press, 3rd edition, 2013.

Web Resources

- 1. https://nptel.ac.in/courses/117/108/117108141/
- 2. https://nptel.ac.in/courses/108/105/108105058/
- **3.** https://nptel.ac.in/content/storage2/courses/108108078/pdf/chap7/teach_slides07 .pdf

CO Vs PO Mapping and CO Vs PSO Mapping

60	PO	P01	P01	P01	PSO	PSO								
ιυ	1	2	3	4	5	6	7	8	9	0	1	2	1	2
1	3		1						2					2
2	3		3	3	3				3					2
3	3		3	2	3				3					2
4	3		2	2	3				3					2
5	3		3		3				2					

ancis Xavier Engineering	College Dept of	^F EEE, R2019 N	1E- PED/2021-0	Curriculum and	Syllabi
BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	10	10	5	5	10
UNDETSTAND	30	30	10	10	30
APPLY	60	60	10	10	60
ANALYZE	0	0	0	0	0
EVALUATE	0	0	0	0	0
CREATE	0	0	0	0	0
	100	100	25	25	100

1-Low , 2- Medium, 3- High

21EE2601	Modelling and Simulation of Power Electronics	L	Т	Р	С
	Systems	3	0	0	3

Preamble

Power electronics simulation should be considered for the following tasks: Designing and validating new topologies and control strategies. Optimizing system behavior using model libraries of energy sources, power semiconductors, passive circuit elements, and machines such as PMSM and induction motors.

Prerequisites for the course

1. Power Electronics lab

- 2. Analysis of Power Converters
- 3. Numerical methods

Objectives

- 1. Develop the mathematical models for the different power electronic converters.
- 2. Demonstrate the Application of Power Electronic semiconductors using MATLAB SIMULINK
- 3. Illustrate mathematical modelling and simulation of single and three phase rectifiers with R, R-L and R-L-E load using MATLAB and SIMULINK.
- 4. Simulate various power converters using simulation software like PSPICE and MATLAB SIMULINK

incis Auvier En	gineering College I	Dept of EEE, R2019 ME- PED/2021-0	curriculum	unu Synubi
5. Analyze	e power electronics	s circuits for different loads.		
UNIT I		INTRODUCTION		9
Need for simu of PSPICE, M Switched R,L,F	lation – Challenges IATLAB and SIMU R-L, R-C and R-L-C c	s in simulation – Classification of s LINK. Review of numerical meth circuits. Extension to A.C circuits.	simulation lods to sol	programs – Overvie lve transients in D
UNIT II	MODELI S	NG AND SIMULATION OF POWE	R	9
Modelling and numerical me snubber circui	l simulation of die thods to power el ts (Using MATLAB	ode, SCR, TRIAC, IGBT and pow lectronic switches – Simulation and PSPICE).	ver transist of gate/ba	tors – Application se drive circuits a
UNIT III	MODELING	AND SIMULATION OF RECTIFIE	ERS	9
Mathematical with R, R-L and	nodeling and sime d R-L-E load using l	ulation of single and three phase MATLAB and SIMULINK.	semi, fully	v controlled rectifie
UNIT IV	MODELIN	G AND SIMULATION OF CHOPPE	RS	9
IINIT V	MODELING	ς and simili ation of invedti	7 R S	Q
UNIT V Mathematical R, R-L loads us	MODELING modelling and simu sing MATLAB and S	G AND SIMULATION OF INVERTH ulation of single and three phase h IMULINK.	ERS nalf and ful	9 l bridge inverter w
UNIT V Mathematical R, R-L loads us	MODELING modelling and simu sing MATLAB and S	G AND SIMULATION OF INVERTH ulation of single and three phase h IMULINK. Tot a	ERS half and ful al Periods	9 l bridge inverter wi 45
UNIT V Mathematical R, R-L loads us Suggestive As	MODELING modelling and simu sing MATLAB and S	G AND SIMULATION OF INVERTE ulation of single and three phase H IMULINK. Tota	E RS half and ful al Periods	9 l bridge inverter wi 45
UNIT V Mathematical R, R-L loads us Suggestive As Continuous A	MODELING modelling and simu sing MATLAB and S sessment Method ssessment Test	G AND SIMULATION OF INVERTE ulation of single and three phase h IMULINK. Tota s Formative Assessment Test	ERS half and ful al Periods End Sen	9 l bridge inverter wi 45 nester Exams
UNIT V Mathematical R, R-L loads us Suggestive As Continuous A (30 Mar	MODELING modelling and simu sing MATLAB and S sessment Method ssessment Test 'ks)	G AND SIMULATION OF INVERTE ulation of single and three phase H IMULINK. Tota s Formative Assessment Test (10 Marks)	ERS half and ful al Periods End Sen (60 Mar	9 l bridge inverter wi 45 nester Exams ks)
UNIT V Mathematical R, R-L loads us Suggestive As Continuous A (30 Mar WRIT	MODELING modelling and simu sing MATLAB and S sessment Method ssessment Test 'ks)	G AND SIMULATION OF INVERTE ulation of single and three phase h IMULINK. Tota s Formative Assessment Test (10 Marks) 1.ASSIGNMENT	ERS half and ful al Periods End Sen (60 Mar W	9 l bridge inverter wi 45 nester Exams ks) /RITTEN TEST
UNIT V Mathematical R, R-L loads us Suggestive As Continuous A (30 Mar WRIT	MODELING modelling and simu sing MATLAB and S sessment Method ssessment Test rks) TTEN TEST	G AND SIMULATION OF INVERTE ulation of single and three phase h IMULINK. Tota s Formative Assessment Test (10 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES	ERS half and ful al Periods End Sen (60 Mar W	9 l bridge inverter w 45 nester Exams ks) /RITTEN TEST
UNIT V Mathematical R, R-L loads us Suggestive As Continuous A (30 Mar WRIT	MODELING modelling and simu sing MATLAB and S sessment Method ssessment Test 'ks) TTEN TEST	G AND SIMULATION OF INVERTH ulation of single and three phase h IMULINK. Tota s Formative Assessment Test (10 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES	ERS half and ful al Periods End Sen (60 Mar W	9 l bridge inverter w 45 nester Exams ks) /RITTEN TEST
UNIT V Mathematical R, R-L loads us Suggestive As Continuous A (30 Mar WRIT	MODELING modelling and simu sing MATLAB and S sessment Method ssessment Test 'ks) TTEN TEST	G AND SIMULATION OF INVERTH ulation of single and three phase H IMULINK. Tota s Formative Assessment Test (10 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES	ERS half and ful al Periods End Sen (60 Mar W	9 l bridge inverter wi 45 nester Exams ks) /RITTEN TEST
UNIT V Mathematical R, R-L loads us Suggestive As Continuous A (30 Mar WRIT Outcomes Upon comple	MODELING modelling and simu sing MATLAB and S sessment Method ssessment Test 'ks) TTEN TEST	G AND SIMULATION OF INVERTH ulation of single and three phase H IMULINK. Totals Formative Assessment Test (10 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES	ERS half and ful al Periods End Sen (60 Mar W	9 l bridge inverter wi 45 nester Exams ks) /RITTEN TEST
UNIT V Mathematical R, R-L loads us Suggestive As Continuous A (30 Mar WRIT Outcomes Upon complet 1 Develop	MODELING modelling and simu sing MATLAB and S sessment Method ssessment Test rks) TTEN TEST tion of the course, mathematical mod	G AND SIMULATION OF INVERTH ulation of single and three phase H IMULINK. Tota s formative Assessment Test (10 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES , the students will be able to: els for DC and AC circuits.	ERS half and ful al Periods End Sen (60 Mar W	9 l bridge inverter wi 45 nester Exams ks) /RITTEN TEST
UNIT V Mathematical R, R-L loads us Suggestive As Continuous A (30 Mai WRIT Outcomes Upon complet 1 Develop 2 Model ar	MODELING modelling and simu sing MATLAB and S sessment Method ssessment Test 'ks) TTEN TEST tion of the course, mathematical mod	G AND SIMULATION OF INVERTH ulation of single and three phase h IMULINK. Tota s formative Assessment Test (10 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES , the students will be able to: els for DC and AC circuits.	ERS half and ful al Periods End Sen (60 Mar W	9 I bridge inverter wi 45 nester Exams ks) /RITTEN TEST

4 Model and simulate power electronics controlled rectifiers.

5 Analyze power electronic DC-DC converters using simulation software.

Text Books

- 1. Robert Ericson, "Fundamentals of Power Electronics", Springer Publication 2020
- 2. Power Electronics | Devices, Circuits and Applications | Fourth Edition | Pearson Paperback

- 28 November 2017

Reference Books

- 1. Simulink reference manual, Math works, USA
- 2. Joseph Vithayathil, "Power Electronics: Principles and Applications", Delhi, Tata McGraw Hill,2010
- 3. P.S.Bimbra, "Power Electronics", New Delhi, Khanna Publishers, 2012
- 4. M.H.Rashid, "SPICE for circuits and Electronics using PSPICE", Prentice Hall, 2011

Web Resources

- 1. <u>https://nptel.ac.in/courses/103/106/103106118/</u>
- 2. https://nptel.ac.in/courses/117/105/117105147/
- 3. https://nptel.ac.in/courses/108/102/108102145/

CO Vs PO Mapping and CO Vs PSO Mapping

60	PO	P01	P01	P01	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	2	1	2
1	2		3	3	1			2		2			3	
2	2		3	3	1			2		2			3	
3	2		3	3	1			2		2			3	
4	2		3	3	1			2		2			3	
5	2		3	3	1			2		2			3	

Francis Xavier Engineering College | Dept of EEE, R2019 ME- PED/2021-Curriculum and Syllabi **BLOOMS LEVEL ASSESSMENT PATTERN**

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	20	20	10	10	20
UNDETSTAND	30	30	10	10	30
APPLY	40	40	5	5	40
ANALYZE	0	0	0	0	0
EVALUATE	0	0	0	0	0
CREATE	0	0	0	0	0
	100	100	25	25	100

1-Low , 2- Medium, 3- High

24052740	ΙΝΤΕΙ Ι ΙζΕΝΤ ζΟΝΤΡΟΙ ΟΓ ΕΙ ΕζΤΡΙζ ΡΡΙΜΕς	L	Т	Р	C
21PE3/10	INTELLIGENT CONTROL OF ELECTRIC DRIVES	3	0	0	3
		5	U	U	5
Preamble					
This course air	ns to explore new areas of induction motor control based or	n arti	ficial	intell	ligence
(AI) technique	s in order to make the controller less sensitive to parameter	chai	nges.	Selec	ted AI
techniques are	applied for different induction motor control strategies.				
Prerequisites	for the course				
1. Power B	llectronics				
Objectives					
1. To understa	nd the fundamentals of Vector Control of Induction Motor				
2. To familiari	ze on Sensor less Vector Control of Induction Motor.				
3. To realize o	n Control of Synchronous Motor Drives				
4. To compreh	end on Control of Switched Reluctance Motor Drives				
5. To enlighter	n on Control of BLDC Motor Drives				
UNIT I	INTRODUCTION			9	
Introduction:	Concepts, and classification of Electric drives. Selection of a	moto	s. D	ynam	ics of
Electric drive	s: Types of loads, Multi quadrant operations, motor dynamics	stead	y sta	te sta	bility
and transient	stability. Rating and Heating of motors: Heating effects, heatin	g and	cool	ling cu	ırves,
classes of dut	y, load equalization, environmental factors.				
L				10	
				10	5

	Xavier Eng	ineering College De	ept of EEE, R2019 ME- PED/2021-Cu	rrıculum	and Syllabi
U	NIT II		DC MOTOR DRIVES		9
Basi driv char	c characte es, Dual c 1ges in suj	eristics, Operating r converters drives, (oply voltage and loa	nodes, Single phase and three phas Chopper drives, Rheostat and rego Id torque, closed loop control schen	se contro enerative nes.	olled rectifier fed D e braking, effects o
U	NIT III		AC MOTOR DRIVES		9
Indu Slip Curr cont	iction mot power re rent contr rrol schem	cor drives, stator vo covery, Concepts o ol method. Need fo e.	oltage control, stator impedance co f Static Kramer drives and Static S or harmonic filter, Closed loop com	ntrol, ro chermie ntrol. Int	tor voltage control 's drive, V/f contro roduction to vecto
U	NIT IV	S	YNCHRONOUS MOTORS		9
ynch varial	ironous n ole freque	notors: Speed torq ncy operation mode	ue characteristics and torque ang es, Self-control modes.	gle chara	acteristics. Fixed a
U	NIT V		SPECIAL MACHINES		9
Brush	iless DC m	otor, Switched Relı	actance Motor, Introduction to the r	elevant	converter circuits.
			Total	Periods	45
Sugge	estive Ass	essment Methods			
Con	tinuous A	Assessment Test	Formative Assessment Test	End	Semester Exams
	(30	Marks)	(10 Marks)		(60 Marks)
	WRIT	ΓΕΝ ΤΕՏΤ	1.ASSIGNMENT	W	RITTEN TEST
			2. ONLINE QUIZZES		
			3.PROBLEM-SOLVING		
			ACTIVITIES		
Jutco	omes				
Jpon	complet	on of the course, t	he students will be able to:		
1	Apply the	e Vector Control of I	nduction Motor		
2	Demonst	rate the Sensor less V	Vector Control of Induction Motor.		
3	Impleme	nt the Control of Syn	chronous Motor Drives.		
4	Execute	he Control of Switch	ned Reluctance Motor Drives.		
5	Interpret	the Control of BLDC	C Motor Drives.		
[ext]	Books				
		Dubey Fundament	als of Electrical Drives, Narosa Pub	lishing H	louse, 2001.
1.	Gopal K.	Dubcy, I unuament	alb of Breethear Diffed, fai oba i ab	- 0	•
1. 2.	Gopal K. R.Krishr	an, "Electric Motor	r Drives – Modeling, Analysis and	l Contro	l", Prentice- Hall (

3. VedamSubramanyam, "Electric Drives – Concepts and Applications", Tata McGraw-Hillpublishing company Ltd., New Delhi, 2002.

Reference Books

- 1. Modern Power Electronics and AC Drives –B. K. Bose-Pearson Publications, 2000
- 2. Power Electronics control of AC motors MD Murphy & FG Turn Bull Pergman Press -1st edition-1998.

Web Resources

- 1. <u>http://www.digimat.in/nptel/courses/video/108104049/L04.html</u>
- 2. http://www.nptelvideos.in/2012/11/advanced-electric-drives.html

<u> </u>	PO	P01	P01	P01	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	2	1	2
1	2	1	2		2								2	
2	3	2		1	1								2	
3	2	1	2		2								2	
4	3	1	2			1								2
5	3	1	2			1								2

CO Vs PO Mapping and CO Vs PSO Mapping

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	20	20	10	10	20
UNDETSTAND	30	30	10	10	30
APPLY	20	20	10	10	20
ANALYZE	15	15	10	10	15
EVALUATE	15	15	10	10	15

				10111
	II a a al Marak ak	$\mathbf{F}\mathbf{F}\mathbf{F}\mathbf{F}$ D $\mathbf{D}\mathbf{D}\mathbf{D}\mathbf{D}\mathbf{D}\mathbf{D}\mathbf{D}\mathbf{D}\mathbf{D}\mathbf{D}$	DED /////// //	
μ	11/1/1/11 11/1/14 11/1		DLIN////////////////////////////////////	n n n n n n n n n n
		FFF AZING WF-	E E I I / / I I / I = I III I II III IIII	
0 0			/	

CREATE	0	0	0	0	0
	100	100	50	50	100

1-Low, 2- Medium, 3- High

21PE3711	ENERGY STORAGE SYSTEMS	L	Т	Р	C
		3	0	0	3
Preamble			I		1
This course pr system in India storage manage	ovide the conceptual knowledge on energy storage system and ene . It is essential and significant to build sophisticated features in ele ement	ergy n ectrica	ianaş l ene	geme ergy	nt
Prerequisites	for the course				
• Power E	Electronics and Drives				
• Renewa	ble Energy System				
Objectives					
1. To impa	rt knowledge on Basic concepts of different energy storage system	1S.			
2. To analy	vse the entire Hydrogen energy systems and its storage techniques				
3. To diffe	rentiate the different types of Energy storage system using batterie	es.			
4. To deter	rmine different Battery Charging techniques, Charge Controllers ar	nd its	chal	lenge	S
5. To analy	vse the Energy storage system using fuel-cell.				
UNITI	ENERGY STORAGE METHODS		9		
Need for Energy	gy storage-Different energy storage Methods- Mechanical energy	y stora	age:	Pump	ed
storage, Comp	ressed air storage - Electromagnetic storage-Electrostatic storag	e-The	erma	l ene	ſgy
storage: Sensib	le heat storage, Latent heat storage-Different methods of chemic	al Ene	ergy	stora	ge-
Reversible Che	mical Storage.				
UNIT II	DESIGN OF POWER CONVERTER COMPONENTS		9		
Francis Xavier Engineering College | Dept of EEE, R2019 ME- PED/2021-Curriculum and Syllabi

Block diagram of Hydrogen energy systems - Properties of Hydrogen - Extraction methods of Hydrogen: Thermo chemical methods - Electrolysis of water-Thermolysis of water- Biophotolysis -Hydrogen storage techniques Delivery of Hydrogen-Conversion of Hydrogen - Applications-Safety Issues.

UNIT IIIENERGY STORAGE USING BATTERIES9Batteries - Construction and working - Elements of electrochemical cell-operation of
electrochemical cell Theoretical cell voltage and capacity-Losses in a cell-Battery classification-
Constructions and working principle of Lead Acid battery-Nickel Cadmium batteries-Lithium-ion
batteries-Battery parameters: Battery capacity, Battery Voltage, Depth of discharge-Battery life
cycle-Discharge/charge rate, Self discharge-Ragone Plots.9

UNIT IV BATTERY CHARGING AND CHARGE CONTROLLERS

9

9

Factors affecting battery performance: Battery voltage level, Battery Discharge current, Battery Temperature during discharge-Factors affecting Choice of a battery-Battery charging and discharging methods-Charge controllers for stand-alone PV system-Types of charge controllers for stand-alone PV system: Shunt type, Series type, DC-DC converter type, MPPT charge controller – Power stage and control scheme for battery charging using DC-DC converter-Flow chart for battery charging.

UNIT V

FUEL CELL

Introduction-Advantages-Applications-Classification of fuel cells- Construction and working of Phosphoric Acid fuel cell-Alkaline Fuel cell-Polymer Electrolyte Membrane Fuel cell-Fuels for Fuel Cells-Efficiency of Fuel cell-VI characteristics of Fuel Cell-Power Electronics controller for fuel cell.

	Tota	al Periods	45	
Suggestive Assessment Method	S	I		
Continuous Assessment Test	Formative Assessment Test	End Sem	ester Exams	
(30 Marks)	(10 Marks)	(60 Marks)		
1. DESCRIPTIVE TYPE QUESTIONS 2. FORMATIVE MULTIPLE CHOICE QUESTIONS	1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES	1. DESCR QUESTIO 2. FORMA MULTIPL QUESTIO	IPTIVE TYPE NS ATIVE LE CHOICE NS	
Outcomes		[
Upon completion of the course	the students will be able to:			

Francis Xavier Engineering College/ Dept of EEE, R2019 ME- PED/2021-Curriculum and Syllabi

uncis	xuver Engineering coneger Dept of EEE, K2017 ME-TED/2021 Currentum and Synabl
1	Understand the various basic concepts of energy storage systems and its practical
	applications
2	Analyse the Hydrogen energy system and its designing of the power converter components
3	Understand and develop the energy storage system using batteries.
4	Ability to construct the Energy storage system, Charging techniques, Charge Controllers and challenges of Battery
5	Analyse the role of fuel cell and its controller for real time applications.
Text	Books
1.	KonradMertens, "Photovoltaics Fundamentals, Technology, and Practice", Wiley Publication, 2nd Edition, 2018

2. Khan B.H.,"Non-Conventional Energy Resources", Tata McGraw Hill Publication, 3rd Edition, 2016.

Reference Books

1. Robert A. Huggins, "Energy Storage: Fundamentals, Materials and Applications", Springer, 2015.

2. AmitSoni, DharmendraTripathi, JagratiSahariya, Kamal Narayan Sharma, "Energy Conversion and Green Energy Storage", CRC Press, 2022

Web Resources

1. https://archive.nptel.ac.in/courses/113/105/113105102/

CO Vs PO Mapping and CO Vs PSO Mapping

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	PSO1	PSO2
1	3	3				2	2	2			3	
2	3	3				2		3			3	
3	3	3		2		2	3	3			3	
4	3	3		2		2	3	3			3	
5	3	3		3		2		3			3	

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS	CAT 1	CAT 2	FAT 1	FAT 2	END SEM
--------	-------	-------	-------	-------	---------

Francis Xavier Engineering College/ Dept of EEE, R2019 ME- PED/2021-Curriculum and Syllabi								
	CATEGORY					EXAM		
	REMEMBER	10	10	2	3	10		
	UNDETSTAND	10	10	3	2	10		
	APPLY	30	30	10	10	30		
	ANALYZE	50	50	10	10	50		
	EVALUATE	0	0	0	0	0		
	CREATE	0	0	0	0	0		
		100	100	25	25	100		