Francis Xavier Engineering College

(An Autonomous Institution) Tirunelveli 627 003 Tamil Nadu India

Department of EEE

M. E - Power Systems Engineering

2021 CURRICULUM AND SYLLABI

CHOICE BASED CREDIT SYSTEM

Regulations 2019

Vision of the Department

"To be a Centre of Excellence for Technology transformation in the field of Electrical and Electronics Engineering"

Mission of the Department

- 1. To empower the vibrant young leaders with technical skills and knowledge in the field of technology
- 2. To facilitate the industries to adopt effective solutions in the field of Electrical and Electronics Engineering through consultancy
- 3. To transform technology for rural needs.

Table of Content

S.No	Content	Page No
1	Programme Educational Outcomes (PEOs)	3
2	Programme Specific Objectives (PSOs)	4
3	Programme Outcomes(POs)	5
4	Mapping with PO Vs PEO, PSO	6
5	Summary Of Credit Distribution	7
6	I-IV Semester Curriculum and Syllabi	8
7	List of Professional Electives Courses	11
8	List of Open Electives Courses	36

Programme Educational Outcomes (PEOs)

PEO1: To produce electrical Power Systems post graduates, who are employable in public and private industries/Institutes/Organization, or pursue higher education.

PEO2: To prepare graduates who have the ability to identify and address current and future problems in the domain of power systems, power electronics and drives.

PEO3: To inculcate research attitude and lifelong learning among graduates

Programme Specific Objectives (PSOs)

PSO 1: Integrate the knowledge of, power Systems and Switch gears for the controllability, reliability and sustainability of electrical systems.

PSO2: Contribute for the development of power grid and integrating green energy on it to meet the increasing demand of the society.

Programme Outcomes (POs)

Engineering Graduates will be able to:

- 1. Graduates will be able to demonstrate the principles and practices of the electrical power industry regarding generation, transmission, distribution and electrical machines and their controls.
- Graduates will be able to apply their knowledge of electrical power principles, as well as mathematics and scientific principles, to new applications in electrical power.
- 3. Graduates will be able to perform, analyze, and apply the results of experiments to electrical power application improvements.
- 4. Graduates will be able to look at all options in design and development projects and creativity and choose the most appropriate option for the current project.
- 5. Graduates will function effectively as a member of a project team.
- 6. Graduates will be able to identify problems in electrical power systems, analyze the problems, and solve them using all of the required and available resources.
- 7. Graduates will be able to effectively communicate technical project information in writing or in personal presentation and conversation.
- 8. Graduates will be engaged in continuously learning the new practices, principles, and techniques of the electrical power industry.
- 9. Graduates will work on application software packages for power system analysis and design.
- 10. Graduates will develop indigenous software packages for power system planning and operational problems of utilities.

Mapping with PO Vs PEO, PSO

PO	PEO1	PEO2	PEO3	PSO1	PSO2
1	X			X	
2		X			X
3			X	X	
4		X		X	
5	X				X
6		X		X	
7	X				X
8			X	X	
9		X			X
10	X				X

FRANCIS XAVIER ENGINEERING COLLEGE

M.E. – POWER SYSTEMS ENGINEERING REGULATIONS 2019 Choice Based Credit System and Outcome Based Education

S.No	Category	(Credit Dis	stributio	n	Total Credits	Credits in %
		Ι	II	III	IV		
1	HSSM						
2	BS	4				4	5.4
3	EC						
4	РС	16	15			31	42.4
5	PE	3	6	9		18	24.6
6	OE						
7	EEC		2	6	12	20	27.3

SUMMARY OF CREDIT DISTRIBUTION

Minimum Number of Credits to be Acquired: 73

- HSS Humanities and Social Sciences including Management
- **BS Basic Science**
- **ES Engineering Sciences**
- PC Professional Core
- PE Professional Elective
- OE Open Elective/Programme Specific Elective for Expandable Scope
- EEC Employability Enhancement Course

FRANCIS XAVIER ENGINEERING COLLEGE

M.E. – POWER SYSTEMS ENGINEERING REGULATIONS 2021

Choice Based Credit System and Outcome Based Education

I-IV Semester Curricula and Syllabi

SEMESTER I

S.No	Course Code	Course Name	Ca teg or	Contact Periods	L	Τ	Р	С
			У					
Theo	ry Courses							
1	21MA1253	Advanced Engineering Mathematics	BS	4	3	1	0	4
2	21PS1601	Advanced Power System Modeling and Analysis	PC	3	3	0	0	4
3	21PS1602	State Estimation and Security Control of Power Systems	PC	4	3	1	0	3
4	21PS1603	Power System Operation and Control	PC	3	3	0	0	3
5	21PE1604	Power Quality Analysis and Mitigation Techniques	PC	4	3	1	0	4
6		Professional Elective I	PE	3	3	0	0	3
Pract	tical Courses						•	
1	21PS1611	Power System Simulation Laboratory	PC	4	0	0	4	2
	•	· · · · · · · · · · · · · · · · · · ·	Гotal	25	18	3	4	23
		SEMESTER II		1				

SEMESTER II

S.No	Course Code	Course Name	Catego ry	Contact Periods	L	Т	Р	С
Theo	ry Courses	I						
1	21PS2601	Digital Protection for Power System	PC	3	3	0	0	3
2	21PS2602	Power Systems Stability	РС	3	3	1	0	4
3	21PS2603	Restructured Power System	РС	3	3	0	0	3
4	21PS2604	Energy Management and Auditing	РС	3	3	0	0	3
5		Professional Elective II	PE	3	3	0	0	3
6		Professional Elective III	PE	3	3	0	0	3
Pract	ical Courses							
1	21PS2611	Advanced Power System Simulation Laboratory	РС	4	0	0	4	2
2	21PS2911	Innovative Project	EEC	2	0	0	2	2
			Total	24	18	0	6	23

SEMESTER III

S.No	Course Code	Course Name	Catego ry	Contact Periods	L	Т	Р	С
Theo	ry Courses							
1		Professional Elective IV	PE	3	3	0	0	3
2		Professional Elective V	PE	3	3	0	0	3
3		Professional Elective VI	PE	3	3	0	0	3
Pract	ical Courses							
1		Project Work Phase I	EEC	12	0	0	12	6
			Total	21	09	0	12	15

SEMESTER IV

S.No	Course Code	Course Name	Catego ry	Contact Periods	L	Τ	Р	С
Pract	ical Courses							
1		Project Work Phase II	EEC	24	0	0	24	12
			Total	24	0	0	24	12

Minimum Number of Credits to be Acquired: 73

List of Professional Electives Courses

S.No	Course Code	Course Name	Semes ter	L	Т	Р	C	Stream/Do main
Profe	ssional Elec	tive I						
1	21PS1701	Power Distribution System Reliability	Ι	3	0	0	3	Electrical machines
2	21PE1601	Analysis and Design of Power Electronic Converters	Ι	3	0	0	3	Power Electronics
3	21PS1702	Electrical Distribution System	Ι	3	0	0	3	Power Systems
4	21PS1703	Computer Aided Power System analysis	Ι	3	0	0	3	Power Systems
Profe	essional Elec							
1	21PS2701	Principles of Smart Grid	II	3	0	0	3	Power Systems
2	21PE2601	Generalized Machine Theory	II	3	0	0	3	Control Systems
3	21PE2603	Modern Control Theory	II	3	0	0	3	Power Systems
4	21PS2702	Flexible AC Transmission Systems	II	3	0	0	3	Power Systems
Profe	essional Elec	tive III						
1	21PS2703	Distributed Generation and Microgrid	II	3	0	0	3	Power Systems
2	21PE2706	Electromagnetic Interference and Compatibility	II	3	0	0	3	Field Theory
3	21PE2709	Embedded System Design	II	3	0	0	3	Embedded System
4	21PE2705	Modern Rectifiers and Resonant Converters	II	3	0	0	3	Power Electronics
Profe	essional Elec	tive IV						
1	21PE3706	Integrated Circuits for Power Conversion	III	3	0	0	3	Power Electronics
2	21PS3701	High Voltage Direct Current Transmission	III	3	0	0	3	Power Systems
3	21PS3702	SCADA	III	3	0	0	3	Power Systems
4	21PE3702	Wind Energy Technologies	III	3	0	0	3	Renewable Energy
Profe	essional Elec	tive V						
1	21PS3703	Electrical Transients in Power System	III	3	0	0	3	Power Systems
2	21PE3704	Hybrid Electric Vehicles	III	3	0	0	3	Electrical machines
3	21PS3704	Principles of Electric Power Transmission	III	3	0	0	3	Power Systems
4	21PE3707	MEMS Technology	III	3	0	0	3	Electrical

Profe	essional Elec	tive VI						
1	21PS3705	Advanced Power System Dynamics	III	3	0	0	3	Power
	21133703			3	0	0	3	Systems
2	21PS3706	Design of Substations	III	3	0	0	2	Power
	21935700			3	0	0	3	Systems
3	21PE3708	Power Electronics for Renewable	III	3	0	0	2	Renewable
	21963/08	Energy Systems		3	0	0	З	Energy
4	21PS3707	Power Plant Instrumentation and	III	3	0	0	2	Instrumentati
	21135/0/	Control		3	0	0	3	on

Semester I

Francis Xavier Engineering College/ Dept of EEE, R2019 ME- PSE/2021-Curriculum and Syllabi Course Code **ADVANCED ENGINEERING MATHEMATICS** L Т Ρ С 21MA1253 3 1 0 4 **Prerequisites for the course Engineering Mathematics Objectives** 1. The main objective of this course is to demonstrate various analytical skills in applied mathematics and extensive experience with the tactics of problem solving and logical thinking applicable for the students of electrical engineering. 2. This course also will help the students to identify, formulate, abstract, and solve problems in electrical engineering using mathematical tools from a variety of mathematical areas, including matrix theory, calculus of variations, probability, linear programming and Fourier series. UNIT I MATRIX THEORY 12 Cholesky decomposition-Generalized Eigenvectors-Canonical basis-QR Factorization-Least squares method-Singular value decomposition. UNIT II **CALCULUS OF VARIATIONS** 12 Concept of variation and its properties-Euler's equation-Functional dependant on first and higher order derivatives-Functionals dependant on functions of several independent variables-Variational problems with moving boundaries–Isoperimetric problems-Direct methods : Ritz and Kantorovich methods. **UNIT III PROBABILITY AND RANDOM VARIABLES** 12 Probability-Axioms of probability-Conditional probability-Baye's theorem-Random variables-Probability function-Moments-Moment generating functions and their properties-Binomial, Poisson, Geometric, Uniform, Exponential, Gamma and Normal distributions-Function of a random variable. UNIT IV LINEAR PROGRAMMING 12 Formulation–Graphical solution–Simplex method–Big M method-Two phase method-Transportation and Assignment models. UNIT V **FOURIER SERIES** 12 Fourier trigonometric series : Periodic function as power signals-Convergence of series-Even and odd function : Cosine and sine series-Non periodic function : Extension to other intervals-Power signals : Exponential Fourier series–Parseval's theorem and power spectrum–Eigen value problems and orthogonal functions-Regular Sturm-Liouville systems-Generalized Fourier series.

	Total I	Periods	60
Suggestive Assessment Method	le l		
Continuous Assessment Test	Formative Assessment Test	End Seme	ster Exams
(30 Marks)	(10 Marks)	(60 Marks	
1. DESCRIPTION QUESTIONS	1.ASSIGNMENT	1. DESCRI	
2. FORMATIVE MULTIPLE	2. ONLINE QUIZZES	QUESTION	
CHOICE QUESTIONS		<i>2. FORMA</i>	TIVE MULTIPLE
	3.PROBLEM-SOLVING ACTIVITIES	CHOICE QU	
Outcomes			
Upon completion of the course	, the students will be able to: matrix theory to solve system of lin		
CO 4: Could develop a fundamen develop a linear programmethod for Solving linear	oles and functions of a random varia tal understanding of linear program ning model from problem description programming problems. d its uses in representing the power	nming mode on, apply th	
Reference Books			
books after 2015 need to be su			. .
	llips R.L., "Mathematical Tech	niques for	Engineers an
Scientists",Prentice Hall of	f India Pvt. Ltd., New Delhi, 2005.		
2. Bronson, R. "Matrix Opera	tion", Schaum's outline series, 2ndl	Edition, McG	raw Hill, 2011.
3. Elsgolc, L. D. "Calculus of V	Variations", Dover Publications, New	w York, 2007	7.
4. Johnson, R.A., Miller, I a	nd Freund J., "Miller and Freund	d's Probabil	ity and Statistic
forEngineers". Pearson Ed	ucation, Asia, 8thEdition, 2015.		
-	ngineering Mathematics", Thoms	on Asia Pvt	Ltd Singanor
2003.	ingineering mathematics , monio		. Leal, Shigapor
	Deservels Are Introduction," Oth		
	Research, An Introduction",9th	Edition, Pe	arson educatioi
NewDelhi, 2016.			
Web Recourses 1. https://nptel.ac.in/cour	ses/111102012/		

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	PS01	PSO2
1	3	3								2		3
2	3	3								2	2	
3	3	3								2		3
4	3	3								2	3	
5	3	3								2		2

Course Code	ADVANCED POWER SYSTEM MODELING AND ANALYSIS	L	Τ	Р	С
21PS1601		4	1	0	4
Prerequisites for	the course	1	I		
Transmissi	on and Distribution				
Power Plan	t Engineering				
• High Voltag	ge Engineering				
Power Syst	em Analysis				
Objectives					
1. To d	iscuss different techniques dealing with sparse matrix f	or lar	ge s	cale p	ower
syste	ms.				
2. To ex	xplain different methods of power flow solutions.				
3. To so	olve optimal power flow problem.				
4. To a	nalyze various types of short circuit faults analysis	and	unde	rstan	d the
cons	equence of different type of faults.				
5. To d	emonstrate different numeric al integration methods an	d fac	tors	influe	ncing
trans	sient stability.				
UNIT I	SPARSE MATRIX TECHNIQUES			12	
Optimal ordering	schemes for preserving sparsity. Flexible packed storag	e sch	eme	for st	oring
matrix as compa	ct arrays – Factorization by Bifactorization and Gauss (elimin	atio	n met	hods;
Repeat solution us	sing Left and Right factors and L and U matrices.				
UNIT II	INCIDENCE AND MATRICES			12	
		<u> </u>			

Francis Xavier Engineering College/ Dept of EEE, R2019 ME- PSE/2021-Curriculum and Syllabi Introduction - graphs - incidence matrices formation - YBus, YBR and Zloop by singular transformation, single phase modeling of transmission lines, off-nominal transformer tap representation and phase shift representation - formation of Ybus with direct inspection method. UNIT III **POWER FLOW ANALYSIS** 12 Power Flow Analysis: Formulation of power flow problem - solution through Gauss-Seidel method, Newton Raphson method - decoupled and fast decoupled power flow solutions - DC power flow solution – comparison of GS – NR – FDC method. Study of Power flow solution with FACTS devices - Renewable Energy Sources - Solar and Wind Energy Sources. UNIT IV **CONTINGENCY ANALYSIS** 12 Adding and removing multiple lines, piece wise solution of interconnected systems, analysis of single and multiple contingencies, Contingency analysis by DC Model. UNIT V TRANSIENT STABILITY ANALYSIS 12 Introduction, Numerical Integration Methods: Euler and Fourth Order Runge-Kutta methods, Algorithm for simulation of SMIB and multi-machine system with classical synchronous machine model; Factors influencing transient stability, Numerical stability and implicit Integration methods. **Total Periods** 45 + 15**Suggestive Assessment Methods Continuous Assessment Test Formative Assessment Test End Semester Exams** (30 Marks) (10 Marks) (60 Marks) **1. DESCRIPTION QUESTIONS 1.ASSIGNMENT 1. DESCRIPTION 2. FORMATIVE MULTIPLE OUESTIONS 2. ONLINE QUIZZES CHOICE QUESTIONS** 2. FORMATIVE MULTIPLE **CHOICE QUESTIONS 3.PROBLEM-SOLVING** ACTIVITIES **Outcomes** Upon completion of the course, the students will be able to: **CO 1:** Ability to apply the concepts of sparse matrix for large scale power system analysis. **CO 2:** Ability to analyze power system studies that needed for the transmission system planning. **CO 3:** Able to solve optimal power flow problems. **CO 4:** Able to analyse short circuit faults and understand the consequence faults. **CO 5:** Ability to understand AI integration methods and factors influencing transient stability. **Text Books**

- 1. B.W Williams 'Power Electronics Circuit Devices and Applications'..
- 2. A.J.Wood and B.F.Wollenberg, "Power Generation Operation and Control", John Wiley and sons, New York, 1996.
- 3. W.F.Tinney and W.S.Meyer, "Solution of Large Sparse System by Ordered Triangular Factorization" IEEE Trans. on Automatic Control, Vol : AC-18, pp:333-346, Aug 1973.
- K.Zollenkopf, "Bi-Factorization: Basic Computational Algorithm and Programming Techniques; pp:75-96 ; Book on "Large Sparse Set of Linear Systems" Editor: J.K.Rerd,Academic Press, 1971.
- 5. M.A.Pai," Computer Techniques in Power System Analysis", Tata McGraw-Hill Publishing Company Limited, New Delhi, 2006.
- 6. G W Stagg , A.H El. Abiad, "Computer Methods in Power System Analysis", McGraw Hill, 1968.
- 7. P.Kundur, "Power System Stability and Control", McGraw Hill, 1994.

Web Recourses

- https://presentgroup.com.au/power-system-modelling-and-analysis/
- https://www.osti.gov/servlets/purl/1083672
- https://link.springer.com/chapter/10.1007/978-3-319-02393-9_2
- http://www.optimisedenergysolutions.com/services-modellingandanalysis.aspx
- https://www.engineersaustralia.org.au/Event/power-system-modelling-and-analysispresentation

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	PSO1	PSO2
1	3		2					3		2		
2	3		2					3		2	3	
3		2	2			3		3		2		3
4	3			3		3		3		2	2	
5		3		3		3		3		2		3

Course Code 21PS1602	STATE ESTIMATION AND SECURITY CONTROL OF POWER SYSTEMS	L	T	Р	С
21P51602		3	0	0	3
Prerequisites fo	r the course				
• Pov	wer System Analysis				
• Pov	wer System operation and control				
• Pov	wer Generation and Distribution				
Objectives					
1. To acqui	re fundamental knowledge in power system state estimation				
2. To explo	re the strategies for state estimation in power system operat	ions.			
3. To perfor	rm observability analysis in the power system networks				
4. To gain k	nowledge in distribution system state estimation				
5. To get co	nceptual aspects in power system state estimation and strat	egies	to er	nhanc	e
the secure	power system operations.				
UNIT I	INTRODUCTION			9	
State estimation-	Energy management system- SCADA system- Energy con	trol (cente	ers Se	curity
monitoring and	control- Concepts of reliability, security and stability - S	State	trans	sition	s and
control strategies	s- Data acquisition systems - Modulation techniques, MODEN	IS, Po	wer	line c	arrier
communication.					
UNIT II	POWER SYSTEM STATE ESTIMATION			9	
Static state estim	ation: Active and reactive power bus measurements - Line	flow	meas	urem	ents -
Line current mea	surements – Bus voltage measurements - Measurement mod	lel an	d ass	sumpt	ions -
Weighted least s	quare state estimation algorithm- Maximum likelihood est	imat	ion -	Deco	upled
formulation of W	LS state estimation- Fast decoupled state estimation - State	e estir	natio	on usi	ng DC
model of power	system- Weighted least absolute value state estimation -	Com	paris	on of	² state
estimation algori	thms.				
UNIT III	NETWORK OBSERVABILITY ANALYSIS			9	
Tracking state e	stimation: Algorithm - Computational aspects - Measure	emen	t rec	lunda	incy -
Accuracy and v	ariance of measurements - Variance of measurement	residu	uals-	Dete	ection,
identification and	l suppression of bad measurements – Kalman filtering app	roacł	n Con	nputa	tional
aspects - Approxi	mations to reduce computations - Pseudo measurements Vi	rtual	mea	suren	nents-
External system	equivalencing- Network observability - Observability and	nalysi	s us	ing p	hasor
measurement un	its.				
					7

UNIT IV	DISTRIBUTION SYSTEM STATE ESTIMATION	

9

Distribution system state estimation- State of the art methods – Comparison of different DSSE algorithms- Developments in measurement system and DSSE design- Pseudo measurements- System architecture.

UNIT V	SECURITY ASSESSMENT AND SECURITY	9
	ENHANCEMENT	

Contingency analysis: Linearized AC and DC models of power systems for security assessment -Line outage distribution factors and generation shift factors for DC and linearized AC models -Single contingency analysis using these factors - Double line outage analysis techniques using bus impedance matrix and factors of bus admittance matrix- Fast contingency algorithms for nonlinear A.C. models.

	Total	Periods	45			
Suggestive Assessment Methods						
Continuous Assessment Test (30 Marks)	Formative Assessment Test (10 Marks)	End Se (60 Ma	mester Exams urks)			
1. DESCRIPTION QUESTIONS 2. FORMATIVE MULTIPLE CHOICE QUESTIONS	1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES	QUEST	CRIPTION IONS MATIVE MULTIPLE E QUESTIONS			

Outcomes

Upon completion of the course, the students will be able to:

CO 1: Able to Understand the conceptual aspects in power system state estimation.

CO 2: Able to demonstrate various state estimation methods.

CO 3: Able to be proficient to perform observability analysis.

CO 4: Able to conduct distribution state estimation.

CO 5: Able to realize the security assessment and enhancement strategies.

Text Books

- 1. A.J. Wood, B.F. Wollenberg and G.B. Sheble, "Power Generation, Operation and Control", John Wiley and Sons, 3rd Edition, 2013.
- 2. Abhijit Chakrabarti and Sunita Halder, "Power System Analysis Operation and Control", PHI Learning, 2010.
- 3. K.Bhattacharya, M.H.J Bollen and J.E. Daaider, "Operation of restructured power system" Kluwer Power Electronics and Power System series (2001).

REFERENCE BOOKS:

- 1. Ali Abur, "Power System State Estimation Theory and Implementation", Marcel Dekker, 2004.
- 2. Sally Hunt, "Making competition work in Electricity", John Wiley, 2002
- 3. Mahalanabis, Kothari and Ahson, "Computer Aided Power System Analysis and Control", Tata McGraw Hill Publishers, 1991.
- 4. G.L. Kusic, "Computer Aided Power System Analysis", Prentice Hall of India, 1989.

Web Recourses

- <u>https://lecturenotes.in/m/36610-note-of-power-system-sequrity-by-mohit-katiyar</u>
- <u>https://overbye.engr.tamu.edu/course-2/ecen615fa2018/lecture-notes-</u> ecen615 fa2018/
- <u>https://nptel.ac.in/courses/108/101/108101040/</u>

Course Code	POWER SYSTEM OPERATION AND CONTROL	L	Т	Р	С					
21PS1603		3	0	0	3					
Prerequisites fo	Prerequisites for the course									
• Pow	ver system analysis									
	trol system									
• Pow	ver plant engineering									
Objectives										
areas. 2. To provid technique 3. To impar	stand the fundamentals of speed governing system and the knowledge about Hydro thermal scheduling, Unit comm s. t knowledge on the need of state estimation and its ro of power system.	mitme	ent a	and s	olution					
UNIT I	INTRODUCTION			9						
System load vari	ation: System load characteristics, load curves-daily, weekly and	d annı	ial, lo	oad-dı	uration					
curve, load facto	r, diversity factor. Reserver equirements: Installed reserves, s	pinni	ng re	eserve	s, cold					
reserves, and ho	t reserves. Overview of system operation: Load forecasting, tec	hniqu	es of	fored	asting,					
basics of power s	ystem operation and control.									
UNIT II	REAL POWER- FREQUENCY CONTROL			9						
between two syn system: Static ar Multi-area syste	f speed governing mechanism and modeling :Speed-load charac nchronous machines in Parallel; concept of control area, LFC c ad dynamic analysis of uncontrolled and controlled cases, Econ ms: Two-area system modelling; static analysis, uncontrolled ontrol of two-area system derivation.	ontro omic	l of a Dispa	a sing atch C	le-area Control.					
					19					

Francis Xavier Engineering College/ Dept of EEE, R2019 ME- PSE/2021-Curriculum and Syllabi HYDRO THERMAL SCHEDULING PROBLEM UNIT III g Hydrothermal scheduling problem: short term and long term-mathematical model, algorithm. Dynamic programming solution methodology for Hydro-thermal scheduling with pumped hydro plant: Optimization with pumped hydro plant- Scheduling of systems with pumped hydro plant during off-peak seasons: algorithm. Selection of initial feasible trajectory for pumped hydro plant-Pumped hydro plant as spinning reserve unit-generation of outage induced constraint. **UNIT COMMITMENT AND ECONOMIC DISPATCH** UNIT IV 9 Statement of Unit Commitment (UC) problem; constraints in UC: spinning reserve, thermal unit constraints, hydro constraints, fuel constraints and other constraints; UC solution methods: Priority-list methods, forward dynamic programming approach, numerical problems. Incremental cost curve, co-ordination equations without loss and with loss, solution by direct method and λ -iteration method. Base point and participation factors. Economic dispatch controller added to LFC control. STATE ESTIMATION UNIT V 9 Need for power system state estimation-Network observability -DC state estimation model-State estimation of power system–Methods of state estimation: Least square state estimation, Weighted least square state estimation, Maximum likelihood-Bad data detection and identification. **Total Periods** 45 Suggestive Assessment Methods **Formative Assessment Test Continuous Assessment End Semester Exams** Test (10 Marks) (60 Marks) (30 Marks) **1. DESCRIPTION OUESTIONS 1. DESCRIPTION QUESTIONS** 1.ASSIGNMENT 2. ONLINE QUIZZES 2. FORMATIVE MULTIPLE 2. FORMATIVE MULTIPLE 3.PROBLEM-SOLVING ACTIVITIES **CHOICE QUESTIONS CHOICE QUESTIONS Outcomes** Upon completion of the course, the students will be able to: **CO 1:** Learners will be able to understand system load variations and get an overview of power system operations. **CO 2:** Learners will be exposed to power system state estimation. **CO 3:** Learners will attain knowledge about hydrothermal scheduling. **CO 4:** Learners will understand the significance of unit commitment and different solution methods. **CO 5:** Learners will understand the need for state estimation in real time operation

Reference Books

- 1. Olle. I. Elgerd, "Electric Energy Systems Theory An Introduction", Tata McGraw Hill Publishing Company Ltd, New Delhi, Second Edition, 2003.
- 2. D.P. Kothari and I.J. Nagrath, "Modern Power System Analysis", Third Edition, Tata McGraw Hill Publishing Company Limited, New Delhi, 2003.
- 3. L.L. Grigsby, "The Electric Power Engineering, Hand Book", CRC Press & IEEE Press, 2001.
- 4. Allen.J.Wood and Bruce F.Wollenberg, "Power Generation, Operation and Control", John Wiley & Sons, Inc., 2003.
- 5. P. Kundur, "Power System Stability & Control", McGraw Hill Publications, USA, 1994.

Web Recourses

• https://nptel.ac.in/courses/108/101/108101040/

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	PS01	PSO2
1	2	2	2	1				2	2	2	3	
2	2	2	1	1				2	2	2		3
3	2	2	1	1				2	2	2		3
4	2	2	1	1				2	2	2		3
5	2	2	1	1				2	2	2	2	

21PE1604	POWER QUALITY ANALYSIS AND MITIGATION TECHNIQUES	L	Τ	Р	С
			1	0	4
Prerequisites	s for the course				
• Power	Quality				
• FACTS					
Objectives					

- 1. To impart knowledge on the Electrical power quality issues and power quality standards
- 2. To impart knowledge on the Analysis of various PQ issues
- 3. To impart knowledge on the power quality improvement.
- 4. To understand the conventional compensation techniques used for power factor correction and load voltage regulation.
- 5. To understand the active compensation techniques used for load voltage regulation.

5. To und	5. To understand the active compensation techniques used for load voltage regulation.						
UNIT I	POV	WER QUALITYAN OVERVIEW		12			
Introduction	– Characterization	of Electric Power Quality: Transie	ents, sho	rt duration and lon			
		age imbalance, waveform distortio					
	0	tability curves – power quality pro					
Non-linear and	d unbalanced loads,	DC offset in loads, Notching in load	voltage, 1	Disturbance in suppl			
voltage – Powe	er quality as per IEE	E standard					
UNIT II		ANALYSIS OF PQ ISSUES		12			
Analysis of Ha	rmonics distortion: I	Fourier series and Fourier Transform	n, Harmoi	nic indices, Analysis o			
-		e sag: Detorit Edison sag score, Volta		-			
	(VSLEI), Analysis of v						
UNIT III	POW	POWER QUALITY IMPROVEMENT12					
Passive and ad	tive harmonic filter	rs, phase multiplication, power cond	litioners,	UPS, Constant voltag			
	Introduction to cust						
transformers,							
		DSTATCOM		12			
UNIT IV Compensating reference curr Generating ref	single phase loads rents using instantan rerence currents whe	DSTATCOM s – Ideal three phase shunt comp neous PQ theory – Instantaneous syr en the source is unbalanced – Realiza	nmetrical	components theory			
UNIT IV Compensating reference curr Generating ref – DSTATCOM i	single phase loads ents using instantan	s – Ideal three phase shunt comp neous PQ theory – Instantaneous syr en the source is unbalanced – Realiza ode.	nmetrical	structure –Generatin components theory control of DSTATCOM			
UNIT IV Compensating reference curr Generating ref	single phase loads rents using instantan rerence currents whe	s – Ideal three phase shunt comp neous PQ theory – Instantaneous syr en the source is unbalanced – Realiza	nmetrical	structure –Generatin components theory			
UNIT IV Compensating reference curr Generating ref – DSTATCOM i UNIT V Rectifier supp	single phase loads rents using instantan rerence currents whe in Voltage control mo orted DVR – DC Ca	s – Ideal three phase shunt comp neous PQ theory – Instantaneous syr en the source is unbalanced – Realiza ode.	nmetrical ation and	structure –Generatin components theory control of DSTATCOI 12			
UNIT IV Compensating reference curr Generating ref – DSTATCOM i UNIT V Rectifier supp	single phase loads rents using instantan rerence currents whe in Voltage control mo orted DVR – DC Ca	s – Ideal three phase shunt comp neous PQ theory – Instantaneous syr en the source is unbalanced – Realiza ode. DVR apacitor supported DVR – DVR Strutrations and characteristics.	nmetrical ation and	structure –Generatin components theory control of DSTATCO 12			
UNIT IV Compensating reference curr Generating ref – DSTATCOM i UNIT V Rectifier supp Series Active F	single phase loads rents using instantan rerence currents whe in Voltage control mo orted DVR – DC Ca	s – Ideal three phase shunt comp neous PQ theory – Instantaneous syr en the source is unbalanced – Realiza ode. DVR apacitor supported DVR – DVR Strutrations and characteristics. Total	nmetrical ation and ucture –	structure –Generatin components theory control of DSTATCO 12 voltage Restoration			
UNIT IV Compensating reference curr Generating ref – DSTATCOM i UNIT V Rectifier supp Series Active F Suggestive A	single phase loads rents using instantan rerence currents whe in Voltage control mo orted DVR – DC Ca rilter. UPQC: Configu	s – Ideal three phase shunt comp neous PQ theory – Instantaneous syr en the source is unbalanced – Realiza ode. DVR apacitor supported DVR – DVR Strutrations and characteristics. Total	nmetrical ation and ucture – Periods	structure –Generatin components theory control of DSTATCOI 12 voltage Restoration			
UNIT IV Compensating reference curr Generating ref – DSTATCOM i UNIT V Rectifier supp Series Active F Suggestive A	single phase loads rents using instantan erence currents whe in Voltage control me orted DVR – DC Ca Tilter. UPQC: Configu ssessment Method	s – Ideal three phase shunt comp neous PQ theory – Instantaneous syr en the source is unbalanced – Realiza ode. DVR apacitor supported DVR – DVR Stru- trations and characteristics. Total	nmetrical ation and ucture – Periods	structure –Generatin components theory control of DSTATCOI 12 voltage Restoration 60			
UNIT IV Compensating reference curr Generating ref – DSTATCOM i UNIT V Rectifier supp Series Active F Suggestive A Continuous A (30 Ma 1. DESCRIPTIC	single phase loads rents using instantan erence currents whe in Voltage control me orted DVR – DC Ca 'ilter. UPQC: Configu ssessment Method Assessment Test rks) DN QUESTIONS	s – Ideal three phase shunt comp neous PQ theory – Instantaneous syr en the source is unbalanced – Realiza ode. DVR apacitor supported DVR – DVR Stru- trations and characteristics. Total 1 ds Continuous Assessment Test	nmetrical ation and ucture – Periods Contin Test 1. DESC	structure –Generatin components theory control of DSTATCO 12 voltage Restoration 60 uous Assessment (30 Marks)			
UNIT IV Compensating reference curr Generating ref – DSTATCOM i UNIT V Rectifier supp Series Active F Suggestive A Continuous A (30 Ma	single phase loads rents using instantan rerence currents whe in Voltage control mo orted DVR – DC Ca rilter. UPQC: Configu ssessment Method Assessment Test rks) DN QUESTIONS E MULTIPLE	s – Ideal three phase shunt comp neous PQ theory – Instantaneous syr en the source is unbalanced – Realiza ode. DVR apacitor supported DVR – DVR Stru- trations and characteristics. Total 1 Is Continuous Assessment Test (30 Marks)	nmetrical ation and ucture – Periods Contin Test 1. DESC 2. FORM	structure –Generatin components theory control of DSTATCOI 12 voltage Restoration 60 uous Assessment			

Outcomes

Upon completion of the course, the students will be able to:

CO 1To understand various sources, causes and effects of power quality issues, electrical

Systems and their measures and mitigation.

CO 2 To Analyze the various PQ problems

CO 3 Explain the conventional mitigation methods for PQ issues

CO 4 To understand and design load compensation methods useful for mitigating power

quality problems.

CO 5 To acquire knowledge on DVR

Text Books

- **1.** ArindamGhosh "Power Quality Enhancement Using Custom Power Devices", Kluwer Academic Publishers, 2002.
- **2.** R.C. Duggan, Mark.F.McGranaghan, SuryaSantoas and H.WayneBeaty, Electrical Power System Quality", McGraw-Hill, 2017.
- **3.** G.T.Heydt, "Electric Power Quality", Stars in a Circle Publications, 2002.
- **4.** Bhim Singh, Ambrish Chandra, Kamal Al-Haddad , "Power Quality: Problems and Mitigation Techniques", John Wiley & Sons,2015.

Reference Books

- 1. Jos Arrillaga and Neville R. Watson ," Power system harmonics", Wiley, 2015
- **2.** Derek A. Paice , "Power Electronics Converter Harmonics :Multipulse Methods for Clean Power",Wiley,1999
- **3.** Ewald Fuchs, Mohammad A. S. Masoum Power Quality in Power Systems and Electrical Machines, Elseveiracademic press publications, 2016

CO Vs PO Mapping and CO Vs PSO Mapping

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2
1	2	2	2		1	3				3	3	
2	2	2	2		1	3				3	3	
3	2		2		1	3				3	3	
4	2		2		1	3				3	3	
5	2	2	2		1	3				3	3	

Course Code	POWER SYSTEM SIMULATION LABORATORY	L	Т	Р	C
21PS1611		0	0	4	2
Prerequisites f	or the course				

• Power System Analysis

Objectives

- 1. To have hands on experience on various system studies and different techniques used for system planning using Software packages.
- 2. To perform the dynamic analysis of power system.

S.No	List of Experiments				
1	Power flow analysis by Nev	vton-Raphson method and Fast decoupled method			
2	Transient stability analysis machine model.	of single machine-infinite bus system using classica			
3	Contingency analysis: Gen factors.	erator shift factors and line outage distributio			
4	Economic dispatch using lar	nbda-iteration method.			
5	Unit commitment: Priority-l	ist schemes and dynamic programming.			
6	6 State Estimation (DC)				
7	Analysis of switching surg	Analysis of switching surge using EMTP: Energization of a long distributed parameter line.			
8	Analysis of switching surg voltage.	e using EMTP: Computation of transient recover			
9	Simulation and Implementa	tion of Voltage Source Inverter.			
10	Digital Over Current Rela software packages.	y Setting and Relay Coordination using Suitabl			
11	Co-ordination of over-curre	nt and distance relays for radial line protection.			
		Total Periods :6			
Suggestive A	ssessment Methods				
Lab Compon (50 Marks)	ents Assessments	End Semester Exams (50 Marks)			
Viva Questic Record and	ons Observations	Viva-Voce End Semester Exams			
	etion of the course, the studer	its will be able to:			
Laboratory	Requirements				

- **CO 1:** Analyze the power flow using Newton-Raphson method.
- **CO 2:** Analyze the power flow Fast decoupled method
- **CO 3:** Perform contingency analysis & economic dispatch.
- **CO 4:** Understand the Set Digital Over Current Relay
- **CO 5:** Understand Set Coordinate Relay

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	PS01	PSO2
1	1			1						2		3
2	1		2	2						2	2	
3	2			2						3		2
4	2			3						3	2	
5	3			3						2		3

Course Code	DIGITAL PROTECTION FOR POWER SYSTEM	L	Τ	Р	С			
21PS2601		3	0	0	3			
Prerequisites for t	he course							
Power System	m Analysis							
Power System	m Operation and Control							
Protection and Switch Gear								
Objectives								
1. To illustrate	concepts of transformer protection.							
2. To describe a	about the various schemes of over current protection.							
3. To analyzed	instance and carrier protection.							
4. To familiariz	e the concepts of Generator protection and Numerical pr	otecti	on.					
UNIT I	OVER CURRENT&EARTH FAULTPROTECTION			9				
•	ion– Primary and Backup protection– operating p	•			•			
	ne– Current characteristics- Current setting– Time setses ns– Concept of Coordination- Protection of parallel /ri	0						
-	onal relay – Polarization Techniques – Cross Pola	-						
-	fault and phase fault protection - Combined Earth fa			-				

protection scheme- Phase fault protective-scheme directional earth fault relay –Static over current relays–Numerical over–current protection; numerical coordination example for a radial feeder.

*****		0
UNIT II	TRANSFORMER & BUSBAR PROTECTION	9
Impedance–Extern model of a saturat Characteristics–Ve Sequence filtering Protection-Inter-tu over fluxing in tra of busbars extern Numerical examp	mers–Types of faults in transformers- Types of Differen al fault with one CT saturation–Actual behaviors of a p ed CT-Need for high impedance–Disadvantages –Percent ctor group & its impact on differential protection-Inrush g-High resistance Ground Faults in Transformers–Res urn faults in transformers–Incipient faults in transform nsformers– Transformer protection application chart. Di al and internal fault-Supervisory relay-protection of th les on design of high impedance busbar differen acteristics– Comparison between Transformer di	rotective CT–Circuit age Differential Bias phenomenon– Zero stricted Earth fault ters-Phenomenon of fferential protection ree–Phase busbars–
UNIT III	DISTANCEAND CARRIER PROTECTION	9
	OFTRANSMISSION LINES	
Trip contact confi of three-phase lin protection of dou carrier–Coupling a directional compa	s for in accuracy of distance relay reach- Three stepped guration for the three-Stepped distance protection-Three e again stallten shunt faults-Impedance seen from relay ble end fed lines-need for carrier–Aided protection–Va and trapping the carrier into the desired line section-Un urison relaying–Carrier aided distance schemes for acce e for a typical distance protection scheme for a transmiss	e-stepped protection side-Three-stepped arious options for a it type carrier aided eleration of zone II;
UNIT IV	GENERATOR PROTECTION	9
Winding Faults–P Rotor fault–Abno Method – injection	of the generator–Various faults and abnormal operating rotection against Stator(earth) faults–third harmonic rmal operating conditions-Protection against Rotor for method – Pole slipping– Loss of excitation– Protection examples for typical generator protection schemes.	voltage protection- aults-Potentiometer
UNIT V		9
	NUMERICAL PROTECTION	
wave-Least erro	k diagram of numerical relay-Sampling theorem-Correlat r squared (LES) technique -Digital filtering-nume erical transformer differential Protection-Numerical dis	erical over-Current
	Total Periods	45

Suggestive Assessment Method	ls	
Continuous Assessment Test	Formative Assessment Test	End Semester Exams
(30 Marks)	(10 Marks)	(60 Marks)
1. DESCRIPTION QUESTIONS	1.ASSIGNMENT	1. DESCRIPTION
2. FORMATIVE MULTIPLE CHOICE QUESTIONS	2. ONLINE QUIZZES	<i>QUESTIONS</i> 2. FORMATIVE MULTIPLE
	3.PROBLEM-SOLVING ACTIVITIES	CHOICE QUESTIONS

Outcomes

Upon completion of the course, the students will be able to:

- **CO 1:** Learners will be able to understand the various schemes available in Transformer protection.
- **CO 2:** Learners will have knowledge on Over current protection.
- **CO 3:** Learners will attain knowledge about Distance and Carrier protection in transmission lines.
- **CO 4:** Learners will understand the concepts of Generator protection.

CO 5: Learners will attain basic knowledge on substation automation.

Reference Books

- 1. Y.G.Paithankar and S.RBhide, "Fundamentals of Power System Protection", Prentice-Hall ofIndia,2003.
- 2. Badri Ram and D.N.Vishwakarma, "Power System Protection and Switch gear", TataMcGraw-Hill Publishing Company,2002.
- 3. T.S.M.Rao, "Digital Relay/Numerical relays", Tata McGrawHill, NewDelhi, 1989.
- 4. P.Kundur, "Power System Stability and Control", McGraw-Hill, 1993.

Web Recourses

1. https://nptel.ac.in/courses/108101039/

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	PS01	PSO2
1	2									3		
2	2									3		3
3	2									3	2	

4	2						3			3	
5	2	3				3	3	2			
Course Co	ode		POWEI	R SYSTEM	AS STAI	BILITY		L	Τ	Р	
21PS260	02							3	0	0	
Prerequisite	s for the	course									
• Power	System										
	- 5	_									
	Svstem A	nalvsis									
• Power	System A	nalysis									
• Power	-		mental co	oncents c	fstabili	ty of now	ver system	s and	ite		
Power Objectives 1. To unc	lerstand t		mental co	oncepts c	f stabili	ty of pow	ver system	s and	its		
Power Objectives 1. To und classifi	lerstand t	he funda		_			-			large	
 Power Objectives 1. To und classifi 2. To exp 	lerstand t ication. oose the st	he funda		_			ver system system for			l large	2
 Power Objectives 1. To und classifi 2. To exp disturb 	lerstand t ication. bose the st bances	he funda udents to	o dynami	c behavio	our of th	e power	-			l large	<u>,</u>
 Power Objectives 1. To und classifi 2. To exp disturb 3. To und 	derstand t ication. bose the st bances derstand a	he funda udents to and enhar	o dynami nce the st	c behavio	our of th	e power systems	-			l large	2
 Power Objectives 1. To und classifi 2. To exp disturb 3. To und 4. To und 	derstand t ication. oose the st oances derstand a derstand k	he fundat tudents to and enhar tnowledg	o dynami nce the st ge about s	c behavio ability of small-sign	our of th power nal stabi	e power systems lity	-	r smal	l and	_	2

UNIT I INTRODUCTION TO STABILITY 9
Fundamental concepts - Stability and energy of a system - Power System Stability: Definition
Causes, Nature and Effects of disturbances, Definitions, classification of stability-rotor angle an
voltage stability, synchronous machine representation for stability study Modelling of electrica
components - Basic assumptions made in stability studies- Modelling of Synchronous machine fo
stability studies (classical model) - Rotor dynamics and the swing equation.

UNIT II	SMALL-SIGNAL STABILITY	9

Basic concepts and definitions – State space representation, Physical Interpretation of smallsignal stability, Eigen properties of the state matrix: Eigenvalues and eigenvectors, modal matrices, eigenvalue and stability, mode shape and participation factor. Small– signal stability analysis of a Single-Machine Infinite Bus (SMIB) Configuration with numerical example.

UNIT III

TRANSIENT STABILITY

9

Assumptions for transient stability, derivation of swing equation, swing equation for synchronous machine connected to infinite bus, swing equation for a two machine system, solution of swing equation by Euler and Runge Kutta method, equal area criterion, critical clearing angle, application of critical clearing angle to transient stability of synchronous machine. Methods of improving transient stability: reducing fault clearance time, automatic reclosing, single phase reclosing, electric braking, voltage regulators, fast governor action, high speed excitation system.

UNIT IVVOLTAGE STABILITY9Definition and classification of voltage stability, mechanism of voltage collapse, analytical concept
of voltage stability for a two bus system, expression for critical receiving end voltage and critical
power angle at voltage stability limit for a two bus power system, PV and QV curves, L index for
the assessment of voltage stability.

UNIT V	ENHANCEMENT OF SMALL-SIGNAL STABILITY	9
	AND TRANSIENT STABILITY	
Power System Stabil	izer –. Principle behind transient stability enhancement	t methods: highspeed
fault clearing, regula	ated shunt compensation, dynamic braking, reactor sw	ritching, independent
pole-operation of c	ircuit-breakers, single-pole switching, fast- valving, h	igh-speed excitation

systems.

	Total Pe	eriods	45
Suggestive Assessment Method	s		
Continuous Assessment Test	Formative Assessment Test	End Sei	nester Exams

(30 Marks)	(10 Marks)	(60 Marks)
1. DESCRIPTION QUESTIONS 2. FORMATIVE MULTIPLE CHOICE QUESTIONS	1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES	1. DESCRIPTION QUESTIONS 2. FORMATIVE MULTIPLE CHOICE QUESTIONS

Outcomes

Upon completion of the course, the students will be able to:

CO 1: Learners will have knowledge on restructuring of power industry

CO 2: Learners will understand basics of congestion management

- **CO 3:** Learners will attain knowledge about locational margin prices and financial transmission rights
- **CO 4:** Learners will understand the significance ancillary services and pricing of transmission network

CO 5: Learners will have knowledge on the various power sectors in India.

Reference Books

TEXT BOOK(S):

- 1. Power system stability and control, P. Kundur; edited by Neal J. Balu, Mark G. Lauby, McGraw-Hill, 1994.
- 2. R.Ramnujam," Power System Dynamics Analysis and Simulation, PHI Learning Private Limited, New Delhi, 2009
- 3. T.V. Cutsem and C.Vournas, "Voltage Stability of Electric Power Systems", Kluwer publishers, 1998
- 4. 1. A. Chakrabarti, M.L. Soni, P. V. Gupta, U. S. Bhatnagar "A text book on Power System Engineering", Dhanpat Rai and Co.

REFERENCE BOOK(S):

- Peter W., Saucer, Pai M.A., "Power System Dynamics and Stability, Pearson Education (Singapore), 9th Edition, 2007.
- EW. Kimbark., "Power System Stability", John Wiley & Sons Limited, New Jersey, 2013.
- 3. SB. Crary., "Power System Stability", John Wiley & Sons Limited, New Jersey, 1955.
- 4. K.N. Shubhanga, "Power System Analysis" Pearson, 2017.
- 5. Power systems dynamics: Stability and control / K.R. Padiyar, BS Publications, 2008
- 6. Power system control and Stability P.M. Anderson, A.A. Foud, Iowa State University Press, 1977.

Web Recourses

- 1. <u>https://www.cet.edu.in/noticefiles/230 power system stability.pdf</u>
- 2. <u>https://lecturenotes.in/subject/969/power-system-analysis-stability-psas</u>
- 3. https://nptel.ac.in/courses/108/106/108106026/

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	PSO1	PSO2
1	2									3		
2	2									3		3
3	2									3	2	
4	2									3		3
5	2		3					3		3	2	

Course Code	RESTRUCTURED POWER SYSTEM	L	Т	Р	С
21PS2603		3	0	0	3
Prerequisites for th	ie course				
Power System	1				
• Protection and					
Objectives					
1. To introduce	the restructuring of power industry and market models.				
2. To impart kno	owledge on fundamental concepts of congestion manage	ment			
3. To analyze th	ne concepts of locational marginal pricing and financial	l tran	smis	sion	
rights.					
4. To Illustrate a	about various power sectors in India.				
UNIT I	INTRODUCTION TO RESTRUCTURING OF POWER INDUSTRY			9	
Introduction: Dere		Issue	es ir	volve	d i
	egulation of power industry, restructuring process,				
deregulation, Dereg	egulation of power industry, restructuring process, gulation of various power systems – Fundamentals of E	conor	nics:	Consi	ıme
deregulation, Dereg behavior, Supplier	egulation of power industry, restructuring process,	conor sts, V	nics: arioı	Consu 1s cos	ume sts c
deregulation, Dereg behavior, Supplier production– Marke	egulation of power industry, restructuring process, gulation of various power systems – Fundamentals of Eo behavior, Market equilibrium, Short and long run cos et models: Market models based on Contractual arrange	conor sts, V emen	nics: ariou ts, Co	Consu 1s cos ompai	ume sts c riso
deregulation, Dereg behavior, Supplier production– Marke	egulation of power industry, restructuring process, gulation of various power systems – Fundamentals of Eo behavior, Market equilibrium, Short and long run cos	conor sts, V emen	nics: ariou ts, Co	Consu 1s cos ompai	ume sts c riso
deregulation, Dereg behavior, Supplier production– Marke of various market	egulation of power industry, restructuring process, gulation of various power systems – Fundamentals of Eo behavior, Market equilibrium, Short and long run cos et models: Market models based on Contractual arrange	conor sts, V emen	nics: ariou ts, Co	Consu 1s cos ompai	ume sts c riso
deregulation, Dereg behavior, Supplier production– Market of various market study. UNIT II Introduction: Defin congestion manag management meth pricing–Inter zon	egulation of power industry, restructuring process, gulation of various power systems – Fundamentals of Ed behavior, Market equilibrium, Short and long run cos et models: Market models based on Contractual arrange models, Electricity vis–a–vis other commodities, Market TRANSMISSION CONGESTION MANAGEMENT nition of Congestion, reasons for transfer capability limit ement, features of congestion management–Classifica ods– Calculation of ATC-Non–market methods– Mark al and Intra zonal congestion management–Price	conor sts, V emen et arc cation ation	nics: ariou ts, Co hiteo , Imp of etho	Consu is cos ompai cture, 9 oortan conge ds- N	ume ts c riso Cas
deregulation, Dereg behavior, Supplier production– Market of various market study. UNIT II Introduction: Defin congestion manag management meth pricing–Inter zon	egulation of power industry, restructuring process, gulation of various power systems – Fundamentals of Ed behavior, Market equilibrium, Short and long run cos et models: Market models based on Contractual arrange models, Electricity vis–a–vis other commodities, Market TRANSMISSION CONGESTION MANAGEMENT nition of Congestion, reasons for transfer capability limit ement, features of congestion management–Classifica ods– Calculation of ATC-Non–market methods– Market	conor sts, V emen et arc cation ation	nics: ariou ts, Co hiteo , Imp of etho	Consu is cos ompai cture, 9 oortan conge ds- N	ume ts c riso Cas
deregulation, Dereg behavior, Supplier production– Market of various market study. UNIT II Introduction: Defin congestion manag management meth pricing–Inter zon management– Capa	egulation of power industry, restructuring process, gulation of various power systems – Fundamentals of Ed behavior, Market equilibrium, Short and long run cos et models: Market models based on Contractual arrange models, Electricity vis–a–vis other commodities, Market TRANSMISSION CONGESTION MANAGEMENT nition of Congestion, reasons for transfer capability limit ement, features of congestion management–Classifica ods– Calculation of ATC-Non–market methods– Mark al and Intra zonal congestion management–Price acity alleviation method.	conor sts, V emen et arc cation ation	nics: ariou ts, Co hiteo , Imp of etho	Consu is cos ompai cture, 9 oortan conge ds- N conge	ume ts c riso Cas
deregulation, Dereg behavior, Supplier production– Market of various market study. UNIT II Introduction: Defin congestion manag management meth pricing–Inter zon management– Capa UNIT III Mathematical prefic calculation–Loss c calculation–Finance test and revenue a revenue shortfall–S	egulation of power industry, restructuring process, gulation of various power systems – Fundamentals of Ed behavior, Market equilibrium, Short and long run cos et models: Market models based on Contractual arrange models, Electricity vis–a–vis other commodities, Market TRANSMISSION CONGESTION MANAGEMENT nition of Congestion, reasons for transfer capability limit ement, features of congestion management–Classifica ods– Calculation of ATC-Non–market methods– Mark al and Intra zonal congestion management–Price acity alleviation method. LOCATIONALMARGINALPRICESAND FINANCIAL	conor sts, V emen et arc cation ation ation cet m e ar oPF n oPF n oPF n cultan	nics: ariou ts, Co hited , Imp of etho ea node eous –Tro	Consulations of the consulation	ume ts c risor Cas ce c stio loda stio

PRICING OF TRANSMISSION NETWORK

Introduction of ancillary services– Types of Ancillary services–Classification of Ancillary services–Load generation balancing related services –Voltage control and reactive power support devices –Black start capability service-How to obtain ancillary service–Co-optimization of energy and reserve services-Transmission pricing–Principles–Classification – Rolled in transmission pricing methods – Marginal transmission pricing paradigm – Composite pricing paradigm–Merits and demerits of different paradigm.

UNIT V

REFORMSININDIANPOWER SECTOR

9

Introduction–Framework of Indian power sector–Reform initiatives –Availability based tariff – Electricity act 2003 – Open access issues–Power exchange–Reforms in the near future.

	45			
Suggestive Assessment Method	ls			
Continuous Assessment Test	Formative Assessment Test	End Semester Exams		
(30 Marks)	(10 Marks)	(60 Ma		
1. DESCRIPTION QUESTIONS 2. FORMATIVE MULTIPLE CHOICE QUESTIONS	1.ASSIGNMENT 2. ONLINE QUIZZES	1. DESCRIPTION QUESTIONS 2. FORMATIVE MULTIP		
	3.PROBLEM-SOLVING ACTIVITIES	CHOICE	QUESTIONS	

Outcomes

Upon completion of the course, the students will be able to:

- **CO 1:** Learners will have knowledge on restructuring of power industry
- **CO 2** : Learners will understand basics of congestion management
- **CO 3:** Learners will attain knowledge about locational margin prices and financial transmission rights
- **CO 4 :** Learners will understand the significance ancillary services and pricing of transmission network

CO 5: Learners will have knowledge on the various power sectors in India.

Reference Books

- 1. Mohammad Sha hidehpour, Muwaffaq Alomoush, Marcel Dekker, "Restructured electrical powersystems:operation, tradingandvolatility"Pub.,2001.
- 2. Kankar Bhattacharya,Jaap E.Daadler,MathH.J. Boolen, "Operation of restructured power systems",Kluwer AcademicPub., 2001.
- 3. Paranjothi, S.R., "Modern Power Systems" Paranjothi, S.R., New AgeInternational, 2017.
- 4. Sally Hunt," Making competition work in electricity", JohnWilleyandSons Inc.2002.
- 5. Steven Stoft, "Power system economics: designing markets for electricity", John

Wiley & Sons, 2002.

Web Recourses

- <u>https://nptel.ac.in/courses/108101005/</u>
- https://nptel.ac.in/content/storage2/courses/108101040/download/Lec-33.pdf

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	PS01	PSO2
1	3					2				2		3
2	3					2				2	2	
3	3		2			2				2		2
4	3					2				2	3	
5	3					2				2		3

Course Code	ENERGY MANAGEMENT AND AUDITING	L	Т	Р	С
21PS2604		3	0	0	3
Dronoquisitos for th	0. 40.11900				
Prerequisites for th	le course				
•	Electrical Machines				
•	Power System Operation and Control				
Objectives					

- 1. To study the concepts behind economic analysis and Load management.
- 2. To emphasize the energy management on various electrical equipments and metering.
- **3.** To illustrate the concept of lighting systems and cogeneration.

Energy Conservation, Energy Audit, Energy Scenarios, Energy Consumption, Energy Secur Energy Strategy, Clean Development Mechanism.Types of Energy Audits and Energy-Audits Analysis, Sensitivity Analysis, Project Financing Options, Energy Monitoring and Training. UNIT II ENERGY CONSERVATION IN ELECTRIC MOTORS 9 Motors efficiency – Motor selection – Factors affecting motor performance – Efficiency at low I - - Rewound motors – Variable speed drives – Load reduction – High efficiency motors – Energy audit of Boilers: Classification of Boilers, Parts of Boiler, Efficiency of a Boiler, Role excess Air in Boiler Efficiency, Energy Saving Methods. Energy Audit of Furnaces: Parts of Furnace, classification of Furnaces, Energy saving Measures in Furnaces, Furnace Efficiency. UNIT IV ENERGY AUDIT FOR HVAC SYSTEMS 9 Introduction to HVAC, Components of Air – Conditioning System, Types of Air – Condition Systems, Human Comfort Zone and Psychrometry, Vapour – Compression Refrigeration Cy Energy Use Indices, Impact of Refrigerants on Environment and Global Warming, Energy – Sav Measures in HVAC, Star Rating and Labelling by BEE. 9 UNIT V ENERGY CONSERVATION IN INDUSTRIAL 9 9 Concept of lighting - Lighting standards and requirements – Light meter audit – Method: reduce costs. Total Periods 45 Suggestive Assessment Methods 1.ASSIGNMENT 2. ONLINE QUIZZES 3. PROBLEM-SOLVING 2. FORMATIVE MULTIPL C.ONLINE QUIZZES 3. PROBLEM-SOLVING 2. FORMATIVE MULTIPL C.ONLINE QUIZZES 3. PROBLEM-SOLVING 2. FORMATIVE MULTIPL C.ONLINE QUIZZES 3. PROBLEM-SOL	UNIT I		ENERGY SCENARIOS		9
Methodology: Definition of Energy Audit, Place of Audit, Energy – Audit Methodology, Finan Analysis, Sensitivity Analysis, Project Financing Options, Energy Monitoring and Training. UNIT II ENERGY CONSERVATION IN ELECTRIC MOTORS 9 Motors efficiency – Motor selection – Factors affecting motor performance – Efficiency at low I - Rewound motors - Variable speed drives – Load reduction – High efficiency motors – Energy avings in transformers – Case studies. UNIT III ENERGY AUDIT FOR BOILERS AND FURNACES 9 Energy Audit of Boilers: Classification of Boilers, Parts of Boiler, Efficiency of a Boiler, Role excess Air in Boiler Efficiency, Energy Saving Methods. Energy Audit of Furnaces: Parts of Furnace, classification of Furnaces, Energy saving Measures in Furnaces, Furnace Efficiency. 9 Introduction to HVAC, Components of Air – Conditioning System, Types of Air – Condition Systems, Human Comfort Zone and Psychrometry, Vapour – Compression Refrigeration Cy Energy Use Indices, Impact of Refrigerants on Environment and Global Warming, Energy – Sav Measures in HVAC, Star Rating and Labelling by BEE. 9 UNIT V ENERGY CONSERVATION IN INDUSTRIAL 9 9 Concept of lighting systems – Choice of lighting – Different lighting technologies – Energy savin Control of lighting – Lighting standards and requirements – Light meter audit – Method: reduce costs. 10 Continuous Assessment Test (30 Marks) I.ASSIGNMENT 2. ONLINE QUIZZES 2. FORMATIVE MULTIPLE 2. ONLINE QUIZZES 2. FORMATIVE MULTIPLE C. ONLINE QUIZZES 2. FORMATIVE MULTIPLE 2. ONLINE QUIZZES	Energy Conservation	n, Energy A	udit, Energy Scenarios, Energy C	Consumpti	on, Energy Securit
Analysis, Sensitivity Analysis, Project Financing Options, Energy Monitoring and Training. UNIT II ENERGY CONSERVATION IN ELECTRIC MOTORS 9 Motors efficiency – Motor selection – Factors affecting motor performance – Efficiency at low I - Rewound motors – Variable speed drives – Load reduction – High efficiency motors – Energy savings in transformers – Case studies. 9 UNIT III ENERGY AUDIT FOR BOILERS AND FURNACES 9 Energy Audit of Boilers: Classification of Boilers, Parts of Boiler, Efficiency of a Boiler, Role excess Air in Boiler Efficiency, Energy Saving Methods. Energy Audit of Furnaces: Parts of Furnace, classification of Furnaces, Energy saving Measures in Furnaces, Furnace Efficiency. 9 Introduction to HVAC, Components of Air – Conditioning System, Types of Air – Condition Systems, Human Comfort Zone and Psychrometry, Vapour – Compression Refrigeration Cy Energy Use Indices, Impact of Refrigerants on Environment and Global Warming, Energy – Sav Measures in HVAC, Star Rating and Labelling by BEE. 9 UNIT V ENERGY CONSERVATION IN INDUSTRIAL 9 9 Concept of lighting systems – Choice of lighting – Different lighting technologies – Energy saving Control of lighting – Lighting standards and requirements – Light meter audit – Methods reduce costs. 45 Suggestive Assessment Methods 1.ASSIGNMENT 2. ONLINE QUESTIONS 2. FORMATIVE MULTIPLE CHOILZES 3. ONLINE QUIZZES 3.	Energy Strategy, Cl	ean Develo	pment Mechanism.Types of Ene	rgy Audit	s and Energy-Aud
UNIT IIENERGY CONSERVATION IN ELECTRIC MOTORS9Motors efficiency - Motor selection - Factors affecting motor performance - Efficiency at low l - Rewound motors - Variable speed drives - Load reduction - High efficiency motors - Ene savings in transformers - Case studies.9UNIT IIIENERGY AUDIT FOR BOILERS AND FURNACES9Energy Audit of Boilers: Classification of Boilers, Parts of Boiler, Efficiency of a Boiler, Role excess Air in Boiler Efficiency, Energy Saving Methods. Energy Audit of Furnaces: Parts of Furnace, classification of Furnaces, Energy saving Measures in Furnaces, Furnace Efficiency.9UNIT IVENERGY AUDIT FOR HVAC SYSTEMS9Introduction to HVAC, Components of Air - Conditioning System, Types of Air - Condition Systems, Human Comfort Zone and Psychrometry, Vapour - Compression Refrigeration Cy Energy Use Indices, Impact of Refrigerants on Environment and Global Warming, Energy - Sav Measures in HVAC, Star Rating and Labelling by BEE.9UNIT VENERGY CONSERVATION IN INDUSTRIAL LIGHTING9Concept of lighting systems - Choice of lighting - Different lighting technologies - Energy savin Control of lighting - Lighting standards and requirements - Light meter audit - Methods reduce costs.45Suggestive Assessment Methods1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES1.DESCRIPTION QUESTIONS 2.FORMATIVE MULTIPLE CHOICE QUESTIONS1.ASSIGNMENT 2.FORMATIVE MULTIPL CHOICE QUESTIONS2.FORMATIVE MULTIPL CHOICE QUESTIONS	Methodology: Definit	tion of Ener	gy Audit, Place of Audit, Energy -	- Audit Mo	ethodology, Financi
Motors efficiency - Motor selection - Factors affecting motor performance - Efficiency at low I - Rewound motors - Variable speed drives - Load reduction - High efficiency motors - Energy savings in transformers - Case studies. UNIT III ENERGY AUDIT FOR BOILERS AND FURNACES 9 Energy Audit of Boilers: Classification of Boilers, Parts of Boiler, Efficiency of a Boiler, Role excess Air in Boiler Efficiency, Energy Saving Methods. Energy Audit of Furnaces: Parts of Furnace, classification of Furnaces, Energy saving Measures in Furnaces, Furnace Efficiency. 9 Introduction of Furnaces, Energy saving Measures in Furnaces, Furnace Efficiency. 9 Introduction to HVAC, Components of Air - Conditioning System, Types of Air - Condition Systems, Human Comfort Zone and Psychrometry, Vapour - Compression Refrigeration Cy Energy Use Indices, Impact of Refrigerants on Environment and Global Warming, Energy - Sav Measures in HVAC, Star Rating and Labelling by BEE. 9 UNIT V ENERGY CONSERVATION IN INDUSTRIAL 9 9 Concept of lighting systems - Choice of lighting - Different lighting technologies - Energy savin Control of lighting - Lighting standards and requirements - Light meter audit - Methods reduce costs. 9 Continuous Assessment Test (30 Marks) I.ASSIGNMENT 2. ORIMATIVE MULTIPLE CONLINES 45 Suggestive Assessment Test Continuous Assessment Test CONLINES 2. ORIMATIVE MULTIPLE CONLINES 2. FORMATIVE MULTIPLE CONLINES 2. FORMATIVE MULTIPLE CONLINES 2. FORMATIVE MULTIPLE CONLINES <td>Analysis, Sensitivity</td> <td>Analysis, Pro</td> <td>oject Financing Options, Energy Mo</td> <td>onitoring</td> <td>and Training.</td>	Analysis, Sensitivity	Analysis, Pro	oject Financing Options, Energy Mo	onitoring	and Training.
- Rewound motors - Variable speed drives - Load reduction - High efficiency motors - Energy savings in transformers - Case studies. UNIT III ENERGY AUDIT FOR BOILERS AND FURNACES 9 Energy Audit of Boilers: Classification of Boilers, Parts of Boiler, Efficiency of a Boiler, Role excess Air in Boiler Efficiency, Energy Saving Methods. Energy Audit of Furnaces: Parts of Furnace, classification of Furnaces, Energy saving Measures in Furnaces, Furnace Efficiency. 9 UNIT IV ENERGY AUDIT FOR HVAC SYSTEMS 9 Introduction to HVAC, Components of Air - Conditioning System, Types of Air - Condition Systems, Human Comfort Zone and Psychrometry, Vapour - Compression Refrigeration Cy Energy Use Indices, Impact of Refrigerants on Environment and Global Warming, Energy - Sav Measures in HVAC, Star Rating and Labelling by BEE. 9 UNIT V ENERGY CONSERVATION IN INDUSTRIAL IGHTING 9 Concept of lighting systems - Choice of lighting - Different lighting technologies - Energy savin Control of lighting - Lighting standards and requirements - Light meter audit - Methods reduce costs. 45 Suggestive Assessment Methods G0 Marks) 1. DESCRIPTION QUESTIONS 2. FORMATIVE MULTIPLE CANTAL 2. ONLINE QUIZZES 3. PROBLEM-SOLVING ACTIVITIES 1. DESCRIPTION QUESTIONS 2. FORMATIVE MULTIPLE CHOICE QUESTIONS	UNIT II	ENERGY	CONSERVATION IN ELECTRIC M	OTORS	9
- Rewound motors - Variable speed drives - Load reduction - High efficiency motors - Energy savings in transformers - Case studies. UNIT III ENERGY AUDIT FOR BOILERS AND FURNACES 9 Energy Audit of Boilers: Classification of Boilers, Parts of Boiler, Efficiency of a Boiler, Role excess Air in Boiler Efficiency, Energy Saving Methods. Energy Audit of Furnaces: Parts of Furnace, classification of Furnaces, Energy saving Measures in Furnaces, Furnace Efficiency. 9 UNIT IV ENERGY AUDIT FOR HVAC SYSTEMS 9 Introduction to HVAC, Components of Air - Conditioning System, Types of Air - Condition Systems, Human Comfort Zone and Psychrometry, Vapour - Compression Refrigeration Cy Energy Use Indices, Impact of Refrigerants on Environment and Global Warming, Energy - Sav Measures in HVAC, Star Rating and Labelling by BEE. 9 UNIT V ENERGY CONSERVATION IN INDUSTRIAL 1GHTING 9 Concept of lighting systems - Choice of lighting - Different lighting technologies - Energy savin Control of lighting - Lighting standards and requirements - Light meter audit - Methods reduce costs. 45 Suggestive Assessment Methods G0 Marks) 1. DESCRIPTION QUESTIONS 2. ONLINE QUIZZES 3. PROBLEM-SOLVING 2. ONLINE QUIZZES 3. PROBLEM-SOLVING ACTIVITIES 1. DESCRIPTION QUESTIONS 2. FORMATIVE MULTIPLE CHOICE QUESTIONS	Motors efficiency – M	lotor selecti	on – Factors affecting motor perfo	rmance –	Efficiency at low loa
UNIT IIIENERGY AUDIT FOR BOILERS AND FURNACES9Energy Audit of Boilers: Classification of Boilers, Parts of Boiler, Efficiency of a Boiler, Roleexcess Air in Boiler Efficiency, Energy Saving Methods. Energy Audit of Furnaces: Parts ofFurnace, classification of Furnaces, Energy saving Measures in Furnaces, Furnace Efficiency.UNIT IVENERGY AUDIT FOR HVAC SYSTEMS9Introduction to HVAC, Components of Air - Conditioning System, Types of Air - ConditionSystems, Human Comfort Zone and Psychrometry, Vapour - Compression Refrigeration CyEnergy Use Indices, Impact of Refrigerants on Environment and Global Warming, Energy - SatMeasures in HVAC, Star Rating and Labelling by BEE.UNIT VENERGY CONSERVATION IN INDUSTRIAL LIGHTING9Concept of lighting systems - Choice of lighting - Different lighting technologies - Energy savin Control of lighting - Lighting standards and requirements - Light meter audit - Methods reduce costs.Continuous Assessment Methodsformative Assessment Test (30 Marks)1. DESCRIPTION QUESTIONS 2. FORMATIVE MULTIPLE1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES1. DESCRIPTION 2. FORMATIVE MULTIPLE2. FORMATIVE MULTIPLE CHOICE QUESTIONS1.ASSIGNMENT 2. FORMATIVE MULTIPLE CHOICE QUESTIONS	-				-
Energy Audit of Boilers: Classification of Boilers, Parts of Boiler, Efficiency of a Boiler, RoleEnergy Audit of Boiler Efficiency, Energy Saving Methods. Energy Audit of Furnaces: Parts ofFurnace, classification of Furnaces, Energy saving Measures in Furnaces, Furnace Efficiency.UNIT IVENERGY AUDIT FOR HVAC SYSTEMS9Introduction to HVAC, Components of Air – Conditioning System, Types of Air – ConditionSystems, Human Comfort Zone and Psychrometry, Vapour – Compression Refrigeration CyEnergy Use Indices, Impact of Refrigerants on Environment and Global Warming, Energy – SatMeasures in HVAC, Star Rating and Labelling by BEE.UNIT VENERGY CONSERVATION IN INDUSTRIAL LIGHTING9Concept of lighting systems – Choice of lighting – Different lighting technologies – Energy saving Control of lighting – Lighting standards and requirements – Light meter audit – Methods reduce costs.Continuous Assessment MethodsContinuous Assessment Test (30 Marks)1. DESCRIPTION QUESTIONS 2. FORMATIVE MULTIPLE CHOICE QUESTIONS1. DESCRIPTION QUESTIONS 2. FORMATIVE MULTIPLE CHOICE QUESTIONS1. DESCRIPTION QUESTIONS 2. FORMATIVE MULTIPLE CHOICE QUESTIONS1. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES2. FORMATIVE MULTIPLE CHOICE QUESTIONS	savings in transform	ers – Case st	udies.	-	
excess Air in Boiler Efficiency, Energy Saving Methods. Energy Audit of Furnaces: Parts of Furnace, classification of Furnaces, Energy saving Measures in Furnaces, Furnace Efficiency. UNIT IV ENERGY AUDIT FOR HVAC SYSTEMS 9 Introduction to HVAC, Components of Air – Conditioning System, Types of Air – Condition Systems, Human Comfort Zone and Psychrometry, Vapour – Compression Refrigeration Cy Energy Use Indices, Impact of Refrigerants on Environment and Global Warming, Energy – Sav Measures in HVAC, Star Rating and Labelling by BEE. UNIT V ENERGY CONSERVATION IN INDUSTRIAL 9 LIGHTING 9 Concept of lighting systems – Choice of lighting – Different lighting technologies – Energy savin Control of lighting – Lighting standards and requirements – Light meter audit – Methods reduce costs. Total Periods 45 Suggestive Assessment Methods Continuous Assessment Test (30 Marks) (10 Marks) (60 Marks) 1. DESCRIPTION QUESTIONS 2. FORMATIVE MULTIPLE CHOICE QUESTIONS 3. PROBLEM-SOLVING ACTIVITIES 1. ASSIGNMENT 2. FORMATIVE MULTIPLE CHOICE QUESTIONS	UNIT III	ENERGY	AUDIT FOR BOILERS AND FURM	NACES	9
excess Air in Boiler Efficiency, Energy Saving Methods. Energy Audit of Furnaces: Parts of Furnace, classification of Furnaces, Energy saving Measures in Furnaces, Furnace Efficiency. UNIT IV ENERGY AUDIT FOR HVAC SYSTEMS 9 Introduction to HVAC, Components of Air – Conditioning System, Types of Air – Condition Systems, Human Comfort Zone and Psychrometry, Vapour – Compression Refrigeration Cy Energy Use Indices, Impact of Refrigerants on Environment and Global Warming, Energy – Sav Measures in HVAC, Star Rating and Labelling by BEE. UNIT V ENERGY CONSERVATION IN INDUSTRIAL 9 LIGHTING 9 Concept of lighting systems – Choice of lighting – Different lighting technologies – Energy savin Control of lighting – Lighting standards and requirements – Light meter audit – Methods reduce costs. Total Periods 45 Suggestive Assessment Methods Continuous Assessment Test (30 Marks) (10 Marks) (60 Marks) 1. DESCRIPTION QUESTIONS 2. FORMATIVE MULTIPLE CHOICE QUESTIONS 3. PROBLEM-SOLVING ACTIVITIES 1. ASSIGNMENT 2. FORMATIVE MULTIPLE CHOICE QUESTIONS	Energy Audit of Boi	lers: Classifi	cation of Boilers, Parts of Boiler,	Efficiency	y of a Boiler, Role o
Furnace, classification of Furnaces, Energy saving Measures in Furnaces, Furnace Efficiency. UNIT IV ENERGY AUDIT FOR HVAC SYSTEMS 9 Introduction to HVAC, Components of Air – Conditioning System, Types of Air – Condition Systems, Human Comfort Zone and Psychrometry, Vapour – Compression Refrigeration Cy Energy Use Indices, Impact of Refrigerants on Environment and Global Warming, Energy – Sav Measures in HVAC, Star Rating and Labelling by BEE. 9 UNIT V ENERGY CONSERVATION IN INDUSTRIAL LIGHTING 9 Concept of lighting systems – Choice of lighting – Different lighting technologies – Energy savin Control of lighting – Lighting standards and requirements – Light meter audit – Methods reduce costs. 9 Suggestive Assessment Methods Formative Assessment Test (30 Marks) Formative Assessment Test 2. ONLINE QUIZZES 3. PROBLEM-SOLVING ACTIVITIES 1. DESCRIPTION QUESTIONS 2. FORMATIVE MULTIPLE CHOICE QUESTIONS				-	
UNIT IVENERGY AUDIT FOR HVAC SYSTEMS9Introduction to HVAC, Components of Air – Conditioning System, Types of Air – Condition Systems, Human Comfort Zone and Psychrometry, Vapour – Compression Refrigeration Cy Energy Use Indices, Impact of Refrigerants on Environment and Global Warming, Energy – Sav Measures in HVAC, Star Rating and Labelling by BEE.9UNIT VENERGY CONSERVATION IN INDUSTRIAL LIGHTING9Concept of lighting systems – Choice of lighting – Different lighting technologies – Energy savin Control of lighting – Lighting standards and requirements – Light meter audit – Methods reduce costs.9Total Periods45Suggestive Assessment Methods(30 Marks)1. DESCRIPTION QUESTIONS 2. FORMATIVE MULTIPLE CHOICE QUESTIONS1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES1. DESCRIPTION QUESTIONS 2. FORMATIVE MULTIPLE CHOICE QUESTIONS		-			
Introduction to HVAC, Components of Air – Conditioning System, Types of Air – Condition Systems, Human Comfort Zone and Psychrometry, Vapour – Compression Refrigeration Cy Energy Use Indices, Impact of Refrigerants on Environment and Global Warming, Energy – Sav Measures in HVAC, Star Rating and Labelling by BEE. UNIT V ENERGY CONSERVATION IN INDUSTRIAL 9 LIGHTING 9 Concept of lighting systems – Choice of lighting – Different lighting technologies – Energy savin Control of lighting – Lighting standards and requirements – Light meter audit – Methods reduce costs. Total Periods 45 Suggestive Assessment Methods Continuous Assessment Test (30 Marks) (10 Marks) (60 Marks) 1. DESCRIPTION QUESTIONS 2. FORMATIVE MULTIPLE CHOICE QUESTIONS 2. FORMATIVE MULTIPLE CHOICE QUESTIONS 3.PROBLEM-SOLVING ACTIVITIES 1.	Furnace, classificatio	n of Furnace	es, Energy saving Measures in Furr	haces, Fur	nace Efficiency.
Systems, Human Comfort Zone and Psychrometry, Vapour – Compression Refrigeration Cy Energy Use Indices, Impact of Refrigerants on Environment and Global Warming, Energy – Sav Measures in HVAC, Star Rating and Labelling by BEE. UNIT V ENERGY CONSERVATION IN INDUSTRIAL LIGHTING 9 Concept of lighting systems – Choice of lighting – Different lighting technologies – Energy savin Control of lighting – Lighting standards and requirements – Light meter audit – Methods reduce costs. Total Periods 45 Suggestive Assessment Methods (30 Marks) formative Assessment Test (30 Marks) 1.ASSIGNMENT 2. FORMATIVE MULTIPLE 2. ONLINE QUIZZES 3.PROBLEM-SOLVING 2. FORMATIVE MULTIPLE CHOICE QUESTIONS 3.PROBLEM-SOLVING ACTIVITIES 2. FORMATIVE MULTIPLE	UNIT IV	ENI	ERGY AUDIT FOR HVAC SYSTEM	S	9
Systems, Human Comfort Zone and Psychrometry, Vapour - Compression Refrigeration Cy Energy Use Indices, Impact of Refrigerants on Environment and Global Warming, Energy - Sav Measures in HVAC, Star Rating and Labelling by BEE. UNIT V ENERGY CONSERVATION IN INDUSTRIAL LIGHTING Concept of lighting systems - Choice of lighting - Different lighting technologies - Energy savin Control of lighting - Lighting standards and requirements - Light meter audit - Methods reduce costs. Total Periods 45 Suggestive Assessment Methods (30 Marks) [10 Marks] 1. DESCRIPTION QUESTIONS 1.ASSIGNMENT 2. FORMATIVE MULTIPLE 2. ONLINE QUIZZES 3.PROBLEM-SOLVING 2. FORMATIVE MULTIPLE CHOICE QUESTIONS 3.PROBLEM-SOLVING ACTIVITIES 2. FORMATIVE MULTIPLE	Introduction to HVA	C, Compone	ents of Air – Conditioning System	n, Types d	of Air – Conditionir
Energy Use Indices, Impact of Refrigerants on Environment and Global Warming, Energy – Sav Measures in HVAC, Star Rating and Labelling by BEE. 9 UNIT V ENERGY CONSERVATION IN INDUSTRIAL LIGHTING 9 Concept of lighting systems – Choice of lighting – Different lighting technologies – Energy savin Control of lighting – Lighting standards and requirements – Light meter audit – Methods reduce costs. 9 Suggestive Assessment Methods 45 Suggestive Assessment Test (30 Marks) Formative Assessment Test (10 Marks) End Semester Exams (60 Marks) 1. DESCRIPTION QUESTIONS 2. FORMATIVE MULTIPLE CHOICE QUESTIONS 1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES 1. DESCRIPTION 2. FORMATIVE MULTIPLE CHOICE QUESTIONS		-			
Measures in HVAC, Star Rating and Labelling by BEE. 9 UNIT V ENERGY CONSERVATION IN INDUSTRIAL LIGHTING 9 Concept of lighting systems - Choice of lighting - Different lighting technologies - Energy savin Control of lighting - Lighting standards and requirements - Light meter audit - Methods reduce costs. 9 Total Periods 45 Suggestive Assessment Methods Continuous Assessment Test (30 Marks) Formative Assessment Test (10 Marks) End Semester Exams (60 Marks) 1. DESCRIPTION QUESTIONS 2. FORMATIVE MULTIPLE CHOICE QUESTIONS 1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES 1. DESCRIPTION 2. FORMATIVE MULTIPLE CHOICE QUESTIONS				-	
UNIT VENERGY CONSERVATION IN INDUSTRIAL LIGHTING9Concept of lighting systems – Choice of lighting – Different lighting technologies – Energy savin Control of lighting – Lighting standards and requirements – Light meter audit – Methods reduce costs.9Total Periods45Suggestive Assessment MethodsContinuous Assessment Test (30 Marks)Formative Assessment Test (10 Marks)End Semester Exams (60 Marks)1. DESCRIPTION QUESTIONS 2. FORMATIVE MULTIPLE CHOICE QUESTIONS1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES1. DESCRIPTION 2. FORMATIVE MULTIPLE CHOICE QUESTIONS					
Concept of lighting systems – Choice of lighting – Different lighting technologies – Energy savin Control of lighting – Lighting standards and requirements – Light meter audit – Methods reduce costs.Total Periods45Suggestive Assessment MethodsContinuous Assessment Methods(30 Marks)Formative Assessment Test (10 Marks)End Semester Exams (60 Marks)1. DESCRIPTION QUESTIONS 2. FORMATIVE MULTIPLE CHOICE QUESTIONS1. ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES1. DESCRIPTION QUESTIONS 2. FORMATIVE MULTIPLE CHOICE QUESTIONS		-		IAL	9
Control of lighting – Lighting standards and requirements – Light meter audit – Methods reduce costs. Total Periods 45 Total Periods 45 Suggestive Assessment Methods Continuous Assessment Test (30 Marks) Formative Assessment Test (10 Marks) End Semester Exams (60 Marks) 1. DESCRIPTION QUESTIONS 1. ASSIGNMENT 1. DESCRIPTION QUESTIONS 2. FORMATIVE MULTIPLE 3.PROBLEM-SOLVING ACTIVITIES 2. FORMATIVE MULTIPLE CHOICE QUESTIONS			LIGHTING		
Control of lighting – Lighting standards and requirements – Light meter audit – Methods reduce costs. Total Periods 45 Total Periods 45 Suggestive Assessment Methods Continuous Assessment Test (30 Marks) Formative Assessment Test (10 Marks) End Semester Exams (60 Marks) 1. DESCRIPTION QUESTIONS 1. ASSIGNMENT 1. DESCRIPTION QUESTIONS 2. FORMATIVE MULTIPLE 3.PROBLEM-SOLVING 2. FORMATIVE MULTIPLE CHOICE QUESTIONS 3.PROBLEM-SOLVING 2. FORMATIVE MULTIPLE ACTIVITIES CHOICE QUESTIONS 2. FORMATIVE MULTIPLE	Concent of lighting s	 vstoms _ Chi	nice of lighting – Different lighting	technolog	ies – Fnergy saving
reduce costs. Total Periods 45 Suggestive Assessment Methods Continuous Assessment Test (30 Marks) Formative Assessment Test (10 Marks) End Semester Exams (60 Marks) 1. DESCRIPTION QUESTIONS 1.ASSIGNMENT 1. DESCRIPTION QUESTIONS 2. FORMATIVE MULTIPLE 2. ONLINE QUIZZES QUESTIONS CHOICE QUESTIONS 3.PROBLEM-SOLVING 2. FORMATIVE MULTIPLE ACTIVITIES CHOICE QUESTIONS 3.PROBLEM-SOLVING				-	
Total Periods45Suggestive Assessment MethodsContinuous Assessment Test (30 Marks)Formative Assessment Test (10 Marks)End Semester Exams (60 Marks)1. DESCRIPTION QUESTIONS 2. FORMATIVE MULTIPLE CHOICE QUESTIONS1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES1. DESCRIPTION QUESTIONS 2. FORMATIVE MULTIPLE CHOICE QUESTIONS		- Lighting 5	tanuarus anu requirements – Eig	giit illetei	auunt – Methous (
Continuous Assessment TestFormative Assessment TestEnd Semester Exams(30 Marks)(10 Marks)(60 Marks)1. DESCRIPTION QUESTIONS1.ASSIGNMENT1. DESCRIPTION2. FORMATIVE MULTIPLE2. ONLINE QUIZZESQUESTIONSCHOICE QUESTIONS3.PROBLEM-SOLVING2. FORMATIVE MULTIPLEACTIVITIESCHOICE QUESTIONS1.000000000000000000000000000000000000			Total	Periods	45
Continuous Assessment TestFormative Assessment TestEnd Semester Exams(30 Marks)(10 Marks)(60 Marks)1. DESCRIPTION QUESTIONS1.ASSIGNMENT1. DESCRIPTION2. FORMATIVE MULTIPLE2. ONLINE QUIZZESQUESTIONSCHOICE QUESTIONS3.PROBLEM-SOLVING2. FORMATIVE MULTIPLEACTIVITIESCHOICE QUESTIONS1.000000000000000000000000000000000000	Suggestive Assessm	ient Method	ls		
(30 Marks)(10 Marks)(60 Marks)1. DESCRIPTION QUESTIONS1.ASSIGNMENT1. DESCRIPTION2. FORMATIVE MULTIPLE2. ONLINE QUIZZESQUESTIONSCHOICE QUESTIONS3.PROBLEM-SOLVING2. FORMATIVE MULTIPLEACTIVITIESCHOICE QUESTIONS			1	End Se	mester Exams
1. DESCRIPTION QUESTIONS 2. FORMATIVE MULTIPLE CHOICE QUESTIONS1. ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES1. DESCRIPTION QUESTIONS 2. FORMATIVE MULTIPL CHOICE QUESTIONS					
2. FORMATIVE MULTIPLE CHOICE QUESTIONS2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIESQUESTIONS2. FORMATIVE MULTIPL CHOICE QUESTIONS2. FORMATIVE MULTIPL CHOICE QUESTIONS			(10 Marks)	(60 Ma	irks)
CHOICE QUESTIONS3.PROBLEM-SOLVING ACTIVITIES2. FORMATIVE MULTIPL CHOICE QUESTIONS	(30 Marks)	ESTIONS	1.ASSIGNMENT	1. DES	CRIPTION
ACTIVITIES CHOICE QUESTIONS			2 ONLINE OU177ES	QUEST	IONS
	1. DESCRIPTION QU		2. UNLINE QUILLES		
Outcomes	1. DESCRIPTION QU 2. FORMATIVE MULT	TIPLE	3.PROBLEM-SOLVING		MATIVE MULTIPLE
	1. DESCRIPTION QU 2. FORMATIVE MULT CHOICE QUESTIONS	TIPLE	3.PROBLEM-SOLVING		MATIVE MULTIPLE
Upon completion of the course, the students will be able to:	1. DESCRIPTION QU 2. FORMATIVE MULT CHOICE QUESTIONS	TIPLE	3.PROBLEM-SOLVING		MATIVE MULTIPLE

- **CO 1:** Students will develop the ability to learn about the need for energy management and auditing process
- **CO 2:** Learners will learn about basic concepts of economic analysis and load management.
- **CO 3:** Students will understand the energy management on various electrical equipments.
- **CO 4:** Students will have knowledge on the concepts of metering and factors influencing cost Function
- **CO 5:** Students will be able to learn about the concept of lighting systems, light sources and various forms of cogeneration

Reference Books

- 1. Barney L. Capehart, Wayne C. Turner, and William J. Kennedy, "Guide to Energy Management", Fifth Edition, The Fairmont Press, Inc., 2006
- 2. Eastop T.D & Croft D.R, "Energy Efficiency for Engineers and Technologists", Logman Scientific & Technical, 1990.
- *3.* Reay D.A, "Industrial Energy Conservation", 1st edition, Pergamon Press, 1977.
- 4. "IEEE Recommended Practice for Energy Management in Industrial and Commercial Facilities", IEEE, 1996
- 5. Amit K. Tyagi, "Handbook on Energy Audits and Management", TERI, 2003.

Web Recourses

- 1. <u>https://beeindia.gov.in/sites/default/files/1Ch3.pdf</u>
- 2. <u>https://www.emanz.org.nz/energy-management-audits</u>
- CO Vs PO Mapping and CO Vs PSO Mapping

	CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	PSC)1	PSO2	
	1	2	2	1					2			3			
	2	2	2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2											2	
	3	2												3	
	4	2													
	5 2 2 1 2												3		
Course Code ADVANCED POWER SYSTEM SIMULATION										L	Τ	Р	C		
21PS2611 LABORATORY								0	0	4	2				

Prerequisites for the course

- Power system Analysis
- Power System operation control
- Power Quality

Objectives

- 1. To Introduce the infinite bus system for single and classical machines.
- 2. To impart knowledge on starting characteristics of AC machines using hands on training.
- 3. To compute the two-bus system with STATCOM
- 4. To design the variable speed wind energy conversion system
- 5. To design the various active filters for improving the power quality

S.No	List of Experiments	CO
1	Small-signal stability analysis of single machine-infinite bus system using classical machine model	1
2	Small-signal stability analysis of multi-machine configuration with classical machine model	1
3	Induction motor starting analysis.	2
4	Load flow analysis of two-bus system with STATCOM.	2
5	Transient analysis of two-bus system with STATCOM.	3
6	Available Transfer Capability calculation using an existing load flow program.	3
7	Study of variable speed wind energy conversion system- DFIG.	4
8	Study of variable speed wind energy conversion system- PMSG.	4
9	Computation of harmonic indices generated by a rectifier feeding a R-L load.	5
10	Design of active filter for mitigating harmonics.	5

Suggestive Assessment Methods Lab Components Assessments End Semester Exams (50 Marks) (50 Marks)

Outcomes

Upon completion of the course, the students will be able to: Laboratory Requirements

CO 1: Ability to analysis of single machine-infinite bus system using classical machine model

CO 2: Ability to analysis of starting of AC Machine

CO 3: Ability to analysis of two-bus system with STATCOM

CO 4: Understand the concept of variable speed wind energy conversion system

CO 5: Ability to design the active filter for filtering harmonics.

Web Recourses

• https://nptel.ac.in/courses/108105067/

21052011	INNOVATIVE DDO JECT	L	Τ	Р	С
21PS2911	INNOVATIVE PROJECT	0	0	4	2
Ohiectives	·				

Objectives

- 1. To develop the ability to solve a specific problem right from its identification and literature review till the successful solution of the same.
- 2. To train the students in preparing project reports and to face reviews and viva voce examination.

A project to be developed based on one or more of the following concepts.

Rectifiers, DC-DC Converters, Inverters, cyclo-converters, DC drives, AC drives, Special Electrical Machines, Renewable Energy Systems, Linear and non-linear control systems, Power supply design for industrial and other applications, AC-DC power factor circuits, micro grid, smart grid and robotics.

Total Periods 30

Course Code		L	Т	Р	С
21PS1701	POWER DISTRIBUTION SYSTEM RELIABILITY				
21131/01		3	0	0	3
Prerequisites	for the course				
•					

•	Power System Analysis
-	I Ower Dystern I marysis

• Power System Operation and Control

Objectives

- 1. To impart the concepts of Load forecasting.
- 2. To analysis the fundamentals of Generation system reliability.
- 3. To analysis the fundamentals of Transmission system reliability.
- 4. To illustrate the basic concepts of Expansion planning.
- 5. To study the fundamentals of Distribution system reliability analysis

UNIT I	LOAD FORECASTING	9
Objectives of fo	recasting - Load growth patterns and their importance in planning	ing - Load forecasting
Based on discou	inted multiple regression technique-Weather sensitive load fore	casting-Determination

of annual forecasting-Use of AI in load forecasting.

UNIT II GENERATION SYSTEM RELIABILITY ANALYSIS

9

Probabilistic generation and load models- capacity outage table, recursive algorithm -Determination of LOLP and expected value of demand not served –Determination of reliability of ISO and interconnected generation systems.

UNIT III TRANSMISSION SYSTEM RELIABILITY ANALYSIS

9

Deterministic contingency analysis-probabilistic load flow-Fuzzy load flow probabilistic transmission system reliability analysis-Determination of reliability indices like LOLP and expected value of demand not served.

UNIT IV EXPANSION PLANNING 9

Basic concepts on expansion planning-procedure followed for integrate transmission system planning, current practice in India-Capacitor placer problem in transmission system and radial distributions system.

UNIT V	DISTRIBUTION SYSTEM PLANNING OVERVIEW	9

Basic technique and application to radial systems, sub transmission lines and distribution substations-Design primary and secondary systems-distribution system protection and coordination of protective

devices.

	Total Per	riods	45
Suggestive Assessment Method	S		
Continuous Assessment Test	Formative Assessment Test E	End Ser	nester Exams

(30 Marks)	(10 Marks)	(60 Marks)
1. DESCRIPTION QUESTIONS 2. FORMATIVE MULTIPLE CHOICE QUESTIONS	1.ASSIGNMENT2. ONLINE QUIZZES3.PROBLEM-SOLVING	1. DESCRIPTION QUESTIONS 2. FORMATIVE MULTIPLE CHOICE QUESTIONS
	ACTIVITIES	
Outcomes		
Upon completion of the course	e, the students will be able to	:
CO 1: Able to understand the cond	cepts of Load forecasting.	
CO 2: Analysis the techniques relation	ated to fundamentals of Generation	on system reliability.
CO 3: Analysis the techniques relation	ated to fundamentals of Transmis	ssion system reliability.
CO 4: Able to modelling of expan	sion planning of power system	
CO 5: Able to understand the fund	lamental concepts of Distributior	n system reliability
Reference Books		
1. Roy Billinton & Ronald	N. Allan, "Reliability Evalua	ation of Power Systems" Springer
Publication.		
2. R.L. Sullivan, "Power Syst	tem Planning", Tata McGraw Hil	ll Publishing Company Ltd 1977.
3. X. Wang & J.R. McDonal	d, "Modern Power System Plan	ning", McGraw Hill Book Company
1994.		
4. T. Gonen, "Electrical Powe	er Distribution Engineering", Mc	Graw Hill Book Company 1986.
5. B.R. Gupta, "Generation o	f Electrical Energy", S.Chand Pul	plications 1983.
Web Recourses		
• https://link.springer.	com/chapter/10.1007%2F978-1-	84996-232-2_8
	ee.org/abstract/document/861440	

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2
1	2	3				3				2	3	
2	2	3				3				2		2
3	2	2		2							3	
4	2	3		2		3						2
5	2	3		2							2	

Francis Xavier Engineering	College	Dept of EEE,	R2019 ME- I	PSE/2021-Curi	riculum and Syllabi

-	CONVERTERS • the course	3	0	0	3
Prerequisites for • Pow	the course				
• Pow					
	ver Electronics				
• Soli	d State Drives				
• Pow	ver Electronics for Renewable Energy Sources.				
Objectives					
1. To determ	ine the operation and characteristics of Power converters.				
2. To introdu	ce the design of power converter components.				
3. To compre	ehend the concepts of resonant converters and AC-AC powe	er con	ivert	ers.	
4. To analyse	and comprehend the various types of inverters.				
5. To impart	knowledge on multilevel inverters and Boost inverters.				
UNIT I	POWER CONVERTERS			9	
UNIT II	DESIGN OF POWER CONVERTER COMPONENTS			9	
windings – Desigi	nagnetic materials- hard and soft magnetic materials –ty n of transformer –Inductor design equations –Examples o verter-selection of output filter capacitors – selection of	of indu	uctoi	desi	gn fo
UNIT III	RESONANT DC-DC CONVERTERS& AC-AC CONVERTERS			9	
ZCS/ZVS Introdu with R & RL load	converters – operation and analysis of ZVS, ZCS converted action to ZVT/ZCT PWM converters. Single phase ac voltage I – Three phase ac voltage controller – principle of operati I d three phase cycloconverters – Introduction to matrix con	e cont on of	rolle cyclo	r – an	alysi
UNIT IV	VOLTAGE SOURCE AND CURRENT SOURCE INVERTERS			9	
		·	100	degre	

sequential current sou	rce inverter (ASCI), PWM techniques	for current sourc	e inverters.
UNIT V	MULTILEVEL INVERTERS, BOOST & INVERTERS	RESONANT	9
Comparison of multile	diode clamped – flying capacitor – evel inverters .Series and parallel real lass E resonant inverter – resonant DC	sonant inverters	
		Total Periods	45
Suggestive Assessme	nt Methods		
Continuous Assessme	ent Test Formative Assessment	Test End Se	mester Exams
(30 Marks)	(10 Marks)	(60 Ma	rks)
1. DESCRIPTION QUES 2. FORMATIVE MULTI CHOICE QUESTIONS		QUEST 2. FOR	CRIPTION IONS MATIVE MULTIPLE E QUESTIONS
CO 1: To Understand a	the course, the students will be able and analyze various power converter design the power converter compone	's working	
-	and analyse the resonant converter an		rs.
	and analyse the resonant converter an		
	nd analyse Multilevel Inverters and bo		
Text Books			
I Chie Doomb	4 Undeland and W.P Robbin, "Power	r Electronics: co	nverters, Applicatio
 Ned Mohan,T.M and design" Joh Rashid M.H., "P Third Edition, N 	n Wiley and sons.Wiley India edition, Power Electronics Circuits, Devices an New Delhi, 2004. ern Power Electronics", Wheeler Pub	nd Applications "	

- 6. V.Ramanarayanan, "Course material on Switched mode power conversion", 2007.
- 7. Alex Van den Bossche and VencislavCekovValchev, "Inductors and TransformersforPowerElectronics", CRC Press, Taylor & Francis Group, 2005.
- 8. W. G. Hurley and W. H.Wolfle, "Transformers and Inductors for Power Electronics Theory, Design and Applications", 2013 John Wiley & Sons Ltd.
- Marian.K.Kazimierczuk and DariuszCzarkowski, "Resonant Power Converters", John Wiley & Sons limited, 2011.
- 10. Jai P.Agrawal, "Power Electronics Systems", Pearson Education, Second Edition, 2002
- 11. Bimal K.Bose "Modern Power Electronics and AC Drives", Pearson Education, Second Edition, 2003.
- 12. Philip T. krein, "Elements of Power Electronics" Oxford University Press -1998.

Web Recourses

1. https://www.powerelectronics.com/technologies/dc-dc-

converters/article/21861281/buckconverter-design-demystified

- 2. https://www.youtube.com/watch?v=LwPJi3jyfw0
- 3. http://dese.iisc.ac.in/design-of-power-converters/

СО	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	PSO1	PSO2
1	3	3								3		3
2	3		2							3	2	
3	3		2							3		3
4	3		2							3	2	
5	3		2							3	3	

Course Code	ELECTRICAL DISTRIBUTION SYSTEM	L	Т	Р	С					
21PS1702		2	0	0	2					
		3	U	0	3					
Prerequisites for	Prerequisites for the course									
Transmissi	on system									
Power syst	Power system Analysis									
Power syst	em operation and control									

Francis Xavier Engineering			

Objectives				
1. Ability	to apply the con	cepts of planning and design of di	stribution	system for utility
system	S			
2. Ability	to implement th	ne concepts of voltage control in di	stribution	system.
3. Ability	to implement th	e concepts of voltage regulation		
4. Ability	to analyze the p	ower flow in balanced and unbala	nced syste	em
5. Ability	to implement th	e concepts of voltage feeder analy	sis.	
UNIT I			9	
Customer Load,	Distribution Tra	Feeder Electrical Characteristics ansformer Loading and Feeder I edance, " <i>K</i> " Factors, Uniformly Dist	Load-Appr	oximate Method o
UNIT II	DIST	RIBUTION SYSTEM PLANNING		9
planning, Role of models.	computer in Dis	ent techniques, planning models, tribution planning. Load forecast,		acteristics and Load
	DICTI			
UNIT III	DISTI	RIBUTION SYSTEM LINE MODEL		9
		RIBUTION SYSTEM LINE MODEL	Segment M	-
Exact Line Segme	nt Model-Modifi		Segment M	-
Exact Line Segme	nt Model-Modifi	ied Line Model-Approximate Line S	Segment M	-
Exact Line Segmer "Ladder" Iterative UNIT IV	nt Model-Modifi Technique-Gen	ed Line Model-Approximate Line S heral Matrices for Parallel Lines.		lodel-Modified 9
Exact Line Segmen "Ladder" Iterative UNIT IV Standard Voltage	nt Model-Modifi Technique-Gen Ratings-Two-V	ed Line Model-Approximate Line S neral Matrices for Parallel Lines. VOLTAGE REGULATION	vo-Windin	lodel-Modified 9 g Autotransformer
Exact Line Segmen "Ladder" Iterative UNIT IV Standard Voltage Step-Voltage Reg	nt Model-Modifi Technique-Gen Ratings-Two-V gulators: Singl	ied Line Model-Approximate Line S neral Matrices for Parallel Lines. VOLTAGE REGULATION Winding Transformer Theory-Tw	vo-Windin	lodel-Modified 9 g Autotransformer
Exact Line Segmen "Ladder" Iterative UNIT IV Standard Voltage Step-Voltage Reg	nt Model-Modifi Technique-Gen Ratings-Two-V gulators: Singl cation of capacit	ied Line Model-Approximate Line S neral Matrices for Parallel Lines. VOLTAGE REGULATION Winding Transformer Theory-Tw ne-Phase Step-Voltage Regulato	vo-Windin	lodel-Modified 9 g Autotransformer
Exact Line Segmen "Ladder" Iterative UNIT IV Standard Voltage Step-Voltage Regulators- Applie UNIT V	nt Model-Modifi Technique-Gen Ratings-Two-V gulators: Singl cation of capacit DISTRI	ied Line Model-Approximate Line S neral Matrices for Parallel Lines. VOLTAGE REGULATION Winding Transformer Theory-Tw ne-Phase Step-Voltage Regulato tors in Distribution system.	vo-Windin rs-Three-F	lodel-Modified 9 g Autotransformer Phase Step-Voltage 9
Exact Line Segmen "Ladder" Iterative UNIT IV Standard Voltage Step-Voltage Regulators- Applie UNIT V Power-Flow Analy	nt Model-Modifi Technique-Gen Ratings-Two-V gulators: Singl cation of capacit DISTRI ysis- Ladder Ite	ied Line Model-Approximate Line S heral Matrices for Parallel Lines. VOLTAGE REGULATION Winding Transformer Theory-Tw he-Phase Step-Voltage Regulato tors in Distribution system. IBUTION FEEDER ANALYSIS	vo-Windin rs-Three-H ree-Phase	lodel-Modified 9 g Autotransformer Phase Step-Voltage 9
Exact Line Segmen "Ladder" Iterative UNIT IV Standard Voltage Step-Voltage Regulators- Applie UNIT V Power-Flow Analy	nt Model-Modifi Technique-Gen Ratings-Two-V gulators: Singl cation of capacit DISTRI ysis- Ladder Ite	ied Line Model-Approximate Line S neral Matrices for Parallel Lines. VOLTAGE REGULATION Winding Transformer Theory-Tw e-Phase Step-Voltage Regulato tors in Distribution system. IBUTION FEEDER ANALYSIS rative Technique -Unbalanced The que- Load Allocation- Short-Circuit	vo-Windin rs-Three-H ree-Phase	lodel-Modified 9 g Autotransformer Phase Step-Voltage 9
Exact Line Segmen "Ladder" Iterative UNIT IV Standard Voltage Step-Voltage Regulators- Applie UNIT V Power-Flow Analy Modified Ladder I	nt Model-Modifi Technique-Gen Ratings-Two-V gulators: Singl cation of capacit DISTRI ysis- Ladder Ite terative Technic	ied Line Model-Approximate Line S neral Matrices for Parallel Lines. VOLTAGE REGULATION Winding Transformer Theory-Tw e-Phase Step-Voltage Regulato tors in Distribution system. IBUTION FEEDER ANALYSIS rative Technique -Unbalanced Thu que- Load Allocation- Short-Circuit Total	vo-Windin rs-Three-H ree-Phase t Studies.	Iodel-Modified 9 g Autotransformer Phase Step-Voltage 9 DistributionFeeder
Exact Line Segmen "Ladder" Iterative UNIT IV Standard Voltage Step-Voltage Regulators- Applie UNIT V Power-Flow Analy	nt Model-Modifi Technique-Gen Ratings-Two-V gulators: Singl cation of capacit DISTRI ysis- Ladder Ite terative Technic sment Method	ied Line Model-Approximate Line S neral Matrices for Parallel Lines. VOLTAGE REGULATION Winding Transformer Theory-Tw e-Phase Step-Voltage Regulato tors in Distribution system. IBUTION FEEDER ANALYSIS rative Technique -Unbalanced Thu que- Load Allocation- Short-Circuit Total	vo-Windin rs-Three-H ree-Phase t Studies. Periods	Iodel-Modified 9 g Autotransformer Phase Step-Voltage 9 DistributionFeeder

2. FORMATIVE MULTIPLE CHOICE QUESTIONS	1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES	1. DESCRIPTION QUESTIONS 2. FORMATIVE MULTIPLE CHOICE QUESTIONS
Outcomes		
Upon completion of the course	e, the students will be able to:	
CO 1: Ability to apply the conce system	pts of planning and design of di	stribution system for utility
CO 2: Ability to apply the conce	pts of distribution system for u	tility system
CO 3: Ability to implement the o	concepts of voltage control in di	stribution system line model
CO 3: Ability to implement the of CO 4: Ability to implement the of		-
CO 4: Ability to implement the o	concepts of voltage regulation i	n distribution system
CO 4: Ability to implement the o	concepts of voltage regulation i	n distribution system
CO 4: Ability to implement the o CO 5 : Ability to analyze the pow Reference Books	concepts of voltage regulation i ver flow in balanced and unbala	n distribution system
CO 4: Ability to implement the o CO 5 : Ability to analyze the pow Reference Books 1. William H. Kersting," edition,2012.	concepts of voltage regulation i ver flow in balanced and unbala Distribution System Modeling	n distribution system nced system g and Analysis" CRC press 3 ^r
 CO 4: Ability to implement the operation of the power of the	concepts of voltage regulation i ver flow in balanced and unbala Distribution System Modeling ower Distribution System Eng	n distribution system nced system

• https://nptel.ac.in/courses/108107112/

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	PS01	PSO2
1	2	2								3		
2	2	2						3		3		
3	2				3			3		3		
4	2		2		3					3		
5	2		2							3		

Course Code	COMPUTER AIDED POWER SYSTEM ANALYSIS	L	Τ	Р	С
21PS1703		3	0	0	3
Prerequisites for	the course				
Power System An	alysis				
Objectives					
1. To upd analysis	ate the knowledge in the emerging and upcoming to	pics in	pov	ver sy	ysten
-	e the students conversant with the different software us	ed for	com	outer	aide
power	system analysis i.e., the students should be able to	write	algoi	ithm	s and
implem	ent computer programs to find out Y-bus matrix				
3. To Solve	e power flow equations				
4. To analy	vse Economic load dispatch problems in power flow stud	ies			
5. To impl	ement Artificial intelligence (AI) in power system studies	5			
UNIT I	NETWORK FORMULATION AND GRAPH THEORY			9	
Introduction, Netv	vork Equations, Graph Theory, Development of Networl	k Matri	ces f	rom (Grapl
	vork Equations, Graph Theory, Development of Networl ch, Augment Cut-set Incidence Matrix Cut-set and Circu				_
Theoretic Approad		ıit Equ	atior	ıs, Bu	ildin
Theoretic Approad	ch, Augment Cut-set Incidence Matrix Cut-set and Circu Bus Impedance Matrix Modification of ZBUS matrix o	ıit Equ	atior	ıs, Bu	ildin
Theoretic Approad Algorithm for the	ch, Augment Cut-set Incidence Matrix Cut-set and Circu Bus Impedance Matrix Modification of ZBUS matrix o	ıit Equ	atior	ıs, Bu	ildin
Theoretic Approad Algorithm for the primitive network UNIT II	ch, Augment Cut-set Incidence Matrix Cut-set and Circu Bus Impedance Matrix Modification of ZBUS matrix o	iit Equ lue to	atior char	ıs, Bu ıges i 9	ildin n th
Theoretic Approace Algorithm for the primitive network UNIT II Introduction, Diffe	ch, Augment Cut-set Incidence Matrix Cut-set and Circu Bus Impedance Matrix Modification of ZBUS matrix o LOAD FLOW STUDIES	it Equ lue to Raphs	atior char	nges i nges i 9 nethoo	ildin n th d, De
Theoretic Approace Algorithm for the primitive network UNIT II Introduction, Diffe Coupled method, 1	ch, Augment Cut-set Incidence Matrix Cut-set and Circu Bus Impedance Matrix Modification of ZBUS matrix on LOAD FLOW STUDIES erent techniques such as Gauss Saidal method, Newton	uit Equ due to Raphs cept of	ation char on m Opti	ns, Bu nges i 9 nethoo mal F	ildin n th d, De Powe
Theoretic Approace Algorithm for the primitive network UNIT II Introduction, Diffe Coupled method, Flow, Solution of	ch, Augment Cut-set Incidence Matrix Cut-set and Circu Bus Impedance Matrix Modification of ZBUS matrix of LOAD FLOW STUDIES erent techniques such as Gauss Saidal method, Newton Fast Decoupled method, Modified Fast Decoupled, Cond	uit Equ due to Raphs cept of	atior char on m Opti pow	ns, Bu nges i 9 nethoo mal F ver flo	ildin n th d, De Powe
Theoretic Approace Algorithm for the primitive network UNIT II Introduction, Diffe Coupled method, Flow, Solution of	ch, Augment Cut-set Incidence Matrix Cut-set and Circu Bus Impedance Matrix Modification of ZBUS matrix of LOAD FLOW STUDIES erent techniques such as Gauss Saidal method, Newton Fast Decoupled method, Modified Fast Decoupled, Conc Optimal power flow by Gradient method, Solution of O	uit Equ due to Raphs cept of	atior char on m Opti pow	ns, Bu nges i 9 nethoo mal F ver flo	ildin n th d, De Powe
Theoretic Approace Algorithm for the primitive network UNIT II Introduction, Diffe Coupled method, I Flow, Solution of Newton's method	ch, Augment Cut-set Incidence Matrix Cut-set and Circu Bus Impedance Matrix Modification of ZBUS matrix of LOAD FLOW STUDIES erent techniques such as Gauss Saidal method, Newton Fast Decoupled method, Modified Fast Decoupled, Conc Optimal power flow by Gradient method, Solution of O Linear Programming Methods, DC load flow, Continuation	nit Equ due to Raphs cept of ptimal	atior char on m Opti pow er flov	ns, Bu nges i 9 nethoo mal F ver flo w. 9	ildin n th d, De Powe pow b
Theoretic Approad Algorithm for the primitive network UNIT II Introduction, Diffe Coupled method, I Flow, Solution of Newton's method I UNIT III Introduction, Fact	ch, Augment Cut-set Incidence Matrix Cut-set and Circu Bus Impedance Matrix Modification of ZBUS matrix of LOAD FLOW STUDIES erent techniques such as Gauss Saidal method, Newton Fast Decoupled method, Modified Fast Decoupled, Conc Optimal power flow by Gradient method, Solution of O Linear Programming Methods, DC load flow, Continuation CONTINGENCY ANALYSIS	it Equ lue to Raphs cept of ptimal n Powe dies of	atior char on m Opti pow er flor	nges i 9 nethoo mal F ver flo w. 9 nrge F	ildin n th d, De Powe pow b
Theoretic Approace Algorithm for the primitive network UNIT II Introduction, Diffe Coupled method, I Flow, Solution of Newton's method I UNIT III Introduction, Fact System Networks	ch, Augment Cut-set Incidence Matrix Cut-set and Circu Bus Impedance Matrix Modification of ZBUS matrix of LOAD FLOW STUDIES erent techniques such as Gauss Saidal method, Newton Fast Decoupled method, Modified Fast Decoupled, Conc Optimal power flow by Gradient method, Solution of O Linear Programming Methods, DC load flow, Continuation CONTINGENCY ANALYSIS ors Affecting Power System Security, Short Circuit Stud	it Equ lue to Raphs cept of ptimal n Powe dies of Matrix,	atior char on m Opti pow er flor a La Alg	nges i 9 nethod mal F ver flo w. 9 nrge F orithn	ildin n th d, De Powe Dow b Powe n fo
Theoretic Approad Algorithm for the primitive network UNIT II Introduction, Diffe Coupled method, I Flow, Solution of Newton's method I UNIT III Introduction, Fact System Networks Formation of Bus	ch, Augment Cut-set Incidence Matrix Cut-set and Circu Bus Impedance Matrix Modification of ZBUS matrix of LOAD FLOW STUDIES erent techniques such as Gauss Saidal method, Newton Fast Decoupled method, Modified Fast Decoupled, Conc Optimal power flow by Gradient method, Solution of O Linear Programming Methods, DC load flow, Continuation CONTINGENCY ANALYSIS ors Affecting Power System Security, Short Circuit Stud , Symmetrical Fault Analysis Using Bus Impedance	it Equ lue to Raphs cept of ptimal n Powe dies of Matrix, of Netv	atior char on m Opti pow er flow a La Alg work	nges i 9 nethoo mal F ver flo w. 9 nrge F orithn Prob	ildin n th d, De Powe pow by Powe n fo
Theoretic Approad Algorithm for the primitive network UNIT II Introduction, Diffe Coupled method, I Flow, Solution of Newton's method I UNIT III Introduction, Fact System Networks Formation of Bus	ch, Augment Cut-set Incidence Matrix Cut-set and Circu Bus Impedance Matrix Modification of ZBUS matrix of LOAD FLOW STUDIES erent techniques such as Gauss Saidal method, Newton Fast Decoupled method, Modified Fast Decoupled, Conc Optimal power flow by Gradient method, Solution of O Linear Programming Methods, DC load flow, Continuation CONTINGENCY ANALYSIS ors Affecting Power System Security, Short Circuit Stud , Symmetrical Fault Analysis Using Bus Impedance I Impedance Matrix, Contingency Analysis: Detection of rity analysis, Linear Sensitivity Factors, Contingency	it Equ lue to Raphs cept of ptimal n Powe dies of Matrix, of Netv	atior char on m Opti pow er flow a La Alg work	nges i 9 nethoo mal F ver flo w. 9 nrge F orithn Prob	ildin n th d, De Powe pow by Powe n fo plems

Introduction, Power system state estimation, Maximum Likelihood Concept , Weighted Least Squares Estimation, Introduction, Matrix Formulation, State Estimation of an AC network, Development of Method, State Estimation by Orthogonal Decomposition, An Introduction to Advanced topics in state estimation, Detection and Identification of Bad measurements, Estimation of quantities not being measured, Network Observability and Pseudo measurements, Application of Power Systems State Estimation

UNIT V	NUMERICAL INTEGRATION TECHNIQUES	9

Numerical integration techniques: One step methods, Taylor series based methods, Forward -Euler's method, Runge-Kutta methods, Trapezoidal method, backward-Euler's method, Accuracy and error analysis, Numerical stability analysis, Stiff systems, Step-size selection, Differential algebraic systems, triangular factorization, Power system applications: Transient stability analysis

Total Periods

45

Suggestive Assessment Method		
Continuous Assessment Test (30 Marks)	Formative Assessment Test (10 Marks)	End Semester Exams (60 Marks)
1. DESCRIPTION QUESTIONS 2. FORMATIVE MULTIPLE CHOICE QUESTIONS	1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES	1. DESCRIPTION QUESTIONS 2. FORMATIVE MULTIPLE CHOICE QUESTIONS

Outcomes

Upon completion of the course, the students will be able to:

- **CO 1:** Recent techniques and computer application for modeling of practical and large interconnected power system networks using programming languages.
- **CO 2:** Recent methodologies for simulation and analysis of power system networks like real and reactive power flows and optimal scheduling.
- **CO 3:** Effect of outage of any important component of power system on the operation and reliability of power systems.
- **CO 4:** Algorithm required finding out parameters for monitoring and control of power system in real time from actual measurement data.
- **CO 5:** Computer Algorithms used to solve algebro-differential pertaining to power system to assess the stability performance of power systems.

Text Books

- **1.** Arthur R. Bergen, Vijay Vittal, Power Systems Analysis (English) 2nd Edition, Pearson Higher Education
- 2. G.L.Kusic, Computer Aided Power System Analysis, PHI, 1989
- **3.** John J. Grainger, William D. Stevenson, Jr., Power System Analysis, Tata McGraw-Hill Series in Electrical and Computer Engineering.
- **4.** M. A. Pai, Computer Techniques in Power Systems Analysis, Tata McGraw-Hill, Second edition 2005.

Reference Books

- 1. J.Nagrath and D.P.Kothari, "Modern Power System Analysis", Tata McGraw Hill, 1980
- 2. J. Arriliga and N.R. Watson, Computer modelling of Electrical power systems, 2/e, John Wiley, 2001
- **3.** LP. Singh, "Advanced Power System Analysis and Dynamics", 3/e, New Age Intl, 1996.
- 4. Stagg and El Abiad, "Computer methods in Power system Analysis", McGraw Hill, 1968.

Web Recourses

https://www.unitech.no/power-system-

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	PSO1	PSO2
1	1	1	2	2					2	2		
2	2	3	2	2					2	2		
3	1	1	2	2					2	2		
4	2	1	2	2	3				2	2		
5	2	1	3	2					2	2		

Course Code	e Code PRINCIPLES OF SMART GRID L T								
21PS2701									
21102701		3	0	0	3				
Prerequisites for the course									
Transmission	& Distribution								
Power System	n Analysis								
Objectives									
1. To Study abo infrastructure	ut Smart Grid technologies, different smart meters and e.	d adva	ance	d met	ering				
2. To familiarize	e the power quality management issues in Smart Grid.								
3. To familiarize	e the high performance computing for Smart Grid applica	tions	•						
UNIT I	INTRODUCTION			9					
					48				

Evolution of Electric Grid - Definitions, Architecture and Concept of Smart Grid - Need of Smart Grid - Functions of Smart Grid - Opportunities & Barriers of Smart Grid - Difference between conventional & smart grid - Difference between smart grid and Microgrid - Present development & International policies in Smart Grid - Smart grid economic and environmental benefits - Case study of Smart Grid.

UNIT II	SMART GRID TECHNOLOGIES	9								
Technology Drivers,	Smart energy resources, Smart substations, Subs	station Automation,								
Feeder Automation	Feeder Automation ,Transmission systems: EMS, FACTS and HVDC, Wide area monitoring,									
Protection and control, Distribution systems: DMS, Volt/Var control, Fault Detection, Isolation										
and service restoration, Outage management, High-Efficiency Distribution Transformers, Phase										
Shifting Transformer	rs, Plug in Hybrid Electric Vehicles (PHEV).									
UNIT III	SENSORS AND MEASUREMENT	9								
Sensors for Smart G	rid, Monitoring and Measurement Technologies, PMU,	Smart meters, Smart								
Appliances, Multi Ag	ent Systems (MAS) Technology, Micro grid and Smart g	rid comparison, Wide								
Area Measurement.										
UNIT IV	ENERGY MANAGEMENT SYSTEM(EMS)	9								
Energy Managemen	t System (EMS) - Smart substations - Substation A	utomation - Feeder								
Automation, SCADA	- Remote Terminal Unit - Intelligent Electronic Device	s – Protocols, Phasor								
Measurement Unit -	Wide area monitoring protection and control, Smart i	ntegration of energy								
resources – Renewał	ole, intermittent power sources – Energy Storage.									
UNIT V	FACTS AND ENERGY STORAGE IN THE SMART	9								

UNITV	GRID	9
Introduction – Renev	wable energy generation – Fault current limiting – Shunt	compensation –

Series compensation – FACTS devices – HVDC-Energy storage-applications and technologies.

	Total	Periods	45
Suggestive Assessment Metho	ls		
Continuous Assessment Test	Formative Assessment Test	End Se	mester Exams
(30 Marks)	(10 Marks)	(60 Ma	rks)
1. DESCRIPTION QUESTIONS	1.ASSIGNMENT	1. DESC	CRIPTION
2. FORMATIVE MULTIPLE	2. ONLINE QUIZZES	QUEST	IONS
CHOICE QUESTIONS	3.PROBLEM-SOLVING	2. FOR	MATIVE MULTIPLE
	ACTIVITIES	CHOICE	E QUESTIONS
Outcomes	<u>.</u>		-

Upon completion of the course, the students will be able to:

- **CO 1:** Learners will develop more understanding on the concepts of Smart Grid and its present developments.
- **CO 2:** Learners will study about different Smart Grid technologies.
- **CO 3:** Learners will acquire knowledge about different smart meters and advanced metering infrastructure.
- **CO 4:** Learners will have knowledge on power quality management in Smart Grids.
- **CO 5:** Learners will develop more understanding on LAN, WAN and Cloud Computing for Smart Grid applications.

Reference Books

- 1. Stuart Borlase "Smart Grid : Infrastructure, Technology and Solutions", CRC Press 2012.
- Janaka Ekanayake, Nick Jenkins, Kithsiri Liyanage, Jianzhong Wu, Akihiko Yokoyama, "Smart Grid: Technology and Applications", Wiley 2012.
- Vehbi C. Güngör, DilanSahin, TaskinKocak, Salih Ergüt, ConcettinaBuccella, Carlo Cecati, and Gerhard P. Hancke, "Smart Grid Technologies: Communication Technologies and Standards" IEEE Transactions On Industrial Informatics, Vol. 7, No. 4, November 2011.
- 4. Xi Fang, SatyajayantMisra, Guoliang Xue, and Dejun Yang "Smart Grid The NewandImproved Power Grid: A Survey", IEEE Transaction on Smart Grids, vol. 14, 2012.
- 5. SawanSen ,SamarjitSengupta, AbhijitChakrabarti , "Electricity pricing- regulated, deregulated and smart grid systems", CRC press, 2015.
- 6. Mini S. Thomas and John Douglas McDonald, "Power system SCADA and smart grids", CRC press, 2015.

Web Recourses

- 1. https://nptel.ac.in/courses/108/107/108107113/
- 2. http://www.digimat.in/nptel/courses/video/108107113/108107113.html
- **3.** http://www.digimat.in/nptel/courses/video/108107113/108107113.html

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	PS01	PSO2
1	3		3			2			2	2		
2	3		3			2			2	2		
3	3		3			2			2	2		
4	3		3			2			2	2		
5	3		3			2			2	2		

Course Code	GENERALIZED MACHINE THEORY	L	Τ	Р	C	
21PE2601		3	1	4		
Prerequisites for t	the course					
Electrical Ma	achines					
• Electrical Ma	achines Design					
Objectives						
1. To impart ki	nowledge on the following topics.					
2. To develop t	he basic elements of generalized theory					
3. To derive th	e general equations for voltages and torque of all type of	rotati	ng m	achin	es	
4. To develop t	he simulation model of three-phase AC machines					
5. To deal with	the steady state and transient analysis of rotating machi	nes.				
UNIT I	INTRODUCTION	12				
UNIT II	THREE PHASE INDUCTION MACHINE	Diffor		12	ton	
-	tions in different rotating frames, Equivalent circuit, d frequency on the performance, Braking, Unbalance ope			induc	tanc	
UNIT III	SYNCHRONOUS MACHINE			12		
General machine	equation in different frame, Dynamic analysis, Tra	nsien	t Po	wer	ang	
characteristics, Pha	uses diagram for cylindrical rotor and salient pole mac	hine, 🛛	Elect	roma	gnet	
and reluctance torg	ue, Electric braking of synchronous machine.					
UNIT IV	DC MACHINE			12		
	n for DC machine, (Shunt, Series and compound), Lin	eariza	ation	tech	niqu	
Transfer function	motoring and generating mode, Dynamic analysis.					
	APPLICATION			12		

reluctance motor.			
	Total Pe	eriods	45
Suggestive Assessment Meth	ods	I	
Continuous Assessment Test	Formative Assessment Test	End Seme	ester Exams
(30 Marks)	(10 Marks)	(60 Mark	s)
1. DESCRIPTION QUESTIONS		1. DESCRI	
2. FORMATIVE MULTIPLE CHOICE QUESTIONS		QUESTIOI 2. FORMA	NS TIVE MULTIPLE
		-	UESTIONS
Outcomes			
Upon completion of the cour	se, the students will be able to:		
CO 1: Ability to understand th	e various electrical parameters in math	nematical	form
CO 2: Ability to understand th relationships.	e different types of reference frame the	ories and	transformation
CO 3: Ability to find the electrical machines.	ical machine equivalent circuit paramet	ers and m	nodeling of
CO 4: Ability to know about th machines	e equivalent circuit parameters and mo	odeling of	Induction
CO 5: Ability to know about th machines	ne equivalent circuit parameters and mo	odeling of	Synchronous
Reference Books			
1. Paul C.Krause, Oleg Wa	syzczuk, Scott S, Sudhoff, "Analysis of E	lectric Ma	achinery and Dri
Systems", John Wiley, So	econd Edition, 2010.		
2. P S Bimbhra, "Generaliz	ed Theory of Electrical Machines", Khar	ına Publis	shers, 2008.
3. A.E. Fitzgerald, Charles	Kingsley, Jr, and Stephan D, Umanx,	"Electric	Machinery", Ta
McGraw Hill, 5th Editio			
4. R. Krishnan. Electric Mo	otor & Drives: Modeling, Analysis and (Control. N	ew Delhi. Prenti
Hall of India, 2001.	, , , , , , , , , , , , , , , , , , ,	,	,
Web Recourses			
1. https://nptel.ac.in/cont	ent/syllabus_pdf/108106023.pdf		
······································			

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	PS01	PSO2
1	2	1	2					2			3	2
2	2	1	2					2			2	
3	2	1	2					2				3
4	2	1	2					2			2	
5	2	1	2					2				2

Course Code	MODERN CONTROL THEORY	L	Τ	Р	С
21PE2603		3	0	0	3
Prerequisites for	the course				
UG level Co	ntrol system				
Objectives					
1. To underst models.	and the fundamentals of physical systems in terms of its	linea	r and	d non	linear
2. To educate	on representing systems in state variable form.				
3. To educate	on solving linear and non-linear state equations.				
4. To exploit t	he properties of linear systems such as controllability and	obsei	vabi	lity.	
5. To educate	on stability analysis of systems using Lyapunov's theory.				
6. To educate	on modal concepts and design of state and output feed	back	cont	roller	's and
estimators.					
UNIT I	NONLINEAR CONTROL SYSTEM			12	
	onlinear systems and their properties, Common Non-li ane method, Lyapounov's method for stability study, conc				0
UNIT II	OPTIMAL CONTROL THEORY			12	
_	mal control problems, Mathematical procedures for opt tions, Pontryagin's optimum policy, Bang-Bang Cont				_
UNIT III	Z-PLANE ANALYSIS OF DISCRETE-TIME CONTROL SYSTEMS			12	
Introduction, Imp		signal			npled

Introduction, Stability analysis of closed-loop systems in the z-plane, Transient and steady state response analysis, Design based on the rootlocus method, Design based on the frequency-response method.

UNIT V	STATE-SPACE ANALYSIS	12

Introduction, State-space representations of discrete-time systems, Solving discrete-time statespace equations, Pulse transfer function matrix, Discretization of continuous time state space equations, Lyapunov stability analysis, Controllability and Observability, Design via pole placement, State observer design.

Total Periods

45

Suggestive Assessment Methods

Continuous Assessment Test	Formative Assessment Test	End Semester Exams
(30 Marks)	(10 Marks)	(60 Marks)
1. DESCRIPTION QUESTIONS	1.ASSIGNMENT	1. DESCRIPTION
2. FORMATIVE MULTIPLE	2. ONLINE QUIZZES	QUESTIONS
CHOICE QUESTIONS	3.PROBLEM-SOLVING	2. FORMATIVE MULTIPLE
	ACTIVITIES	CHOICE QUESTIONS

Outcomes

Upon completion of the course, the students will be able to:

CO 1: Demonstrate non-linear system behavior by phase plane and describing function methods.

- **CO 2:** Perform the stability analysis nonlinear systems by lyapunov method develop design skills in optimal control problems.
- **CO 3:** Derive discrete-time mathematical models in both time domain (difference equations, state equations) and z-domain (transfer function using z-transform).
- **CO 4:** Predict and analyze transient and steady-state responses and stability and sensitivity of both open-loop and closed-loop linear, time-invariant, discrete-time control systems.

CO 5: Use the techniques such as describing function, Lyapunov Stability, Popov's Stability Criterion and Circle Criterion to assess the stability of certain class of non-linear system.

Reference Books

- 1. M. Gopal, "Modern Control System Theory", New Age International, 2005.
- 2. K. Ogatta, "Modern Control Engineering", PHI, 2002.
- 3. John S. Bay, "Fundamentals of Linear State Space Systems", McGraw-Hill, 1999.
- 4. D. Roy Choudhury, "Modern Control Systems", New Age International, 2005.
- 5. John J. D'Azzo, C. H. Houpis and S. N. Sheldon, "Linear Control System Analysis and Design with MATLAB", Taylor Francis, 2003.
- 6. Z. Bubnicki, "Modern Control Theory", Springer, 2005.

- 7. C.T. Chen, "Linear Systems Theory and Design" Oxford University Press, 3rd Edition, 1999.
- 8. Bandyopadhyay, M.N., Control Engineering: Theory and Practice, Prentice-Hall of India Private Limited (2003).
- 9. Ogata, K., Discrete-time Control Systems, Pearson Education (2005).

Web Recourses

1. https://nptel.ac.in/courses/108106150/

CO Vs PO Mapping and CO Vs PSO Mapping

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	PSO1	PSO2
1	3	3	3	2					1		3	
2	3	3	3	2					1			2
3	3	3	3	2					1		3	
4	3	3	3	2					1			2
5	3	3	3	2					1		3	

Course Code	FLEXIBLE AC TRANSMISSION SYSTEMS	L	Т	Р	С
21PS2702					
		3	0	0	3
Prerequisites for	the course	L			

- High Voltage Direct Current Engineering
- High Voltage Engineering.

Objectives

- 1. To emphasis the need for FACTS controllers.
- 2. To learn the characteristics, applications and modelling of series and shunt FACTS controllers.
- 3. To analyze the interaction of different FACTS controller and perform control coordination.

UNIT I	INTRODUCTION	9
Review of basics	of power transmission networks-control of power flow in	AC transmission line
Analysis of uncor	npensated AC Transmission line- Passive reactive power	compensation: Effect
of series and shu	ant compensation at the mid-point of the line on powe	er transfer- Need for
FACTS controllers	s- types of FACTS controllers.	

Francis Xavier Engineering College/ Dept of EEE, R2019 ME- PSE/2021-Curriculum and Syllabi 9 **UNIT II STATIC VAR COMPENSATOR (SVC)** Configuration of SVC- voltage regulation by SVC- Modelling of SVC for load flow analysis Modelling of SVC for stability studies-Design of SVC to regulate the mid-point voltage of a SMIB system- Applications: transient stability enhancement and power oscillation damping of SMIB system with SVC connected at the mid-point of the line. THYRISTOR AND GTO THYRISTOR CONTROLLED UNIT III 9 SERIES CAPACITORS (TCSC and GCSC) Concepts of Controlled Series Compensation – Operation of TCSC and GCSC- Analysis of TCSC-GCSC – Modelling of TCSC and GCSC for load flow studies- modelling TCSC and GCSC for stability studied- Applications of TCSC and GCSC. **VOLTAGE SOURCE CONVERTER BASED FACTS** UNIT IV 9 **CONTROLLERS** Static synchronous compensator(STATCOM)- Static synchronous series compensator(SSSC)-Operation of STATCOM and SSSC-Power flow control with STATCOM and SSSC- Modelling of STATCOM and SSSC for power flow and transient stability studies -operation of Unified and Interline power flow controllers(UPFC and IPFC)- Modelling of UPFC and IPFC for load flow and transient stability studies- Applications. UNIT V **CONTROLLERS AND THEIR COORDINATION** 9 FACTS Controller interactions - SVC-SVC interaction - co-ordination of multiple controllers using linear control techniques - Quantitative treatment of control coordination. **Total Periods** 45 **Suggestive Assessment Methods Continuous Assessment Test Formative Assessment Test End Semester Exams** (30 Marks) (10 Marks) (60 Marks) **1.ASSIGNMENT 1. DESCRIPTION QUESTIONS 1. DESCRIPTION** 2. FORMATIVE MULTIPLE **QUESTIONS 2. ONLINE QUIZZES CHOICE QUESTIONS** 2. FORMATIVE MULTIPLE **CHOICE QUESTIONS 3.PROBLEM-SOLVING** ACTIVITIES **Outcomes** Upon completion of the course, the students will be able to:

- **CO 1:** Ability to understand the operation of the ac transmission lines and various types of FACTS.
- **CO 2:** Ability to understand the basic concepts of VAR compensators.
- **CO 3:** Ability to know about the modeling and applications of thyistors and GTO.
- **CO 4:** Ability to understand the basic concepts voltage source convertor based FACTS.

CO 5: Ability to analysis the various Controllers and their Coordination.

Reference Books

- 1. A.T.John, "Flexible AC Transmission System", Institution of Electrical and Electronic Engineers (IEEE), 1999.
- 2. NarainG.Hingorani, Laszio. Gyugyl, "Understanding FACTS Concepts and Technology of Flexible AC Transmission System", Standard Publishers, Delhi 2001.
- 3. V. K.Sood, "HVDC and FACTS controllers- Applications of Static Converters in Power System", 2004, Kluwer Academic Publishers.
- 4. Mohan Mathur, R., Rajiv. K. Varma, "Thyristor Based Facts Controllers for Electrical Transmission Systems", IEEE press and John Wiley & Sons, Inc.
- 5. K.R.Padiyar," FACTS Controllers in Power Transmission and Distribution", New Age International(P) Ltd., Publishers New Delhi, Reprint 2008.

Web Recourses

- 1. <u>https://www.electrical4u.com/facts-on-facts-theory-and-applications/</u>
- 2. <u>https://www.gegridsolutions.com/facts.htm</u>

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	PS01	PSO2
1	2	2	1	2				2				3
2	2	2	1	2				2			2	
3	2	2	1	2				2			3	
4	2	2	1	2				2				2
5	2	2	1	2				2				3

Course Code	DISTRIBUTED GENERATION AND MICROGRID	L	Τ	Р	C
21PS2703		3	0	0	3
		5	U	U	3

IEEE eleme		nstallation classes, security issues in DG implementati s, ultra-capacitors, flywheels. Captive power plants. IMPACT OF GRID INTEGRATION		Energy	
IEEE			ions. I	Energy	v storag
	work, Stand	ards for interconnecting Distributed resources to elec	-		•
	-	buted generations, topologies, selection of sources, r	-	-	
ι	JNIT II	DISTRIBUTED GENERATIONS (DG)		9	
energ	-	er generation: advantages and disadvantages, Energy cri ources: review of Solar PV, Wind Energy systems, Fuel (sources.			
I	UNIT I	INTRODUCTION		9	
у.	i o inipar t k	nowledge on Microgrid			
4. 5.		ncept of Micro grid and its configuration nowledge on Microgrid			
3.	•	he impact of grid integration.			
2.	-	nowledge on Distributed Generation			
		e the concept of distributed generation			
Objec					
•	-	em operation and control			
•	Solid state o				
•		eration Systems			
•	Power Elect				
	-				
	aujcitos for	the course			

Modes of operation and control of microgrid: grid connected and islanded mode, Active and reactive power control, protection issues, anti-islanding schemes: passive, active and communication based techniques, microgrid communication infrastructure, Power quality issues in microgrids, regulatory standards, Microgrid economics, Introduction to smart microgrids.

Total Periods

45

Continuous Assessment Test	Formative Assessment Test	End Semester Exams
(30 Marks)	(10 Marks)	(60 Marks)
1. DESCRIPTION QUESTIONS 2. FORMATIVE MULTIPLE CHOICE QUESTIONS	1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES	1. DESCRIPTION QUESTIONS 2. FORMATIVE MULTIPLE CHOICE QUESTIONS
Outcomes		
Upon completion of the course	, the students will be able to:	
CO 1: Learners will attain knowl nonconventional power ge	edge on the various schemes of co eneration.	nventional and
CO 2 : Learners will have knowle generation.	dge on the topologies and energy	sources of distributed
CO 3: Learners will learn about t NCE sources.	he requirements for grid intercon	nection and its impact with
CO 4: Learners will understand t	he fundamental concept of Micro	grid.
CO 5: Learners will understand t	he control and operation of Micro	grid.
Reference Books		
,	Reza Iravani, "Voltage Sour nd Applications", IEEE John Wiley	
2. DorinNeacsu, "Power Switch Francis, 2006.	ing Converters: Medium and Hig	gh Power", CRC Press,Taylor&
3. Chetan Singh Solanki, "Solar F	Photo Voltaics", PHI learning Pvt. I	.td., New Delhi,2009.
4. J.F. Manwell, J.G. McGo	owan "Wind Energy Expla	ined, theory design and
applications", Wiley publicati	on 2010.	
5. D. D. Hall and R. P. Grover, "Bi	omass Regenerable Energy", John	Wiley, New York, 1987.

6. John Twidell and Tony Weir, "Renewable Energy Resources" Tyalor and Francis Publications,

Second edition 2006.

Web Recourses

- https://nptel.ac.in/courses/108107143/
- <u>https://nptel.ac.in/courses/108/108/108108034/</u>

CO Vs PO Mapping and CO Vs PSO Mapping

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	PS01	PSO2
1	2		2							3		3
2	2		2							3	2	
3	2		2		2					3	3	
4	2		2							3		2
5	2		2							3		2

Course Code	ELECTROMAGNETIC INTERFERENCE AND	L	Τ	Р	С
21PE2706	COMPATIBILITY				
211 62700		3	0	0	3
					l

Prerequisites for the course

- Electromagnetic Theory
- Transmission and Distribution
- FACTS
- Power System Analysis

Objectives

- 1. To provide fundamental knowledge on electromagnetic interference and electromagnetic compatibility.
- 2. To study the important techniques to control EMI and EMC.
- 3. To expose the knowledge on testing techniques as per Indian and international standards in EMI measurement.
- 4. To Study the basics of grounding and cables used in power system.
- 5. To understand the concepts of electrostatic discharge, standards and testing techniques.

		0
UNIT I	INTRODUCTION	9

Definitions of EMI/EMC -Sources of EMI- Inter systems and Intra system- Conducted and radiated interference- Characteristics - Designing for electromagnetic compatibility (EMC)- EMC regulation typical noise path- EMI predictions and modelling, Cross talk - Methods of eliminating interferences.

		GROUNDING AND CABLING		9
Cabling- types of	cables, mec	hanism of EMI emission / co	upling in	cables –capacitive
coupling inductive	coupling- shi	elding to prevent magnetic radiati	on- shield	l transfer impedance,
Grounding – safety	grounds – sig	nal grounds- single point and mul	tipoint gr	ound systems hybrid
grounds- functiona	l ground la	yout –grounding of cable shield	dsguar	d shields- isolation,
neutralizing transf	ormers, shie	ld grounding at high frequenc	ies, digita	al grounding- Earth
measurement Meth	ods.			
UNIT III	BALA	NCING, FILTERING AND SHIELDI	NG	9
Power supply deco	upling- deco	upling filters-amplifier filtering -	-high freq	uency filtering- EMI
		PF, BPF, BEF and power line filter		
inductors, transform	mers and res	istors, EMC design components	shielding	- near and far fields
shielding effectiven	less- absorpt	ion and reflection loss- magnetic	c material	s as a shield, shield
discontinuities, slot	ts and holes,	seams and joints, conductive ga	skets-win	dows and coatings -
grounding of shield	S.			_
UNIT IV	EN	<i>II IN ELEMENTS AND CIRCUITS</i>		9
Electromegnetic en		a from volume and arritches non	linearitie	a in ainquita nagairra
6		e from relays and switches, non- ower supply lines, EMI from powe		· •
combination of radi	-		I electron	ic equipment, EMI as
UNIT V		STATIC DISCHARGE, STANDARD	S AND	9
UNIT V	ELECINO	TESTING TECHNIQUES	3 AND	9
Static Generation-	human body	model- static discharges- ESD v	ersus EM	C, ESD protection in
equipments- stand	ards – FCC	requirements – EMI measuren	nents – (Open area test site
measurements and	precautions	- Radiated and conducted interfe	erence me	asurements, Control
requirements and te	esting method	ds.		
		Total	Periods	45
Suggestive Assessi	nent Method	ls		
Continuous Assess	ment Test	Formative Assessment Test	End Se	mester Exams
(30 Marks)		(10 Marks)	(60 Ma	rks)
1. DESCRIPTION QU	JESTIONS	1.ASSIGNMENT	1. DESC	CRIPTION
2. FORMATIVE MUL		2. ONLINE QUIZZES	QUEST	
	S	3.PROBLEM-SOLVING	2. FOR	MATIVE MULTIPLE
CHOICE QUESTION	-	ACTIVITIES	CHAIN	E QUESTIONS

Outcomes

Upon completion of the course, the students will be able to:

- **CO 1:** Recognize the sources of Conducted and radiated EMI in Power Electronic Converters and consumer appliances and suggest remedial measures to mitigate the problems.
- **CO 2:** Assess the insertion loss and design EMI filters to reduce the loss.
- **CO 3:** Design EMI filters, common-mode chokes and RC-snubber circuits measures to keep the interference within tolerable limits.
- **CO 4:** Ability to understand the parameters of grounding and cables.

CO 5: Ability to use different standards and testing techniques in electrostatic discharge.

Reference Books

- 1. V.P. Kodali, "Engineering Electromagnetic Compatibility", S. Chand, 1996.
- 2. Henry W.Ott, "Noise reduction techniques in electronic systems", John Wiley & Sons, 1989.
- 3. Bernhard Keiser, "Principles of Electro-magnetic Compatibility", Artech House, Inc. (685 canton street, Norwood, MA 020062 USA) 1987.
- 4. Bridges, J.E Milleta J. and Ricketts.L.W., "EMP Radiation and Protective techniques", John Wiley and sons, USA 1976.
- 5. William Duff G., & Donald White R. J, "Series on Electromagnetic Interference and Compatibility", Vol. Weston David A., "Electromagnetic Compatibility, Principles and Applications", 1991.

Web Recourses

- <u>https://www.sebokwiki.org/wiki/Electromagnetic Interference/Electromagnetic</u>
- <u>https://epd.wisc.edu/courses/introduction-to-electromagnetic-interference</u>

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	PS01	PSO2
1	2										3	
2	2				1						2	
3	3				2		2					3
4	3	2	2	3			2					2
5	2		3		3						3	

Course Code	EMBEDDED SYSTEM DESIGN	L	Τ	Р	C
21PE2709		3	0	0	3
Prerequisites for	the course				
AsseOperComDesig	oprocessor & Microcontroller concepts and applications mbly language concepts rating system concepts puter organization and architecture concepts gn analysis of different day to day equipments cs of all electronics components				
Fo impart knowled	dae on				
1. Students hav of embedded	ve knowledge about the basic functions, structure, concepts a systems.			IS	
Develop fam environment.	iliarity with 8051 Microcontrollers and their applications in a	an embeo	dded		
applications.	method of designing and program an Embedded Systems for nd operating system concepts, types and choosing RTOS.	real tim	9		
5. Students hav implement s	ve knowledge about the development of embedded software mall programs to solve well-defined problems on an embedd iliarity with tools used to develop in an embedded environm	ed platfo		nd	
UNIT I	INTRODUCTION TO EMBEDDED SYSTEMS			9	
Definition of Emb Embedded Syste	INTRODUCTION TO EMBEDDED SYSTEMS bedded System, Embedded Systems Vs General Compu ms, Classification, Major Application Areas, Purpose Quality Attributes of Embedded Systems.	iting Sys		Histo	-
Definition of Emb Embedded Syste	bedded System, Embedded Systems Vs General Compu ms, Classification, Major Application Areas, Purpose	iting Sys		Histo	-
Definition of Emb Embedded Syste Characteristics and UNIT II Core of the Embe Commercial Off-T of Interface, Mem	edded System, Embedded Systems Vs General Compu ms, Classification, Major Application Areas, Purpose Quality Attributes of Embedded Systems.	of Emb	s, AS	Histo ed Sys 9 SICs, to th	stem: PLD: e typ
Definition of Emb Embedded Syste Characteristics and UNIT II Core of the Embe Commercial Off-T of Interface, Mem	Deedded System, Embedded Systems Vs General Compu- ms, Classification, Major Application Areas, Purpose Quality Attributes of Embedded Systems. TYPICAL EMBEDDED SYSTEM edded System: General Purpose and Domain Specific Pr he-Shelf Components (COTS), Memory: ROM, RAM, Memo- ory Shadowing, Memory selection for Embedded System	of Emb	s, AS	Histo ed Sys 9 SICs, to th	stem: PLD: e typ
Definition of Emb Embedded Syste Characteristics and UNIT II Core of the Embe Commercial Off-T of Interface, Mem Communication In UNIT III Reset Circuit, Br	Dedded System, Embedded Systems Vs General Compu- ms, Classification, Major Application Areas, Purpose Quality Attributes of Embedded Systems. TYPICAL EMBEDDED SYSTEM Edded System: General Purpose and Domain Specific Pr he-Shelf Components (COTS), Memory: ROM, RAM, Memo- ory Shadowing, Memory selection for Embedded System terface: Onboard and External Communication Interfaces.	of Emb of Emb rocessors ory accor s, Sensor	s, As	Histo ed Sys 9 5ICs, to th d Actu 9	PLD: e typ iator:
Definition of Emb Embedded Syste Characteristics and UNIT II Core of the Embe Commercial Off-T of Interface, Mem Communication In UNIT III Reset Circuit, Br	bedded System, Embedded Systems Vs General Computers, Classification, Major Application Areas, Purpose Quality Attributes of Embedded Systems. TYPICAL EMBEDDED SYSTEM edded System: General Purpose and Domain Specific Prese edded System: General Components (COTS), Memory: ROM, RAM, Memory Selection for Embedded System terface: Onboard and External Communication Interfaces. EMBEDDED FIRMWARE own-out Protection Circuit, Oscillator Unit, Real Time	of Emb of Emb rocessors ory accor s, Sensor	s, As	Histo ed Sys 9 5ICs, to th d Actu 9	PLD: e typ iator:
Definition of Emb Embedded Syste Characteristics and UNIT II Core of the Embe Commercial Off-T of Interface, Mem Communication In UNIT III Reset Circuit, Br Embedded Firmwa	bedded System, Embedded Systems Vs General Computers, Classification, Major Application Areas, Purpose Quality Attributes of Embedded Systems. TYPICAL EMBEDDED SYSTEM edded System: General Purpose and Domain Specific Pressenter Components (COTS), Memory: ROM, RAM, Memory Shadowing, Memory selection for Embedded System terface: Onboard and External Communication Interfaces. EMBEDDED FIRMWARE own-out Protection Circuit, Oscillator Unit, Real Time are Design Approaches and Development Languages. RTOS BASED EMBEDDED SYSTEM DESIGN Basics, Types of Operating Systems, Tasks, Process and Thre	ting Sys of Emb rocessors ory accor s, Sensor	edde s, As rding rs and Watch	Histo ed Sys 9 SICs, to th d Actu 9 ndog 7 9	PLD e typ iator

UNIT V

TASK COMMUNICATION

9

Shared Memory, Message Passing, Remote Procedure Call and Sockets, Task Synchronization: Task Communication/Synchronization Issues, Task Synchronization Techniques, Device Drivers, How to Choose an RTOS.

Total Periods

45

Suggestive Assessment Methods

Continuous Assessment Test	Formative Assessment Test	End Semester Exams
(30 Marks)	(10 Marks)	(60 Marks)
1. DESCRIPTION QUESTIONS	1.ASSIGNMENT	1. DESCRIPTION
2. FORMATIVE MULTIPLE CHOICE QUESTIONS	2. ONLINE QUIZZES	<i>QUESTIONS 2. FORMATIVE MULTIPLE</i>
	3.PROBLEM-SOLVING	CHOICE QUESTIONS
	ACTIVITIES	

Outcomes

Upon completion of the course, the students will be able to:

CO 1: Understand basic concept of embedded systems.

CO 2: Apply and analyze the applications in various processors and domains of embedded system.

CO 3: Analyze and develop embedded hardware and software development cycles and tools.

CO 4: Analyze to understand what a microcomputer, core of the embedded system.

CO 5: Remember the definitions of ASICs, PLDs, memory, memory interface.

Text Books

- 1. Introduction to Embedded Systems Shibu K.V, Mc Graw Hill.
- 2. Embedded Systems Raj Kamal, TMH.

Reference Books

- 1. Embedded System Design Frank Vahid, Tony Givargis, John Wiley.
- 2. Embedded Systems Lyla, Pearson, 2013.
- 3. An Embedded Software Primer David E. Simon, Pearson Education.

Web Recourses

http://nptel.ac.in/courses/10810205/

CO Vs PO Mapping and CO Vs PSO Mapping

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	PS01	PSO2
1	2	2	2	2	3	2	2	-	2	2	2	
2	3	3	2	2	2	3	3	-	2	2	2	
3	2	2	3	2	2	3	3	-	3	3		3
4	2	2	2	3	3	3	2	-	2	2	2	
5	3	3	3	3	2	2	3	-	2	2		3

Course Code	MODERN RECTIFIERS AND RESONANT CONVERTERS	L	Τ	Р	С
21PE2705		3	0	0	3
			-	-	
Prerequisites for	the course				
Electromag	gnetic filed				
Power Cor	iverters				
 Power Syst 	em Analysis				
Objectives					
1. To gain k	nowledge about the harmonics standards and operation of	recti	fiers	in CC	М
&DCM.					
2. To analys	se and design power factor correction rectifiers for UPS app	olicati	ons.		
3. To know	the operation of resonant converters for SMPS applications	s.			
4. To carry	out dynamic analysis of DC- DC Converters.				
5. To introd	luce the source current shaping methods for rectifiers.				
UNIT I	POWER SYSTEM HARMONICS & LINE COMMUTATED RECTIFIERS			9	
Average power-R	MS value of waveform–Effect of Power factor current and	volta	ige h	armo	nics –
Effect of source a	nd load impedance - AC line current harmonic standards	s IEC1	1000	-IEEE	519-
CCM and DCM op	eration of single phase full wave rectifier- Behaviour off	ull wa	ave r	ectifi	er for
large and small va	lues of capacitance - CCM and DCM operation of three pha	se full	l wav	ve rec	tifier-
12 pulse converte	rs - Harmonic trap filters.				
UNIT II	PULSE WIDTH MODULATED RECTIFIERS			9	
Properties of Ide	al single phase rectifiers-Realization of nearly ideal re	ctifier	· Si	ngle-j	phase

Properties of Ideal single phase rectifiers-Realization of nearly ideal rectifier-. Single-phase converter systems incorporating ideal rectifiers - Losses and efficiency in CCM high quality rectifiers -single-phase PWM rectifier -PWM concepts - device selection for rectifiers - IGBT based PWM rectifier, comparison with SCR based converters with respect to harmonic content - applications of rectifiers.

UNIT III	RESONANT C	ONVERTERS		9
Soft Switching - c	lassification of	resonant converters - Quasi reso	nant con	verters- basics ofZVS
and ZCS- half way	e and full wav	e operation (qualitative treatment) - multi ı	resonant converters
operation and and	alysis of ZVS a	nd ZCS multi resonant converter	- zero vo	tage transition PWN
converters -zero c	urrent transiti	on PWM converters.		
UNIT IV	DYNAMIC AN	ALYSIS OF SWITCHING CONVER	ΓERS	9
Review of linear	system analysi	s-State Space Averaging-Basic Sta	te Space	Average Model State
Space Averaged	nodel for an i	deal Buck Converter, ideal Boos	c Convert	er, ideal Buck Boos
Converter and an	ideal Cuk Con	verter. Pulse Width modulation -	Voltage I	Mode PWM Scheme
Current Mode PW	M Scheme - de	sign of PI controller.		
UNIT V	SOURCE CUR	RENT SHAPING OF RECTIFIERS		9
Need for current	shaping - pow	ver factor - functions of current s	haper - ii	l 1put current shaping
		ods -input inductor filter - resonan		
boost rectifier en	ploying peak	current control - average curren	t control	- Hysteresis control
Nonlinear carrier	control.			
		Total	Periods	45
Suggestive Asses	sment Method	ls		
Continuous Asse	ssment Test	Formative Assessment Test	End Se	mester Exams
(30 Marks)		(10 Marks)	(60 Ma	urks)
1. DESCRIPTION (2. FORMATIVE M CHOICE QUESTIO	ULTIPLE	1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES	QUEST 2. FOR	CRIPTION IONS MATIVE MULTIPLE E QUESTIONS
Outcomes				
Upon completion	of the course	, the students will be able to:		
CO 1 •Ability to anal	ysis of various ty	vpes of rectifiers.		
co infinity to anal				
2	l design the oper	ration of various PWM converters and	its application	ations.
CO 2 : Simulate and	U	ration of various PWM converters and nant converter and its importance.	its application	ations.
CO 2 : Simulate and CO 3: Identify the i	mportance resor		its applica	ations.

Text E	Books													
1.			rickson inger s							ntals o	f Power	Electro	onics", S	econd
2.	Willia	m She	pherd	and Li	zhang	, "Pow	ver Cor	iverte	rs Circ	uits", N	Marceld	Ekkerir	n,C, 2005	5.
3.	Simor 2010.	Ang a	nd Ale	ejandro	o Oliva	, "Pow	ver Sw	itching	g Conve	erters'	', Taylo	r & Frar	ncis Gro	up,
4.	Andrz &Sons		•	dlows	ki, " In	troduc	ction T	o Mod	ern Po	wer E	lectroni	cs", Joh	n Wiley	
5.	Maria	ın.K.Ka			and Da	riusz(Czarko	wski, '	'Reson	ant Po	wer Co	nverter	s", John	Wiley
6.	Keng (press,			ch Mod	le Pow	er Cor	iverte	rs – De	sign a	nd Ana	alysis" E	lseveir	academ	ic
7.	Abrah	am I.P			ith Bill	ings a	nd Tay	vlor Mo	orey, "	Switch	ning Pov	wer Sup	ply Des	ign"
8.					se Ma	terial o	on Swi	tched	Mode	Power	Conver	sion" II	SC, Ban	glore,
9.		tophe	P. Bass	so, Swi	tch-M	ode Po	ower S	upplie	s, McG	raw-H	ill ,2014	4.		
Web F	Recour	ses												
	https:	//ww	w.scrił	od.com	l/docu	ment/	/37276	68631,	/PX50	04-MR	R-RC			
CO Vs	PO Ma	pping	and CC) Vs PS	SO Map	ping								
	CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	PS01	PSO2	
	1	2	2	2	2	3	2	2	-	2	2	2		
	2	3	3	2	2	2	3	3	-	2	2	2		
	3	2	2	3	2	2	3	3	-	3	3		3	
	4	2	2	2	3	3	3	2	-	2	2	2		
	5	3	3	3	3	2	2	3	-	2	2		3	

Course Code	INTEGRATED CIRCUITS FOR POWER CONVERSION		Т	Р	С
21PE3706		3	0	0	3
Prerequisites for	the course				
•	Power Converters				
•	Integrated Circuits				
Objectives					

- 1. To develop the Type of Regulator in a Multi-Chip System
- 2. To learn the different Frequency Compensation Techniques
- 3. To understand the Load Regulation and Output Impedance in regulator
- 4. To deal with the basic Concept of a Switching Regulator.
- 5. To analyse the concept of Pulse Frequency Modulation

5. 10 analyse (
UNIT I	INTRODUCTION	9							
Discrete vs. Integ	rated PMIC; DC-DC Converters, Types of DC-DC Conve	erters, Linear versus							
Switching Regulate	or, Choosing between Linear and Switching Regulators, (Choosing the Type of							
Regulator in a Mul	ti-Chip System; Performance Parameters - Efficiency, Acc	uracy, Line and Load							
Regulation, Line a	and Load Transient, PSRR; Remote versus Local Feed	lback, Point-of-Load							
Regulator, Kelvin Sensing, Droop Compensation; Current Regulators and their Applications;									
Bandgap Voltage Reference - Designing a Bandgap Reference using PTAT and CTAT Voltage									
References, Brokav	w Bandgap Circuit.								
UNIT II	LINEAR REGULATOR	9							
Introduction to Lir	near Regulator, Applications of Linear Regulator; Review	of Feedback Systems							
and Bode Plots, Lo	oop Gain AC Analysis, Stability Criterion and Phase Mar	gin, Review of First-							
Order and Second	l-Order Systems, Relationship between Damping Factor	and Phase Margin;							
Parasitic Capacitar	nces in a MOS transistor, Finding the Poles of the Error A	mplifier; Stabilising a							
Linear Regulator - Frequency Compensation Techniques, Dominant Pole Compensation.									
Linear Regulator -	Frequency Compensation Techniques, Dominant Pole Com	pensation.							
Linear Regulator - UNIT III	Frequency Compensation Techniques, Dominant Pole Com MILLER COMPENSATION	npensation. 9							
UNIT III		9							
UNIT III Miller Compensati	MILLER COMPENSATION	9 hods of Determining							
UNIT III Miller Compensati Poles and Zeros af	MILLER COMPENSATION on, R.H.P. zero due to Miller Compensation, Intuitive Met	9 hods of Determining pensation, Reducing							
UNIT III Miller Compensation Poles and Zeros af the Effect of R.H.P.	MILLER COMPENSATION on, R.H.P. zero due to Miller Compensation, Intuitive Met ter Miller Compensation, Pole Splitting due to Miller Com	9 hods of Determining pensation, Reducing							
UNIT III Miller Compensation Poles and Zeros af the Effect of R.H.P.	MILLER COMPENSATION on, R.H.P. zero due to Miller Compensation, Intuitive Met ter Miller Compensation, Pole Splitting due to Miller Com zero; LDO with NMOS Pass Element; Load Regulation an	9 hods of Determining pensation, Reducing							
UNIT III Miller Compensation Poles and Zeros af the Effect of R.H.P. of LDO; Line Regular UNIT IV	MILLER COMPENSATION on, R.H.P. zero due to Miller Compensation, Intuitive Met ter Miller Compensation, Pole Splitting due to Miller Com zero; LDO with NMOS Pass Element; Load Regulation an ation and PSRR of LDO; Sources of Error in a Regulator.	9 hods of Determining pensation, Reducing ad Output Impedance 9							
UNIT III Miller Compensation Poles and Zeros af the Effect of R.H.P. of LDO; Line Regult UNIT IV Static Offset Corr	MILLER COMPENSATION on, R.H.P. zero due to Miller Compensation, Intuitive Met ter Miller Compensation, Pole Splitting due to Miller Com zero; LDO with NMOS Pass Element; Load Regulation an ation and PSRR of LDO; Sources of Error in a Regulator. SWITCHING REGULATOR CONCEPT	9 hods of Determining npensation, Reducing ad Output Impedance 9 lance of Limit-Cycle							
UNIT III Miller Compensation Poles and Zeros af the Effect of R.H.P. of LDO; Line Regult UNIT IV Static Offset Corr Oscillations in a Di	MILLER COMPENSATION on, R.H.P. zero due to Miller Compensation, Intuitive Met ter Miller Compensation, Pole Splitting due to Miller Com zero; LDO with NMOS Pass Element; Load Regulation an ation and PSRR of LDO; Sources of Error in a Regulator. SWITCHING REGULATOR CONCEPT ection, Dynamic Offset Cancellation;Digital LDO, Avoid	9 hods of Determining pensation, Reducing ad Output Impedance 9 lance of Limit-Cycle back Current Limit in							
UNIT III Miller Compensation Poles and Zeros af the Effect of R.H.P. of LDO; Line Regult UNIT IV Static Offset Corr Oscillations in a Di an LDO; Basic Con	MILLER COMPENSATION on, R.H.P. zero due to Miller Compensation, Intuitive Met ter Miller Compensation, Pole Splitting due to Miller Com zero; LDO with NMOS Pass Element; Load Regulation an ation and PSRR of LDO; Sources of Error in a Regulator. SWITCHING REGULATOR CONCEPT ection, Dynamic Offset Cancellation;Digital LDO, Avoid gital LDO, Hybrid LDO; Short-Circuit Protection and Fold	9 hods of Determining apensation, Reducing d Output Impedance 9 lance of Limit-Cycle back Current Limit in ace, Power Stage of a							
UNIT III Miller Compensation Poles and Zeros af the Effect of R.H.P. of LDO; Line Regula UNIT IV Static Offset Corr Oscillations in a Di an LDO; Basic Con Buck Converter an	MILLER COMPENSATION on, R.H.P. zero due to Miller Compensation, Intuitive Met ter Miller Compensation, Pole Splitting due to Miller Com zero; LDO with NMOS Pass Element; Load Regulation an ation and PSRR of LDO; Sources of Error in a Regulator. SWITCHING REGULATOR CONCEPT ection, Dynamic Offset Cancellation;Digital LDO, Avoid gital LDO, Hybrid LDO; Short-Circuit Protection and Foldb cept of a Switching Regulator, Inductor volt-second Balar	9 hods of Determining apensation, Reducing d Output Impedance 9 lance of Limit-Cycle back Current Limit in ace, Power Stage of a a Converter, Resistive							
UNIT III Miller Compensation Poles and Zeros af the Effect of R.H.P. of LDO; Line Regula UNIT IV Static Offset Corr Oscillations in a Di an LDO; Basic Con Buck Converter an Losses, Efficiency	MILLER COMPENSATION on, R.H.P. zero due to Miller Compensation, Intuitive Met ter Miller Compensation, Pole Splitting due to Miller Com zero; LDO with NMOS Pass Element; Load Regulation an ation and PSRR of LDO; Sources of Error in a Regulator. SWITCHING REGULATOR CONCEPT ection, Dynamic Offset Cancellation;Digital LDO, Avoid gital LDO, Hybrid LDO; Short-Circuit Protection and Foldb cept of a Switching Regulator, Inductor volt-second Balar d Calculation of Duty Cycle; Transformer Model of a Buck	9 hods of Determining apensation, Reducing ad Output Impedance 9 lance of Limit-Cycle back Current Limit in ace, Power Stage of a a Converter, Resistive Conduction Losses;							
UNIT III Miller Compensation Poles and Zeros af the Effect of R.H.P. of LDO; Line Regula UNIT IV Static Offset Corr Oscillations in a Di an LDO; Basic Con Buck Converter an Losses, Efficiency Synchronous and	MILLER COMPENSATION on, R.H.P. zero due to Miller Compensation, Intuitive Met ter Miller Compensation, Pole Splitting due to Miller Com zero; LDO with NMOS Pass Element; Load Regulation an ation and PSRR of LDO; Sources of Error in a Regulator. SWITCHING REGULATOR CONCEPT ection, Dynamic Offset Cancellation;Digital LDO, Avoid gital LDO, Hybrid LDO; Short-Circuit Protection and Folded cept of a Switching Regulator, Inductor volt-second Balar d Calculation of Duty Cycle; Transformer Model of a Buck of a Switching Regulator, Efficiency considering only	9 hods of Determining apensation, Reducing ad Output Impedance 9 lance of Limit-Cycle back Current Limit in ace, Power Stage of a a Converter, Resistive Conduction Losses; Sechniques Losses in							

UNIT V	PULSE FREQUENCY MODULATION CONCEPT	9

Hard Switching Loss, Magnetic Loss, Relative Significance of Losses as a Function of the Load Current; Inductor Current Ripple and Output Voltage Ripple in a DC-DC Converter, Ripple Voltage versus Duty Cycle, Ripple Voltage versus Input Supply Voltage; Choosing the Inductor and Capacitor of a Buck Converter; Continuous and Discontinuous Conduction Modes - Boundary Condition, Voltage Conversion Ratio in DCM; Concept of Pulse Frequency Modulation (PFM); Classification of Pulse Width Modulators -- Trailing, Leading and Dual-Edge PW Modulators; Control Techniques for DC-DC Converters; Voltage Mode Control, Small-Signal Modeling of a DC-DC Converter, Loop Gain and Stability Analysis using Continuous-Time Model.

	Total	Periods	45
Suggestive Assessment Method	ls		
Continuous Assessment Test (30 Marks)	Formative Assessment Test (10 Marks)	End Ser (60 Ma	mester Exams rks)
1. DESCRIPTION QUESTIONS 2. FORMATIVE MULTIPLE CHOICE QUESTIONS	1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES	QUESTI 2. FORM	RIPTION IONS MATIVE MULTIPLE E QUESTIONS
Outcomes Upon completion of the course	the students will be able to:		
CO 1: Develop linear regulators.CO 2: Express the Line and Load			
CO 3: Identify the methods of de	etermining Poles and Zeros after M	iller Comp	ensation.
CO 4: Investigate the PWM ContCO 5: Select small-signal modeli	•		
Text Books			
1. ke-horn chen IEEE press wiley publications(2016)	"Power Management Techniques	for Integr	ated Circuit Design
2. Mona M. HellaPatrick Mer	rcier "Power Management Integrat	ed Circuits	s "CRC Press.

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	PSO1	1	PSO2	
CO	1	1	2	2	F05	FUO	FU/	FUO	F09	FUIU			F302	
											3		2	
2	2	3	2	2									2	
3	1	1	2	2							2			
4	2	1	2	2	3				2				3	
5	2	1	3	2					2					
Course Co 21PS37		HIG	H VOI	LTAGE	E DIRE	CT CU	RREN	T TRA	NSMI	SSION	L 3	Т 0	P 0	(
Prerequisite	o for t	ho co												
	2. T	o impa	irt kno	owledg owledg	e on o ge on M	peratio	on, mo	dellin	g and o m	echnolo control		DC	link.	
	4. T	o perfe		-	tate an VDC si	-		/DC sy	stem.					
UNIT	 T T 	o perfe	se var	ious H		mulat	ors.			Y			9	
Introduction Description o	4. To 5. T	o perfe o expo nparis	ose var DC P on of ission	ious H OWER AC an syster	VDC si TRAN nd DC n - Pla	imulat ISMIS trans	ors. SION 7 smissic for HV	FECHN	I OLOG Applica	ation o			nsmis	
UNIT I Introduction Description o transmission UNIT I	4. To 5. To - Con of DC t - DC b	o perfe o expo nparis ransm oreake	ose var DC P on of ission rs – Ca	ious H OWER AC au syster ables, V STOR	VDC si TRAN nd DC n - Pla	imulat ISMIS trans Inning sed HV	ors. SION 7 smissio for HV /DC. C CON	FECHN On – 2 VDC tr	I OLOG Applica ansmi	ation o ssion –			nsmis	

Francis Xavier Engineering College/ Dept of EEE, R2019 ME- PSE/2021-Curriculum and Syllabi g UNIT III **MULTITERMINAL DC SYSTEMS** Introduction – Potential applications of MTDC systems - Types of MTDC systems – Control and protection of MTDC systems - Study of MTDC systems. g UNIT IV **POWER FLOW ANALYSIS IN AC/DC SYSTEMS** Per unit system for DC Quantities - Modeling of DC links - Solution of DC load flow - Solution of AC-DC power flow – Unified, Sequential and Substitution of power injection method. UNIT V SIMULATION OF HVDC SYSTEMS 9 Introduction – DC LINK Modelling, Converter Modeling and State Space Analysis, Philosophy and tools - HVDC system simulation, Online and OFF line simulators -- Dynamic interactions between DC and AC systems. **Total Periods** 45 **Suggestive Assessment Methods Continuous Assessment Test Formative Assessment Test End Semester Exams** (30 Marks) (10 Marks) (60 Marks) **1. DESCRIPTION OUESTIONS 1.ASSIGNMENT 1. DESCRIPTION** 2. FORMATIVE MULTIPLE 2. ONLINE QUIZZES **QUESTIONS CHOICE QUESTIONS 3.PROBLEM-SOLVING** 2. FORMATIVE MULTIPLE **ACTIVITIES CHOICE QUESTIONS Outcomes** Upon completion of the course, the students will be able to: **CO 1:** Understand knowledge on operation, modeling and control of HVDC link **CO 2:** Understand knowledge on thyristor based HVDC converters **CO 3:** Understand knowledge on multi terminal DC systems **CO 4:** Understand knowledge on power flow analysis in AC/DC systems **CO 5 :** Expose various HVDC simulators. **Reference Books** 1. P. Kundur, "Power System Stability and Control", McGraw-Hill, 1993 2. K.R.Padiyar, , "HVDC Power Transmission Systems", New Age International (P) Ltd., New Delhi, 2002 3. J.Arrillaga, , "High Voltage Direct Current Transmission", Peter Pregrinus, London, 1983 4. rich Uhlmann, "Power Transmission by Direct Current", BS Publications, 2004. 5. V.K.Sood, HVDC and FACTS controllers – Applications of Static Converters in Power System, APRIL 2004, Kluwer Academic Publishers

Web Recourses

- https://www.cet.edu.in/noticefiles/229 HVDC NOTE.pdf
- https://nptel.ac.in/content/syllabus_pdf/108104013.pdf

CO Vs PO Mapping and CO Vs PSO Mapping

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	PSO1	PSO2
1	2									3		3
2	2									3		3
3	2									3	2	
4	2									3		3
5	2		2		2			2		3		2

Course Code	SCADA	L	Т	Р	С
21PS3702		3	0	0	3
Prerequisites for	the course				
Power Syste	em Analysis				
Measureme	ents & Instrumentation				

Power System Operation Control

Objectives

- 1. To impart the basic building blocks of SCADA system.
- 2. To learn about the role of PLC as RTU in SCADA system.
- 3. To develop the hardware and firmware requirements of SCADA Systems.
- 4. To understand the communication protocols of SCADA system.
- 5. To understand the troubleshooting mechanisms of SCADA System

UNIT I SCADA SYSTEMS- HARDWARE AND FIRMWARE 9

Principles of SCADA system - Remote terminal units - Application programs- PLCs used as RTUs -The master station - System reliability and availability - Communication architectures - Typical considerations in configuration of a master station.

UNIT II	SCADA SYSTEMS - SOFTWARE AND PROTOCOLS	9
The SCADA software package - Specialized SCADA protocols - Error detection - Distributed		
notwork protocol New tochnologies in SCADA systems		

network protocol - New technologies in SCADA systems.

UNIT III	LANDLINES	S AND LOCAL AREA NETWORK S	YSTEMS	9			
Sources of inter	rference and r	noise on cables - Practical met	thods of	reducing noise and			
interference on c	ables - Networl	k topologies - Media access metho	ds - IEEE 8	802.3 Ethernet - MAG			
frame format -	High-speed Etl	hernet systems - 100Base-T (10	0Base-TX,	T4, FX, T2) - Fas			
Ethernet design	consideration	s - Gigabit Ethernet 1000Base-	T - Netw	ork interconnection			
components - TC	P/IP protocols						
UNIT IV		MODEMS 9					
The RS-232/RS-4	122/RS-485 int	erface standards - Flow control -	Modulatio	n techniques – Erro			
detection/correc	tion and data co	ompression - Modem standards.					
UNIT V	CENTRA	AL SITE COMPUTER FACILITIES	AND	9			
		TROUBLESHOOTING					
Recommended in	stallation pract	cice - Ergonomic requirements - De	esign of the	e computer displays			
Alarming and rep	orting - Troubl	eshooting the telemetry system					
		Total	Periods	45			
Suggestive Asse	ssment Metho	ds					
Continuous Asso	essment Test	Formative Assessment Test	End Se	mester Exams			
(30 Marks)	(10 Marks)	(60 Ma	rks)			
1. DESCRIPTION	•	1.ASSIGNMENT		RIPTION			
2. FORMATIVE M CHOICE QUESTI(2. ONLINE QUIZZES	QUESTI 2. FORM	IONS MATIVE MULTIPLE			
		3.PROBLEM-SOLVING		QUESTIONS			
		ACTIVITIES					
Outcomes							
Upon completio	n of the course	e, the students will be able to:					
CO 1: Explain the	basic building	blocks of SCADA system.					
CO 2: Illustrate t	he role of PLC a	s RTU in SCADA system.					
CO 3: Describe tl	ne hardware an	d firmware requirements of SCAD.	A Systems.				
CO 4: Explain the	e communicatio	on protocols of SCADA system.					
CO 5: Outline the	e troubleshootin	ng mechanisms of SCADA System.					
		-					

Reference Books

- 1. David Bailey, Edwin Wright, "Practical SCADA for Industry", Newnes, An imprint of Elsevier 2006.
- **2.** Gordon Clarke, Deon Reynders, Edwin Wright "Practical Modern SCADA Protocols: DNP3, 60870.5 and Related Systems", Newnes, An imprint of Elsevier 2004.

Web Recourses

• https://www.eit.edu.au/cms/images/Webinar_Slides/03_SK_Chapter-01_r4.pdf

CO Vs PO Mapping and CO Vs PSO Mapping

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	PSO1	PSO2
1	3	3	2								2	
2	3	2	2		2							3
3	3	2	2	2	2						2	
4	3	2	2		2							3
5	3	2	2		2							3

Course Code	WIND ENERGY TECHNOLOGIES	L	Τ	Р	С
21PE3702		3	0	0	3
Prerequisites for the	course			-	_

• Power Electronics for Renewable Energy Systems

Objectives

- 1. To learn the basic concepts of Wind energy conversion system.
- 2. To Introduce the concepts of mathematical modelling and control of the Wind turbine
- 3. To Acquire knowledge ondesign of Fixed speed system.
- 4. To impart knowledge on Variable speed system and its modelling.
- **5.** To learn about Grid integration issues and current practices of wind interconnections with power system

UNIT I	INTRODUCTION	9					
Components of WECS-WECS schemes-Power obtained from wind-simple momentum theory-							
Power coefficient-Sabinin's theory-Aerodynamic Principles – Design – Betz limit.							
UNIT II	WIND TURBINES 9						

HAWT- VAWT -Power developed- Thrust- Efficiency- Rotor selection-Rotor design considerations- Tip speed ratio-No. of Blades-Blade profile-Power Regulation-yaw control-Pitch angle control- stall control-Electrical braking – mechanical braking-MPPT Schemes.

UNIT IIIFIXED SPEED SYSTEMS9Generating Systems - Constant speed constant frequency systems - Choice of Generators Deciding
factors-Synchronous Generator-Squirrel Cage Induction Generator- Model of Wind Speed- Model
wind turbine rotor - Drive Train model- Generator model for Steady state and Transient stability
analysis.

UNIT IV	VARIABLE SPEED SYSTEMS	9
Need of variable	speed systems-Power-wind speed characteristics-Varia	able speed constant
froquonau austom	a sunchronous generator Wind Convertor Configurat	tions DEIC DMSC

frequency systems synchronous generator- Wind Converter Configurations-DFIG- PMSG -Variable speed generators modeling- Variable speed variable frequency schemes-- Real Power Control.

UNIT V	GRID CONNECTED SYSTEMS	9

Wind interconnection requirements, low-voltage ride through (LVRT), ramp rate limitations, and supply of ancillary services for frequency and voltage control, current practices and industry trends wind interconnection -impact on steady-state and dynamic performance of the power system including modeling issue.

	Total	Periods	45
Suggestive Assessment Method	ls	I	
Continuous Assessment Test	Formative Assessment Test	End Sem	ester Exams
(30 Marks)	(10 Marks)	(60 Mar	ks)
1. DESCRIPTION QUESTIONS 2. FORMATIVE MULTIPLE CHOICE QUESTIONS	1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES		-

Outcomes

Upon completion of the course, the students will be able to:

CO 1: Acquire knowledge on the basic concepts of Wind energy conversion system

CO 2: Understand the mathematical modelling and control of the Wind turbine

CO 3: Develop more understanding on the design of Fixed speed system

CO 4: Study about the need of Variable speed system and its modelling.

CO 5: Able to learn about Grid integration issues and current practices of wind interconnections with power system.

Reference Books

- 1. L.L.Freris "Wind Energy conversion Systems", Prentice Hall, 1990
- 2. S.N.Bhadra, D.Kastha ,S.Banerjee, "Wind Electrical Systems", Oxford UniversityPress,2010.
- 3. Ion Boldea, "Variable speed generators", Taylor & Francis group, 2006.
- 4. E.W.Golding "The generation of Electricity by wind power", Redwood burnLtd.,Trowbridge,1976.
- 5. N. Jenkins," Wind Energy Technology" John Wiley & Sons,1997
- 6. S.Heir "Grid Integration of WECS", Wiley 1998.

Web Recourses

- 1. <u>https://nptel.ac.in/content/storage2/courses/108108078/pdf/chap6/teach_slides06.pdf</u>
- 2. <u>https://nptel.ac.in/courses/108/105/108105058/</u>
- CO Vs PO Mapping and CO Vs PSO Mapping

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	PSO1	PSO2
1	2	2	1	3	2		3	2			3	
2	2	2	1	3	2		3	2				2
3	2	2	1	3	2		3	2			3	
4	2	2	1	3	2		3	2				2
5	2	2	1	3	2		3	2			3	

Course Code	ELECTRICAL TRANSIENTS IN POWER SYSTEMS	L	Τ	Р	С
21PS3703		3	1	0	4

Prerequisites for the course

- Transmission and Distribution
- Electrical Transients
- Power System Analysis
- Power Quality

Objectives

- 1. To impart the concepts of traveling waves and propagation.
- 2. To learn about modeling and computational aspects transient's computation
- 3. To develop the techniques related to transition points in overhead transmission lines.
- 4. To understand the parameters and modeling of underground cables.
- 5. To understand the modeling of power system for transient over voltages using Electromagnetic Transient Program (EMTP).

UNIT I	TRAVEL	LING WAVES ON TRANSMISSIO	N LINE	9		
Lumped and Distri	buted Param	neters – Wave Equation – Reflect	tion - Refl	ection of Travelling		
-		nd-Generator-windings, Refracti		-		
waves at the line te	rminations -	- Lattice Diagrams – Attenuation	and Distor	rtion.		
UNIT II	LIGHT	NING, SWITCHING AND TEMPOR OVERVOLTAGES	RARY	9		
Lightning: Physica	l phenomen	a of lightning – Interaction be	etween lig	ghtning and power		
	-	to line design – Simple and Abn				
	-	its – Very Fast Transient Over vo		-		
UNIT III	PARAMI	ETERS AND MODELING OF OVER	RHEAD	9		
		LINES				
Review of line para	ameters for s	simple configurations: series resi	istance, in	ductance and shunt		
capacitance; bundl	e conductors	s : equivalent GMR and equivale	nt radius;	modal propagation		
in transmission	lines: mode	es on multi-phase transposed	transmi	ssion lines, α-β-C		
transformation and	l symmetrica	al components transformation, m	nodal imp	edances; analysis of		
modes on untransp	osed lines; e	effect of ground return and skin	effect; tra	nsposition schemes		
Introduction to free	quency-depe	ndent line modeling.				
UNIT IV	PA	ARAMETERS AND MODELING OF	7	9		
		UNDERGROUND CABLES				
		derground cables: technical fea und cables; cable types; series imj		-		
of single-core self-c	ontained cab	les, impedance and admittance m	atrices for	three phase system		
formed by three sin	gle-core self	-contained cables; approximate fo	ormulas fo	r cable parameters.		
UNIT V	COMPUTA	ATION OF POWER SYSTEM TRAN	NSIENTS	9		
Principle of digital	computation	n – Matrix method of solution,	Modal ana	alysis, Z transforms		
Computation using	EMTP – Simu	ulation of switches and non-linear	· elements			
		Total	Periods	45		
Suggestive Assessm	ient Method	S				
Continuous Assessi	nent Test	Formative Assessment Test	est End Semester Exams			
(30 Marks)		(10 Marks)	(60 Ma	rks)		
(SU Marks)						
	ESTIONS	1.ASSIGNMENT	1. DESC	CRIPTION		
1. DESCRIPTION QU 2. FORMATIVE MUL CHOICE QUESTIONS	TIPLE	1.ASSIGNMENT 2. ONLINE QUIZZES	QUEST			

3.PROBLEM-SOLVING

ACTIVITIES

CHOICE QUESTIONS

Outcomes

Upon completion of the course, the students will be able to:

- **CO 1:** Analyze the electrical transients in power systems.
- **CO 2:** Able to analyze power system transients.
- **CO 3:** Develop the techniques related to transition points in transmission lines
- **CO 4:** Able to modelling of underground cables.
- **CO 5:** Able to modeling of power system for transient over voltages and Familiarize in using Electromagnetic Transient Program

Reference Books

- Allan Greenwood, "Electrical Transients in Power System", Wiley & Sons Inc. New York, 1991.
- 2. R. Ramanujam, "Computational Electromagnetic Transients: Modeling, Solution Methods and Simulation", I.K. International Publishing House Pvt. Ltd, New Delhi, 2014.
- 3. Naidu M S and Kamaraju V, "High Voltage Engineering", Tata McGraw-Hill Publishing Company Ltd., New Delhi, 2004
- 4. "Power System Transients: A Statistical Approach", by C.S Indulkar, D.P. Kothari, K. Ramalingam, PHI, 2 edition, 2010.

Web Recourses

- 1. https://onlinelibrary.wiley.com/doi/10.1002/9781118694190.ch1
- 2. http://www.srmvalliammai.ac.in/questionbank-meps.html
- 3. https://epd.wisc.edu/courses/analysis-of-transients-in-power-systems/

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	PS01	PSO2
1	3	2										2
2	2	3									3	
3	3	2	3		2							2
4	2	2	3		3				2		3	
5	2	3	3		3				2			2

Francis Xavier Engineering College/ Dept of EEE, R2019 ME- PSE/2021-Curriculum and Syllabi **Course Code** HYBRID ELECTRIC VEHICLES Р L Т С 21PE3704 3 3 0 0 **Prerequisites for the course Electrical Machines-I** Electrical machines-II • Electric Circuit Analysis **Objectives** 1. To present a comprehensive overview of fundamentals in hybrid electric, hybrid hydraulic and electric vehicle engineering. 2. To design HEV based on the requirements to power flow management and power conversion. 3. To impart the knowledge about the electrical machines that can be used for the e-vehicles 4. To know the design of batteries and energy storages and vehicle power electronics. 5. To design mechatronic wheel-electric drive, suspension and locomotion System. UNIT I **HISTORY OVERVIEW AND MODERN APPLICATIONS** 9 Ground vehicles with mechanical powertrain and reasons for HEV development, HEV configurations and ground vehicle applications, Advantages and challenges in HEV design, Components, vehicle mechanics – Roadway fundamentals, vehicle kinetics, Dynamics of vehicle motion - Propulsion System Design. POWER FLOW AND POWER MANAGEMENT **UNIT II** 9 **STRATEGIES IN HEV** Mechanical power: generation, storage and transmission to the wheels -Electric power: generation, storage and conversion to mechanical power - Hydraulic power: generation, storage and conversion to mechanical power-Energy storage/conversion and thermodynamic relations, Basics of Batteries – Types, Parameters – Capacity, Discharge rate, State of charge, state of Discharge, Depth of Discharge, Technical characteristics, Battery pack Design, Properties of Batteries. **DC & AC ELECTRICAL MACHINES** UNIT III 9 Motor and Engine rating, Requirements, DC machines, Three phase A/c machines, Induction machines, permanent magnet machines, switched reluctance machines. UNIT IV **POWER ELECTRONICS IN HYBRID ELECTRIC** 9 **VEHICLES** Rectifiers,Buck convertor ,Voltage source inverter ,Current source inverter , DC-DC convertor, Transmission configuration, Components – gears, differential, clutch, brakes regenerative braking, motor sizing.

UNIT V	VEHICLE	DYNAMICS FUNDAMENTALS FOR MODELING	R HEV	9	
Various str	ategies for	improving vehicle energy/fuel	efficiend	cy -Vehicle chassis	
mathematical mode	el in various o	operation conditions (steady moti	on, accel	eration, regenerating	
braking, coasting,	moving up a	nd down a hill)-Types – series,	parallel	and series, parallel	
configuration – Des	ign – Drive tra	ain, sizing of components.			
		Total	Periods	45	
Suggestive Assessi	ment Method	s			
Continuous Assess	sment Test	Formative Assessment Test	End Se	mester Exams	
(30 Marks)		(10 Marks)	(60 Ma	rks)	
1. DESCRIPTION QUESTIONS1.ASSIGNMENT1. DESCRIPTION2. FORMATIVE MULTIPLE2. ONLINE QUIZZESQUESTIONSCHOICE QUESTIONS3.PROBLEM-SOLVING2. FORMATIVE MULTIPACTIVITIESCHOICE QUESTIONS					
Outcomes					
Upon completion of	of the course,	, the students will be able to:			
CO 1: Ability to chood depending of		drive scheme for developing an el	ectric hyb	rid vehicle	
CO 2: Ability to desi	ign and develo	op basic schemes of electric vehicle	es and hyl	orid electric vehicles	
CO 3: Complete kno	wledge about	the electrical machines that can b	e used for	the e-vehicles	
CO 4: Ability to desi	ign the drive f	or the e-vehicles.			
CO 5: Choose prope	er energy stora	age systems for vehicle application	IS.		
Text Books					
1. Iqbal Hussai Press, 2011		Hybrid Vehicles – Design Funda	mentals",	Second Edition, CRC	
2.James Larmi	nie, "Electric V	Vehicle Technology Explained", Joh	n Wiley 8	& Sons, 2003.	
Reference Books					
1. MehrdadEhs	ani, YiminGa	o, Ali Emadi, "Modern Electric, H	lybrid El	ectric, and Fuel Cell	
Vehicles: Fur	ndamentals", (CRC Press, 2010.			
2. Sandeep Dha	ameja, "Electr	ic Vehicle Battery Systems", Newn	es, 2000		
Web Recourses					

	CC)	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	PSO1	P	SO2	
	1		1		1					1		1	3			
	2		1	2	1		1			2		2			2	
	3		2		2		2			3		2	2			
	4		2		2					3		3			3	
	5		3		3					3		3	2			
(Course C	Cod	le	PRIN	ICIPL	ES OF	ELECI	FRIC P	OWEF	R TRA	NSMIS	SION	L	Τ	Р	C
	21PS37	'0 4	ł										3	0	0	3
Pr	erequisi	te	s for t	he co	urse											
	• Pow	er	Syste	m												
Ob	jectives															
1.	To und		stand	the mo	odellin	ng of tr	ansmi	ssion l	ines							
2.	To intr					0										
3.									and D	C trans	missio	on lines				
4.	To intr			U												
5.	To intr	od	uce th	e calci	ulatior	n of the	e HVD(C line p	baram	eters.						
	UNIT	I					INTR		TION						9	
Sta	ndard tr	an	smiss	ion vo	ltages	-AC ar	nd DC	– diffe	rent li	ne con	figura	tions- a	averag	e va	alues	of lin
	ameters				-						_		_			
-	chanical		-		•											
	UNIT	II			CAL	CULA	TION	OF LIN	IE PAF	RAME	rers				9	
Cal	culation	of	f resis	tance,	induc	tance	and c	apacita	ance fo	or mu	lti-con	ductor	lines -	- ca	lculat	ion o
sec	uence in	ndı	uctan	ces an	d capa	acitanc	es – li	ne pa	ramete	ers for	differ	ent mo	des of	pro	opaga	tion -
eff	ect of gro	our	nd ret	urn.												
	UNIT I	II			VOLT	rage (GRADI	ENTS	OF CO	NDUC	TORS				9	
Ch	arge-pot	en	tial re	elation	s for r	nulti-c	conduc	tor lin	nes – s	urface	volta	ge grad	ient o	n co	onduc	tors -
	dient fa	ctc	ors an	d thei	r use	– distr	ributio	n of v	oltage	gradi	ent on	sub co	nduct	ors	of bu	ndle
						1			c							
gra	tage gra	die	ents o	n cono	luctor	s in th	e pres	ence c	of grou	ind wi	res on	towers	-12R I	OSS	and c	oron

Francis Xavier Engineering College/ Dept of EEE, R2019 ME- PSE/2021-Curriculum and Syllabi UNIT IV **ELECTROSTATIC FIELD AND DESIGN OF EHV LINES** 9 Effect of EHV line on heavy vehicles - calculation of electrostatic field of AC lines- effect of high field on humans, animals, and plants - measurement of electrostatic fields - electrostatic Induction in unexercised circuit of a D/C line - induced voltages in insulated ground wires electromagnetic interference, Design of EHV lines. UNIT V 9 HVDC LINES Introduction- Reliability and failure issues-Design-tower, ROW, clearances, insulators, electrical and mechanical protection-Maintenance-Control and protection-D.C Electric field and Magnetic field -Regulations and guide lines-underground line design. **Total Periods** 45 **Suggestive Assessment Methods Continuous Assessment Test Formative Assessment Test End Semester Exams** (30 Marks) (10 Marks) (60 Marks) **1. DESCRIPTION OUESTIONS 1.ASSIGNMENT 1. DESCRIPTION** 2. FORMATIVE MULTIPLE **OUESTIONS** 2. ONLINE QUIZZES **CHOICE QUESTIONS 3.PROBLEM-SOLVING** 2. FORMATIVE MULTIPLE **ACTIVITIES CHOICE QUESTIONS Outcomes** Upon completion of the course, the students will be able to: **CO 1:** To model the transmission lines **CO 2:** To develop and estimate the voltage gradients and losses in transmission lines **CO 3:** To understand and design the EHVAC and DC transmission lines CO 4: To understand and estimate the electrostatic field of EHV transmission lines **CO 5** : To understand and evaluate the HVDC transmission line parameters Text Books 1. Rakosh Das Begamudre, "Extra High Voltage AC Transmission Engineering", Second Edition, New Age International Pvt. Ltd., 2006. 2. PritindraChowdhari, "Electromagnetic transients in Power System", John Wiley and Sons Inc., 2009. 3. Sunil S.Rao, "EHV-AC, HVDC Transmission & Distribution Engineering", Third Edition, Khanna Publishers, 2008. **Reference Books** 1. William H. Bailey, Deborah E. Weil and James R. Stewart, "A Review on HVDC Power Transmission Environmental Issues", Oak Ridge National Laboratory. 2. J.C Molburg, J.A. Kavicky, and K.C. Picel ,"A report on The design, Construction and operation of Long-distance High-Voltage Electricity Transmission Technologies" Argonne (National Laboratory) 2007.

3. "Power Engineer's Handbook", Revised and Enlarged 6th Edition, TNEB Engineers' Association, October 2002.

Web Recourses

- https://nptel.ac.in/courses/108/102/108102047/
- <u>https://www.ijert.org/a-survey-paper-on-extra-high-voltage-ac-transmission-lines</u>
- <u>https://www.sciencedirect.com/topics/engineering/uhv-power-transmission</u>

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	PSO1	PSO2
1	1	1	1	-	-	-	-	1	-	1		
2	1	2	1	-	1	-	-	2	-	1		
3	2	2	2	-	2	-	-	3	-	2		
4	3	2	3	-	1	-	-	3	-	2		
5	3	1	3	-	-	-	-	1	-	3		

Course Code	MEMS TECHNOLOGY	L	С		
21PE3707		3	0	0	3
Prerequisites f	or the course	1			
Engineer	ing Physics				
Measurer	nents and Instrumentation				
Objectives					
1. To teach	the students properties of materials, microstructure and fab	ricatio	on m	ethod	ls.
2. To teach	the design and modeling of Electrostatic sensors and actuato	rs.			
3. To teach	the characterizing thermal sensors and actuators through de	sign a	and r	nodel	ling.
	the fundamentals of piezoelectric sensors and actuators MEMS and NEMS devices.	throu	gh e	xposı	ire to
	ve Discussions/ Practice/Exercise onto revising & familia over the 5 Units of the subject for improved employability sl		g th	e cor	icepts
UNIT I	MICRO-FABRICATION, MATERIALS AND ELECTRO-			9	
	MECHANICAL CONCEPTS				
Overview of m	icro fabrication – Silicon and other material based fab	ricatio	on p	roces	ses –
Concepts: Cond	uctivity of semiconductors-Crystal planes and orientatio	n-stre	ess a	and s	train-
flexural beam b	ending analysis-torsional deflections-Intrinsic stress- reso	onant	frec	luenc	y and
quality factor.					
					I

UNIT II	ELECTRO	STATIC SENSORS AND ACTUATI	ON	9
Principle, mater actuators-Applic	-	brication of parallel plate capacito	ors as elec	trostatic sensors and
UNIT III	THER	MAL SENSING AND ACTUATION		9
Principle, mater	inal, design and f	abrication of thermal couples, the	rmal bimo	orph sensors, therma
resistor sensors.	Applicatios.			
UNIT IV	PIEZOEL	ECTRIC SENSING AND ACTUATIO	DN	9
Piezoelectric effe Applications.	ect-cantilever pie	zoelectric actuator model-propert	ties of piez	zoelectric materials-
UNIT V		CASE STUDIES		9
Piezoresistive s	ensors, Magneti	c actuation, Micro fluidics appli	cations, N	Aedical applications
Optical MEMS	NEMS Devices	Note: Class room discussions a	nd tutori	als can include the
-		d teaching /learning process: Dis		
	-	e model design aspects of thermal		
	1			
			Periods	45
Suggestive Asse	essment Method	S		
Continuous Ass	essment Test	Formative Assessment Test	End Se	mester Exams
(30 Mark	s)	(10 Marks)	(60 Ma	rks)
1. DESCRIPTION 2. FORMATIVE N CHOICE QUESTI	MULTIPLE	1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES	QUEST 2. FOR	CRIPTION IONS MATIVE MULTIPLE E QUESTIONS
Outcomes				
Upon completion	on of the course,	, the students will be able to:		
	nd basics of micro agnetic sensors a	o fabrication develop models and s nd actuators.	simulate e	lectrostatic and
		orties important for MEMS system romechanical structures	performa	nce, analyze
		ers insight onto design of micro set e systems like grid.	nsors, eml	oedded sensors
		cess and validation for MEMS dev pelectric systems.	ices and s	ystems, and learn
				edge up gradation on

Reference Books

- 1. Chang Liu, "Foundations of MEMS", Pearson International Edition, 2006.
- 2. Marc Madou , "Fundamentals of microfabrication", CRC Press, 1997.
- 3. Boston, "Micromachined Transducers Sourcebook", WCB McGraw Hill, 1998.
- 4. M.H.Bao "Micromechanical transducers :Pressure sensors, accelerometers and gyroscopes", Elsevier, Newyork, 2000.

Web Recourses

- 1. https://www.mems-exchange.org/MEMS/what-is.html
- 2. https://nptel.ac.in/courses/108108113/

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	PSO1	PSO2
1			3	1	2			2		2		1
2			3	1	2			2		2	3	
3			3	1	2			2		2		2
4			3	1				2		2	3	
5			3		2			2		2	3	

Course Code	ADVANCED POWER SYSTEM DYNAMICS	L	Т	Р	С
21PS3705		3	0	0	3
Prerequisites for	the course				
 Transmissi 	on system				
 Power syst 	em Analysis				
 Power syst 	em operation and control				
Objectives					
1. To perform	n review of classical methods				
2. To impart l	knowledge on unified algorithm.				
3. To familiar	ize the concepts of PSS.				
4. To analyze	voltage stability problem in power system.				
5. To familiar	ize the model of synchronous machine.				

UNIT I	REVI	EW OF CLASSICAL METHODS		9
System model	l, states of operatio	on and system security, steady sta	te stability	y, transient stability
simple repres	entation of excitatio	on control.		
UNIT II	UNIFIED ALGOR	ITHM FOR DYNAMIC SYSTEM AN	ALYSIS	9
Need for unif	ied algorithm- nun	nerical integration algorithmic sto	eps-trunca	ation error- variable
step size – ha	andling the discon	tinuities- numerical stability- app	plication o	of the algorithm for
transient. Mid	-term and long-terr	m stability simulations.		
UNIT III	PO	WER SYSTEM STABILIZERS		9
Basic concept	s of control signals	s in PSS-Structure and tuning-Fiel	d implem	entation- PSS design
and applicatio	on-future trends.			
UNIT IV	VOL	TAGE STABILITY ANALYSIS		9
Review of trai	nsmission aspects	- Generation Aspects: Review of s	ynchrono	us machine theory -
Voltage and fr	equency controller	rs – Limiting devices affecting volta	age stabili	ty – Voltage-reactive
power charad	cteristics of synch	ronous generators – Capability	curves –	Effect of machine
limitation on o	deliverable power -	- Load Aspects – Voltage depender	nce of load	ls – Load restoration
	-	- Load Aspects – Voltage depender - Load tap changers – Thermost		
	nduction motors -			
dynamics – I	nduction motors - d models.		atic load	
dynamics – I aggregate load UNIT V	nduction motors - d models.	- Load tap changers – Thermost	ratic load	recovery – Genera 9
dynamics – I aggregate load UNIT V System mode	nduction motors – d models. DYNAMICS l, simplified synchr	- Load tap changers – Thermost	ratic load R n of Initia	recovery – Genera 9 1 conditions, system
dynamics – I aggregate load UNIT V System mode	nduction motors – d models. DYNAMICS l, simplified synchr	- Load tap changers – Thermost S OF SYNCHRONOUS GENERATO ronous machine model, calculation rnchronous machine, inclusion of S	ratic load R n of Initia	recovery – Genera 9 1 conditions, system
dynamics – I aggregate load UNIT V System mode simulation, im	nduction motors – d models. DYNAMICS l, simplified synchr	- Load tap changers – Thermost S OF SYNCHRONOUS GENERATO ronous machine model, calculation nchronous machine, inclusion of S Total	ratic load R n of Initia	recovery – Genera 9 l conditions, system
dynamics – I aggregate load UNIT V System mode simulation, im Suggestive As	nduction motors – d models. DYNAMICS l, simplified synchr pproved model of sy	- Load tap changers – Thermost S OF SYNCHRONOUS GENERATO ronous machine model, calculation nchronous machine, inclusion of S Total	ratic load R n of Initia VC model Periods	recovery – Genera 9 l conditions, system
dynamics – I aggregate load UNIT V System mode simulation, im Suggestive As	nduction motors - d models. DYNAMICS l, simplified synchr aproved model of sy ssessment Method Assessment Test	- Load tap changers – Thermost S OF SYNCHRONOUS GENERATO conous machine model, calculation rnchronous machine, inclusion of S Total	ratic load R n of Initia VC model Periods	recovery – Genera 9 1 conditions, system 45 mester Exams
dynamics – I aggregate load UNIT V System mode simulation, im Suggestive As Continuous A (30 Mar	nduction motors - d models. DYNAMICS l, simplified synchr proved model of sy ssessment Method assessment Test rks)	- Load tap changers – Thermost S OF SYNCHRONOUS GENERATO ronous machine model, calculation rnchronous machine, inclusion of S Total Is Formative Assessment Test (10 Marks)	atic load R n of Initia VC model Periods End Sen (60 Mat	recovery – Genera 9 1 conditions, system . 45 mester Exams rks)
dynamics – I aggregate load UNIT V System mode simulation, im Suggestive As Continuous A (30 Mai 1. DESCRIPTIC 2. FORMATIV	nduction motors - d models. DYNAMICS I, simplified synchr aproved model of sy ssessment Method Assessment Test rks) ON QUESTIONS E MULTIPLE	- Load tap changers – Thermost S OF SYNCHRONOUS GENERATOR ronous machine model, calculation rnchronous machine, inclusion of S Total Is Formative Assessment Test (10 Marks) 1.ASSIGNMENT	atic load R n of Initia VC model Periods End Sen (60 Max 1. DESC QUESTI	recovery – Genera 9 1 conditions, system 45 mester Exams rks) RIPTION ONS
dynamics – I aggregate load UNIT V System mode simulation, im Suggestive As Continuous A (30 Mar	nduction motors - d models. DYNAMICS I, simplified synchr aproved model of sy ssessment Method Assessment Test rks) ON QUESTIONS E MULTIPLE	 Load tap changers – Thermost S OF SYNCHRONOUS GENERATOR conous machine model, calculation rnchronous machine, inclusion of S Total Is Formative Assessment Test (10 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES 	End Ser (60 Mar <i>QUESTI</i> <i>2. FORM</i>	recovery – Genera 9 1 conditions, system 45 mester Exams rks) RIPTION ONS MATIVE MULTIPLE
dynamics – I aggregate load UNIT V System mode simulation, im Suggestive As Continuous A (30 Mai 1. DESCRIPTIC 2. FORMATIV	nduction motors - d models. DYNAMICS I, simplified synchr aproved model of sy ssessment Method Assessment Test rks) ON QUESTIONS E MULTIPLE	- Load tap changers – Thermost S OF SYNCHRONOUS GENERATOR ronous machine model, calculation rnchronous machine, inclusion of S Total Is Formative Assessment Test (10 Marks) 1.ASSIGNMENT	End Ser (60 Mar <i>QUESTI</i> <i>2. FORM</i>	recovery – Genera 9 1 conditions, system 45 mester Exams rks) RIPTION ONS
dynamics – I aggregate load UNIT V System mode simulation, im Suggestive As Continuous A (30 Mai 1. DESCRIPTIC 2. FORMATIV	nduction motors - d models. DYNAMICS I, simplified synchr aproved model of sy ssessment Method Assessment Test rks) ON QUESTIONS E MULTIPLE	 Load tap changers – Thermost S OF SYNCHRONOUS GENERATOR conous machine model, calculation conchronous machine, inclusion of S Total Is Formative Assessment Test (10 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING 	End Ser (60 Mar <i>QUESTI</i> <i>2. FORM</i>	recovery – Genera 9 1 conditions, system 45 mester Exams rks) RIPTION ONS MATIVE MULTIPLE
dynamics – I aggregate load UNIT V System mode simulation, im Suggestive As Continuous A (30 Mai 1. DESCRIPTIC 2. FORMATIV	nduction motors - d models. DYNAMICS I, simplified synchr aproved model of sy ssessment Method Assessment Test rks) ON QUESTIONS E MULTIPLE	 Load tap changers – Thermost S OF SYNCHRONOUS GENERATOR conous machine model, calculation conchronous machine, inclusion of S Total Is Formative Assessment Test (10 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING 	End Ser (60 Mar <i>QUESTI</i> <i>2. FORM</i>	recovery – Genera 9 1 conditions, system 45 mester Exams rks) RIPTION ONS MATIVE MULTIPLE
dynamics – I aggregate load UNIT V System mode simulation, im Suggestive As Continuous A (30 Mai 1. DESCRIPTIC 2. FORMATIV	nduction motors - d models. DYNAMICS I, simplified synchr aproved model of sy ssessment Method Assessment Test rks) ON QUESTIONS E MULTIPLE	 Load tap changers – Thermost S OF SYNCHRONOUS GENERATOR conous machine model, calculation conchronous machine, inclusion of S Total Is Formative Assessment Test (10 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING 	End Ser (60 Mar <i>QUESTI</i> <i>2. FORM</i>	recovery – Genera 9 1 conditions, system 45 mester Exams rks) RIPTION ONS MATIVE MULTIPLE

Outcomes

Upon completion of the course, the students will be able to:

- **CO 1:** Learners will be able to understand the transient stability analysis.
- **CO 2:** Learners will have knowledge on unified algorithm for dynamic analysis of power systems

CO 3: Learners will have knowledge on field implementation of PSS.

- **CO 4:** Learners will understand the concepts load aspects of voltage stability analysis
- **CO 5:** Learners will attain basic knowledge on transient stability and counter measures for synchronous model

Text Books

- 1. R.Ramnujam," Power System Dynamics Analysis and Simulation", PHI Learning Private Limited, New Delhi, 2009
- 2. T.V. Cutsem and C.Vournas, "Voltage Stability of Electric Power Systems", Kluwer publishers,1998
- 3. P. Kundur, "Power System Stability and Control", McGraw-Hill, 1993.
- 4. H.W. Dommel and N.Sato, "Fast Transient Stability Solutions," IEEE Trans., Vol. PAS-91, pp, 1643-1650, July/August 1972.

Reference Books

- 1. Roderick J .Frowd and J. C. Giri, "Transient stability and Long term dynamics unified", IEEE Trans., Vol 101, No. 10, October 1982.
- M.Stubbe, A.Bihain, J.Deuse, J.C.Baader, "A New Unified software program for the study of the dynamic behaviour of electrical power system" IEEE Transaction, Power Systems, Vol.4.No.1, Feb: 1989 Pg. 129 to 138

Web Recourses

- 1. https://arxiv.org/ftp/arxiv/papers/1808/1808.03705.pdf
- 2. https://link.springer.com/chapter/10.1007/978-1-4615-4561-3_7
- 3. https://www.eeeguide.com/dynamics-of-synchronous-machine

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	PS01	PSO2
1	2		2							3		2
2	2				2			3		3		3
3	2		2					3		3	2	
4	2									3		3
5	2		2							3	2	

Francis Xavier Engineering	College	Dept of EEE,	R2019 ME- PSE/	/2021-Curriculum	and Syllabi

Course Code	DESIGN OF SUBSTATIONS	L	Т	Р	С
21PS3706		3	0	0	3
Prerequisites fo	r the course				
Engineerii	ng Physics				
• Transmiss	ion and Distribution				
Objectives					
1. To familiarize	e the methods of transient stability enhancement.				
Gas Insulated	n-depth knowledge on design criteria of Air Insulated Substat I Substation (GIS). substation insulation co-ordination and protection scheme.	ion (/	AIS) a	and	
•	source and effect of fast transients in AIS and GISTo devel	lop n	naxin	num p	owe
UNIT I	INTRODUCTION TO AIS AND GIS			9	
Introduction - ch	naracteristics – comparison of Air Insulated Substation (Al	S) an	d Ga	s Insi	ulated
Substation (GIS)	- main features of substations, Environmental considera	ation			g and
Substation (GIS) installation- GIB ,		ation			g and
		ation			g and
installation- GIB , UNIT II	/ GIL.		s, Pla	annin; 9	
installation- GIB , UNIT II Major equipmer	/ GIL. MAJOR EQUIPMENT AND LAYOUT OF AIS AND GIS	f ele	s, Pla	annin; 9 al str	esses
installation- GIB , UNIT II Major equipmen mechanical aspec	/ GIL. MAJOR EQUIPMENT AND LAYOUT OF AIS AND GIS nt – design features – equipment specification, types o	f ele ingle	s, Pla ctrica feed	annin 9 al str er cii	esses
installation- GIB , UNIT II Major equipmer mechanical aspectsingle or main b	/ GIL. MAJOR EQUIPMENT AND LAYOUT OF AIS AND GIS nt – design features – equipment specification, types o cts of substation design- substation switching schemes- s	f ele ingle	s, Pla ctrica feed	annin 9 al str er cii	esses
installation- GIB , UNIT II Major equipmer mechanical aspects single or main b	/ GIL. MAJOR EQUIPMENT AND LAYOUT OF AIS AND GIS nt – design features – equipment specification, types o cts of substation design- substation switching schemes- si us and sectionalized single bus- double main bus-main and	f ele ingle	s, Pla ctrica feed	annin 9 al str er cii	esses
installation- GIB , UNIT II Major equipmer mechanical aspects single or main by reserve and trans UNIT III	/ GIL. MAJOR EQUIPMENT AND LAYOUT OF AIS AND GIS nt – design features – equipment specification, types o cts of substation design- substation switching schemes- s us and sectionalized single bus- double main bus-main and sfer bus- breaker-and-a- half scheme-ring bus.	f ele ingle d trai	s, Pla ctrica feed nsfer	9 al str er cii bus- 9	resses rcuits main
installation- GIB , UNIT II Major equipmen mechanical aspects single or main by reserve and trans UNIT III Introduction – st	/ GIL. MAJOR EQUIPMENT AND LAYOUT OF AIS AND GIS nt – design features – equipment specification, types o cts of substation design- substation switching schemes- s us and sectionalized single bus- double main bus-main and sfer bus- breaker-and-a- half scheme-ring bus. INSULATION COORDINATION OF AIS AND GIS	f ele ingle d trai	s, Pla ctrica feed nsfer	9 al str er cii bus- 9	resses rcuits main
installation- GIB , UNIT II Major equipmen mechanical aspects single or main by reserve and trans UNIT III Introduction – st	/ GIL. MAJOR EQUIPMENT AND LAYOUT OF AIS AND GIS nt – design features – equipment specification, types o cts of substation design- substation switching schemes- si us and sectionalized single bus- double main bus-main and sfer bus- breaker-and-a- half scheme-ring bus. INSULATION COORDINATION OF AIS AND GIS ress at the equipment – insulation strength and its selection	f ele ingle d trai	s, Pla ctrica feed nsfer	9 al str er cii bus- 9	resses rcuits main
installation- GIB , UNIT II Major equipmen mechanical aspect single or main by reserve and trans UNIT III Introduction – st Application of sin UNIT IV Definitions – soil	/ GIL. MAJOR EQUIPMENT AND LAYOUT OF AIS AND GIS nt – design features – equipment specification, types o cts of substation design- substation switching schemes- si us and sectionalized single bus- double main bus-main and sfer bus- breaker-and-a- half scheme-ring bus. INSULATION COORDINATION OF AIS AND GIS ress at the equipment – insulation strength and its selection nplified method – Comparison with IEEE and IEC guides.	f ele ingle d tran on –	s, Pla ctrica feed nsfer stanc	9 al str er cir bus- 9 lard I 9	resses rcuits main BILs -
installation- GIB , UNIT II Major equipmen mechanical aspect single or main by reserve and trans UNIT III Introduction – st Application of sin UNIT IV Definitions – soil	/ GIL. MAJOR EQUIPMENT AND LAYOUT OF AIS AND GIS nt – design features – equipment specification, types o cts of substation design- substation switching schemes- si us and sectionalized single bus- double main bus-main and sfer bus- breaker-and-a- half scheme-ring bus. INSULATION COORDINATION OF AIS AND GIS ress at the equipment – insulation strength and its selection nplified method – Comparison with IEEE and IEC guides. GROUNDING AND SHIELDING resistivity measurement – ground fault currents – ground o	f ele ingle d tran on –	s, Pla ctrica feed nsfer stanc	9 al str er cir bus- 9 lard I 9	resses rcuits main BILs -
installation- GIB , UNIT II Major equipmer mechanical aspect single or main by reserve and trans UNIT III Introduction – st Application of sin UNIT IV Definitions – soil substation ground	/ GIL. MAJOR EQUIPMENT AND LAYOUT OF AIS AND GIS nt – design features – equipment specification, types o cts of substation design- substation switching schemes- sc us and sectionalized single bus- double main bus-main and sfer bus- breaker-and-a- half scheme-ring bus. INSULATION COORDINATION OF AIS AND GIS rress at the equipment – insulation strength and its selection nplified method – Comparison with IEEE and IEC guides. GROUNDING AND SHIELDING resistivity measurement – ground fault currents – ground of ding system – shielding of substations – Shielding by wires an FAST TRANSIENTS PHENOMENON IN AIS AND GIS Systems -Range and type of Hybrid systems-Case studies of W	f ele ingle d tran on –	s, Pla ctrica feed nsfer stand	9 al str er cin bus- 9 lard l 9 - des	resses rcuits main BILs -

Continuous Assessment Test	Formative Assessment Test	End Semester Exams
(30 Marks)	(10 Marks)	(60 Marks)
1. DESCRIPTION QUESTIONS 2. FORMATIVE MULTIPLE CHOICE QUESTIONS	1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES	1. DESCRIPTION QUESTIONS 2. FORMATIVE MULTIPLE CHOICE QUESTIONS
Outcomes		
Upon completion of the course	, the students will be able to:	
CO 1: Able to apply Awareness to	owards substation equipment and	their arrangements.
CO 2: Able to design the substation and protection against fast transi	on for present requirement with pr ents.	oper insulation coordination
CO 3: Develop more understand	ing about insulation concepts	
CO 4 : Acquire knowledge about	grounding and shielding methods	
CO 5: Understand about fast tra	nsient phenomenon in power syste	em.
Reference Books		
1. Andrew R. Hileman, "Insu	lation coordination for power syste	ems", Taylor and Francis, 1999
Limited, 2008.	tion Substations", I.K. Internatio	-
	high voltage networks" Plenum Pr	ess,New York, 1980.
4. "Power Engineer's handbo		
5. PritindraChowdhuri, "Ele Limited, New Delhi, Secon	ctromagnetic transients in power d edition 2004	systems", PHI Learning Priva
, , ,	bstation", United States Departme	ent of Agriculture, RUS Bulleti
7. AIEE Committee Report, " and Systems, August 1953	Substation One-line Diagrams," Al	EE Trans. On Power Apparat
8. Hermann Koch, "Gas Insul	ated Substations", Wiley-IEEE Pres	ss, 2014.
Web Recourses		
1. <u>https://nptel.ac.in/courses/1</u>	<u>08107112/</u>	
2. https://nptel.ac.in/content/s	torage2/nptel_data3/html/mhrd/	ict/text/108102047/lec23.pd
	torage2/courses/108107028/mod	

CO Vs PO Mapping and CO Vs PSO Mapping

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	PS01	PSO2
1	3							3	3	3		3
2	3		2							3		2
3	3	2	2							3	2	
4	3		2					2		3		2
5	3							2	2	3	2	

Course Code 21PE3708	POWER ELECTRONICS FOR RENEWABLE ENERGY SYSTEMS	L	Т	Р	С					
21FE3700		3	0	0	3					
Prerequisites for the course										
Power Electronics										

Objectives

- 1. To provide knowledge about the stand alone and grid connected renewable energy systems.
- 2. To equip with required skills to derive the criteria for the design of power converters for renewable energy applications.
- 3. To analysis and comprehend the various operating modes of wind electrical generators and solar energy systems.
- 4. To design different power converters namely AC to DC, DC to DC and AC to ACconverters for renewable energy systems.
- **5.** To develop maximum power point tracking algorithms.

UNIT I	INTRODUCTION	9							
Environmental aspects of electric energy conversion: impacts of renewable energy generation on									
environment (c	environment (cost-GHG Emission) -Qualitative study of different renewable energy resources								
ocean, Biomass, Hydrogen energy systems : operating principles and characteristics of: Solar PV,									
Fuel cells, wind electrical systems-control strategy, operating area.									
UNIT II ELECTRICAL MACHINES FOR RENEWABLE ENERGY 9									
		3							
	CONVERSION								

Review of reference theory fundamentals-principle of operation and analysis: IG, PMSG, SCIGand DFIG.

UNIT III		9						
Block diagram	of solar photo v	oltaic system : line commutated	converters ([inversion-mode]				
Boost and buc	k-boost converter	s-selection of inverter, battery siz	ing, array si	zing- standalor				
PV systems - G	rid tied and grid i	nteractive inverters- grid con	nection issu	es.				
UNIT IV	POW	POWER ELECTRONICS FOR WIND9						
Three phase AC	voltage controlle	rs-AC-DC-AC converters: uncontro	olled rectifie	rs, PWM Inverter				
matrix converte	ers- Stand alone o	operation of fixed and variable s	peed wind	energy conversio				
systems- Grid c	onnection Issues -	Grid integrated PMSG and SCIG Ba	ased WECS.					
UNIT V	HYBRID	RENEWABLE ENERGY SYSTEMS	5	9				
Need for Hybrid	l Systems -Range a	and type of Hybrid systems-Case s	tudies of Wi	ind PV				
Maximum Powe	er Point Tracking ((MPPT)						
		Total	Periods	45				
Suggestive Ass	essment Method	S						
Continuous As	sessment Test	Formative Assessment Test	End Sem	ester Exams				
(30 Marl	ks)	(10 Marks)	(60 Mark	(s)				
1. DESCRIPTIO	•	1.ASSIGNMENT	1. DESCR	-				
2. FORMATIVE CHOICE QUEST		2. ONLINE QUIZZES	QUESTIO	NS ATIVE MULTIPLE				
		3.PROBLEM-SOLVING ACTIVITIES	-	QUESTIONS				
Outcomes		<u> </u>						
Upon completi	on of the course,	the students will be able to:						
CO 1: Analyze t	the impacts of ren	ewable energy generation on envi	ronment.					
CO 2: Understa	nd the importance	and qualitative analysis of solar	and wind er	nergy sources.				
	e principle of oper formance charact	ation of electrical machines for wi eristics.	nd energy c	onversion and				
CO 4 : Design su	itable power conv	erters for solar PV and wind ener	gy systems.					
CO 5: Design su	uitable power for l	Hybrid converters						
Reference Boo	ks							
1. S.N.Bhad 2009.	lra, D. Kastha, & S	S. Banerjee "Wind Electrical Syst	ems", Oxfor	d UniversityPres				
2007.								

- 3. Rai. G.D, "Non conventional energy sources", Khanna publishes, 1993.
- 4. Rai. G.D," Solar energy utilization", Khanna publishes, 1993.
- 5. Gray, L. Johnson, "Wind energy system", prentice hall linc, 1995.
- 6. B.H.Khan, "Non-conventional Energy sources", Tata McGraw-hill PublishingCompany.
- 7. P.S.Bimbhra, "Power Electronics", Khanna Publishers, 3rd Edition, 2003.
- 8. Fang Lin Luo Hong Ye, " Renewable Energy systems", Taylor & Francis Group, 2013.
- 9. R.Seyezhai and R.Ramaprabha, "Power Electronics for Renewable Energy Systems", Scitech Publications, 2015.

Web Recourses

1. https://ieeexplore.ieee.org/iel5/4778359/4778360/04778368.pdf

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	PS01	PSO2
1	3							3	3	3		3
2	3		2							3	3	
3	3	2	2							3	2	
4	3		2					2		3		2
5	3							2	2	3	2	

Course Code	POWER PLANT INSTRUMENTATION AND	L	Т	Р	С
21PS3707 CONTROL		3	0	0	3
Prerequisites for th	ie course				
Control Systems					
Objectives					

- 1. To study the concept of power generation using various resources.
- 2. .To understand the concept of Basics measurements involved in power generation plants.
- **3.** To understand the Nature of the demand-Setting the demand in power stations applications.
- 4. To understand the concept of boilers.
- **5.** To understand the basic concept of control equipment practice.

Francis Xavier Engineering College/ Dept of EEE, R2019 ME- PSE/2021-Curriculum and Syllabi **OVERVIEW OF POWER GENERATION** 9 **UNIT I** Brief survey of methods of power generation – Hydro, thermal, nuclear, solar and wind power - Importance of instrumentation in power generation - Thermal power plants - Block diagram -Details of boiler processes - UP&I diagram of boiler - Cogeneration. UNIT II **MEASUREMENTS IN POWER PLANTS** 9 Electrical measurements – Current, voltage, power, frequency, power factor etc. – Non electrical parameters - Flow of feed water, fuel, air and steam with correction factor for temperature -Steam pressure and steam temperature – Drum level measurement – Radiation detector – Smoke density measurement - Dust monitor. UNIT III 9 SETTING THE DEMAND FOR THE STEAM **GENERATOR** Nature of the demand-Setting the demand in power stations applications-Master demand in power station applications-Load demand in combined heat and power plants-Waste to energy plants. **UNIT IV** 9 **BOILER CONTROL** The principles of compression control-Draught control-The principles of feed water control-One, two and three elements feed water control Drum level control-Steam temperature control-Spraywater attemperator- Temperature control with tilting burners-controlling temperature of reheated steam-Gas Recycling. UNIT V 9 **CONTROL EQUIPMENT PRACTICE** DCS configuration in power plant-A Typical DCS configuration-Interconnections between systems-Equipment selection and environment-Mechanical factors and ergonomics-Electrical actuators-Hydraulic actuators-Cabling-Electromagnetic compatibility-Reliability of systems **Total Periods** 45 **Suggestive Assessment Methods Continuous Assessment Test Formative Assessment Test End Semester Exams** (30 Marks) (10 Marks) (60 Marks) **1. DESCRIPTION QUESTIONS 1.ASSIGNMENT 1. DESCRIPTION** 2. FORMATIVE MULTIPLE **QUESTIONS 2. ONLINE QUIZZES CHOICE QUESTIONS** 2. FORMATIVE MULTIPLE **CHOICE QUESTIONS 3.PROBLEM-SOLVING** ACTIVITIES 93

Outcomes

Upon completion of the course, the students will be able to:

CO 1: Able to apply Awareness towards substation equipment and their arrangements.

- **CO 2:** Able to design the substation for present requirement with proper insulation coordination and protection against fast transients.
- **CO 3:** Develop more understanding about insulation concepts
- **CO 4:** Acquire knowledge about grounding and shielding methods

CO 5: Understand about fast transient phenomenon in power system.

Text Books

- 1. P.K.Nag, "Power Plant Engineering" Tata McGraw-Hill, NewDelhi, 2005.
- 2. Sam G.Dukelow, The control of Boilers, Instrument Society of America, 1991.

Reference Books

- 1. David Lindsley, "Power Plant Control & Instrumentation ",IEE Publications,London, UK (2001).
- 2. Elonka, S.M. and Kohal A.L.Standard Boiler Operations, McGraw Hill, New Delhi, 1994.
- 3. R.K.Jain, Mechanical and Industrial Measurements, Khanna Publishers, New Delhi, 1995.
- 4. Al. Wakil, 'Power Plant Engineering', Tata McGraw Hill, 1984.
- 5. A.K.Mahalanbias-"Power System Instrumentation"-Tata McGraw Hill.

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	PS01	PSO2
1	3							3	3	3		3
2	3		2							3	3	
3	3	2	2							3	2	
4	3		2					2		3		2
5	3							2	2	3	2	