Francis Xavier Engineering College

(An Autonomous Institution) Tirunelveli 627 003 Department of Electrical and Electronics Engineering

Curriculum and Syllabi – R 2021-UG CHOICE BASED CREDIT SYSTEM AND OBE

Vision of the Department

To be a Centre of Excellence for Technology transformation in the field of Electrical and Electronics Engineering

Mission of the Department

- To empower the vibrant young leaders with technical skills and knowledge in the field of technology
- To facilitate the industries to adopt effective solutions in the field of Electrical and Electronics Engineering through consultancy
- To transform technology for rural needs and ethical values to lead and serve the society.

Table of Contents

S.No	Content	Page No
1.	PROGRAM EDUCATIONAL OBJECTIVES (PEOs)	4
2.	PROGRAM OUTCOMES (POs)	4
3.	PROGRAMME SPECIFIC OUTCOMESPSOs)	5
4.	MAPPING OF PROGRAMME EDUCATIONAL OBJECTIVES WITH PROGRAMME OUTCOMES	6
5.	MAPPING OF PROGRAMME SPECIFIC OBJECTIVES WITH PROGRAMME OUTCOMES	7
6.	SUMMARY OF CREDIT DISTRIBUTION	8
7.	I – VIII SEMESTERS CURRICULUM AND SYLLABI	12
8.	PROFESSIONAL ELECTIVES	12
9.	OPEN ELECTIVES	12
10.	VALUE ADDED COURSE / ONE CREDIT COURSE	13
11.	MANDATORY COURSES / NON CREDIT COURSES	13
12.	EMPLOYABILITY ENHANCING COURSES	15
13.	FIRST SEMESTER SYLLABUS	16
14.	SECOND SEMESTER SYLLABUS	20
15.	THIRD SEMESTER SYLLABUS	59
16.	FOURTH SEMESTER SYLLABUS	100
17.	FIFTH SEMESTER SYLLABUS	147
18.	SIXTH SEMESTER SYLLABUS	200
19.	SEVENTH SEMESTER SYLLABUS	249
20.	EIGHTH SEMESTER SYLLABUS	299

Programme Educational Outcomes (PEOs)

PEO 1 – Professional Development:

Graduates of the program will Engage in designing, manufacturing, testing, operating, and or maintaining systems in the field of electrical and electronic engineering and allied engineering industries.

PEO 2 - Social Responsibility:

Graduates of the program will Solve problems of social relevance applying the knowledge of electrical and electronics engineering and or pursue higher education and research.

PEO 3 - Team Work and Leadership:

Graduates of the program will Work effectively as individuals and as team members in multidisciplinary projects.

PEO 4 – Lifelong Learning & Virtues:

Graduates of the program will Engage in lifelong learning, career enhancement and adopt to changing professional and societal needs.

Programme Specific Objectives (PSOs)

PSO 1 – To design and develop environmental friendly electrical and electronics products.

PSO 2 – To design and analyze system that efficiently generates, transmits, distribute and utilize electrical power.

Programme Outcomes (POs)

Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one"s own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Mapping with PO Vs PEO, PSO

РО	PEO1	PEO2	PEO3	PEO4
1	3			2
2	3	3	3	
3	3	3		2
4	3	3		1
5			2	3
6	1	3		3
7		2		3
8		3		1
9			3	2
10	1	3	3	3
11			3	3
12			2	3
PSO1	2	2	3	
PSO2	3	2		2

Francis Xavier Engineering College| Dept of EEE | R2021/Curriculum and Syllabi FRANCIS XAVIER ENGINEERING COLLEGE

B.E. – EEE REGULATIONS 2021

S.No	Category				Cred Sen	lits Per nester				Total Credits	Credit sin
		Ι	II	III	IV	V	VI	VI I	VIII		%
1	HSSM	4	3	3				3		13	7.78
2	BS	12	4	4						20	11.97
3	ES	9	9				3			21	12.57
4	РС		5	16	20	13	4	7		65	38.92
5	PE					6	6	6		18	10.78
6	OE					3	3	6		12	7.19
7	EEC			1	1	1	5		10	18	10.78
,	Total	25	21	24	21	23	21	22	10	167	100

Choice Based Credit System and Outcome Based Education

SUMMARY OF CREDIT DISTRIBUTION

Minimum Number of Credits to be acquired by regular students: 167

Minimum Number of Credits to be acquired by Lateral students: 121

HSSM - Humanities and Social Sciences including Management

- **BS Basic Science**
- **ES Engineering Sciences**
- PC Professional Core
- PE Professional Elective

OE – Open Elective/Programme Specific Elective for Expandable Scope

EEC - Employability Enhancement Course

FRANCIS XAVIER ENGINEERING COLLEGE

B.E. – EEE REGULATIONS 2021

Choice Based Credit System and Outcome Based Education

I-VIII Semester Curriculum and Syllabi

SEMESTER I

S.No	Course Code	Course Name	Category	Contact Periods	L	Т	Р	С
Theor	ry Courses							
1	21MA1201	Matrices and Advanced	BS	4	3	1	0	4
		Calculus						
2	21PH1301	Physics For Engineers	BS	3	3	0	0	3
3	21CY1401	Engineering Chemistry	BS	3	3	0	0	3
4	21CS1501	Problem Solving and Logical Thinking Using C	ES	3	3	0	0	3
5	21HS1103	Tamil Heritage	HSSM	3	2	0	0	1
Theor	ry cum Pract	ical Courses	L	l	1			
1	21HS1101	English for Professional Communication	HSSM	3	2	0	2	3
2	21ME1513	Computer Aided Engineering Graphics	ES	5	3	0	2	4
Pract	ical Courses							
1	21PY1311	Physics and Chemistry Laboratory	BS	4	0	0	4	2
2	21CS1511	Programming Practice Laboratory using C	ES	4	0	0	4	2
			Total	32	19	1	12	25

SEMESTER II

S.No	Course Code	Course Name	Category	Contact Periods	L	T	Р	С
Theo	ry Courses							
1	21HS2101	English for Technical Communication	HSSM	2	2	0	0	2
2	21MA2201	Partial Differential Equation and Applications of Fourier Series	BS	4	3	1	0	4
3	21ME1502	Basic Civil and Mechanical Engineering	ES	3	3	0	0	3

Δ	21FF2601	Electric Circuits and Network						
т	21222001	Analysis	PC	3	3	0	0	3
5	21HS2103	Technology in Tamil Culture	HSSM	3	2	0	0	1
The	ory cum Practio	cal Courses						
1	21CS2501	Introduction to Computing Using Python	ES	4	3	0	2	2
Prac	ctical Courses							
1	21GE1512	Engineering Workshop	ES	4	0	0	4	4
2	21EE261	Electrical Circuit Analysis Laboratory	PC	4	0	0	4	4
			Total	27	16	1	10	2

SEMESTER III

S.No	Course Code	Course Name	Category	Contact Periods	L	Τ	Р	C
Theor	ry Courses							
1	21HS3101	Ethics and Values	HSSM	3	3	0	0	3
2	21MA3204	Transforms Techniques and Numerical Methods	BS	4	3	1	0	4
3	21EE3601	Analog and Integrated Circuits	РС	3	3	0	0	3
4	21EE3602	DC Machines and Transformers	РС	3	3	0	0	3
5	21EE3603	Fundamentals of Applied Electromagnetics	РС	3	3	0	0	3
6	21EE3604	Signals and Systems	PC	3	3	0	0	3
Pract	ical Courses							
1	21EE3611	Analog and Integrated Circuit Design Laboratory	РС	4	0	0	4	2
2	21EE3612	DC Machines and Transformers Laboratory	РС	4	0	0	4	2
3	21PT3901	Soft Skills- Aptitude I	EEC	2	1	0	0	1
	1	1	Total	29	19	1	8	24

S.No	Course Code	Course Name	Category	Contact Periods	L	T	Р	C
Theor	ry Courses							
1	21EE4601	Measurements and Modern Instruments	PC	3	3	0	0	3
2	21EE4602	Control Theory	PC	3	3	0	0	3
3	21EE4603	AC Machines	PC	4	3	1	0	4
4	21EE4604	Transmission and Distribution in Power Systems	PC	3	3	0	0	3
Theor	y cum Practio	cal Courses						
1	21EE4605	Digital Electronics	PC	4	2	0	2	3
Manda	atory Course		•					L
1	21GE4M01	Indian Constitution and Cultural Heritage	МС	2	2	0	0	0
Pract	ical Courses		·			•		
1	21EE4611	Control and Instrumentation Laboratory	PC	4	0	0	4	2
2	21EE4612	AC Machines Laboratory	PC	4	0	0	4	2
3	21PT3902	Soft Skills-Verbal Ability	EEC	2	0	0	2	1
	· ·		Total	29	16	1	12	21

SEMESTER IV

SEMESTER V

S.No	Course Code	Course Name	Category	Contact Periods	L	Τ	Р	С
Theor	ry Courses			•				
1	21EE5601	Microcontrollers and its Applications	PC	3	3	0	0	3
2	21EE5602	Power Electronics and Drives	PC	3	3	0	0	3
3	21EE5603	Power Generation systems	PC	3	3	0	0	3
4		Professional Elective – I	PE	3	3	0	0	3

5		Professional Elective – II	PE	3	3	0	0	3
6		Open Elective – I	OE	3	3	0	0	3
Pract	ical Courses							
1	21EE5611	Power Electronics Laboratory	PC	4	0	0	4	2
2	21EE5612	Microcontrollers Laboratory	PC	4	0	0	4	2
3	21PT3903	Soft Skills- Aptitude II	EEC	2	0	0	2	1
			Total	28	18	0	10	23

SEMESTER VI

S.No	Course Code	Course Name	Category	Contact Periods	L	Т	Р	С
Theor	ry Courses							
1	21EE6601	Power System Analysis	РС	4	3	1	0	4
2		Professional Elective – III	PE	3	3	0	0	3
3		Professional Elective – IV	PE	3	3	0	0	3
4		Open Elective – II	OE	3	3	0	0	3
Theor	y cum Practio	cal Courses						
1	21EE6501	Embedded System Design and Development	ES	4	2	0	2	3
Manda	atory Course							
1	21GE2M02	Environmental and Sustainable Engineering	МС	2	2	0	0	0
Pract	ical Courses							
1	21PT3904	Soft Skills-Reasoning	EEC	2	0	0	2	1
2	21EE6911	Comprehension	EEC	4	0	0	4	2
3	21EE6912	Mini Project/ Internship	EEC	4	0	0	4	2
	. I		Total	29	17	1	12	21

SEMESTER VII

S.No	Course Code	Course Name	Category	Contact Periods	L	Т	Р	С
	C							
Ineo	ry Courses							
1	21GE7101	Total Quality Management	HSS	3	3	0	0	3
2	21EE7601	Renewable Energy Systems	PC	3	3	0	0	3
3		Professional Elective-V	PE	3	3	0	0	3
4		Professional Elective-VI	PE	3	3	0	0	3
5		Open Elective – III	OE	3	3	0	0	3
6		Open Elective – IV	OE	3	3	0	0	3
Pract	ical Courses							
1	21EE7611	Power System Simulation Laboratory	PC	4	0	0	4	2
2	21EE7612	Renewable Energy Systems Laboratory	РС	4	0	0	4	2
			Total	26	18	0	8	22

SEMESTER VIII

S.No	Course Code	Course Name	Category	Contact Periods	L	Τ	Р	С
Pract	ical Courses							
1	21EE8901	Project Work	EEC	20	0	0	20	10
			Total	20	0	0	20	10

Minimum Number of Credits to be Acquired:167

S.No	Course Code	Course Name	Category	Contact Periods	L	T	Р	С
Theor	ry Courses				1			
1	21HS2101	English For Technical Communication	HSSM	2	2	0	0	2
2	21HS3101	Ethics and Values	HSSM	3	3	0	0	3
3	21GE7101	Principles of Management	HSSM	3	3	0	0	3
4	21HS1103	Tamil Heritage	HSSM	3	2	0	0	1
5	21HS2103	Technology in Tamil Culture	HSSM	3	2	0	0	1
Theor	ry cum Pract	ical Courses						
1	21HS1101	English for Professional Communication	HSSM	3	2	0	2	3

Humanities and Social Sciences Including Management

List Basic Science Courses

S.No	Course Code	Course Name	Category	Contact Periods	L	Т	Р	С
Theorem	ry Courses			·				
1	21MA1201	Matrices and Advance Calculus	BS	4	3	1	0	4
2	21PH1301	Physics For Engineers	BS	3	3	0	0	3
3	21CY1401	Engineering Chemistry	BS	3	3	0	0	3
4	21MA2201	Partial Differential Equation and Applications of Fourier Series	BS	4	3	1	0	4
5	21MA3204	Transforms Techniques and Numerical Methods	BS	4	3	1	0	4
Theor	ry cum Practi	cal Courses						
1	21PY1311	Physics and Chemistry laboratory	BS	4	0	0	4	2

List of Engineerir	g Science Courses
--------------------	-------------------

S.No	Course Code	Course Name	Category	Contact Periods	L	Τ	Р	С
Theor	ry Courses				•			
1	21ME1502	Basic Civil and Mechanical Engineering	ES	3	3	0	0	3
2	21CS1501	Problem Solving and Logical Thinking Using C	ES	3	3	0	0	3
Theor	y cum Practio	cal Courses						
1	21EE6501	Embedded System Design and Development	ES	4	2	0	2	3
2	21CS2501	Introduction to Computing Using Python	ES	4	3	0	2	4
3	21ME1513	Computer Aided Engineering Graphics	ES	5	3	0	2	4
Pract	ical Courses							
1	21CS1511	Programming Practice Laboratory Using C	ES	4	0	0	4	2
2	21GE1512	Engineering Workshop	ES	4	0	0	4	2

List of Employability Enhancement Course

S.No	Course Code	Course Name	Category	Contact Periods	L	T	Р	С
Theor	ry Courses		<u> </u>	I				
1	21PT3901	Soft Skills - Aptitude I	EEC	2	1	0	0	1
2	21PT3902	Soft Skills - Verbal Ability	EEC	2	0	0	2	1
3	21PT3903	Soft Skills - Aptitude II	EEC	2	0	0	2	1
4	21PT3904	Soft Skills -Reasoning	EEC	2	0	0	2	1
5	21EE6911	Comprehension	EEC	4	0	0	4	2
6	21EE6912	Mini Project/ Internship	EEC	4	0	0	4	2
7	21EE8901	Project Work	EEC	20	0	0	20	10

List of Professional Elective Courses

S.No	Course	Course Name	Semester	L	Т	P	C	Stream/ Domain
	Code							
Profes	sional Electi	ive I						
1	21EE5701	Design of Electrical Machines	5	3	0	0	3	Power systems
2	21EE5702	Modern Control Theory	5	3	0	0	3	Instrumentation and Control
3	21EE5703	Digital Signal Processingand its Applications	5	3	0	0	3	Embedded and IoT
4	21EE5704	Virtual Instrumentation	5	3	0	0	3	Instrumentation and Control
5	21EE5705	Artificial Intelligence and Expert System	5	3	0	0	3	Embedded and IoT
6	21EE5706	Internet of Things and its Applications	5	3	0	0	3	Embedded and IoT
7	21EE5101	Applied Industrial IoT (Industrial Supported course)	5	3	0	0	3	Embedded and IoT
Profes	sional Electi	ive II						
1	21EE5707	Power System transients	5	3	0	0	3	Power systems
2	21EE5708	Protection and switchgear	5	3	0	0	3	Power systems
3	21EE5709	Communication Engineering	5	3	0	0	3	Embedded and IoT
4	21EE5710	CMOS Analog IC Design	5	3	0	0	3	Embedded and IoT
5	21EE5711	Neural Networks and Fuzzy Logic Control	5	3	0	0	3	Embedded and IoT
6	21EE5712	Biomedical Engineering	5	3	0	0	3	Instrumentation and Control
Profes	sional Elect	ive III	•		ı	1	1	
1	21EE6701	Industrial Drives and control	6	3	0	0	3	Industrial Drives and Electric Vehicles
2	21EE6702	High Voltage Direct Current Transmission	6	3	0	0	3	High Voltage

3	21EE6703	Fuel Cell and Hydrogen Energy	6	3	0	0	3	Industrial Drives and Electric Vehicles
4	21EE6704	EHVAC Transmission	6	3	0	0	3	High Voltage
5	21EE6705	Energy Conservation and Auditing	б	3	0	0	3	Industrial Drives
6	21EE6706	Electrical Substation Engineering	6	3	0	0	3	High Voltage
Profe	essional Elect	ive IV						
1	21EE6707	Design of SMPS and UPS	6	3	0	0	3	Industrial Drives and Electric Vehicles
2	21EE6708	Design of Electrical Installations	6	3	0	0	3	High Voltage
3	21EE6709	Smart Grid Technologies	6	3	0	0	3	Embedded and IoT
4	21EE6710	Electrical Safety and Quality Assurance	б	3	0	0	3	Power systems
5	21EE6711	Intelligent Systems and Control	6	3	0	0	3	Embedded and IoT
6	21EE6712	Low Power VLSI Design	6	3	0	0	3	Embedded and IoT
7	21EE6713	Extra low voltage system design for buildings (Industrial Supported course)	6	3	0	0	3	Power systems
8	21EE6714	Smart grid technologies (Industrial Supportedcourse)	6	3	0	0	3	Embedded and IoT
9	21EE6715	FPGA design for Industrial Applications(VLSI) (Industrial Supported course)	6	3	0	0	3	Embedded and IoT
Profes	ssional Electi	ve V						
1	21EE7710	Modern Power Converters	7	3	0	0	3	Industrial Drives and Electric Vehicles
2	21EE7711	Power Quality	7	3	0	0	3	Power systems

3

21EE7712

Advanced Power

Protection

Semiconductor Devices and

7

3 0

0

3

Industrial Drives

and Electric

Vehicles

4	21EE7713	Microcontroller BasedSystem Design	7	3	0	0	3	Embedded and IoT
5	21EE7714	Wind Energy ConversionSystems	7	3	0	0	3	Industrial Drives and Electric Vehicles
6	21EE7715	Power Electronics for Renewable Energy Systems	7	3	0	0	3	Industrial Drives and Electric Vehicles
7	21EE7716	Renewable energyand Power evacuation (Industrial Supported course)	7	3	0	0	3	Industrial Drives and Electric Vehicles

Professional Elective VI

1	21EE8701	Generation, Utilization and conservation of electrical Energy	7					Power systems
				3	0	0	3	
2	21EE8702	Power System Operationand Control	7	3	0	0	3	Power systems
3	21EE8703	High Voltage Engineering	7	3	0	0	3	High Voltage
4	21EE8704	Industrial Automationand Control	7	3	0	0	3	Industrial Drives and Electric Vehicles
5	21EE8705	Special Electrical Machines and Controllers	7	3	0	0	3	Industrial Drives and Electric Vehicles
6	21EE8706	Electrical and Hybrid Electric Vehicles	7	3	0	0	3	Industrial Drives and Electric Vehicles
7	21EE8707	Cyber physical systems for Industrial applications (Industrial Supported course)	7	3	0	0	3	Embedded and IoT

List of Open Electives Courses

S.No	Course Code	Course Name	Semester	L	Τ	Р	C	Offered By
Open]	Elective I							
1	21EE5801	Biomedical Instrumentation	5	3	0	0	3	EEE
2	21EE5802	Sensors and Transducers	5	3	0	0	3	EEE
3	21EE5803	Principles of Robotics	5	3	0	0	3	EEE

.15 Adv	lei Engineen	ing conege Dept of EEE K2021,	Curriculuin	anu	Syn	avi		
4	21EE5804	Micro Electro Mechanical Systems	5	3	0	0	3	EEE
5	21EE5805	Automotive Electrical and	5	3	0	0	3	EEE
6	21EE5806	PCB Design and its Fabrication	5	3	0	0	3	EEE
Open 2	Elective II				I	I		
1	21EE6801	Energy Conservation and Auditing	6	3	0	0	3	EEE
2	21EE6802	Fundamentals and Modelling of Solar PV Systems	6	3	0	0	3	EEE
3	21EE6803	Generation of Electrical energy	6	3	0	0	3	EEE
4	21EE6804	PLC and SCADA	6	3	0	0	3	EEE
5	21EE6805	Power Electronics for Renewable Energy Systems	6	3	0	0	3	EEE
6	21EE6806	Fibre Optic and Laser Instrumentation	6	3	0	0	3	EEE
Open 1	Elective III			•				
1	21EE7801	Electrical Equipment safety	7	3	0	0	3	EEE
2	21EE7802	Measurement and Instrumentation System	7	3	0	0	3	EEE
3	21EE7803	Control Engineering	7	3	0	0	3	EEE
4	21EE7804	Electrical Machines	7	3	0	0	3	EEE
5	21EE7806	Electric Vehicles and Control	7	3	0	0	3	EEE
Open	Elective IV	1			<u>I</u>	<u>I</u>	<u> </u>	<u> </u>
1	21EE8801	Wind Energy Conversion	8	3	0	0	3	EEE

3	21EE8803	Energy Storage Systems	8	3	0	0	3	EEE
4	21EE8804	Industrial Drives and control	8	3	0	0	3	EEE
5	21EE8806	Electrical Wiring Estimation and Costing	8	3	0	0	3	EEE

Note: The Prerequisite for the courses offered in Open Elective II shall be of any courses offered as Open elective I

List of Minor/Specialization Honour Degree Courses

S.No	Course	Course Name	Semester	L	Т	Р	С
	Code						
1	21EE4S01	Industry 4.0	4	3	0	0	3
2	21EE5S01	Sensors and Actuators	5	3	0	0	3
3	21EE6S01	Artificial Intelligence for Robotics	6	2	0	4	4
		(Practical cum Theory)					
4	21EE7S01	Digital Image Processing and Machine Vision (Practical cum Theory)	7	2	0	4	4
5	21EE8S01	Project	8	0	0	8	4

Robotics in Industrial Automation

List of Value Added Courses

S.No	Course	Course Name	Category	L	Т	Р	С
	Code						
1	21EE0V01	Embedded System Design using Arduino	VAC	0	0	4	2
2	21EE0V02	Raspberry Pi	VAC	0	0	4	2
3	21EE0V03	Solar Photo Voltaic System	VAC	0	0	4	2
4	21EE0V04	Lab VIEW	VAC	0	0	4	2
5	21EE0V05	Electronic testing	VAC	0	0	4	2
6	21EE0V06	Energy Auditing	VAC	0	0	4	2

Francis Xavier Engineering College Dept of EEE	R2021/Curriculum and Syllabi

7	21EE0V07	Electrical and Hybrid Vehicles	VAC	0	0	4	2

List of Value Added Skills

S.No	Course Code	Course Name	Semester	L	Т	Р	С
1	21SKL201	Applied Numerical Methods Using MATLAB	2	0	0	4	2
2	21SKL301	Multisim live	3	0	0	4	2
3	21SKL401	Sensor Interface with Controllers	4	0	0	4	2
4	21SKL501	Machine Learning for Electrical Engineers	5	0	0	4	2

Semester I

Theory Courses

2	21MA1201	MATRICES AND ADVANCED CALCULUS	L	Т	Р	C	
			3	1	0	4	
P	11						

Preamble:

The course consists of topics in Matrices, Differential calculus, Integral calculus, Differential Equations and Vector calculus with applications to various engineering problems. This course will cover the following main topics: Cayley Hamilton Theorem, Linear differential equations of second order with constant coefficients, Methods of Variation parameter, Taylor's expansion of two variables, Maxima and Minima for two variables, Area and Volume in multiple integrals, Green's theorem and Gauss divergence theorem.

Prerequisites for the course:

Students should have basic knowledge about matrices, differentiation and integration

Objectives

- 1. To apply advanced matrix knowledge to Engineering problems
- 2. To familiarize with the applications of differential equations.
- 3. To familiarize with the functions of several variables
- 4. To have Knowledge in Multiple integrals
- 5. To improve their ability in Vector calculus.

UNIT I	MATRICES

9+3

9+3

Matrices - Characteristic equation – Eigen values and Eigen vectors of a symmetric and non symmetric matrix – Properties of Eigen values and Eigen vector – Cayley – Hamilton theorem and its applications

SUGGESTED EVALUATION METHODS:

• Tutorial Problems on Eigen values , Eigen Vectors and Cayley Hamilton Theorem and Add MATLAB and for application Add Power method to find Eigen value & Eigen vector

Differential Equations – Complementary Function – Particular Integral - Linear equations of second order with constant coefficients of types exponential, trigonometry, polynomial and its combination forms - Methods of Variation of parameter - Engineering Applications.

SUGGESTED EVALUATION METHODS:

• Tutorial Problems on Linear differential equations of different types and Method of Variation parameters.

UNIT III	FUNCTIONS OF SEVERAL VARIABLES	

Function of two variables – Partial derivatives – Taylor's expansion for two variables – Maxima and Minima for two variables – Jacobians of two and three variables – Euler's theorem for homogeneous function.

CHARLES DILLING			syllabl	
SUGGESTED EVALUATION	METHODS:	x 1. x . 1x.	· .	
Tutorial Problems o IINIT IV	n Taylor's series	s, Jacobians, Maxima and Min	nima for	• two variables
 Area as a double integral Volume as a Triple Integral 	in Cartesian coo al	rdinates – Triple integration	n in Cart n in Cart	esian coordinate: esian coordinate:
SUGGESTED EVALUATION	METHODS:			
• Tutorial Problems o	n Area , Triple ir	ntegration and Volume		
UNIT V	VECTOR CALC	CULUS		9+3
Vector dot product and V irrotational fields –Unit no Green's theorem, Gauss div	ector cross pro rmal vector - Ar ergence theoren	duct - Gradient, divergeno ngle between two surfaces - n (without proof) – Enginee	ce, curl Direction ring App	 Solenoidal and onal derivatives - olications.
SUGGESTED EVALUATION	METHODS:			
• Tutorial Problems of theorem.	on Angle betwee	en two surfaces, Green's th	eorem,	Gauss divergenc
		Total Periods	45 + 1	5 = 60 Periods
Suggestive Assessment M	ethods			
Continuous Assessn	ient Test	Formative Assessment Test	End S	semester Exams
(20 Marks)		(20 Marks)		(60 Marks)
		1.Assignment	1. Des	criptive
1. Descriptive Questions		1.Assignment 2. Online Quizzes	1. Dese Questi	criptive ons
1. Descriptive Questions Outcomes		1.Assignment 2. Online Quizzes	1. Dese Questi	criptive ons
1. Descriptive Questions Outcomes Upon completion of the cou	urse, the student	1.Assignment 2. Online Quizzes s will be able to:	1. Dese Questi	criptive ons
1. Descriptive Questions Outcomes Upon completion of the cou	urse, the student	1.Assignment 2. Online Quizzes s will be able to:	1. Desc Questi	criptive ons
1. Descriptive Questions Outcomes Upon completion of the cou CO1: Find the eigen values	urse, the student	 1.Assignment 2. Online Quizzes s will be able to: 	1. Desc Questi	criptive ons
 1. Descriptive Questions Outcomes Upon completion of the cou CO1: Find the eigen values 	urse, the student , eigen vectors, i	1.Assignment 2. Online Quizzes s will be able to: nverse and the positive pow	1. Desc Questi vers of a	square matrix
 1. Descriptive Questions Outcomes Upon completion of the cou CO1: Find the eigen values CO2: Identify the suitable 	urse, the student , eigen vectors, i method to solve	 1.Assignment 2. Online Quizzes s will be able to: nverse and the positive pow second and higher order di 	1. Desc Questi vers of a	criptive ons square matrix (Apply al equations
1. Descriptive Questions Outcomes Upon completion of the cou CO1: Find the eigen values CO2: Identify the suitable	urse, the student , eigen vectors, i method to solve	 1.Assignment 2. Online Quizzes s will be able to: nverse and the positive pow second and higher order di 	1. Desc Questi vers of a	square matrix (Apply al equations (Apply
 1. Descriptive Questions Outcomes Upon completion of the cou CO1: Find the eigen values CO2: Identify the suitable CO3: Find the maxima and finding stationary points 	urse, the student , eigen vectors, i method to solve l minima for a gi	 1.Assignment 2. Online Quizzes s will be able to: nverse and the positive pow second and higher order di ven function with several value 	1. Desc Questi vers of a fferentia ariables,	square matrix (Apply al equations (Apply through by (Apply)
1. Descriptive Questions Outcomes Upon completion of the cou CO1: Find the eigen values CO2: Identify the suitable CO3: Find the maxima and finding stationary points CO4: Compute area and vo	urse, the student , eigen vectors, i method to solve I minima for a gi lume using doub	1.Assignment 2. Online Quizzes s will be able to: nverse and the positive pow second and higher order di ven function with several value ole and triple integration.	1. Desc Questi vers of a fferentia	square matrix (Apply al equations (Apply through by (Apply) (Apply)

Text Books

- 1. B. S. Grewal, "Higher Engineering Mathematics", 43rd edition, 2017.
- 2. James Stewart, Calculus Early Transcendals, 8th Edition, 2016.

Reference Books

- 1. A Textbook of Engineering Mathematics(Dr. A.P.J. Abdul Kalam Technical University, Lucknow) (For . Gautam Bhudh technical Universities ,Lucknow) January 2020
- 2. K. Ganesan, Sundarammal Kesavan, K. S. Ganapathy Subramanian & V. Srinivasan, "Calculus and Solid Geometry", Revised Edition, 2017

Web Resources

- 1. Eigen values and eigen vectors https://youtu.be/h5urBuE4Xh Cayley Hamilton theorem -https://youtu.be/WROFJ15hk00
- 2. ODE https://youtu.be/Im242eBqaxw
- 3. Functions of several variables -https://youtu.be/PA82F91e1vs
- 4. Integration https://youtu.be/bVui07yHjzE, Multiple integrals https://youtu.be/3BbrC9JcjOU
- 5. Volume as Triple integral https://youtu.be/w_KiHgultbM
- 6. Vector calculus https://youtu.be/v3ZC4Mo1fS0i Gauss divergence theorem https://youtu.be/U9LDcmKUGS0

CO Vs PO Mapping and CO Vs PSO Mapping:

C	PO	P01	P01	P01	PSO	PSO								
0	1	2	3	4	5	6	7	8	9	0	1	2	1	2
1	3	2												
2	3	2												
3	3	2												
4	3	2												
5	3	2												

BLOOMS CATEGORY	ł	ASSESSME	END SEMESTER EXAMINATION		
	CAT-1	CAT-2	FAT-1	FAT-2	
REMEMBER	10	10	5	5	10
UNDERSTAND	30	30	10	10	30
APPLY	60	60	10	10	60
ANALYSE	0	0	0	0	0
EVEALUATE	0	0	0	0	0
CREATE	0	0	0	0	0

BLOOMS LEVEL ASSESSMENT PATTERN

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1 (CO 1) : (Apply)

1) Compute the eigen values and eigen vectors for the Symmetric matrix $A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$ 2) Find A⁻¹ and A⁴ using Cayley Hamilton Theorem for the matrix $A = \begin{bmatrix} 1 & -1 & 4 \\ 3 & 2 & -1 \\ 2 & 1 & -1 \end{bmatrix}$.

COURSE OUTCOME 2 (CO 2) : (Apply)

- 1) Solve $(D^2 D + 1)y = \sin \sin 2x + e^{-4x}$
- 2) Solve $(D^2 + a^2) y = tan tan ax$ by using method of variation of parameters.

COURSE OUTCOME 3(CO 3) : (Apply)

- 1. Find the extreme values of the function $f(x, y) = x^3 + y^3 12x 3y + 20$.
- 2. Calculate the maxima and minima of the function $f(x, y) = x^3 y^2$ (1-x-y).

COURSE OUTCOME 4(CO 4) : (Apply)

1) Find the area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

2) Find $\int_0^a \int_0^b \int_0^c xyz \, dz \, dy \, dx$

COURSE OUTCOME 5(CO 5) : (Apply)

- 1. Find the directional derivative of $\phi = xy^2 + yz^3$ at the point (2,-1,1) in the direction of $\vec{\iota} + 2\vec{j} + 2\vec{k}$.
- 2. Using Green's theorem, find $\int_c (x^2 y^2)dx + 2xydy$ where C is the boundary of the rectangle in the XOY-plane bounded by the lines x = 0, x = a, y = 0, y = b.
- 3. Verify Gauss divergence theorem for $\vec{F} = 4xz\vec{\iota} y^2\vec{\jmath} + yz\vec{k}$ over the cube bounded by
- x = 0, x = 1, y = 0, y = 1, z = 0 and z = 1.

21DU1201	PHYSICS FOR ENGINEERS	L	T	Р	С		
21111301	(Common to AI&DS, CSE, CSBS, IT, ECE & EEE)	3	0	0	3		
Preamble		1	1	1	I		
The aim of this	course is to impart fundamental knowledge in materials wh	ich a	ire es	sentia	al in		
understanding	and explaining engineering devices.						
Prerequisites	for the course						
Basic theoretic	al concepts of Physics in XI and XII.						
Objectives							
1. To impart ki	nowledge about electrical properties of materials.						
2. To instill know	owledge on physics of Semiconductor and device applications						
3. To enable th	e students to gain knowledge on magnetic properties.						
4. To establish	a sound grasp of knowledge on different optical properties of	mat	erial	opti, s	cal		
displays and	applications.						
5. To inculcate	e an idea of significance of nano structures, quantum confinem	ient a	and e	nsuri	ng		
nano device	applications .						
UNIT I	IT IELECTRICAL PROPERTIES OF MATERIALS9						
Classical free e	lectron theory – Expression for electrical conductivity – The	rmal	cond	luctiv	ity–		
Wiedemann -F Density of ener	ranz law –Merits and Demerits – Quantum theory - Fermi- gy states.	- Dir	ac st	atisti	cs –		

UNIT II SEMICONDUCTORS PHYSICS

9

Intrinsic Semiconductors – Energy band diagram – direct and indirect semiconductors – Carrier concentration in intrinsic semiconductors –Extrinsic semiconductors – N-type & P-type semiconductors (Qualitative)– variation of Fermi level with temperature and impurity concentration – Hall effect and devices.-Ohmic contacts-Schottky diode.

UNIT III	MAGNETIC PROPERTIES OF MATERIALS AND ITS
	DEVICE

9

Magnetism in materials – magnetic field and induction – magnetization – magnetic permeability and susceptibility– Classification of Magnetic materials– Domain Theory - M versus H behavior - Hard and Soft magnetic materials–examples and uses–Magnetic Principle in computer data storage - Magnetic Resonance Imaging. - quantum interference devices-GMR devices

UNIT IV	OPTICAL PROPERTIES OF MATERIALS AND ITS	9
	DEVICES	

Classification of Optical Materials–carrier generation and recombination processes– Absorption, Emission and Scattering of light in metals, Insulators and Semiconductors –Light detectors- Solar cell–LED–Organic LED–Laser Diodes– Optical Data Storage Techniques.

UNIT V	NANOMATERIALS AND ITS DEVICES	9

Quantum Confinement Quantum structures – Density of states in quantum well, quantum wire and quantum dot structure –Band gap of nanomaterials –Tunneling: Single electron phenomena and single electron transistor- Quantum dot Laser- Carbon Nanotubes - Properties and Applications

Total Periods	45

Continuous Assessment Test (20 Marks)	Formative Assessment Test (20 Marks)	End Semester Exams (60 Marks)
Descriptive	 Assignment Online Quizzes Problem-Solving Activities 	Descriptive

Outcomes

Suggestive Assessment Methods

Upon completion of the course, the students will be able to :

CO 1	Expound the basics of classical and quantum electron theories. Understand
CO 2	Acquire knowledge on basic semiconductor physics and its application in various devices. Understand
CO 3	Identify the properties of magnetic materials and their applications in data storage. Understand

CO 4	Understand the functions of optical materials for Optoelectronics
	Understand
CO 5	Interpret quantum theory concepts & study the density of states for various
	Quantum Confinements. Apply
Text B	ooks
1.	Dr. P. Mani, "Physics for Information Science", SreeDhanam Publisher, 2017
2.	Senthilkumar G, Murugavel S, "Physics for Information Science", VRB Publication,
	2017-2018
Refere	nce Books
1.	Srinivasan.P, "Physics for Electronics Engineering". Vishnu Prints Media, 1st edition Jan
	2018
2.	Kasap, S.O., Principle of Electronic Materials and devices, Tata Mc-Graw Hill Education,
	20 th reprint 2019.
3.	Halliday, D., Resnick, R. & Walker, J. —Principles of Physics . Wiley, 2015.
4.	S. Salivahanan,A. Rajalakshmi"Physics for Electronics Engineering and Information
	Science"- Tata Mc-Graw Hill Education,29 January 2018.
Web R	esources
1. UN	IT 1 -https://www.britannica.com/science/Fermi-Dirac-statistics
2. UNIT	2&4 -https://onlinecourses.nptel.ac.in/noc23 mm02/preview
3. UNIT	2- <u>http://vlab.amrita.edu/?sub=1&brch=282∼=879&cnt=1</u>
	'3- https://www.nchi.nlm.nih.gov/pmc/articles/PMC4934330/
4. UNI'I	a <u>https://www.mes.html.html.gov/phile/articles/111015616667</u>

CO	PO	PSO	PSO											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	2	2					1					1		
2	2	2					1					1		
3	2	2					1					1		
4	2	2					1					1		
5	2	2	1				1					1		

CO Vs PO Mapping and CO Vs PSO Mapping

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	10	10	10	10	10
UNDERSTAND	50	50	20	20	40
APPLY	40	40	20	20	50
ANALYZE	0	0	0	0	0
EVALUATE	0	0	0	0	0
CREATE	0	0	0	0	0
	100	100	50	50	100

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Expound the basics of classical and quantum electron theories.(Understand)

1. The thermal conductivity of copper at 300 K is 470.4 $Wm^{-1}K^{-1}$

¹.Calculate theelectrical conductivity of copper at 300 K. (Lorentz number = 2.45x10⁻⁸)

- 2. On the basis of classical free electron theory derive an expression for the electrical conductivity.
- 3. Explain fermi dirac distribution for electrons in a metal and discuss the effect oftemperature on fermi function.

COURSE OUTCOME 2: Acquire knowledge on basic semiconductor physics and itsapplication in various devices. (Understand)

- 1. Derive an expression for the number of electrons in the conduction band of anintrinsic semiconductor.
- 2. Show that for a n-type semiconductor the hall Coefficient is given by $RR=+\frac{1}{ne}$. Describe an experimental setup to measure the Hall voltage.

COURSE OUTCOME 3: Identify the properties of magnetic materials and their

applications indata storage. (Understand)

- 1. Distinguish between dia, para, ferro, antiferro and ferrimagnetic materials
- 2. Write short notes on magnetic recording materials and discuss any one in detail.

COURSE OUTCOME 4: Understand the functions of optical materials for Optoelectronics.(Understand)

- 1. An LED emits green light of wavelength (λ) = 5511.11 A⁰. Find out the value of E_g.
- 2. Explain the theory and working of LEDs. What are the different types

of LED? Explainthe advantages.

3. Explain the construction and working of solar cells.

COURSE OUTCOME 5: Interpret quantum theory concepts & study the

density of states forvarious Quantum confinements. (Apply)

- 1. Using the concept of DOS (Density of State) expound the different quantumconfinements.
- 2. Using the single electron transistor interrupts the phenomena of a single electron.
- 3. Show the variation using the density of states in nanostructures for different dimensions.

21CY1401	ENGINEERING CHEMISTRY	L	Т	Р	C
		3	0	0	3

Preamble

To enable the students to acquire knowledge in the concepts of chemistry for engineering applications and to familiarize the students with different application oriented topics like electrochemistry, corrosion prevention methods, significance of alloys, benefits of renewable energy sources, engineering materials, desalination etc., which enable them to develop abilities and skills that are relevant to the study and practice of engineering chemistry.

Prerequisites for the course

Basic theoretical concepts of Chemistry in higher secondary level.

Objectives

- 1. To inculcate sound understanding of water quality parameters and water treatment techniques.
- 2. To make the students familiar with the principles of electrochemistry and corrosion.
- 3. To develop an understanding of the basic concepts of phase rule and its applications to single and two component systems and appreciate the purpose and significance of alloys.
- 4. To have a thorough understanding on the principles and generation of energy in

batteries, nuclear reactors, solar cells, windmills, fuel cells and supercapacitors .

5. To make the students learn the basics of polymer chemistry, composites and nanomaterials.

UNIT I	WATER AND ITS TREATMENT	9

Hardness of water – Types – Expression of hardness – Units – Estimation of hardness of water by EDTA –Municipal water treatment- Boiler troubles (scale and sludge) – Treatment of boiler feed water – Internal treatment (phosphate and calgon conditioning)-External treatment – Ion exchange process- Desalination of brackish water - Reverse Osmosis.

UNIT II	ELECTROCHEMISTRY AND CORROSION	9
---------	--------------------------------	---

Electrodes- types, Cells- types, Construction (Daniel cell) - Electrode potential- Photo electrochemical cell-working and applications – Nernst equation and its applications- Emf series & its applications.

Corrosion- Causes- Types- Chemical, Electrochemical corrosion (galvanic, differential aeration), Corrosion control – Material selection and design aspects – Electrochemical protection – Sacrificial Anode cathodic Protection method.

UNIT III	PHASE RULE AND ALLOYS	9

Phase rule: Introduction, definition of terms with examples, One component system -Water system - Reduced Phase rule - Two component systems - Lead-Silver system – Pattinson's process.

Alloys: Introduction- Properties of alloys- Significance of alloying, Nichrome and Stainless steel (18/8) – Heat treatment of steel - Annealing - Tempering - Normalising - Hardening and Quenching - Surface hardening methods - Carburising - Nitriding.

UNIT IV	ENERGY SOURCES AND STORAGE DEVICES	9

Nuclear fission - Nuclear fusion - Differences between nuclear fission and fusion - Nuclear chain reactions - Nuclear energy - Light Water Nuclear Power Plant - Solar energy conversion - Solar cells - Wind energy.

Batteries & Fuel cells: Types of batteries – Primary battery (dry cell) Secondary battery (lead acid battery) Lithium ion battery – Electric Vehicles – working principles, Fuel cells – H₂-O₂ fuel cell and microbial fuel cell; Supercapacitors: Storage principle, types and examples.

UNIT V	ENGINEERING MATERIALS	9

Polymers: Classification of Polymers – Preparation, properties and uses of Teflon and Nylon 6,6-Benefits and Applications. Composites: Introduction: Definition & Need for composites; Properties and applications of Polymer matrix composites and hybrid composites.

Nanomaterials: Types of nanomaterials;properties and uses of nanoparticle, nanocluster, nano rod, nanowire and nanotube. Preparation of nanomaterials: sol-gel, chemical vapour deposition and electrochemical deposition methods. Applications of nanomaterials in medicine, agriculture, energy and electronics.

		Total I	Periods	45
Sug	gestive Assessment Met	hods		
Со	ntinuous Assessment Test	Formative Assessment Test (20 Marks)	End Seme (60 N	ester Exams Marks)
	(20 Marks)			
	WRITTEN TEST	ASSIGNMENT & ONLINE QUIZZES	WRI	TTEN TEST
Out	comes		1	
Upo	n completion of the cou	rse, the students will be able to:		
1	Infer the quality of wate	r parameters from quality parameter data	and propose	esuitable
	methodologies to treat w	/ater.	(Remem	ber)
2	Identify and apply the ba	asic principles of electrochemistry and co	orrosion.(Un	iderstand)
3	Identify suitable alloys f	for material analysis.	(Remen	nber)
4	Identify different forms	of energy resources and apply them in su	uitable energ	ysectors.
	(Apply)			
Ę	Recognise and apply bas	sic knowledge on polymers and nanoma	terial's to fut	humistic
3	e 11 e	sie knowledge on porymers and nanoma		luristic
J	material fabrication need	ds.	(Understa	nd)
5 Text	material fabrication need t Books	ds.	(Understa	nd)
5 Text	 material fabrication need t Books 1. S. S. Dara and S. S. Company LTD, New 2 2. P. C. Jain and Monika LTD, New Delhi, 2018 	ds. Umare, "A Textbook of Engineering C Delhi, 2018 Jain, "Engineering Chemistry" Dhanpa	(Understan hemistry", S t Rai Publisł	nd) 5. Chand & hingCompany (P
Text Refe	 material fabrication need t Books 1. S. S. Dara and S. S. Company LTD, New 2 2. P. C. Jain and Monika LTD, New Delhi, 2018 prence Books 	ds. Umare, "A Textbook of Engineering C Delhi, 2018 Jain, "Engineering Chemistry" Dhanpa	(Understan hemistry", S t Rai Publisł	nd) 5. Chand & hingCompany (P
5 Text Refe	 material fabrication need t Books 1. S. S. Dara and S. S. Company LTD, New 2 2. P. C. Jain and Monika LTD, New Delhi, 2018 erence Books 1. Friedrich Emich, "Eng 2014. 2. Prasanta Rath, "Engine 	Umare, "A Textbook of Engineering C Delhi, 2018 Jain, "Engineering Chemistry" Dhanpa ineering Chemistry", Scientific Intern eering Chemistry", Cengage Learning I	(Understan hemistry", S t Rai Publish ational PVT ndia PVT, LT	nd) 5. Chand & hingCompany (P , LTD, New Del TD, Delhi, 2015.
Text Refe	 material fabrication need t Books 1. S. S. Dara and S. S. Company LTD, New 2 2. P. C. Jain and Monika LTD, New Delhi, 2018 prence Books 1. Friedrich Emich, "Eng 2014. 2. Prasanta Rath, "Engine o Resources 	ds. Umare, "A Textbook of Engineering C Delhi, 2018 Jain, "Engineering Chemistry" Dhanpa dineering Chemistry", Scientific Intern eering Chemistry", Cengage Learning I	(Understan hemistry", S t Rai Publish ational PVT ndia PVT, L'	nd) 5. Chand & hingCompany (P , LTD, New Del TD, Delhi, 2015.
Text Refe	material fabrication need t Books 1. S. S. Dara and S. S. L Company LTD, New 2 2. P. C. Jain and Monika LTD, New Delhi, 2018 erence Books 1. Friedrich Emich, "Eng 2014. 2. Prasanta Rath, "Engine D Resources 1. NPTEL Course <u>https://v</u>	Umare, "A Textbook of Engineering C Delhi, 2018 Jain, "Engineering Chemistry" Dhanpa ineering Chemistry", Scientific Intern eering Chemistry", Cengage Learning I	(Understan (Understan hemistry", S t Rai Publish ational PVT ndia PVT, L' '121106014	hingCompany (P LTD, New Dell TD, Delhi, 2015.
Tex Tex Refe 1 2 Web 1 2	material fabrication need t Books 1. S. S. Dara and S. S. L Company LTD, New 2 2. P. C. Jain and Monika LTD, New Delhi, 2018 erence Books 1. Friedrich Emich, "Eng 2014. 2. Prasanta Rath, "Engine D Resources 1. NPTEL Course <u>https://v</u> 2. Mod-06 Lec-36 Fundam	Umare, "A Textbook of Engineering C Delhi, 2018 Jain, "Engineering Chemistry" Dhanpa ineering Chemistry", Scientific Intern eering Chemistry", Cengage Learning I www.digimat.in/nptel/courses/video/ ientals of Electrochemical Techniques	(Understan (Understan hemistry", S t Rai Publish ational PVT ndia PVT, L (121106014	hingCompany (P , LTD, New Dell TD, Delhi, 2015.

CO Vs PO Mapping and CO Vs PSO Mapping

СО	P01	P02	P03	P04	P05	P06	P07	P08	P09	P01 0	P01 1	P01 2	PSO 1	PSO 2
1	2	2				2						2		
2	2	2				2						2		
3	2	2										2		
4	2	2										2		
5	2	2										2		

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	30	30	10	10	30
UNDERSTAND	30	30	10	10	30
APPLY	20	20	5	5	20
ANALYZE	20	20	0	0	20
EVALUATE	0	0	0	0	0
CREATE	0	0	0	0	0
	100	100	25	25	100

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Students will be able to demonstrate the knowledge of water and their quality used in different industries. (Remember)

- 1. How is the exhausted resin regenerated in an ion exchanger?
- 2. Suggest your valuable ideas to protect the boiler from corrosion.

COURSE OUTCOME 2: Students will be able to identify and apply the basic principles of electrochemistry and corrosion. (Understand)

1. Compare the mechanisms involved in electrochemical cells and electrolytic cells.

2. How corrosion is prevented by sacrificial anode cathodic protection methods. COURSE OUTCOME 3: Students will be able to identify suitable alloys for material analysis. (Remember)

1. Illustrate phase, component and degree of freedom with example

2. Will stainless steel rust? Justify.

COURSE OUTCOME 4: Students will be able to identify different forms of energy resources and apply them in suitable energy sectors. (Apply)

1. Is it safe to utilize wind energy for domestic purposes? How are commercial wind farms developed and how can I get a wind farm on my property?

2. Critically analyze nuclear power technology in terms of environmental and health safety. Draw a general layout of the Light water nuclear reactor and explain its components.

COURSE OUTCOME 5: Students will be able to recognise and apply basic knowledge on polymers and nanomaterial's to futuristic material fabrication needs. (Understand

1. What do you feel the repercussions are for extended life through utilization of nanotechnology

2. Give an account of the preparation properties and uses of Teflon and nylon 6,6.

210\$1501	1501 PROBLEM SOLVING AND LOGICAL THINKING USING C		Т	Р	С				
21051501									
Preamble									
This course aims to provide the students with a foundation in computer programming. The focus is to develop the basic problem solving skills in students, and to improve their proficiency in applying the basic knowledge of programming to solve problems. This will enable the students to develop modular applications related to the field of engineering.									
Prerequisites	s for the course								
• NIL									
Objectives									
1. To lear	n the basic constructs of C Programming.								
2. To lear	n arrays and strings concepts of C Programming.								
3. To lear	n functions in C and use pointers for storing data in the main me	emory	effici	ently.					
4. To lear	n structures and union concepts of C Programming								
5. To lear	n file processing functions and further develop applications in C								
UNIT I	INTRODUCTION TO PROBLEM SOLVING AND BASICS PROGRAMMING	OF C		1	10				
Introduction to Computer Software-Generations of programming languages- problem solving and logical thinking- Algorithm- Flowcharts - practical examples- Characteristics of C-uses of C-Structure of a 'C' program – Files used in C programs- Compiling and executing C programs - C Tokens- Character Sets in C- Keywords- Identifiers- Using comments in C									
JUGGEJIED A									

- Discussion on Logical and Algorithmic thinking
- Demonstration of concepts using Algorithms and Flowcharts

SUGGESTED EVALUATION METHODS

• Write basic programs in C based on algorithm and flowchart

• Quiz on problem solving and basics of C programming

UNIT II DECISION CONTROL STATEMENTS AND ARRAYS

10

10

Data Types- Variables- Constants- Managing Input and Output operations in C- Operators and Expressions- Type Conversion- Type casting- Decision Making: Branching and Iterative statements-Nested Loops-break and continue statements- Arrays: Declaration, Initialization- Operations- One dimensional Arrays- Two Dimensional Arrays- Multidimensional Arrays.

SUGGESTED ACTIVITIES

- Demonstrate the use of data types and operators
- Comparison study on the types of decision making and looping statements
- Comparison study with examples on the types of arrays

SUGGESTED EVALUATION METHODS

- Demonstration of programs using Nested if and Nested loops
- Demonstration of programs using arrays and its operations
- Quiz on data types, operators, statements, loops and arrays

UNIT III FUNCTIONS, STRINGS AND POINTERS

Functions: Declaration and prototyping- Definition- Types- Call and Return statement- Parameter passing methods- Recursion and types. Strings: String operations- Arrays of Strings –Pointers: Declaration- Definition- Pointer Arithmetic- Null pointers- Pointers and Arrays- Pointers and Functions- Pointers and Strings- Pointers to Pointers, Dynamic Memory Allocation

SUGGESTED ACTIVITIES

- Discussion on array of pointers, function pointers and array of function pointers
- Comparison study on the types of dynamic memory allocation
- Solve problems on pointers to arrays, pointers to functions and pointers to pointers

SUGGESTED EVALUATION METHODS

- Demonstration of programs usingpre defined, user defined and recursive functions
- Demonstration of programs using String manipulation functions
- Quiz on basics of functions, strings and pointers

UNIT IV STRUCTURE, UNION AND ENUMERATED DAT	A TYPES

8

Structure: Declaration and Initialization- Nested Structures- Array of Structures- Structures and functions- pointers to structures- Self-referential structures. Unions: Declaration and Initialization-Arrays of union variables- unions inside structures- Enumerated data types

SUGGESTED ACTIVITIES

- Discussion and comparison of Structures and Unions
- Solve problems by using nested structures and union inside structures

Francis Xavier Engineering College | Dept of EEE | R2021/Curriculum and Syllabi SUGGESTED EVALUATION METHODS Demonstration of programs using pointers to structures and self referential structures Demonstration of programs using enumerated data types and its operations • FILE PROCESSING AND PRE PROCESSOR DIRECTIVES UNIT V 7 Introduction to Files – Using Files in C- Read data from files- Write data to files- Error Handling during file operations- Command line arguments- Random file functions- Pre processor Directives: Introduction-Types- Unconditional directives- Conditional Directives- examples SUGGESTED ACTIVITIES • Assignment on modes of operations using files in C Discussion on types of pre-processor directives SUGGESTED EVALUATION METHODS Demonstration of programs using file operations • Demonstration of programs using pre-processor directives • **Total Periods** 45 Suggestive Assessment Methods **Continuous Assessment Test Formative Assessment Test End Semester Exams** (30 Marks) (10 Marks) (60 Marks) 1. DESCRIPTIVE QUESTIONS 1.DESCRIPTIVE QUESTIONS **1.ASSIGNMENT** 2. PROGRAMING AND 2. ONLINE QUIZZES 2. PROGRAMING AND PROBLEM SOLVING QUESTIONS PROBLEM SOLVING **3.PROBLEM-SOLVING** QUESTIONS **ACTIVITIES Course Outcomes** Upon completion of the course, the students will be able to: **CO1** Apply algorithmic thinking to understand, define and solve problems (Apply) **CO2**Write simple programs in C using basic constructs, loops and arrays (Apply) **CO3**Use strings, functions and pointers in C to solve complex problems (Apply) **CO4**Write programs in C using structures and union to store different data (Apply) **CO5** Apply file operations and advanced features to develop real time solutions (Apply) **Text Books** 1. Reema Thareja, "Programming in C",, Second edition, 2016 2. Beecher K. Computational Thinking: A beginner's guide to Problem-solving and Programming. BCS Learning & Development Limited, 2017. **Reference Books** 1. Byron Gottfried "Programming With C" Fourth Edition, McGrawHill, 2018. 2. Yashvant P. Kanetkar. "Let Us C", BPB Publications, 2016.

Web Resources

- 1. https://www.programiz.com/c-programming
- 2. https://nptel.ac.in/courses/106105171/
- 3. <u>https://www.javatpoint.com/c-programming-language-tutorial</u>
- 4. <u>https://www.tutorialspoint.com/cprogramming/index.htm</u>
- 5. https://www.w3schools.com/c/

CO Vs PO Mapping and CO Vs PSO Mapping

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2
1	3	3	3			2							1	
2	3	3	3			2							1	
3	3	3	3			2							2	
4	3	3	3			2							2	
5	3	3	3			2							3	

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	20	10	5	5	10
UNDERSTAND	40	20	10	10	20
APPLY	40	50	5	5	50
ANALYZE		20	5	5	20
EVALUATE					
CREATE					

COURSE LEVEL ASSESSMENT QUESTIONS Course Outcome 1 (CO1): (Apply)

Write algorithm and draw flowchart

- Write algorithm and draw flowchart
 - 1. To count the even numbers between 1 and 200 and print the sum $% \left({{{\rm{D}}_{{\rm{D}}}}_{{\rm{D}}}} \right)$
 - 2. To calculate the simple interest and compound interest
 - 3. To calculate sum of the digits of a number and check if "sum" is an Armstrong number

Course Outcome 2 (CO2): (Apply)

- 1. Write a program to print the grade of a student based on his marks using switch case.
- 2. Write a program to print the following pattern
- 1 22
- 333
- 4444
- 55555
- 3. Write a program to input the elements of a two dimensional array. Then from this array make two arrays: one that stores all the odd elements of the array and other that stores all the even elements of the array

Course Outcome 3 (CO3): (Apply)

- 1. Write a program using function to calculate 'x' to the power of 'y' where 'y' can be positive or negative.
- 2. Write a program to read a paragraph. Then count the number of words, number of lines, number of vowels and number of sentences in it
- 3. Find the output of the following:

```
main(){
char *str="ABCDEFGH";
(*str++); // what will happen if str++; is given here??
printf("%s",str); }
```

Course Outcome 4 (CO4): (Apply)

1. What will be the output of the C program?

```
#include<stdio.h>
int main() {
  enum numbers
  {
    n1 = 1.5, n2 = 0, n3, n4, n5, n6
  };
  printf("%d %d\n", n1, n2);
  }
```

2. How many bytes in memory taken by the following C structure?

```
#include <stdio.h>
struct test {
    int k;
    char c;
};
```

Course Outcome 5 (CO5): (Apply)

1. Write a program to create a file and store 20 names in it. Write a program to read the names in the file in the reverse order without reopening the file

2. Write a program that reads the file name and text of 20 words as command line arguments.

Write the text into a file whose name is given as the file name.

211151103	TAMIL HEDITACE	L	Т	Р	С
211131103					
Preamble: This co	ourse is offered to equip students to create awareness	of the co	ontribut	tion of T	`amil
people to Indian	culture by highlighting the characteristics of Tamil	language	e and 1	iterature	and
exhibiting Tamil c	ulture through traditional arts such as performing arts a	nd finea	rts.		
Prerequisites for	the course:				
The prerequisite k	nowledge required to study this course is basic know	ledge in	n Englis	sh and T	amil
Heritage.					
UNIT I	LANGUAGE AND LITERATURE				6
Language Famili	ies in India-Dravidian Languages –Tamil as Clas	ssical La	anguag	e –Clas	sical
Literature in Tai	mil – Secular Nature of Sangam Literature –Distr	ributive	Justice	in Sar	igam
Literature Manag	gement Principles in Thirukural - Tamil Land Bakt	thi Litera	ature A	Azhwars	and
Nayanmars-Form	s of minor Poetry development of Modern literatur	e in Tai	mil-Co	ntributio	n of
Bharathiyar and E	Bharathidhasan.				
UNIT II	HERITAGE-ROCK ART PAINTINGS TO MO SCULPTURE	ODERN	ART-	6)
UNIT II Hero stone to mo	HERITAGE-ROCK ART PAINTINGS TO MO SCULPTURE odern sculpture - Bronze icons - Tribes and their hand	DDERN dicrafts	ART–	6 of temple	e car
UNIT II Hero stone to mo making- Massive	HERITAGE-ROCK ART PAINTINGS TO MO SCULPTURE odern sculpture - Bronze icons - Tribes and their hand e Terracotta sculptures, Village Deities, Thiruvalluv	DDERN dicrafts ar Statu	ART– - Art c e at K	6 of temple Canyakur	e car nari,
UNIT II Hero stone to mo making- Massive UNIT III	HERITAGE-ROCK ART PAINTINGS TO MO SCULPTURE odern sculpture - Bronze icons - Tribes and their hand e Terracotta sculptures, Village Deities, Thiruvalluv FOLK AND MARTIAL ARTS	DDERN dicrafts ar Statu	ART– - Art c e at K	6 of temple Canyakur 6	e car nari,
UNIT II Hero stone to mo making- Massive UNIT III	HERITAGE-ROCK ART PAINTINGS TO MO SCULPTURE odern sculpture - Bronze icons - Tribes and their hand e Terracotta sculptures, Village Deities, Thiruvalluv FOLK AND MARTIAL ARTS	DDERN dicrafts ar Statu	ART– - Art c e at K	6 of temple Canyakur 6 ilambatt	e car nari,
UNIT II Hero stone to mo making- Massive UNIT III Therukoothu, Kar Valari, Tiger dano	HERITAGE-ROCK ART PAINTINGS TO MO SCULPTURE odern sculpture - Bronze icons - Tribes and their hand e Terracotta sculptures, Village Deities, Thiruvalluv FOLK AND MARTIAL ARTS rakattam, Villu Pattu, Kaniyan Koothu, Oyillattam, Lea ce-Sports and Games of Tamils.	DDERN dicrafts ar Statu ther pupj	ART– - Art c e at K petry,S	6 of temple Canyakun 6 ilambatt	e car nari, am,
UNIT II Hero stone to mo making- Massive UNIT III Therukoothu, Kar Valari, Tiger danc UNIT IV	HERITAGE-ROCK ART PAINTINGS TO MO SCULPTURE odern sculpture - Bronze icons - Tribes and their hand e Terracotta sculptures, Village Deities, Thiruvalluv FOLK AND MARTIAL ARTS rakattam, Villu Pattu, Kaniyan Koothu, Oyillattam, Lea ce-Sports and Games of Tamils. THINAI CONCEPT OF TAMILS	DDERN dicrafts ar Statu ther pupj	ART– - Art c e at K petry,S	6 of temple Canyakur 6 ilambatt	e car nari, am,
UNIT II Hero stone to mo making- Massive UNIT III Therukoothu, Kar Valari, Tiger dand UNIT IV Flora and Fauna of Aram Concept of Sangam Age-Exp	HERITAGE-ROCK ART PAINTINGS TO MO SCULPTURE odern sculpture - Bronze icons - Tribes and their hand e Terracotta sculptures, Village Deities, Thiruvalluv FOLK AND MARTIAL ARTS rakattam, Villu Pattu, Kaniyan Koothu, Oyillattam, Lea ce-Sports and Games of Tamils. THINAI CONCEPT OF TAMILS of Tamils & Agam and Puram Concept from Tholkappi Tamils - Education and Literacy during Sangam Age - ort and Import during Sangam Age-Overseas Conquest	DDERN dicrafts ar Statu ther pupp yam and Ancient	ART– - Art c e at K petry,S Sanga Cities as.	6 of temple Canyakur 6 ilambatt 6 m Litera and Port	e car mari, am, ture s of
UNIT II Hero stone to mo making- Massive UNIT III Therukoothu, Kar Valari, Tiger dance UNIT IV Flora and Fauna of Aram Concept of Sangam Age-Exp	HERITAGE-ROCK ART PAINTINGS TO MO SCULPTURE odern sculpture - Bronze icons - Tribes and their hand e Terracotta sculptures, Village Deities, Thiruvalluv FOLK AND MARTIAL ARTS rakattam, Villu Pattu, Kaniyan Koothu, Oyillattam, Lea ce-Sports and Games of Tamils. THINAI CONCEPT OF TAMILS of Tamils & Agam and Puram Concept from Tholkappi Tamils - Education and Literacy during Sangam Age - ort and Import during Sangam Age-Overseas Conquest	DDERN dicrafts ar Statu ther pupp yam and Ancient of Chola ATION	ART– - Art c e at K petry,S Sanga Cities as.	6 Sanyakun 6 ilambatt 6 m Litera and Port	am,
UNIT II Hero stone to mo making- Massive UNIT III Therukoothu, Kar Valari, Tiger dand UNIT IV Flora and Fauna of Aram Concept of Sangam Age-Exp UNIT V	HERITAGE-ROCK ART PAINTINGS TO MO SCULPTURE odern sculpture - Bronze icons - Tribes and their hand e Terracotta sculptures, Village Deities, Thiruvalluv FOLK AND MARTIAL ARTS rakattam, Villu Pattu, Kaniyan Koothu, Oyillattam, Lea ce-Sports and Games of Tamils. THINAI CONCEPT OF TAMILS of Tamils & Agam and Puram Concept from Tholkappi Tamils - Education and Literacy during Sangam Age - ort and Import during Sangam Age-Overseas Conquest CONTRIBUTION OF TAMILS TO INDIAN N. MOVEMENT AND INDIAN CULTURE	DDERN dicrafts ar Statu ther pupp yam and Ancient to of Chola ATIONA	ART– - Art c e at K petry,S Sangar Cities as. AL	6 of temple Canyakur 6 ilambatt 6 m Litera and Port 6	e car mari, am, ture s of
UNIT II Hero stone to mo making- Massive UNIT III Therukoothu, Kar Valari, Tiger dand UNIT IV Flora and Fauna of Aram Concept of Sangam Age-Exp UNIT V Contribution of T parts of India	HERITAGE-ROCK ART PAINTINGS TO MO SCULPTURE odern sculpture - Bronze icons - Tribes and their hand e Terracotta sculptures, Village Deities, Thiruvalluv FOLK AND MARTIAL ARTS rakattam, Villu Pattu, Kaniyan Koothu, Oyillattam, Lea ce-Sports and Games of Tamils. THINAI CONCEPT OF TAMILS of Tamils & Agam and Puram Concept from Tholkappi Tamils - Education and Literacy during Sangam Age - ort and Import during Sangam Age-Overseas Conquest CONTRIBUTION OF TAMILS TO INDIAN N MOVEMENT AND INDIAN CULTURE amils to Indian Freedom Struggle-The Cultural Influer Self-Respect Movement – Role of Siddba Medicine	DDERN dicrafts ar Statu ther pupp yam and Ancient c of Chola ATIONA	ART– - Art o e at K petry,S Sangar Cities as. AL amils o	6 of temple Canyakur 6 ilambatt 6 m Litera and Port 6 ver the o	am, ture s of
UNIT II Hero stone to mo making- Massive UNIT III Therukoothu, Kar Valari, Tiger dand UNIT IV Flora and Fauna o Aram Concept of Sangam Age-Exp UNIT V Contribution of T parts of India – Medicine–Inscrip	HERITAGE-ROCK ART PAINTINGS TO MO SCULPTURE odern sculpture - Bronze icons - Tribes and their hand e Terracotta sculptures, Village Deities, Thiruvalluv FOLK AND MARTIAL ARTS rakattam, Villu Pattu, Kaniyan Koothu, Oyillattam, Lea ce-Sports and Games of Tamils. THINAI CONCEPT OF TAMILS of Tamils & Agam and Puram Concept from Tholkappin Tamils - Education and Literacy during Sangam Age - ort and Import during Sangam Age-Overseas Conquest CONTRIBUTION OF TAMILS TO INDIAN N. MOVEMENT AND INDIAN CULTURE amils to Indian Freedom Struggle-The Cultural Influer Self-Respect Movement – Role of Siddha Medicine tions & Manuscripts–Print History of Tamil Books.	DDERN dicrafts ar Statu ther pupp yam and Ancient c of Chola ATIONA nce of Ta e in Indi	ART– - Art o e at K petry,S Sangar Cities as. AL amils o genous	6 of temple Canyakur 6 ilambatt 6 m Litera and Port 6 ver the of System	am, ture s of
UNIT II Hero stone to mo making- Massive UNIT III Therukoothu, Kar Valari, Tiger dand UNIT IV Flora and Fauna o Aram Concept of Sangam Age-Exp UNIT V Contribution of T parts of India – Medicine–Inscrip	HERITAGE-ROCK ART PAINTINGS TO MO SCULPTURE odern sculpture - Bronze icons - Tribes and their hand e Terracotta sculptures, Village Deities, Thiruvalluv FOLK AND MARTIAL ARTS akattam, Villu Pattu, Kaniyan Koothu, Oyillattam, Lea ce-Sports and Games of Tamils. THINAI CONCEPT OF TAMILS of Tamils & Agam and Puram Concept from Tholkappi Tamils - Education and Literacy during Sangam Age - ort and Import during Sangam Age-Overseas Conquest CONTRIBUTION OF TAMILS TO INDIAN N. MOVEMENT AND INDIAN CULTURE amils to Indian Freedom Struggle-The Cultural Influer Self-Respect Movement – Role of Siddha Medicine tions & Manuscripts–Print History of Tamil Books.	DDERN dicrafts ar Statu ther pupp yam and Ancient c of Chola ATIONA nce of Ta e in Indi	ART– - Art o e at K petry,S Sangar Cities as. AL amils o genous	6 of temple Canyakun 6 ilambatt 6 m Litera and Port 6 ver the of System	e car mari, am, am, ture - s of

Course Outcomes:

CO1	To widen the knowledge on the characteristics of Tamil language and literature.
CO2	To explore the traditional Tamil fine arts and its techniques of Tamil Heritage.
CO3	To evaluate the various types of performing arts and their cultural context.
CO4	To get an insight on the lifestyle and living techniques of Tamil ancestors.
CO5	To recognise and perceive the role played by Tamils in the unity and development of India.

CO PO Mapping:

СО	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1
1								1	2	3	1	3	1
2								1	3	2	3		1
3								1	3	2	1		1
4								3	2	2			3
5								2	3	3			2

TEXT-CUM-REFERENCE BOOKS

1. Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL-(in print)

2. Social Life of the Tamils- The Classical Period (Dr.S.Singaravelu) (Published by: International Institute of Tamil Studies.

3. Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D.Thirunavukkarasu) (Published by: International Institute of Tamil Studies).

4. The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by: International Institute of Tamil Studies.)

5. Keeladi-'Sangam City Civilization on the banks of river Vaigai'(Jointly Published by:Department of Archaeology &TamilNadu Text Book and Educational Services Corporation, Tamil Nadu)

6. Studies in the History of India with Special Reference to TamilNadu (Dr.K.K.Pillay) (Published by: The Author)

7. Porunai Civilization(Jointly Published by:Department of Archaeology &TamilNadu Text Book and Educational Services Corporation,Tamil Nadu)

8. Journey of Civilization Industo Vaigai(R.Balakrishnan)(Published by:RMRL)– Reference Book.

91UC11 01	ENICI ICH EAD DI	L	Т	Р	C				
21HS1101	1HS1101 ENGLISH FOR PROFESSIONAL COMMUNICATION				2	3			
Preamble									
This course is as to compreh necessary poli	ad, wr s well	rite, an as giv	nd spe ve the	eak so m the					
• The prer	equisite knowledge required to stud	y this Course is the basic kn	owled	dge in	Engli	sh			
Langua	ge.	,		0	U				
Objectives	0								
 To communicate confidently in varied real life situations. To widen the basic reading skills of the first year Engineering and Technology students. To master vocabulary, sentence structure and to write articles. To create emotional awareness. 									
Module I	SHARING BASI	C INFORMATION			_	12			
concepts, prir changing globa coherence; La development Engineering.	nciples, and ideas that helps to un al environment; Writing - restructun anguage development - Framing - formation of words– verb – Nour	nderstand the need of Teo ring sentences from the jum Yes/No questions, Ques n – Adjectives, Standard Ab	chnolo ibled tion ibrevi	ogy in word tag, ations	n a ra s – cr Vocał s rela	apidly eating oulary ted to			
SUGGESTED A	ACTIVITIES	EVALUATION METHODS							
i) Listening concepts fro	to Conversations/ technical m suggested app/prescribed	i) Listening & Speaking: Submitted Conversationwill be assessed for							
modules - Conversation	Submission of 5 Recorded s	a) Language style as that o	of the	samp	le auc	lio.			
Gonversation		b) Pronunciation							
		c) Intonation							
ii) Introducin	g oneself to the audience in a	a ii) Introduction: Submitted Video Recording will be assessed for							
submitted.	way video recording to be	a) Communication Etiquette b) Language Style							
iii) Reading 3 answering qu	Passages on Technology and lestions through Google forms.	c) Sentence Construction							

iv) Rearrangi	ng Jumbled words – Exercises	Activities iii to v will be assessed through Googl form tests/ written tests.			
v) Teaching	of Grammar Contents				
Module II	SHARING TECHNICAL INFORMAT	TION	12		
Listening - l device/gadget demerits; Rea to technology; electronic/ m development Vocabulary de	Listening to technical lectures b to the audience – giving importan ding - extensive reading – short nan Writing - sentence structure – short nechanical gadget, importance of - framing 'Wh' Questions, writing evelopment- prefix and suffix.	y native speakers; Speaking - intr nce to its specifications, descriptions, cratives and news items from newspap t passages / reviews on any gadget – de punctuation, organizing paragraphs; a complete sentence using the fragm	roducing a merits and pers related escribing an Language ents given;		
SUGGESTED A	ACTIVITIES	EVALUATION METHODS			
i) Listening to Suggested Yo	o Technical Lectures - outube channels) Listening skills will be tested through	gh		
a) Learn b) Jared	Engineering Owen	b) Quiz - Polling - 2 set			
d) Pract	ical Engineering				
ii) Speaking , classroom pr electronic/el	/ Submitting video recording / esentation about an ectrical/ a mechanical gadget	ii)Speaking: Submitted Video Recording/Presentation during class willbe assessed for	hours		
giving impor descriptions,	tance to its specifications, merits and demerits.	a) Language Style & Fluencyb) Creation of Google Slides / Canva Slidesc) Content delivery			
iii) Reading ar News / Times	ticles from Newspaper/ Google Now / and other TechNews Sites	Activities iii to v will be assessed through Google form tests/ written tests.			
iv) Writing re v) Teaching (views of a product of Grammar Contents				
Module III	UNDERSTANDING TECHNOLOGY		12		
Listening - lis Speaking - a electronic/ele passages - Ar	tening to technical talks on emerg asking for opinions about techr ctrical/mechanical/software produc ticles from journals: Writing - rear	ing trends and filling in the blanks – nical gadgets – presentation of re cts; Reading - Reading Comprehension ranging jumbled sentences, writing sho	cloze test; eviews on - technical ort essays:		

Language development - Direct Speech and Indirect Speech – Framing Indirect – Questions - Prepositions – Articles; Vocabulary development – Select Single Word Substitutes used in Engineering.

SUGGESTED ACTIVITIES	EVALUATION METHODS
i) Listening to Technical talks on emerging	i) Listening skills will be tested through
trends - Suggested YouTube channels	a) Cloze Test - 2 Sets

a) Bernard b) Concert c) Ideas at ii) Speaking /	d Marr ning Reality nd Inspiration Submitting video recording /			
classroom presentation on giving reviews about a product.		ii)Speaking: Submitted Video Recording/Classroom presentation will beassessed for		
iii) Reading articles -Extracts from reputed journals.		a) Inquisitivenessb) Analytical skillsc) Presentation Skills		
iv) Writing essays and rearranging Jumbled Sentences.		Activities iii to v will be assessed throu form tests/ written tests.	ugh Google	
v) Teaching o	f Grammar Contents			
Module IV STATING PROBLEMS AND EXPRESSING SOLUTIONS				

Listening- listening to talks relating to technology and noting down the merits and demerits; Speaking - stating a problem and expressing solutions giving more focus on pronunciation of words and sentence structure; Reading - comprehending Articles from Magazines – Identify the problem statement and note down solution statements; Writing - Identifying problems – Writing problem statement, Analyzing the situation – Gathering information related to the problem stated – Identifying solution criteria – Choosing the best solution – Implementing a solution – writing solution content - Measuring solution success – Report preparation – White paper writing – Release/launch notes; Language development- Tenses; Vocabulary development- Synonyms, Antonyms, Phrasal Verbs.

SUGGESTED ACTIVITIES	EVALUATION METHODS
 i) Listening to talks related to Technology - Suggested YouTube channels a) Auto Car India b) Lesics c) Student Energy 	i) Listening skills will be tested through a) Note making - 2 Sets
ii) Speaking / Submitting video recording / Classroom presentation on Technical issues faced in a gadget and expressing suitable solutions.	ii)Speaking: Submitted Video Recording / Classroom Presentation will be assessed for a) Expression of Innovative Ideas and Solution
iii) Reading articles -Extracts from reputed journals and identify problem statements	b) Sentence Structure

Francis Xavier Engineering College | Dept of EEE | R2021/Curriculum and Syllabi and solution statements. iv) Writing - Identifying problems - Writing Activities iii to v will be assessed through Google problem statement, Analyzing the situation form tests/ written tests/ written exercises. - Gathering information related to the problem stated – Identifying solution criteria - Choosing the best solution - Implementing a solution - writing solution content -Measuring solution success - Report preparation – White paper writing – Release/launch notes v) Teaching of Grammar Contents EMOTIONAL AWARENESS AND MANAGEMENT Module V 7 Listening - Listening Types - Appreciative listening - Critical Listening - Relationship Listening; Speaking - presentation on the importance of Emotional Intelligence; Reading- Reading Articles on High Level Cognition - Cognitive Control - Decision Making - Social Behaviour - Emotion - Language and Consciousness; Writing - Articulate emotions using the right language - Balance optimism and pessimism to effectively impact others; Language development - modal verbs; Vocabulary Development - Fixed and Semi-Fixed Expressions. SUGGESTED ACTIVITIES **EVALUATION METHODS** i) Watching videos on types of Listening i) Listening skills will be tested through a) Google form test- 2 Sets ii) Presentation on Emotional Intelligence iii) Reading Articles on High Level Cognition ii) Speaking: Submitted Video Recording / Classroom Presentation will be assessed iv) Writing - Articulate emotions using the for right language - Balance optimism and pessimism to effectively impact others a) Emotional awareness b) Communication Skills v) Teaching of Grammar Contents S.No List of Exercises CO Conversation Recording using the suggested app CO 1 1. 2. Self Introduction Video CO 1 3. Listening Test - Google Form CO 2

CO 2

CO 3

CO 3

CO₄

CO 4

CO 5

Presentation on the working principle of a gadget

Talk on technical issues in a gadget and express suitable

Reviewing a Product - Video Submission

Listening - Cloze Test

Solutions

Listening and Note Making

Types of Listening - Google Form

4.

5.

6.

7.

8.

9.

10.	Presentation or	e Emotional Intelligence	CO 5			
Total Periods 30 '						
Laboratory	y Requirements for a b	atch of 60 Students				
Software: (Globarena					
1. Teacher	console and 30 system	ns for students.				
2. English	Language Lab Softwar	e				
3. Career L	ab Software					
Suggestive	Assessment Method	S				
1) List 2) Spe 3) Rea line 4) Wri	ening and answering a aking - App/Software ding - analyze the pas Based atten Tests	questions - MCQ - Cloze Test - Note based testing sage given - understand the concej	Making ot and answer Questions - On-			
Continuou	is Assessment Test	Formative Assessment Test	End Semester Exams			
(3	30 Marks)	(20 Marks)	(50 Marks)			
Written Ex	amination	Completion of Suggested Exercises	Written Examination			
Course Out	comes	the students will be able to:				
opon comp		the students will be able to.				
CO 1	communication star	formation using communication etiq	uette on par withinternational			
CO 2	Interpret fundament	al technical concepts in English lang	uage giving importance to syntax.			
CO 3	Evaluate advanced view of the second	varied technical concepts in the curre	ent scenario and emergingtrends t			
CO 4	Write solutions for grammatical errors	problems identified using the exact as expected by the corporate world	vocabulary and structure without			
CO 5	Manage and respo Management, Self Intelligent Human E	nd to self, others' emotions using Motivation, Empathy & Social H Being.	skills of Self Awareness, Self Relations to be an Emotionally			
fext Books	5	C				
1. But 2. Sud Pres	terfield, Jeff. Soft Skills harshana.N.P and Save ss: New Delhi, 2016.	s for Every one. Cengage Learning: N etha. C. English for Technical Comn	Jew Delhi, 2017. nunication. CambridgeUniversity			

Web Resources

- 1. Self Introduction: <u>https://youtu.be/Osa53-RYBk4</u>
- 2. Working Principle of a Gadget: <u>https://www.youtube.com/channel/UC6qf8AGvAGixZXWdxapvCqw</u>
- 3. Product Review: <u>https://youtu.be/ByhA05x7CWI</u>
- 4. Times of India: <u>https://timesofindia.indiatimes.com/home/headlines</u>
- Listening to Technical talks: Auto Car India <u>https://m.youtube.com/user/autocarindia1</u>

 $Lesics: \underline{https://www.youtube.com/channel/UCqZQJ4600a9wIfMPbYc60OQ}\ Student$

Energy https://www.youtube.com/user/studentenergy?app=desktop

6. Types of Listening <u>https://www.youtube.com/watch?v=22gzvSindTU&t=1s</u>

CO Vs PO Mapping and CO Vs PSO Mapping

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2
1				2					1	1	2	2		
2									2	3				
3							2				2	2		
4										2	2	2		
5									2	3				

ASSESSMENT PATTERN

SUGGESTED COURSE LEVEL ASSESSMENT QUESTIONS:

BLOOM'S		ASSESSMENT TESTS								
CATEGORY	CAT – 1	CAT -2	FAT - 1	FAT - 2	EAAMINATION					
REMEMBER	10	10	5	5	10					
UNDERSTAND	30	30	10	10	30					
APPLY	60	60	10	10	60					
ANALYZE	0	0	0	0	0					
EVALUATE	0	0	0	0	0					
CREATE	0	0	0	0	0					

COURSE OUTCOME 1 (CO 1) : Enumerate basic information using communication etiquette onpar with international communication standards.

1) Listen to the talk on basic technical topics and answer the questions provided.

- 2) Introduce yourself in a professional way highlighting Characteristics, Strengths &Weaknesses.
- 3) Converse with your friend on any fundamental concepts in Technology.
- 4) Read the given technical passage and answer the questions provided.
- 5) Frame Yes/No Questions for the statements given.
- 6) Frame Question tags for the statements given.
- 7) Rearrange the jumbled words into a meaningful sentence.
- 8) Complete the sentence with the Noun form/ Verb Form/ Adjective form (as Directed) of the word given.
- 9) Give the expansion of the Abbreviations given.

COURSE OUTCOME 2 (CO 2) : Interpret fundamental technical concepts in English languagegiving importance to syntax.

- 1) Listen to the technical lecture and answer the questions provided.
- 2) Introduce a device or a gadget to the class giving importance to its specifications, description, merits and demerits.
- 3) Read the given passage / short narrative / article from a journal or newspaper to the class.
- 4) Write your review on any one of the gadgets you are using.
- 5) Frame "Wh" Questions for the statements given.
- 6) Punctuate the following statement given.
- 7) Complete the sentence using the fragments given.
- 8) Write a short passage on the given topic.
- 9) Fill in the blanks with the suitable prefix or suffix as directed.

COURSE OUTCOME 3 (CO 3) :Evaluate advanced varied technical concepts in the current scenario and emerging trends to invent new concepts.

- 1) Listen to the technical talk on the emerging trends and complete the statements given. (Cloze Test)
- 2) Ask questions to get an opinion about technical gadgets / software / devices
- 3) Read the given article from a journal and provide your ideas for further developments.
- 4) Rearrange the following sentences in the proper chronological order.
- 5) Write a short essay on any one of the given technical topics highlighting the future scope of the product.
- 6) Rewrite the following into Indirect Speech.
- 7) Frame indirect questions for the questions given.
- 8) Fill in the blanks with the suitable articles.
- 9) Give the one word substitutes for the given statement.

COURSE OUTCOME 4 (CO 4) : Write solutions for problems identified using the exact vocabularyand structure without grammatical errors as expected by the corporate world.

- 1) Listen to the technical talks and write down the merits and demerits of the product discussed.
- 2) Watch the video, evaluate the concept and express your solutions to the problem.
- 3) Read the given article and note down the problems stated.

- 4) Write down solutions for the problems faced while using a product.
- 5) Draft a white paper writing for the given situation..
- 6) Write launch notes for a product.
- 7) Convert the given statement to another form of the tenses as directed.
- 8) Pick out the suitable synonym for the underlined word in order to minimize plagiarism.
- 9) Fill in the blank with the suitable phrasal verb.

COURSE OUTCOME 5 (CO 5) : Manage and respond to self, others' emotions using skills of Self

Awareness, Self Management, Self Motivation, Empathy & Social Relations to be an Emotionally Intelligent Human Being.

1) Watch the video on Types of listening and answer the questions.

- 2) Make a presentation on the importance of Emotional Intelligence.
- 3) Read the given article on High level cognition and answer the questions.
- 4) Read the article on social behaviour and redraft it in your own style.
- 5) Comprehend the passage and give your inputs for decision making.
- 6) Watch the video and articulate your emotions using appropriate words.
- 7) Write a note on optimism and pessimism.
- 8) Fill in the blank with the suitable modal verb.
- 9) Pick out the suitable fixed/ semi-fixed expression to complete the given statement.

21ME1513 COMPLITER AIDED ENGINEER	COMPLITED AIDED ENCINEEDING	L	Т	Р	С
	GRAPHICS	3	0	2	4
D					

Prerequisites for the course

• NIL

Preamble

Engineering drawing is an important tool for all Engineers and for many others professionals. It is the language of Engineers. Engineering Drawing communicates all needed information from the engineer who designed a part to the workers who will manufacture it.

Objectives

- 1. To understand the importance of the drawing in engineering applications
- 2. To improve their visualization skills so that they can apply these skill in developing new products
- 3. To expose them to existing standards related to technical drawings
- 4. To develop graphic skills for communication of concepts, ideas and design of engineering products
- 5. Train to practice engineering graphics through drafting software.

CONCEPTS AND CONVENTION(not for examination)

Importance of graphics in engineering applications – Use of drafting instruments – BIS conventions and specifications – Size, layout of drawing sheets – Lettering and Dimensioning

UNIT IPROJECTION OF POINTS AND LINES9General Principles of orthographic projection – First Angle Projection, projection of points in four
quadrants – Projection of straight lines located in the first quadrant – inclined to both planes

UNIT II PROJECTION OF SOLIDS

Projection of simple solids like prisms, pyramids, cylinder and cone when the axis is inclined to one reference plane by change of position method.

UNIT III	SECTIONS OF SOLIDS AND DEVELOPMENT OF	
	SURFACES	

Sections of regular solids as per BIS conventions - Constructing sectional views of simple objects and components - Development of lateral surfaces of regular solids-Projection of truncated solids .

UNIT IV ISOMETRIC PROJECTIONS

Principles of isometric projection – isometric scale – isometric projections of simple solids,truncated prisms, pyramids, cylinders and cones.

 UNIT V
 PERSPECTIVE PROJECTIONS

 Perspective projection of prisms
 pyramids and cylinders by visual

8

8

10

10

Perspective projection of prisms, pyramids and cylinders by visual ray method.

S.No	List of Experiments	СО
1	Introduction to drafting commands in AutoCAD. Creation of	C112.1, C112.6
	simple geometry and editing.	
2	Projection of simple Geometric objects and engineering	C112.2, C112.6
	components using AutoCAD	
3	Construction of simple objects and components sectional	C112.3, C112.6
	viewsusing AutoCAD	
4	Isometric projection of simple components-flange, cylinder,	C112.4, C112.6
	chimney, lamp shades, valve, Brackets using AutoCAD	
5	Creating a Perspective Projection of solids using AutoCAD	C112.5, C112.6
•		
	Total Periods	45 Theory + 15
		Lab Hours

Laboratory Requirements

SYSTEM REQUIREMENTS (For a batch of 30 Students)

Hardware:

- 1. Intel i3 core due processor with 4GB ram with 500GB hard disk -30 Nos.
- 2. Laser Printer 1 No.

<u>Software:</u>

Drafting package – AutoCAD – Adequate license (Open source)

Suggestive Assessment Methods

CAT 1	Model Lab	End Semester Exams
(30Marks)	(20 Marks)	(50 Marks)
30	20	50
Outcomes		
Upon completion of	of the course, the students will be able to:	
CO1: Apply the pri	nciples of first angle projection in construction	on of points and lines.
CO2: Apply the pri	nciples of change of position method in proj	ection of simple solids.
CO.3: Develop pro	jections of sectioned solids and their develop	mental surface.
CO4:Develop isom	etric views from orthographic projections	
CO.5: Construct th	e perspective projections of simple solids	
CO6: Develop orth	ographic, isometric and perspective projec	tion and development of surfa
using drafting softw	vare.	
Text Books		
1. Venugopal K. and	l Prabhu Raja V., "Engineering drawing + Auto	ocad", New Age International
(P) Limited (2022	2)	
2. Natrajan K.V., "A	text book of Engineering Graphics", Dhanalal	shmi Publishers, Chennai (201
Reference Books		
1. Kumar M.S., "Eng	ineering Graphics", D.D. Publications, (2015)	
2. Parthasarathy N. (2015)	S. and Vela Murali, "Engineering Graphics", O	xford University, Press, New De
3. Shah M.B. and Ra	na B.C. "Engineering Drawing" Pearson Edu	
4. N.D.Bhatt, "Engin	na D.G., Engineering Drawing, rearson Laa	cation (2009)
	eering Graphics", Charotor Publishing House	, 53RD Edition 2019
Publication of Bur	eering Graphics", Charotor Publishing House	cation (2009) , 53RD Edition 2019
Publication of Bur 1. IS 10711 – 2001:	eering Graphics", Charotor Publishing House eau of Indian Standards: Technical products Documentation – Size an	d lay out of drawing sheets
Publication of Bur 1. IS 10711 - 2001: 2. IS 9609 (Parts 0 a)	eering Graphics", Charotor Publishing House eau of Indian Standards: Technical products Documentation – Size an and 1) – 2001: Technical products Document	cation (2009) , 53RD Edition 2019 d lay out of drawing sheets ation – Lettering
Publication of Bur 1. IS 10711 – 2001: 2. IS 9609 (Parts 0 a 3. IS 10714 (Part 20	eering Graphics", Charotor Publishing House reau of Indian Standards: Technical products Documentation – Size an and 1) – 2001: Technical products Document)) – 2001 and SP 46 – 2003: Lines for technical	cation (2009) , 53RD Edition 2019 d lay out of drawing sheets ation – Lettering al drawings
Publication of Bur 1. IS 10711 – 2001: 2. IS 9609 (Parts 0 a 3. IS 10714 (Part 20 4. IS 11669 – 1986 a	eering Graphics", Charotor Publishing House reau of Indian Standards: Technical products Documentation – Size an and 1) – 2001: Technical products Document 0) – 2001 and SP 46 – 2003: Lines for technical and SP 46 – 2003: Dimensioning of Technical	cation (2009) , 53RD Edition 2019 d lay out of drawing sheets ation – Lettering al drawings Drawings
Publication of Bur 1. IS 10711 – 2001: 2. IS 9609 (Parts 0 a 3. IS 10714 (Part 20 4. IS 11669 – 1986 a 5. IS 15021 (Parts 1	eering Graphics", Charotor Publishing House eau of Indian Standards: Technical products Documentation – Size an and 1) – 2001: Technical products Document 0) – 2001 and SP 46 – 2003: Lines for technical and SP 46 – 2003: Dimensioning of Technical to 4) – 2001: Technical drawings – Projectio	cation (2009) , 53RD Edition 2019 d lay out of drawing sheets ation – Lettering al drawings Drawings on Methods
Publication of Bur 1. IS 10711 – 2001: 2. IS 9609 (Parts 0 a 3. IS 10714 (Part 20 4. IS 11669 – 1986 a 5. IS 15021 (Parts 1 Web Recourses	 and D.C., "Englicering Drawing , rearson Educate reau of Indian Standards: Technical products Documentation – Size an and 1) – 2001: Technical products Document 0) – 2001 and SP 46 – 2003: Lines for technical and SP 46 – 2003: Dimensioning of Technical to 4) – 2001: Technical drawings – Projectio 	cation (2009) , 53RD Edition 2019 d lay out of drawing sheets ation – Lettering al drawings Drawings on Methods
Publication of Bur 1. IS 10711 – 2001: 2. IS 9609 (Parts 0 a 3. IS 10714 (Part 20 4. IS 11669 – 1986 a 5. IS 15021 (Parts 1 Web Recourses 1. http://npt	<pre>ind D.e., "Engineering Drawing , rearson Edu- eering Graphics", Charotor Publishing House reau of Indian Standards: Technical products Documentation – Size an and 1) – 2001: Technical products Document 0) – 2001 and SP 46 – 2003: Lines for technical and SP 46 – 2003: Dimensioning of Technical to 4) – 2001: Technical drawings – Projectio tel.ac.in/courses/112103019</pre>	cation (2009) , 53RD Edition 2019 d lay out of drawing sheets ation – Lettering al drawings Drawings on Methods

PO PS PS CO

CO Vs PO Mapping and CO Vs PSO Mapping

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	MODEL	END SEM EXAM
REMEMBER				
UNDERSTAND				
APPLY	15	15	20	50
ANALYZE				
EVALUATE				
CREATE				

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Apply the principles of first angle projection in construction of points and lines. (Apply)

1. Draw the projections of the following points on a common reference line. (Apply) A,35 mm above HP and 25 mm in front of VP B,40 mm below HP and 15mm behind VP C,50 mm above HP and 25 mm behind VPD,45 mm below HP and 25 mm behind VPE, 30 mm behind VP and on HP

2. A line CD measuring 80 mm is inclined at an angle of 30° to HP and 45° to VP. The point C is 20 mm above HP and 30 mm in front of VP. Draw the projections of the straight line.(Apply)

COURSE OUTCOME 2: Apply the principles of change of position method in projections of solid problems and draw graphically

1. A pentagonal pyramid of base side 25mm and height 40mm, is resting on the ground on one of its triangular faces. The base edge of that face is inclined 300 to VP. Draw the projections of the solid. (A)

2. A hexagonal prism has side 25mm and height 50mm has a corner of its base on the ground and the long edge containing that corner inclined at 30o to HP and 45o to VP. Draw the projections of the solid. (A)

COURSE OUTCOME 3: Develop projections of sectioned solids and their developmental

surface.

1. A cylinder of base diameter 50mm and height 60mm rest on its base on HP. It is cut by a plane perpendicular to VP and inclined at 450 to HP. The cutting plane meets the axis at a distance 15mm from its top base. Draw the sectional plan and true shape of the section. (A)

2. A regular hexagonal pyramid side of base 30 mm and height 60 mm is vertically on its based on HP, such that two of its sides of the base are perpendicular to VP. It is cut by a plane inclined at 30° to HP and perpendicular to VP. The cutting plane bisects the axis of the pyramid. Obtain the development of the lateral surface of the truncated pyramid. (A)

COURSE OUTCOME 4: Develop isometric views from orthographic projections

1. A cylinder of base diameter 50mm and height 60mm rest on its base on HP. It is cut by a plane perpendicular to VP and inclined at 450 to HP. The cutting plane meets the axis at a distance 15mm from its top base. Draw the sectional plan and true shape of the section. (A)

2. A regular hexagonal pyramid side of base 30 mm and height 60 mm is vertically on its based on HP, such that two of its sides of the base are perpendicular to VP. It is cut by a plane inclined at 30° to HP and perpendicular to VP. The cutting plane bisects the axis of the pyramid. Obtain the development of the lateral surface of the truncated pyramid. (A)

COURSE OUTCOME 5: Construct the perspective projections of simple solid

1. Draw the perspective view of a square prism of base side 40mm and height 50mm. one vertical lateral face is parallel to PP and 30mm away from it. The station point is 80mm from PP, 80mm above the base and 60mm to the right of the axis of the prism. (APPLY)

2. A hexagonal pyramid of base side 25mm and axis length 50mm is resting on GP on its base with a side of base is parallel to and 20mm behind PP. The station point is 60mm above GP and 80mm in front of PP and lies in a central plane which is 50mm to the left of the axis of the pyramid. Draw the perspective view of a pyramid. (APPLY)

COURSE OUTCOME 6: Students will be able to Develop Orthographic, isometric and perspective projection and Development of surfaces using drafting software

1. A hexagonal pyramid of base side 30 mm axis length 60 mm is resting on HP on one of its base corners with its axis inclined at 35° to HP and parallel to VP. Draw its projections. (APPLY)

2. A cylinder of base diameter 50mm and axis length 50mm is placed horizontally on GP on its base. The axis of the cylinder is 35mm behind PP. The station point is 70mm in front of PP and 70mm above the GP and is 50mm to the left of the axis. Draw the perspective projection of the cylinder. (APPLY)

Practical Courses

21PY1311	PHYSICS AND CHEMISTRY LABORATORY	L	Т	Р	С
		0	0	4	2

Preamble

The aim of this course is to make the students gain practical knowledge to co-relate with the theoretical studies and develop their practical applications in engineering materials by using the principles in the right way to implement in modern technology.

Prerequisites

Basic practical concepts of Physics and Chemistry in higher secondary level.

Objectives (Physics)

- To understand the measurement techniques and usage of instruments in physics.
- To demonstrate competency and understanding of the basic concepts found in experimentalPhysics.
- To learn about the various electronic communication mechanisms and their usage in apractical manner.
- To make the students acquire practical skills in the determination of water quality parameters through volumetric and instrumental analysis.
- To develop an understanding about the range and uses of analytical methods in chemistry.

PHYSICS					
S. No	List of Experiments	CO			
1	Determination of specific resistance of a given coil of wire – Carey Foster's Bridge.	3			
2	Determination of band gap of a Semiconductor (Forbidden energy band gap kit).	3			
3	Determination of planck's constant and work function using the principleof photoelectric effect	1			
4	Determination of Wavelength, and particle size using Laser.	2			
5	Determination of Numerical aperture and acceptance angle in an optical fiber.	2			

	List of Projects (PHYSICS)					
	meter.					
10	Determination of strength of acids in an acid mixture using conductivity	Ę				
	photometer.					
9	Estimation of sodium and potassium present in water using a flame	Ę				
8	Preparation of nanoparticles (TiO2/ZnO/CuO) by Sol- Gel method.					
7	Determination of strength of given hydrochloric acid using pH meter.	Ę				
	alkalinity in water sample.					
6	Estimation of HCl using Na ₂ CO ₃ as primary standard and determination of	4				
5	Determination of molecular weight of polyvinyl alcohol using Ostwald viscometer.					
4	Conductometric titration of strong acid vs strong base.					
3	Conductor etrication of strong a side a strong base					
2	Estimation of iron content of the given colution using notentiometer					
2	Corresion experiments - weight loss method					
T	EDTA method					
1	Determination of total temporary & permanent hardness of water by					
	-Spectrometer.					
10	Determination of wavelength of spectral lines using grating	2				
9	Determination of velocity of sound and compressibility of liquid –Ultrasonic Interferometer.					
8	Determination of thermal conductivity of a bad conductor – Lee's Disc method.					
7	Determination of rigidity modulus – Torsion pendulum.]				
	method.					

	List of Projects	Experiment	0
1	To study Infrared radiation emitted by different sources using phototransistors.	3	1
2	To study the variations, in current flowing in a circuit containing a LDR, because of a variation:(a) In the power of the incandescent lamp, used to 'illuminate' the LDR. (Keeping all the lamps at a fixed distance).	2	3
	(b) In the distance of an incandescent lamp, (of fixed power),		

	used to 'illuminate' the LDR.		
3	Design a circuit for cool automatic timer controlled Light which controls vehicle traffic passing through the intersection of two or more roadways by giving a visual indication to drivers when to proceed, when to slow , and when to stop using LED and 4017 counter IC along with the 555 timer.	2	
4	Design and implement a circuit which anyone can make at home to save their home from thefts using the light has high intensity, monochromatic, directional and coherent in nature.	4	
5	Construct a household circuit consisting of three bulbs using a dual switching method.	1	
6	Using ultrasonic sensor, design a ultrasonic distance finder using 8051	9	
7	Design a water level indicator by connecting a Buzzer, resistor and transistor in series and connect this in parallel to LED.	2	
	List of Projects (CHEMISTRY)		
	Water Analysis : Analysis of perennial Thamirabarani River water samples collected from various locations (before and after blending of industrial waste water).		
1	i) Determination of various physical and chemical parameters (Hardness, pH,TDS, Alkalinity) of different water samples.		
	ii) From the result, give a detailed report about the water sample whether it is fit/unfit for domestic and industrial purposes.	1, 6	
	Water Quality Monitoring : Analysis of ground water samples collected from various districts (Tirunelveli, Madurai, Tuticorin, Kanyakumari, Tenkasi etc.,).		
2.	i) Determination of various physical and chemical parameters (Hardness, pH, TDS, Alkalinity) of different water samples.		
	ii) From the result, give a detailed report about the water sample whether it is fit/unfit for domestic and industrial purposes.	1,6	
	Household Plumbing Deterioration Monitoring : Study of Conductivity of domestic water (Home) by Arduino method to track the deterioration of household plumbing.		
	i) From the observations give a detailed report about the existence of various ions in water.	4	

	ii) Give an explanatory report on trackin household plumbing.	g the deterioration in			
	Air quality monitoring : Study of air poll city in the early morning, noon and eve emissions by Arduino method.	ution in Nellai smart ning due to CO/CO2	4,10		
4	i) From the observations give a detail impact of air pollution on human health.	led report about the			
	ii) Deduce an explanatory report on e due to CO/CO2 emissions.	nvironmental impact			
	Food adulteration : Investigation of ad food stuffs (milk, chilli powder, turmeric honey and ghee) by Chemical methods.	dulterants in various powder, wheat flour,			
5.	i) Give a report on the presence of adu food samples.	lterants in the given	1		
	ii) From the observations give a brief report of food adulteration on human health.	port about the impact			
6.	6. Design of molecules (composites) by computationaltechniques.		4,10		
Lab Ass	essment				
Lab Con	nponents Assessments E	nd Semester Exams			
(50 Ma)	rks) (5	50 Marks)			
Outcom	nes(Physics)				
Upon o	completion of the course, the students wil	l be able to:			
CO1	Understand measurement technology, usa applications in engineering studies.(Under	ge of new instruments and rea rstand)	l time		
CO2	Operate different instruments and be capable of analysing the experimental results.				
	(Analyse)				
CO3	Applying basic knowledge to design variou	ıs circuits (Apply)			
		hands-on knowledge in the			
CO4	Have knowledge and will be outfitted with	i nanus on knowledge in the			
CO4	Have knowledge and will be outfitted with quantitativechemical analysis of water quantitativeche	ality related parameters. (Appl	y)		

reasoning as applied to scientific problems. (Apply)

Reference Books (Physics)

- Physics Laboratory Manual, Department of Physics, Francis Xavier Engineering College, Tirunelveli.
- A Textbook of Engineering Physics Practical ,UNIVERSITY SCIENCE PRESS (An Imprint of Laxmi Publications Pvt. Ltd.)2nd edition.
- J.Mendham, R.C. Denney, J.D.Barnes, M.Thomas and B.Sivasankar, Vogel's Textbook of Quantitative Chemical Analysis (5th edition 2009).

Web Resources

Virtual Lab - https://bop-iitk.vlabs.ac.in/basics-of-physics/List%20of%20experiments.html Young's Modulus- <u>https://vlab.amrita.edu/?sub=1&brch=280&sim=550&cnt=1</u>

Virtual Lab - https://www.vlab.co.in/ba-nptel-labs-physical-sciences Numerical Aperture - https://vlab.amrita.edu/index.php?sub=1&brch=189&sim=343&cnt=1 Water Quality standards - https://www.youtube.com/watch?v=OlGllOZlIyI

Web Resources (Chemistry)

1. Water Quality standards -<u>https://www.youtube.com/watch?v=OlGllOZlIyI</u>

2.Corrosion experiments – weight loss method https://www.youtube.com/watch?v=SMlgTWfdHb8

PHYSICS MAPPING

CO Vs PO Mapping and CO Vs PSO Mapping

CO	P0 1	P0 2	PO 3	P0 4	РО 5	P0 6	P0 7	PO 8	РО 9	PO 10	P0 11	P0 12	PSO 1	PSO 2
1	3	2	1						1		1	1		
2	3	2	1						1		1	1		
3	3	2	1						1		1	1		
4	3	2	1						1		1	1		
5	3	2	1						1		1	1		

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: The students will be able to understand measurement technology, usage of new instruments and real time applications in engineering studies (Understand)

1. Find the Young's modulus of the material of a beam using Non-Uniform bending method. (Given : Thickness of the beam d = 6.35 mm)

COURSE OUTCOME 2: The students will be able to operate different instruments and be capable of analysing the experimental results (Analyse)

2.Using a given laser source and grating (i) determine the wavelength of the given laser light source and also using a given laser source and glass plate (ii) determine the average size of the particles of lycopodium powder by diffraction method.

3. Determine the thermal conductivity of a given bad conductor (Glass) using Lee's disc method. (Given: M= 800 X10-3 Kg, S = 370 JKg -1K-1).

COURSE OUTCOME 3: The students will be able to applying basic knowledge to design various circuits (Apply)

1. Design a circuit for finding unknown resistance and specific resistance of a given coil of wire.

2. Find the energy band gap of semiconductor diode.

COURSE OUTCOME 4: The students will be able to have knowledge and will be outfitted with hands-on knowledge in the quantitative chemical analysis of water quality related parameters. (Apply)

1. Estimate the amount of total hardness present in 250ml of the given water sample by EDTA method. You are provided with a standard hard water of strength 0.01N.What is the permissible limit of hardness in drinking water.

2. Calculate the amount of total alkalinity present in 500ml of the given water sample. You are provided with a standard NaOH solution of strength 0.01N. What is the permissible limit of alkalinity in drinking water?

COURSE OUTCOME 5: The students will be able to gain knowledge and will be skilled in problem solving, critical thinking and analytical reasoning as applied to scientific problems.(Apply)

1. Determine the amount of NaOH present in 1000 ml of the given sample solution by pH metry. What is the pH of a blood sample?

2. Find the amount of HCl and CH3COOH present in 1000 ml of the given sample solution by Conductometry. Which Acid Is The Best Conductor Of Electricity?

COURSE CONTENT AND LECTURE SCHEDULE

S.NO	ΤΟΡΙϹ	NO OF WEEKS REQUIRED
1	Determination of specific resistance of a given coil of wire – Carey Foster's Bridge.	1
2	Determination of band gap of a Semiconductor (Forbidden energy band gap kit).	1
3	Determination of planck's constant and work functionusing the principle of photoelectric effect.	1
4	Determination of Wavelength, and particle size using Laser	1
5	Determination of Numerical aperture and acceptance anglein an optical fiber	1
6	Determination of Young's modulus of the material-NonUniform bending method.	1
7	Determination of rigidity modulus – Torsion pendulum.	1
8	Determination of thermal conductivity of a bad conductor –Lee's Disc method.	1
9	Determination of velocity of sound and compressibility of liquid – Ultrasonic Interferometer.	1
10	Determination of wavelength of spectral lines using grating – Spectrometer.	1

CHEMISTRY MAPPING

CO Vs PO Mapping and CO Vs PSO Mapping

СО	P0 1	P0 2	PO 3	P0 4	РО 5	P0 6	P0 7	PO 8	РО 9	P0 10	P0 11	P0 12	PSO 1	PSO 2
1	3	2	1						1		1	1		
2	3	2	1						1		1	1		
3	3	2	1						1		1	1		
4	3	2	1						1		1	1		
5	3	2	1						1		1	1		

1-Low , 2- Medium, 3- High

COURSE CONTENT AND LECTURE SCHEDULE - CHEMISTRY

S.NO	ΤΟΡΙϹ	NO OF WEEKS REQUIRED
1	Determination of total, temporary & permanent hardness of water by EDTA method.	1
2	Corrosion experiments – weight loss method	1
3	Estimation of iron content of the given solution using potentiometer	1
4	Conductometric titration of strong acid vs strong base	1
5	Determination of molecular weight of polyvinyl alcohol using Ostwald viscometer	1
6	Estimation of HCl using Na ₂ CO ₃ as primary standard and determination of alkalinity in water sample	1
7	Determination of strength of given hydrochloric acid using pH meter.	1
8	Preparation of nanoparticles (TiO2/ZnO/CuO) by Sol Gel method.	1

Franc	is Xavier En	ngineering College Dept of EEE R2021/Curriculum and Syllabi	
	9	Estimation of sodium and potassium present in water using a flame photometer.	1
	10	Determination of strength of acids in an acid mixture using conductivity meter.	1

21051511	Drogramming Dractica Laboratory using C	L	Т	Р	C					
	Trogramming Tractice Laboratory using C	0	0	4	2					
Preamble	reamble									
The goal of	the practice lab is to provide the students with foundation in com	puter	progr	amm	ing to					
enhance the problem-solving skills related to the field of engineering. It enables the algorithmic										
approach a	mong the students to solve real world problems thus providing t	he bas	se to l	earn	other					
new progra	mming languages									
Prerequisit	es for the course									
• NIL										
Objectives										
• To	develop C programs using conditional and looping statements									
• To	be able to use arrays and strings in C									
• To	build modular programs using functions in C									
• To	explicitly manage memory using pointers in C									
• To	develop applications in C using structures and files									
S. No	List of Experiments		С	0						
1	Programs using simple statements		C)1						
2	Programs using decision making statements		CC)1						
3	3Programs using looping statementsCO1									
4	Programs using one dimensional and two dimensional arrays CO2									
5	Programs using strings. CO2									
6	Programs using user defined functions and recursive functions CO3									
7	Programs using functions and pointers		CC)3						
8 Programs using structures and pointers CC										

		LU4	CO4		
10	Programs using file concept	CO4	C04		
S.No.	List of Projec	Related Experiment	CC		
1.	Vaccine Status Registration System		Ex. 1 to 10	C05	
2.	Toll Bill Management system	Ex. 1 to 10	C05		
3.	Voting Eligibility system	Ex. 1 to 10	C05		
4.	Cricket Scorecard Display system		Ex. 1 to 10	C05	
5.	Medical History Viewing System		Ex. 1 to 10	C05	
6.	Bus/ Flight Ticket Reservation System		Ex. 1 to 10	C05	
7.	Vehicle Parking Control System	Ex. 1 to 10	C05		
8.	Canteen Menu Management System	Ex. 1 to 10	C05		
9.	Grocery Checklist Management System	Ex. 1 to 10	C05		
10.	Diary Management System	Ex. 1 to 10	C05		
11.	Retail Shop Inventory Management Sy	Ex. 1 to 10	C05		
12.	Pharmacy Inventory System		Ex. 1 to 10	C05	
13.	Library Book Management System		Ex. 1 to 10	C05	
14.	Student Subject Selection System		Ex. 1 to 10	C05	
15.	Student Leave Application System		Ex. 1 to 10	C05	
Suggestiv	re Assessment Methods				
Lab Comp	oonents Assessments	End Semeste	r Exams		
(50 Mark					
I. Exerci	ote				
2. Projec	ct File (Progress Score)				
3. Viva v	roce	3. Viva voce			
Course Ou	utcomes	I			
Upon cor	npletion of the course, the students will h	be able to:			

C02	Implement arrays and perform string operations
CO3	Develop reusable modules, store data in main memory effectively using pointers
CO4	Form heterogeneous data using structures ,union and files
CO5	Build a project based on the required concepts learnt in C

Laboratory Requirements

- C compiler
- System with windows
- Internet

Reference Books

1. ReemaThareja, "ProgramminginC", OxfordUniversityPress, Secondedition, 2016

Web Resources

- 1. https://www.hackerrank.com/
- 2. <u>https://www.codechef.com/selflearning?itm_medium=navmenu&itm_campaign=learncp</u>
- 3. https://www.hackerearth.com/practice/basic-programming/input-output/basics-ofinput-output/tutorial/

CO Vs PO Mapping and CO Vs PSO Mapping

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2
1	3	3	3										1	
2	3	3	3										1	
3	3	3	3										2	
4	3	3	3										2	
5	2	2	2			1			2	2	2	1	3	

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMSCATEGORY	Model Exam	ENDSEMEXAM
REMEMBER		
UNDERSTAND		
APPLY	50	100
ANALYZE		
EVALUATE		
CREATE	50	

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: (Blooms Category: Apply) (Problem Source: Code chef)

Problem Statement:

Pooja would like to withdraw X \$US from an ATM. The cash machine will only accept the transaction if X is a multiple of 5, and Pooja's account balance has enough cash to perform the withdrawal transaction (including bank charges). For each successful withdrawal the bank charges 0.50 \$US dollars. Calculate Pooja's account balance after an attempted transaction.

Input Constraints:

Positive integer 0 < X <= 2000 - the amount of cash which Pooja wishes to withdraw.

Nonnegative number 0<= Y <= 2000 with two digits of precision – To represent Pooja's initial account balance.

Output Constraints:

Output the account balance after the attempted transaction, given as a number with two digits of precision. If there is not enough money in the account to complete the transaction, output the current bank balance.

Example:

ТҮРЕ	INPU'	Г	OUTPUT
Successful Transaction	30	120.00	89.50
Incorrect Withdrawal	42	120.00	120.00
Amount (not multiple of 5)			
Insufficient funds	300	120.00	120.00

COURSE OUTCOME 2: (Blooms Category: Apply) (Problem Source: Code chef)

Problem Statement:

Write a program that takes in a letter class ID of a ship and display the equivalent string class description of the given ID. Use the table below.

Class ID	Ship Class
B or b	Battle Ship
C or c	Cruiser
D or d	Destroyer
F or f	Frigate

Input Constraints:

The first line contains an integer T, the total number of test cases. Then T lines follow, each line contains a character. $1 \le T \le 1000$

Output Constraints:

For each test case, display the Ship Class depending on ID, in a new line.

Example:

INPUT	OUTPUT
3	Battleship
В	Cruiser
С	Destroyer
Л	

COURSE OUTCOME 3: (Blooms Category: Apply) (Problem Source: Hacker rank)

Problem Statement:

Functions are a bunch of statements grouped together. A function is provided with zero or more arguments, and it executes the statements on it. Based on the return type, it either returns nothing (void) or something. For example, a function to read four variables and return the sum of them can be written as

int sum_of_four(int a, int b, int c, int d) {
int sum = 0;
sum += a; sum += b; sum += c; sum += d;
return sum; }

+=: Add and assignment operator. It adds the right operand to the left operand and assigns the result to the left operand. So a += b is equivalent to a = a + b;

Task

Write a function int max_of_four(int a, int b, int c, int d) which reads four arguments and returns the greatest of them. Note that it is not built in max function in C. Code that will be reused is often put in a separate function that returns the greater of the two values.

Input Constraints: Input will contain four integers(one on each line) Output Constraints:

Print the greatest of the four integers.Sample Input: 3465Sample Output:6

COURSE OUTCOME 4: (Blooms Category: Apply) (Problem Source: Hacker rank)

Problem Statement:

You are transporting some boxes through a tunnel, where each box is a parallelepiped, and is characterized by its length, width and height. The height of the tunnel feet and the width can be assumed to be infinite. A box can be carried through the tunnel only if its height is strictly less than the tunnel's height. Find the volume of each box that can be successfully transported to the other end of the tunnel. Note: Boxes cannot be rotated.

Input Constraints:

The first line contains a single integer, denoting the number of boxes. Lines follow with three integers on each separated by single spaces, and which are length, width and height in feet of the box.

Output Constraints:

For every box which has a height lesser than 41 feet, print its volume in a separate line.

SAMPLE INPUT			SAMPLE OUTPUT
4			
5	5	5	
1	2	40	125
10	5	41	80
7	2	42	

Semester II

21HS2101	ENGLISH FOR TECHNICAL COMMUNICATION	L	Т	Р	С
		2 0 0	0	2	

Preamble:

This course is offered to develop strategies and skills to enhance professional students' ability to read and comprehend engineering and technology texts. Foster their ability to write convincing job applications and effective reports. Develop their speaking skills to make technical presentations, participate in group discussions. The outcome of the course is to help students acquire the language skills of listening, speaking, reading and writing competency in English language thereby making them meet the global expectations.

Prerequisites for the course

• The prerequisite knowledge required to study this Course is the basic knowledge in English Language.

Objectives

- 1. To widen strategies and skills to augment ability to read and comprehend engineering and technology texts.
- 2. To draft convincing job applications and effective reports.
- 3. To develop speaking skills to make technical presentations, participate in group discussions.
- 4. To strengthen listening skills to comprehend technical lectures and talks in their areas of specialization.
- 5. To cultivate writing skills both technical and general.

MODULE I	READING AND STUDY SKILLS	6					
Reading - Readi	Reading - Reading longer technical texts and taking down notes - Note Making strategies; Writing -						
interpreting charts (all the types), graphs - comparing and contrasting statements/paragraphs -							
analysing tech	nical details; Vocabulary Development - Select	Technical Vocabulary; Language					
Development - A	Active Voice and Passive Voice						

	Evaluation Method
i) Visit to the Library - Reading articles on emerging trends and taking down notes in the prescribed format - Submission through FAST FORMS - Minimum 2	i) Content & Structure
 ii) Writing compare and contrast statements. (Eg. Windows 10 Vs Windows 1, RPA Developer Vs RPA Analyst, Edge Computing Vs Quantum Computing) related to the programme. iii) Teaching of Grammar Contents 	 ii) Submission: Fast form Document Submitted document will be assessed for a) Communication Etiquette b) Language Style c) Sentence Construction Activity iii will be assessed through Google form tests/ written tests.
MODULE II INTRODUCTION TO	PROFESSIONAL WRITING 6
select Technical Vocabulary : Language D	evelopment - Subject Verb Agreement. Compound Words.
select Technical Vocabulary ; Language D Suggested Activities:	evelopment - Subject Verb Agreement, Compound Words.
select Technical Vocabulary ; Language D Suggested Activities: i) Visit to the Library - Reading articles on emerging trends and writing down purpose statements	evelopment - Subject Verb Agreement, Compound Words. Evaluation Method i) Content & Structure
select Technical Vocabulary ; Language D Suggested Activities: i) Visit to the Library - Reading articles on emerging trends and writing down purpose statements and extended definitions. Submission through FAST FORMS - Minimum 2	evelopment - Subject Verb Agreement, Compound Words. Evaluation Method i) Content & Structure ii) Submission: Fast form Document Submitted document will be assessed
select Technical Vocabulary ; Language D Suggested Activities: i) Visit to the Library - Reading articles on emerging trends and writing down purpose statements and extended definitions. Submission through FAST FORMS - Minimum 2 ii) Writing a set of 8 Instructions, Recommendations and Checklists for the suggested topics. (each 2 sets) iii) Teaching of Grammar Contents	evelopment - Subject Verb Agreement, Compound Words. Evaluation Method i) Content & Structure ii) Submission: Fast form Document Submitted document will be assessed for a) Format b) Language Style c) Sentence Construction
 select Technical Vocabulary ; Language D Suggested Activities: i) Visit to the Library - Reading articles on emerging trends and writing down purpose statements and extended definitions. Submission through FAST FORMS - Minimum 2 ii) Writing a set of 8 Instructions, Recommendations and Checklists for the suggested topics. (each 2 sets) iii) Teaching of Grammar Contents 	evelopment - Subject Verb Agreement, Compound Words. Evaluation Method i) Content & Structure ii) Submission: Fast form Document Submitted document will be assessed for a) Format b) Language Style c) Sentence Construction Activity iii will be assessed through Google form tests/ written tests.

Francis Xavier Engineering College Dept of	of EEE R2021/Curriculum and Syllabi
Suggested Activities	Evaluation Method
i) Listening to UPSC Toppers Mo Interviews.	Iocki) Answering questions for Interviewquestions(Androidapp based)
	Responses will be assessed for
	a) Fluencyb) Communication etiquettec) Language style
ii) Drafting Job application a	and ii) Submission: Fast form Document
Resume building. iii) Teaching of Grammar Contents	Activity iii will be assessed through Google form tests/ written tests.
MODULE IV REPORT W	WRITING I 6
Writing - Fire accident Report, Industrial V	Visit Report, Project Report; Vocabulary Development-
finding suitable synonyms - paraphrasing	g ; Language Development - Clauses.
Suggested Activities:	Evaluation Method
 a) Profile & Products b) Trending technology adopted c) Careers d) Latest news Min - 2 Industries 	i) Content & Structure
ii) Teaching of Grammar Contents	ii) Activity ii will be assessed through Google
MODULE V REPORT W	WRITING II 6
Writing - Writing Feasibility Reports, Surv verbal analogies ; Language Development	vey Reports, Business Report; Vocabulary Development - t - advanced use of Articles, Prepositional Phrases.
Suggested Activities:	Evaluation Method
 i) Drafting feasibility report on- a) Launching a new product / Technology Min 2 	i) Content & Structure
II) Teaching of Grammar Contents	Activity ii will be assessed through Google form tests/ written tests.
	Total Periods 30
Suggestive Assessment Methods	
L	
	67

Continuous Assessment		Formative Assessment Test	End Semester Exams	
Test (30 Marks)		(10 Marks)	(60 Marks)	
(i) Google Form based - on- line Test		(i) Google Form based - on-line Test incorporating Listening, Speaking and Reading	Written Test	
<u>(ii) Written Test</u> Outcomes				
Upon completion	of the course	the students will be able to:		
		e, the students will be able to.		
CO1	Understa	nd advanced technical texts from var	ied technical genres to	
	understar	idengineering concepts and explore r	nore.	
CO2	rewrite c make thei	echnical contents written on par w ontents using the right vocabulary ir articles published in reputed journa	with international standards and without grammatical errors to als.	
C03	Articulate appropriately in interviews and Group Discussions effortlessly following the strategies expected by the corporate world.			
CO4 Write reports utilizing the required format prescribed on par with internationalstandards using the exact vocabulary to make their reports wo to be read			escribed on par with lary to make their reports worthy	
C05	Appraise	the need for new products and write	feasibility and survey reports	
Toyt Books	following	the format prescribed in a way to cre	ate awareness.	
1. Mike Mark	krl. Technica	ll Communication,Palgrave Macmillar	n: London, 2012.	
2. Sumant,S	and Joyce P	ereira. Technical English II. Chennai	: Vijay Nicole Imprints Private	
Limited, 2	014.			
3. Kumar, Sa	anjay and P	ushp Lata. Communication Skills: A	Workbook. New Delhi: OUP,	
2018.				
Reference Books				

2. Rizvi M, Ashraf. Effective Technical Communication. New Delhi: Tata McGraw-HillPublishing Company Limited, 2007

Web Resources

- 1.1. Interpretation of Charts : <u>https://youtu.be/4lxA7lo9GLU</u> : <u>https://www.englishhints.com/charts-and-graphs.html</u>
- 2. Instructions <u>https://www.wikihow.com/Write-Clear-Instructions</u>
- 3. Resume building <u>https://novoresume.com/career-blog/how-to-write-a-resume-guide</u>
- 4. Report writing <u>https://www.youtube.com/watch?v=FXIuHOFAxos</u>; <u>https://www.deakin.edu.au/students/studying/study-support/academic-skills/report-</u><u>writing</u>
 - 5. UPSC Interview: <u>https://www.youtube.com/watch?v=OhJWg-0qdI0</u>

CO Vs PO Mapping and CO Vs PSO Mapping

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO1 0	P01 1	P01 2	PSO 1	PSO 2
1				2						2	1	1		
2				2							2			
3							2		2	2				
4									2	2	2			
5									1	2	2	1		

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	10	10	5	5	10
UNDERSTAND	30	30	10	10	30
APPLY	60	60	10	10	60
ANALYZE	0	0	0	0	0
EVALUATE	0	0	0	0	0
CREATE	0	0	0	0	0

SUGGESTED COURSE LEVEL ASSESSMENT QUESTIONS:

COURSE OUTCOME 1 (CO 1) : Understand advanced technical texts from varied technical genres to understand engineering concepts and explore more.

- 1) Read the given passage and take notes.
- 2) Analyse the given type of chart or graph and answer the questions given.
- 3) Analyse the given chart or graph and write paragraphs comparing and contrasting the data.
- 4) Analyse the given chart or graph and write paragraphs giving importance to technical details.
- 5) Fill in the blank with appropriate technical vocabulary.
- 6) Convert the given active voice sentence into passive voice or impersonal passive voice.

COURSE OUTCOME 2 (CO 2) : Review technical contents written on par with international standards and rewrite contents using the right vocabulary without grammatical errors to make their articles published in reputed journals.

- 1) Write a purpose statement for the tool or gadget given.
- 2) Write an extended definition for the given word.
- 3) Write 8 instructions / recommendations on the given topic.
- 4) Write the Minutes of the meeting for the given meeting.
- 5) Fill in the blank with appropriate Subject Verb agreement.
- 6) Fill in the blank with suitable compound words.

COURSE OUTCOME 3 (CO 3) : Articulate appropriately in Interviews and Group Discussionseffortlessly following the strategies expected by the corporate world.

- 1) Listening to mock interviews and answering the questions.
- 2) Listen to the strategies of GD and answer the given questions.
- 3) Read and submit a recording of technical content following the strategies of speed reading.
- 4) Write Job application with a cover letter for the given job description.
- 5) Write paragraphs expressing opinion on the given topic.
- 6) Fill in the blank / complete the sentence with appropriate If-Conditionals.

COURSE OUTCOME 4 (CO 4) : Write reports utilizing the required format prescribed on parwith international standards using the exact vocabulary to make their reports worthy to be read.

- 1) Write a fire accident report for the provided incident.
- 2) Write an Industrial visit report.
- 3) Write a report on the Project work undertaken by the candidate giving importance to the current status report and the time needed for the completion of the project.
- 4) Find the appropriate synonym for the given word.
- 5) Paraphrase the given passage.
- 6) Fill in the blank with appropriate clauses.

COURSE OUTCOME 5 (**CO 5**) : Appraise the need for new products and write feasibility and survey reports following the format prescribed in a way to create awareness.

- 1) Write a Feasibility report for a business / project proposal given.
- 2) Write a survey report for the given scenario.
- 3) Pick out the appropriate Verbal Analogy.
- 4) Fill in the blank with appropriate articles.
- 5) Complete the sentence with appropriate Prepositional Phrases.
- 6) Choose the appropriate word to complete the sentence.

21MA2201	PARTIAL DIFFERENTIAL EQUATION AND	L	Τ	Р	С
	APPLICATIONS OF FOURIER SERIES	3	1	0	4

Preamble:

The course consists of topics in Complex Integration, Partial Differential Equations and Laplace Transforms with applications to various engineering problems. This course will cover the following main topics: Construction of analytic function, Taylors and Laurent's series, Poles and Residues, Half range sine series, Harmonic analysis, Fourier Series Solutions of one dimensional wave and heat flow equation and Applications of Laplace transforms for solving linear ordinary differential equations up to second order with constant coefficients.

Prerequisites for the course

Basic knowledge of Partial differentiation and Integration.

Objectives

- 2. To introduce to the concept of Analytical function
- 3. To familiarize with Complex integration
- 4. To introduce Fourier series analysis which is central to many applications in engineering field and its use in solving boundary value problems
- **5.** To acquaint the student with PDE and Fourier series techniques in solving wave and heat flow problems used in various situations.
- **6.** To improve the knowledge of Laplace transform.

UNIT I ANALYTIC FUNCTIONS

9+3

Definition of Analytic Function – Cauchy Riemann equations – Properties of analytic functions – Harmonic function – Harmonic Conjugate - Construction of analytic function by Milne Thomson's method and bilinear transformation

SUGGESTED EVALUATION METHODS:

• Tutorial Problems on Construction of analytic function by Milne Thomson's method

and bilinear transformation.

UNIT II	COMPLEX INTEGRATION	9+3

Complex numbers and its conjugate - Cauchy's integral theorem (without proof) – Cauchy's integral formulae and its higher order derivatives (without proof) and its applications – Taylors and Laurent's series – Types of Singularities – Poles and Residues – Cauchy's residue theorem (without proof).

SUGGESTED EVALUATION METHODS:

• Tutorial Problems on Taylor's series, Laurent's series and Cauchy's residue theorem.

Dirichlet's conditions – General Fourier series – Change of Intervals - Odd and even functions – Half range sine series – Half range cosine series - Root mean square value – Harmonic analysis for Fourier series - Engineering Applications.

9+3

SUGGESTED EVALUATION METHODS:

• Tutorial Problems on Fourier series of Odd and even functions, Half range sine and cosine series, Harmonic analysis.

UNIT IV	PDE AND APPLICATIONS OF FOURIER SERIES	9+3

Classification of PDE – Method of separation of variables - Fourier Series Solutions of one dimensional wave equation – Fourier Series Solutions of one dimensional equation of heat conduction - Engineering Applications.

SUGGESTED EVALUATION METHODS:

• Tutorial Problems on Fourier Series Solutions of one dimensional wave equation and heat conduction equation.

UNIT V	LAPLACE TRANSF	ORMS	9+3
D	Ι	I	(M')

Properties of Laplace Transform – Inverse transforms – Convolution theorem (Without Proof) – Partial fraction - Applications of Laplace transforms for solving linear ordinary differential equations up to second order with constant coefficients only - Engineering Applications.

SUGGESTED EVALUATION METHODS:

• Tutorial Problems on Laplace transform using partial fraction, Convolution theorem and solving ODE.

	Total Periods		45 + 15 = 60 Periods
Suggestive Assessment Methods			
Continuous Assessment Test	Formative Assessment Test	I	End Semester Exams
(20 Marks)	(20 Marks)		(60 Marks)
Francis Xavier Engineering College | Dept of EEE | R2021/Curriculum and Syllabi **1. Descriptive Questions** 1.Assignment **1. Descriptive Questions** 2. Online Quizzes **Outcomes** Upon completion of the course, the students will be able to: CO1 : Apply Cauchy-Riemann equations to problems of fluid mechanics, thermodynamics and electro-magnetic fields. (Apply) CO2: Solve complex valued integral functions using residues. (Apply) CO3: Construct the Fourier series expansion of the periodic function. (Apply) CO4: Solve the problems of one dimensional wave and heat equation. (Apply) CO5: Apply Laplace Transform technique to solve the given ordinary differential equation. (Apply) **Text Books** 1. B. S. Grewal, "Higher Engineering Mathematics", 45rd edition, 2017. 2. Kreyszig.E, "Advanced Engineering Mathematics", John Wiley & Sons. Singapore, 15th edition, 2017. **Reference Books** 1. A Textbook of Engineering Mathematics(Dr. A.P.J. Abdul Kalam Technical University, Lucknow) (For . Gautam Bhudh technical Universities ,Lucknow) January 2020 2. Advanced Engineering Mathematics, H. K. DASS, S. CHAND and Company Limited, New Delhi, 22nd revised edition, 2018. Web Resources 1. https://youtu.be/LGxE_yZYigI 2. Analytic functions - https://voutu.be/b5VUnapu-gshttps://voutu.be/8iPr6rGstYk 3. Complex Integration - https://youtu.be/4yC4IXcMKIg 4. Fourier series - <u>https://youtu.be/LGxE_vZYigI</u> 5. Applications of fourier series - https://youtu.be/YfGHNdVeyB4 6. Laplace Transform - <u>https://youtu.be/c9NibpoQiDk</u>

CO Vs PO Mapping and CO Vs PSO Mapping:

CO	P01	P0 2	РО 3	РО 4	PO5	P06	P07	P08	P09	P 0 10	P 0 11	P 0 12	PSO 1	PSO 2
1	3	2												
2	3	2												
3	3	2										2		
4	3	2										2		
5	3	2												

ASSESSMENT PATTERN :

	AS	SESSMENT	END SEMESTER		
BLOOM'S CATEGORY	CAT – 1	CAT -2	FAT - 1	FAT –2	EXAMINATION
REMEMBER	10	10	5	5	10
UNDERSTAND	30	30	10	10	30
APPLY	60	60	10	10	60
ANALYZE	0	0	0	0	0
EVALUATE	0	0	0	0	0
CREATE	0	0	0	0	0

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1 (CO 1) : (Apply)

- 1. Construct an analytic function whose imaginary part is $v = e^x (x \cos \cos y y)$ sin siny)
- 2. Find the bilinear transformation that maps the points Z = 0, -1, i on to the points *i*, 0, ∞.

COURSE OUTCOME 2 (CO 2) : (Apply)

1) Solve $\int \frac{e^{zz}}{(z+1)^4} dz$ using Cauchy's Integral formula where C is |z| = 2. $\int \frac{2z-1}{z(z+1)(z-3)} dz$

using Cauchy's Residue theorem where C is |z| = 2.

COURSE OUTCOME 3 (CO 3) : (Apply)

2) Compute

- 1) Construct Fourier series for f(x) = x in $(-\pi, \pi)$.
- 2) Construct Fourier series for $f(x) = x^2$ in (-l, l).

COURSE OUTCOME 4 (CO 4) : (Apply)

- 1) Identify the PDE $u_{xx} = a^2 u_{tt}$
- 2) A tightly stretched string with fixed end points x = 0, x = l is initially at rest in its equilibrium position. If it is vibrating, giving each point a velocity $\lambda x(l-x)$. Find the displacement of the string at any time 't'.

COURSE OUTCOME 5 (CO 5) : (Apply)

- 1) Solve $\frac{d^2x}{dt^2} 3\frac{dx}{dt} + 2x = 2$, given x = 0 and $\frac{dx}{dt} = 5$ for t = 0 using Laplace transform method.
- 2) Find the Laplace transform for $\frac{coscosat coscosbt}{t}$.

21ME1502	BASIC CIVIL AND MECHANICAL ENGINEERING	L	T	Р	С
	DASIC CIVIL AND MECHANICAL ENGINEERING	3	0	0	3
Preamble		1			1
This course is	s to provide an insight and inculcate the essentials of Civil and M	Mecha	nical	Eng	ineering
discipline to t	he students of all branches of Engineering and to provide the stu	idents	an i	llustr	ation of
the significant	ce of the Civil and Mechanical Engineering Profession in satisfyi	ng the	soci	etal n	eeds.
Prerequisites	s for the course				
HSC Ph	ysics				
Course Objec	tives				
1. To fami	liarize the materials and measurements used in Civil Engineering.				
2. To prov	ide the exposure on the fundamental elements of civil engineering	structi	ires.		
3. To impa	rt knowledge on the energy sources and sub systems that aid for er	nergy	prod	uctior	l.
4. To enal R & AC	ble the students to distinguish the components and working princip C system.	le of l	C en	gines	,and
5. To illust	rate the construction and working of Power Plant.				
UNIT I	CIVIL ENGINEERING MATERIALS AND SURVEYING			9	
Stones and b	pricks-types, properties and uses-materials for making concre	ete: c	emer	nt- ch	emical
compounds o	f Portland cement, types and storage-fine aggregate-functions-	gradat	ion a	and e	ffect of
impurities-coa	rse Aggregate-functions-quality water for mixing. Plain cement con	ncrete	PCC)	-funct	ions of
various ingred	lients, preparing placing and curing- properties of fresh Concrete an	d hard	lened	conc	rete-
Reinforced cer	nent concrete(RCC)-uses and requirement of good RCC steel proper	ties a	nd us	ses.	
UNIT II	BUILDING COMPONENTS AND STRUCTURES			9	
Foundations-t	ypes, bearing capacity, requirement of good foundations, causes o	f failu	re of	found	lations
Superstructure	e-brick masonry, stonemasonry, beams, columns, lintels, roofing and	floori	ng, pl	asteri	ng
bridges-Classi	fication and components-dams–classification and purposes governin	g sele	ction	of sit	<u>.</u>
UNIT III	ENERGY SOURCES, BOILERS AND TURBINES			9	
Conventional a	nd new & renewable sources of energy, Indian and global energy scenario	, Princ	iple a	nd	
	75				

turbines.	ollers-life tube allu	water tube (one example for each typ	ej, liyulauli	c, steam, and gas
UNIT IV	IC ENGINES, R	EFRIGERATOR AND AIR CONDITI	ONER	9
Four stroke an comparisons, si	d two stroke IC en imple vapour Com	gine cycles, functioning of petrol ar pression refrigerator and window ai	nd diesel en r conditior	ngines– ner.
UNIT V		POWER PLANTS		9
Principle of ope plantsalong wi	eration, constructio th Accessories–sele	n and working of: hydel, steam, diese ection, comparison, merits and dem	el, gas and perits.	nuclear power
		Total F	Periods	45
Suggestive As	sessment Method	S		
Continuous A	Assessment Test	Formative Assessment Test	End S	emester Exams
(30	Marks)	(10 Marks)	(60 Marks)
1.WRITTERN 7	FEST	1.ASSIGNMENT2.ONLINE QUIZZES3.PROBLEMACTIVITIES	1. WRITT	ERN TEST
Course Outco	mes			
Upon comple	tion of the course	, the students will be able to:		
CO1: Measure materials.	distance, area by s	urveying and proper selection and	usage of co	nstruction
CO2: Identify t	he building compo	nents and structures.		
CO3: Illustrate	the energy source	s and functions of Boilers and Turbi	nes.	
CO4: Explain t	he working princip	les of IC engines and refrigeration a	nd Air con	ditioning units.
CO5: Discuss t	he principle operat	tion of different types of powerplant	ts.	
ext Books				
1. Shanmug Hill Publ	gam G and Palanich ishingCo.,NewDelh	namy M S, "Basic Civil and Mechani i,2017.	cal Enginee	ering", Tata McGra
eference Boo	ks			
1. Palaniku	ımar, K. Basic Mecl	nanical Engineering, ARS Publication	s, 2010.	
2. Ramamı	ruthamS.,"Basic Civ	vil Engineering", Dhanpat Rai Publish	ing Co.(P)	Ltd.1999.
3. Seethara	man S., "BasicCivil	Engineering", Anuradha Agencies, 200	5.	
4. Shantha	Kumar SRJ.,"Basic	Mechanical Engineering", Hi-tech P	ublications,	Mayiladuthurai,

Web Resources

- 1. https://nptel.ac.in/courses/105102088/
- 2. <u>https://nptel.ac.in/courses/112107291</u>
- 3. https://archive.nptel.ac.in/courses/112/103/112103262/
- 4. https://archive.nptel.ac.in/courses/112/107/112107208/

CO Vs PO Mapping and CO Vs PSO Mapping

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2
1	3						2					1		
2	3	2					2					1		
3	2	2										1	3	
4	2	2										1	3	
5	3	2											3	

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER					
UNDERSTAND	10	30	5	10	10
APPLY	50	70	15	15	50
ANALYZE	40	0	5		40
EVALUATE					
CREATE					
	100	100	25	25	100

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1:

- 1. Explain with neat sketch prismatic compass and principles of compass surveying.
- 2. Explain plain concrete, its properties and applications.

COURSE OUTCOME 2

- 1. Draw a neat sketch of a reinforced cement concrete column and explain.
- 2. Explain the types of floor suitable for residential and commercial building.

COURSE OUTCOME 3:

- 1. Name any four renewable sources of energy available for power generation. (Remember)
- 2. Explain with a neat sketch the working principle of fire tube boiler. (Understand)

COURSE OUTCOME 4:

- **1.** Explain with a neat sketch the various parts of IC engines and describeits function. (**Understand**)
- 2. Describe the working principle, and applications of air conditioner with a neat sketch.

(Understand)

COURSE OUTCOME 5:

- Explain the factors to be considered for selection of site for thermal power plant & hydroelectric power plant. (Understand)
- 2. Draw the Nuclear Power Plant-Layout with clear explanation. (Understand)

21EE2601	ELECTRIC CIRCUITS AND NETWORK ANALYSIS	L	Т	Р	С
		3	0	0	3
D					

Preamble

This course introduces circuit analysis techniques applied to dc and ac electric circuits. Analyses of electric circuits in steady state and dynamic conditions are discussed. Network analysis is introduced with network parameters and transfer functions. This course serves as the most important prerequisite of all many advanced courses in electrical engineering.

Prerequisites for the course

- Physics For Engineers
- Matrices and Advance Calculus

Objectives

- 1. To develop an understanding of the fundamental elements and laws of Electrical circuits
- 2. To introduce network topology and network theorems to compute parameters of electric network.

3. To understand the resonance circuit and coupled circuits.

4. To learn the transient response of R, L, C circuits.

5. To study	the two port network	k parameter Z or Y or T or h.									
UNIT I	INTRODUCTION '	FO BASIC ELECTRICAL CIRCUITS		9							
Introduction t	o Circuit Elements	- Ohms Law and Kirchhoff's Laws	- Star-D	elta Transformation-							
Voltage and C	urrent Division- So	urce Transformation- Analysis of ci	ircuits u	sing Mesh and Nodal							
analysis-Intro	duction to AC circu	ts-complex power and power facto	or in ac c	ircuits, Balanced and							
unbalanced th	unbalanced three phase circuits.										
UNIT II	NETWORK TOPO	DLOGY AND NETWORK THEOREM	S FOR	9							
		DC CIRCUITS									
Network term	inology - Graph of	a network - Incidence and reduced	inciden	ce matrices – Trees –							
Cutsets - Fund	lamental cutsets -	Cutset matrix – Tie sets - Link curi	rents an	d Tie set schedules -							
Twig voltages	and Cutset schedul	es.									
Network the	orems -Superposit	ion theorem, Thevenin's theore	m, Nor	ton's theorem, and							
Maximum pow	ver transfer theorer	n									
UNIT III	NIT III RESONANCE AND COUPLED CIRCUITS 9										
inductance - N coupled circui coupled circui UNIT IV Natural respo Circuit Analys	inductance - Mutual inductance - Dot rule - Coefficient of coupling - Analysis of multi winding coupled circuits - Series, Parallel connection of coupled inductors - Single tuned and double tuned coupled circuits.UNIT IVTRANSIENT ANALYSIS9Natural response-Forced response -Laplace transform, Application of Laplace transform to Circuit Analysis, Transient response of PC, PL and PLC circuits to excitation by Step Signal										
Impulse Signa	l and exponential	sources - Complete response of	RC, RL	and RLC Circuits to							
sinusoidal exc	itation.			9							
Two port net	works, Z parameter	rs, Y parameters, Transmission (A)	BCD) pa	rameters, Hybrid(H)							
Parameters, Ir	iterconnection of tv	vo port networks, Symmetrical prop	perties o	f T and π networks.							
		Total Peri	ods	45							
Suggestive As	sessment										
Continuous A (30 Mai	ssessment Test [•] ks)	Lab Components Assessments (10 Marks)	End	Semester Exams (40 Marks)							
WRI	FTEN TEST	1.ASSIGNMENT 2.ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES		WRITTEN TEST							
Outcomes											
Upon comple	tion of the course,	the students will be able to:									
1 Apply	the Kirchhoff's laws	and circuit reduction techniques to co	ompute t	he electrical							
2 Apply networ	Apply the network theorems and network topology, to determine the parameters of electric network.										

- **3** Design a tank circuit for given frequency and to analyze the coupled circuits
- 4 Analyze the transient response of RL, RC and RLC circuits.
- **5** Evaluate the parameters of two port network.

Text Books

1. William H. Hayt, Jr. Jack E. Kemmerly and Steven M. Durbin, —Engineering Circuit Analysis||, McGraw Hill Science Engineering, Nineth Edition, 2019.

Reference Books

- 1. S P Ghosh, A K Chakraborty, Network Analysis and Synthesis, Tata McGraw Hill Education Private Limited, 2010.
- 2. Sudhakar and S. P. Shyam Mohan, Circuits and Network Analysis and Synthesis, Fifth Edition, Tata McGraw Hill, 2015.

Web Resources

- 1. https://nptel.ac.in/courses/108104139
- 2. https://nptel.ac.in/courses/108/105/108105159/

CO Vs PO Mapping and CO Vs PSO Mapping

<u> </u>	PO	PO	PO	PO	PO	PO	PO	PO	PO	P01	P01	P01	PSO	PSO
co	1	2	3	4	5	6	7	8	9	0	1	2	1	2
1	3	3		2										3
2	3	3		1										3
3	3	3	3	2										3
4	3	2		3										3
5	3	2												3
4 5	3 3	2 2		3										

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	Lab Components	Model Exam	END SEM EXAM
REMEMBER	10	10	05	05	10
UNDERSTAND	20	20	05	05	20
APPLY	70	50	15	15	50
ANALYZE	0	20	0	20	20
EVALUATE	0	0	0	0	0
CREATE	0	0	0	0	0
	100	100	25	25	100

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Students will be able to Predict the suitable method for....

1. Use Y- Δ and Δ -Y transformation to find R_{th} between points xy (Apply)

2. Solve for Vx&Vy using the super node concept for the circuit shown in Fig. (Apply)

COURSE OUTCOME 2:

1. Apply Norton's theorem to find 'I0' in the circuit given (Apply)

2. For the circuit (fig) given find,

- i. Thevenin's equivalent circuit at terminals A & B.
- ii. How much power would be delivered to a resistor connected to AB if RAB=5 Ω

(Apply)

COURSE OUTCOME 3:

1. Design a resonant circuit with a coil connected in series with a capacitor and resister. The circuit draws a maximum current of 10A when connected to 200V, 50Hz supply. If the voltage across the capacitor is 500V at resonance, find the parameters R, L & C of the circuit and Quality factor. **(Analyze)**

2. A series resonance network consisting of a resistor of 30Ω , a capacitor of 2uF and an inductor of 20mH is connected across a sinusoidal supply voltage which has a constant output of 9 volts at all frequencies. Calculate, the resonant frequency, the current at resonance, the voltage across the inductor and capacitor at resonance, the quality factor and the bandwidth of the circuit. **(Apply)**

COURSE OUTCOME 4:

1. The switch in Fig. was open for a long time but closed at t = 0. Determine expressions for i and v. **(Analyze)**

2. In the circuit of Fig , the switch K1 & K2 are closed at t = 0 secs and switch K2 is opened at t = 5 ms. Find the expression for the resulting value of the current. (Analyze)

COURSE OUTCOME 5:

1. Find hybrid & ABCD parameters of the network (Apply)

2. Determine the Y parameter of the network shown below. (Apply)

	Engineering conege pept of LLL N2021/Currentin and Synabl						
21HS210	TECHNOLOGY IN TAMIL CULTURE	L	Т	Р	С		
21115/210		2	0	0	1		
Preamble							
This co with th	urse is offered to develop technical thinking based on Tamil tradition and to fundamentals of various technologies through Tamil culture and history.	o Acqu	aintst	uden	ts		
Prerequisi and Tamil H	e: The prerequisite knowledge required to study this course is basic knowledge.	owled	ge in 1	Engli	ish		
UNIT I	WEAVING AND CERAMIC TECHNOLOGY		6				
Weaving In Graffition P	ustry during Sangam Age–Ceramic technology–Black and Red Ware Pot otteries	tteries	s (BRV	V) –			
UNIT II	DESIGN AND CONTRIBUTION TECHNOLOGY		6				
Designing and Structural construction House & Designs in household materials during Sangam Age – Building materials and Hero Stones of Sangam Age– Details of Stage Constructions in Silapathikaram - Sculptures and Temples of Mamallapuram - Great Temples of Cholas and other worship places - Temples of Nayaka Period - Type study (Madurai Meenakshi Temple) - Thirumalai Nayakar Mahal - Chetti Nadu Houses, Indo –Saracenic architecture at Madras during British Period.							
UNIT III	MANUFACTURING TECHNOLOGY	6					
Art of Ship Copper and Glass beads described in	Building - Metallurgical studies- Jewells making - Iron industry - Ir gold- Coins as source of history - Minting of Coins – Beads making-indu -Terracotta beads -Shell beads/ bone beats - Archeological evidence Silapathikaram.	on sr istrie: es - G	neltin s Ston emsto	g, st e bea ne t	eel - ads - ypes		
UNIT IV	AGRICULTURE AND IRRIGATION TECHNOLOGY		6				
Dam, Tank,	anda Chuica Cignificance of Kumighi Theorem of Chole Devied Anime	1 7 7					
designed for	ponds, siulce, significance of Kumizni Thoompu of Chola Period, Anima	al Hus	bandr	y - V	Vells		
Conceiving-Ancient Knowledge of Ocean-Knowledge Specific Society.							
Conceiving	c cattle use - Agriculture and Agro Processing - Knowledge of Sea Ancient Knowledge of Ocean-Knowledge Specific Society.	l Hus - Fisł	bandr neries	y - V – P	Vells earl-		
Conceiving- UNIT V	c cattle use - Agriculture and Agro Processing - Knowledge of Sea Ancient Knowledge of Ocean-Knowledge Specific Society. SCIENTIFIC TAMIL & TAMIL COMPUTING	– Fisł	bandr neries 6	y - V – P	Vells earl-		
Conceiving- UNIT V Developme	c cattle use - Agriculture and Agro Processing - Knowledge of Sea Ancient Knowledge of Ocean-Knowledge Specific Society. SCIENTIFIC TAMIL & TAMIL COMPUTING t of Scientific Tamil – Tamil computing–Digitalization of Tamil Books–D	al Hus – Fisł Develo	bandr neries 6 pmen	y - V - P t of	Vells earl-		
Conceiving- UNIT V Developme Tamil Softw	Ancient Knowledge of Ocean-Knowledge Specific Society. Scientific Tamil – Tamil computing–Digitalization of Tamil Books–Dare – Tamil Virtual Academy – Tamil Digital Library – Online Tamil Diction	- Fish - Fish evelo	bandr heries 6 pmen es –Se	y - V – P t of kai	Vells earl-		
Conceiving- UNIT V Developme Tamil Softw Project.	Ancient Knowledge of Ocean-Knowledge Specific Society. Scientific Tamil – Tamil computing–Digitalization of Tamil Books–Dare – Tamil Virtual Academy – Tamil Digital Library – Online Tamil Diction	- Fish evelo	bandr heries 6 pmen es –Se	y - V – P t of ekai	Vells earl-		
Conceiving UNIT V Developme Tamil Softw Project. TOTAL PEI	Ancient Knowledge of Ocean-Knowledge Specific Society. SCIENTIFIC TAMIL & TAMIL COMPUTING t of Scientific Tamil – Tamil computing–Digitalization of Tamil Books–Dare – Tamil Virtual Academy – Tamil Digital Library – Online Tamil Diction IODS	- Fish evelo	bandr heries 6 pmen es –Se	y - V – P t of ekai	Vells earl- 30		
Conceiving UNIT V Developme Tamil Softw Project. TOTAL PEI Course Ou	Ancient Knowledge of Ocean-Knowledge Specific Society. SCIENTIFIC TAMIL & TAMIL COMPUTING t of Scientific Tamil – Tamil computing–Digitalization of Tamil Books–Dare – Tamil Virtual Academy – Tamil Digital Library – Online Tamil Diction IODS tcomes:	evelo	bandr heries 6 pmen es –Se	y - V – P t of kai	Vells earl- 30		
Conceiving UNIT V Developme Tamil Softw Project. TOTAL PER Course Ou At the end	Ancient Knowledge of Ocean-Knowledge Specific Society. SCIENTIFIC TAMIL & TAMIL COMPUTING It of Scientific Tamil – Tamil computing–Digitalization of Tamil Books–Dare – Tamil Virtual Academy – Tamil Digital Library – Online Tamil Diction IODS tcomes: of the course the students will be able to	- Fish evelo	bandr heries 6 pmen es –Se	y - V – P t of ekai	Vells earl- 30		
Conceiving- UNIT V Developme Tamil Softw Project. TOTAL PEI Course Ou At the end	Ancient Knowledge of Ocean-Knowledge Specific Society. SCIENTIFIC TAMIL & TAMIL COMPUTING It of Scientific Tamil – Tamil computing–Digitalization of Tamil Books–Dare – Tamil Virtual Academy – Tamil Digital Library – Online Tamil Diction IODS IODS To learn the techniques adopted in Industries of ancient Tamil culture.	evelo	bandr heries 6 pmen es –Se	y - V – P t of ekai	Vells earl- 30		

CO3	To achieve the ability to think about various production technologies in Tamil Culture.
CO4	To explore the recovery and development of agricultural and water management technicalskills of Tamil culture.
CO5	To enumerate the technical development that Tamil has achieved in the field of science and computer.

CO Vs PO Mapping and CO Vs PSO Mapping

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2
1								1	2	3	1	3		
2								1	3	2	3	2		
3								1	3	2	1	2		
4								3	2	2	3	2		
5								2	3	3	2	3		

TEXT-CUM-REFERENCE BOOKS

- 1. Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL-(in print)
- 2. Social Life of the Tamils The Classical Period (Dr.S.Singaravelu) (Published by: International Institute of Tamil Studies.
- 3. Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu) (Published by: International Institute of Tamil Studies).
- 4. The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by: International Institute of Tamil Studies.)
- 5. Keeladi-'Sangam City Civilization on the bank of river Vaigai'(Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 6. Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay) (Published By: TheAuthor)
- 7. Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu) Journey of Civilization Industo Vaigai (R.Balakrishnan) (Published by:RMRL)–Reference Book

21CS2501	Introduction to Computing using Python	L	T	Р	С
	(Common for AI&DS,CSE,CSBS,ECE,EEE,IT)	3	0	2	4
Preamble					
This course pr	rovides learners an insight into Python programming, and develop	prog	ramn	ning	skills
to manage the	e development of software systems. It covers programming envir	ronm	ents,	impo	ortan
instructions, d	ata representations, intermediate level features, image processing	, exce	eptio	n han	dling
and file data p	rocessing of Python.				
Prerequisites	for the course				
• Probler	n Solving Techniques, Logical Thinking				
Objectives					
 To kno To dev 	ow the features of Python. relop Python programs with conditionals and loops.				
3. To def	ine Python functions and use function calls.				
4. To use	Python data structures – strings, lists, tuples, dictionaries.				
5. To wor	rk with files in Python.				
6. To wor	rk with images.				
UNIT I	INTRODUCTION TO PYTHON PROGRAMMING				
Introduction andIdentifier Values – Oper	to Python Programming – Python Interpreter and Interactive M s – Arithmetic Operators– Values and Types – Statements - Ope rator Precedence – Expression - Conditionals: if, if-else, if elif els	4ode erato e Coi	– Va rs – 1stru	iriabl Boole icts	es ean
UNIT II	LOOPS, FUNCTIONS AND LISTS				
Loop Structure	es/Iterative Statements –Loop Control Statements – List – Add	ing I	tems	to a	List
Finding and U	pdating an Item – Nested Lists –List Concatenation – List Slic	es –	List	Meth	ods
List Loop – Mu	tability. Function Call and Returning Values – Fruitful Function	– Par	rame	eter	
Passing – Loca	l and Global Scope – Recursive Functions.				
UNIT III	STRING, ARRAYS, TUPLES				
Strings: Introc	luction, Indexing, Traversing, Concatenating, Appending, Mult	iplyi	ng, F	forma	attin
Slicing, Comp	aring, Iterating – Basic Built-In String Functions. –Using A	rrays	s wit	th Nu	ump
Vectors and o	operations - vector properties and characteristics, Pandas	- Tu	ples	: Cre	atio
Accessing, Upc	lating, Deleting Elements in a Tuple, Tuple Assignment, Tuple as	s Ret	urn V	/alue	
UNIT IV	DICTIONARY, FILES				
Dictionary: Cr	eating, Accessing, Adding Items, Modifying, Deleting, Sortin	ıg, Lo	oopii	ng, N	leste
Dictionaries B	uilt-in Dictionary Function – Finding Key and Value in a Dictiona	ary.			
	Piles File Medee Original Classics Files Deedless di	Mritin		log	

Francis Xavier Engineering College | Dept of EEE | R2021/Curriculum and Syllabi UNIT V **EXCEPTION HANDLING, IMAGE PROCESSING** 7 Exception: Errors and Exceptions, Exception Handling, Multiple Exceptions. Image Processing - Image File Formats, Image-Manipulation Operations, The Properties of Images, Python Image Library(PIL)- Converting an Image to Black and White/Grayscale, Blurring an Image, Edge Detection and Reducing the Image Size. **Total Periods** 30 Theory +30 Lab Laboratory Requirements • 60 Systems with windows / LINUX operating system withpython IDLE or equivalent. Suggestive Assessment **Continuous Assessment Test** Lab Components Assessments **End Semester Exams** (30 Marks) (20 Marks) (50 Marks) **1. LAB EXPERIMENTS 1. DESCRIPTIVE QUESTIONS 1. DESCRIPTIVE** 2. MODEL EXAMINATION **QUESTIONS** Outcomes Upon completion of the course, the students will be able to: **CO1:** Write Python programs for solving problems using conditional statements. **CO2:** Write Python programs for solving problems using looping statement and list and decompose a Python program into functions. **CO3:** Represent data using Python strings, arrays, tuples, dictionaries and solve computational problems using them and use Numpy and Pandas libraries in real time applications. **CO4:** Develop programs to read and write data from/to files in Python and handle exceptions while dealing with data. **CO5:** Apply the power of graphics for processing images. Text Books 1. Allen B. Downey, "Think Python: How to Think Like a Computer Scientist", Second Edition, Shroff/O'Reilly Publishers, 2016 **Reference Books** 1. Charles Dierbach, "Introduction to Computer Science using Python", Wiley India Edition, 2016. Web Resources Python for Data science - https://onlinecourses.nptel.ac.in/noc20_cs36/course (Unit III -1. Numpy, Pandas) 2. https://www.geeksforgeeks.org/image-processing-in-python-scaling-rotating-shiftingand-edge-detection/ (Unit V)

List of experiments

S.NO	NAME OF EXPERIMENTS	СО
1	 Basic Python Programming a) Alice buys a toy with a selling price of 100 rupees. There is a discount of x percent on the toy. Develop a python program to find the amount Alice needs to pay for it. 	CO1
2	 Python Programs using conditionals – if, if – else, if – elif – else statements b) Write a program that takes cost price and selling price as input and displays whether the transaction is a Profit or a Loss or Neither. a) Chef considers the climate HOT if the temperature is above 2020, otherwise he considers it COLD. You are given the temperature <i>C</i>, write a python program to find whether the climate is HOT or COLD. b) Write a Python Program to read the unit of electricity consumed in a house and calculate the amount to be paidfor the electricity consumed. The bill amount should be calculated as per the given specification: a. For 0 to 100 units the per unit is ₹ 0/- b. For 0 to 200 units, for the first 100 units, the consumer shall pay ₹ 1.5 per unit. c. For 0 to 500 units, the consumer shall pay ₹ 2 per unit, for the next 300 units the unit cost is ₹3.00/- 	CO1
	 Python Programs using looping statements a) Implement Python Script to generate first N natural numbers. b) Implement Python Script to check given number is palindrome or not. c) Implement Python script to print factorial of a number. d)Implement Python Script to check given number is Armstrongor not. e) Square the Digits : Given a two digit number, calculate the sum of square of the digits. Repeat the same for the output till any of the number in series repeats. Output should be the first number that repeats in the process. Sample : Input : 13 	

Francis Xavie	r Engineering College Dept of EEE R2021/Curriculum and Syllabi	
3	Explanation : (' $^$ ' denotes power in this explanation)Step 1 : $1^2 + 3^2 = 1 + 9 = 10$ Step 2 : $1^2 + 0^2 = 1 + 0 = 1$ Step 3: $1^2 = 1$	CO2
	1 repeats hence output should be "1" Output: 1	
	Input: 7	
	Explanation: Step 1 : $7 \ ^2 = 49$ Step 2 : $4 \ ^2 + 9 \ ^2 = 16 + 81 = 97$ Step 3 : $9 \ ^2 + 7 \ ^2 = 81 + 49 = 130$ Step 4: $1 \ ^2 + 3 \ ^2 + 0 \ ^2 = 1 + 9 + 0 = 10$ Step 5 : $1 \ ^2 + 0 \ ^2 = 1 + 0 = 1$ Step 6: $1 \ ^2 = 1$ 1 repeats hence output should be "1" Output: 1	
4	 Python Programs using Functions a) Write a program which makes use of function to display all such numbers which are divisible by 7 but are not a multiple of 5, between 1000 and 2000. b) Have the function CodelandUsernameValidation(str) take the str parameter being passed and determine if the string is a valid username according to the following rules: The username is between 4 and 25 characters. It must start with a letter. It can only contain letters, numbers, and the underscore character. 4. It cannot end with an underscore character.If the username is valid then your program should return the string true, otherwise return the string false. Examples Input: "aa_" Output: falseInput: "u_hello_world123" 	CO2
	Output: truePython Programs using Lista) Write a program which accepts a sequence of comma- separated numbers from console and generate a list and a tuple which contains every number. Suppose the following input is supplied to the program: 34, 67, 55, 33, 12, 98. Then, the output should be: ['34', '67', '55', '33', '12', '98'] ('34',67', '55', '33', '12', '98').	

Tanels Navier Engineering conege Dept of LEE N2021/ Currentian and Synabl	
 b) In this program, create a list of numbers from 1 to 50 named list_1. The numbers should be present in the increasing order: Ex list_1 = [1,2,3,4,5,,50] i.e. index zero should be 1, index one should be 2, index two should be 3 and so on. Given an input let's say a, you have to print the number of elements of list_1 which are divisible by a, excluding the element which is equal to a. Input: Number a Output: In a single line, the number of elements (i.e. the count and not the elements) which are divisible by a. Example: Input: 24 Output: 1 c) In this program, create a list of numbers from 1 to 50 named list_1. The numbers should be present in the increasing order: Ex list_1 = [1,2,3,4,5,,50] i.e. index zero should be 1, index one should be 2, index two should be 3 and so on. Given an input let's say a, you have to print the number of elements of list_1 which are divisible by a. excluding the element which is equal to a. Input: Number a Output: In a single line, the number of elements (i.e. the count and not the elements x and y, use counter variables to find which element appears most in the list, x or y. If both elements have the same frequency, then return the smaller element. Write a Python program to implement the above said statement. Note: We need to return the element, not its count. Example 1: Input: N = 11 l = [1,1,2,2,3,3,4,4,4,5] x = 4, y = 5 Output: 4 Explanation: frequency of 4 is 4. frequency of 5 is 1. Example 2: Input: N = 81 = [1,2,3,4,5,6,7,8] x = 1, y = 7 Output: 1 Explanation: frequency of 1 is 1. frequency of 7 is 1. Since 1 < 7, return 1. 	3
Python Programs using String, Tuples, Numpy array and Pandas. a) Accepts a string and calculate the number of upper caseletters and lower case letters.	
b) Write a python program to check whether the given string is palindrome or not	
c)Create all possible strings by using 'a', 'e', 'i', 'o', 'u'. Use the	
characters exactly once.	
by the Last Element in Each Tuple	
e) Use mtcars.csv dataset do the following:	

Francis Xavier	Engineering (College Dept	of EEE R202	1/Curriculum	and Syllabi	
		What is the set?	type of each v	ariable of the r	ntcarsdata	
	0	Divide the c columns that car.	column that has at contain the m	the car name and mode	into l of the	CO2
0	0	Do all observatue? If the them? (Hint	rvations have a ere are missing , use Google to	make and moo values, can yo help you.)	del ou fix	05
	0	Some car co this data Cl made and Pontiac GM and Lin Ford. Create in the make Create a nan a character character, if	ompanies have hrysler, Plymo by Chry are ncoln and Ford e a company v variable me for use in string compo the company	more than on uth, and Dodg ysler. Likewise are both ariable based of displaying res osed of make name is not th	e make. In ge were all e Cadillac nade by made by on the data sults that is e, a space ne same as	
		and model.	en the compan	y in parenthese	es (),	
	f) Write a j	python prog	ram to sort t	he DataFram	e first by	
	Sample Pyth	on dictionary	y data and list	labels:	ing of uct.	
	exam_data =	{'name': ['A	nastasia', 'Dim	a', 'Katherine',	'James',	
	'Emily', 'Mic	hael', 'Matth	ew', 'Laura', '	Kevin', 'Jonas	'],'score':	
	[12.5, 9, 16.5	, np.nan, 9, 20	0, 14.5, np.nan,	, 8, 19],'attemp	ts': [1, 3,	
	2, 3, 2, 3, 1, 1	1, 2, 1], qualify	y: ['yes', 'no', 'y	'es', no', no', y	ves', 'yes',	
	Values for ear	15 Iaueis – La ch column wi	1, 0, 0, u, e, 11 be:	ı, g, II, I, J		
	name : "Sure	sh", score: 1:	5.5, attempts:	1, qualify: "ve	s", label:	
	"k"	,	, r	1	· · ·	
	Expected Ou	tput: Orgina	l rows:			
		name	score	attempts	qualify	
	a	Anastasia	12.5	1	yes	
	b	Dima Katharing	9.0	3	no	
	C d	Katherine	10.3 NaN	23	yes	
		Fmilv	9 A	5 2	110 no	
	f	Michael	20.0	$\frac{2}{3}$	Ves	
	φ	Matthew	14.5	1	ves	
	ĥ	Laura	NaN	1	no	
	i	Kevin	8.0	2	no	
	j	Jonas	19.0	1	yes	
	Sort the data	frame first by	/ 'name' in desc	ending order, t	then by	

Francis Xavie	r Engineering Colleg	ge Dept of E	EE R2021/Curi	riculum and Syllabi	
	'score' in ascendin	g order:			
	name	score	attempts	qualify	
	a Anastasia	12.5	1	yes	
	b Dima	9.0	3	no	
	c Katherine	16.5	2	yes	
	d James	NaN	3	no	
	e Emily	9.0	2	no	
	f Michael	20.0	3	yes	
	g Matthew	14.5	1	yes	
	h Laura	NaN	1	no	
	i Kevin	8.0	2	noJonas	
	19.0	1	yes		
	Python Programs u	ising Diction	ary		
	a)Create a dictionation	ary and apply	y the following m	ethods 1) Print the	
7	dictionary items 2	CO3			
	use len()				
	b) Write a Pytho				
	dictionary.				
	Python Programs u	ising Files			
	a) Write Python sc				
8	b) Write Python	CO4			
0	another.	04			
	c) Write a Python				
	letters blank space				
	Python Programs u	ising Excepti	ons		
	Write a Python pro	gram to solv	e the following: (Use Exception	
	Handling)	gruin to solt	e die fono ving. (
	You are given a str				
	regex or not.				
	Input Format				
	The first line conta				
	The next lines con				
	Constraints: 0 <t< td=""><td></td></t<>				
	Output Format				
9	Print "True" or "Fa	lse" for each	test case without	quotes.	CO4
	Sample Input				
	2				
	.*\+				
	.*+				
	Sample Output				
	True				
	Fals				
	e				
	Explanation				
	.*\+ : Valid regex.				
	.*+: Has the error	nultiple repe	at. Hence, it is inv	valid.	

10	Calculation of the Area : Don't measure	000	
10	Monte Hall : 3 doors and a twist	CO2	
	Sorting : Arrange the books		
	Searching : Find in seconds		
11	Anagram	CO2	
	Lottery Simulation - Profit or Loss		
	Simulate a password generator		
12	Simulate a grade book for a teacher	CO2	
	Rock Paper and Scissor.		
	Python Program for:		
13	Converting an Image to Black and White/Grayscale	CO5	
	Blurring an Image, Edge Detection and Reducing the Image Size		

CO Vs PO Mapping and CO Vs PSO Mapping

CO	PO	P01	P01	P01	PSO	PSO								
LU	1	2	3	4	5	6	7	8	9	0	1	2	1	2
1	2	2	2	1	1									3
2	1	2	1	1	1									3
3	1	2	1	1	1									3
4	1	1	1	2	1									2
5	2	2	2	2	1									2

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	Lab Components	Model Exam	END SEM EXAM
REMEMBER	10	10			10
UNDERSTAND	10	10			20
APPLY	80	80	100	100	70
ANALYZE					
EVALUATE					
CREATE					
	100	100	100	100	100

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1:

- 1. Write a Python Program to read the unit of electricity consumed in a house and calculate the amount to be paid for the electricity consumed. The bill amount should be calculated as per the given specification:
- a. For 0 to 100 units the per unit is $\gtrless 0/-$
- b. For 0 to 200 units, for the first 100 unit the per unit cost is zero and the next 100 units, the consumer shall pay ₹ 1.5 per unit.
- c. For 0 to 500 units, the consumer shall pay ₹ 0 for the first 100 units, for the next 100 units the consumer shall pay ₹ 2 per unit, for the next 300 units the unit cost is ₹3.00/-

(Apply)

2. Chef and Chefina are at positions X and Y on a number line. They both love badminton. It is known that badminton courts are located at every integer point. They want to find a court such that the maximum distance travelled by either of them is **minimized**. Formally, suppose they choose the badminton court at position Z. You need to find the minimum value of max(|X-Z|, |Y- Z|)max(|X-Z|,|Y-Z|) across all possible choices of Z. Here, |X| denotes absolutevalue of X. Write a Python Program to Report this minimum value.

Input Format

The first line of input will contain a single integer T, denoting the number of testcases.

Each test case consists of two space-separated integers X and Y.

Output Format

For each test case, output the minimum possible value of \max(|X-Z|, |Y-

Z|)max(|X-Z|,|Y-Z|).

Constraints

3. Develop a Python Program to Check if a Date is Valid and Print the Incremented Date if it is. (Apply)

COURSE OUTCOME 2:

- 1. Write a Python Program to Read a Number n and Compute n+nn+nnn. (Apply)
- 2. Write a program to find Sum of Digit of a Number using Recursion in Python. (Apply)
- 3. Differentiate break and continue. (Understand)

COURSE OUTCOME 3:

1. What is printed by the following statements?

(Apply)

s = "engineering"

r = ""

for item in s:

r= item.upper() + rprint(r)

- 2. Is string is mutable. Justify your answer. (Understand)
- 3. Write a Python Program to count the number of lowercase letters and uppercaseletters in a string. (Apply)

COURSE OUTCOME 4:

1. What happens if the file is not found in the following Python code? (Apply)

```
a=False
```

while not a: try: f_n = input("Enter file name") i_f = open(f_n, 'r') except:

print("Input file not found")

2. Write a Python Program that Reads a Text File and Counts the Number of Times a Certain Letter Appears in the Text File. (Apply)

3. Write a Python Program to Extract Numbers from Text File. (Apply)

4. Write a Python Program to merge two files into a third file. (Apply)

COURSE OUTCOME 5:

1. Write a python program to convert RGB image to Black and white Image. (Apply)

2. How will you handle exception when it is raised? Explain. (Understand)

ENGINEERING WORKSHOP

Prerequisites for the course

Basic Science

Preamble

Workshop is a hands-on training practice to Mechanical, EEE, Civil engineering students. It deals with fitting, carpentry, sheet metal, welding, Plumbing, Masonry & Concrete, electrical wiring and related exercises. Also, it will induce the habit of selecting right tools, planning the job and its execution

Objectives

To provide exposure to the students with hands on experience on various basic engineering practices in Civil, Mechanical, Electrical and Electronics Engineering.

S.No	List of Experiments	СО
1	Study of joints in roofs	C107.1
2	Hands-on-practice: T joint	C107.1
3	Preparation of Butt joints, lap joints and T joints by shielded metal arc welding	C107.2
4	Forming and Bending - Model Making-Tray, Funnel, dustpan	C107.2
5	Study of pipeline joints, its locations and functions; valves, taps, couplings, unions, reducers, elbows in household fittings	C107.3
6	Hands-on-exercise: Basic pipe connections, mixed pipe material connections, pipe connections with different joining components	C107.3
7	Study of basic construction materials, masonry and concretes	C107.3
8	Residential house wiring using switches, fuse, indicator, lamp and energy meter	C107.4
9	Fluorescent lamp wiring	C107.4
10	Earthing Techniques	C107.4
11	Stair case wiring	C107.4
12	Go down Wiring	C107.4
13	Study of Electronic components and equipment's- Resistor Color Coding and CRO	C107.5
14	Study of logic gates AND, OR, EX-OR and NOT	C107.1
15	Soldering practice – Components Devices and Circuits – Using general purpose PCB	C107.6

г

S.No.	List of Projects	Related Experiment	СО
1.	Making a Switch Board		C107.1
2.	Making a Tool Stand	Carpentry	C107.1
3.	Making a Table Drawer		C107.1
4.	Fabrication of Footstep Pedastal		C107.1
5.	Making a Welding Fixtures		C107.2
6.	Making a Sheet Metal Bending Machine	Welding	C107.2
7.	Fabrication of Metal Box		C107.2
8.	Fabrication of Welding Chute		C107.2
9.	Fabrication of Tool Box	Sheet Metal	C107.2
10.	Fitting water pipeline to wash basin	Plumbing	C107.3
11.	Construct of partition wall using Flemish bo	ond Masonry & Concrete	C107.3
12.	Grade of Concrete		C107.3
13.	House Wiring	1. Fluorescent Wiring 2. Staircase Wiring 3. Go down Wiring 4. Residential House Wiring	C107.4
14.	GSM based House Monitoring Control Syste	m Soldering Practice – Component Devices & Circuits	C107.6
15.	Android based electrical appliance control	Soldering Practice – Component Devices & Circuits	C107.6
Suggestiv	e Assessment Methods	I	
	Lab Components Assessments	End Semester Exar	ns
	(50 Marks)	(50 Marks)	
	50	50	

Outcome	5						
Upon con	pletion of the course, the students will be able to:						
01	Fabricate carpentry components						
CO 2	Use welding equipment's to join the structures and sheet metal works						
CO 3	Perform basic plumbing operations and concrete study						
CO 4	Carry out basic home electrical works and appliances						
CO 5	Measure the electrical and electronic Parameters and quantities						
CO 6	Elaborate on the components, gates, soldering practices						
Laborator	y Requirements						
1	CIVIL	15 Cata					
1	Assorted components for plumbing consisting of metallic pipes,	15 Sets					
	Plastic pipes,						
	flexible pipes, couplings, unions, elbows, plugs and other fittings						
2	Carpentry vice (fitted to work bench)	15 Nos					
3	Standard woodworking tools	15 Sets					
4	Models of industrial trusses, door joints, furniture joints	5 Nos					
5	Power Tools:	2 Nos.					
	Demolition	2 Nos.					
	Hammer	2 Nos.					
	Hand						
	Drilling						
	Machine						
	Wooden Cutter						
	MECHANICAL						
1	Arc welding transformer with cables and holders	5 Nos.					
2	Welding booth with exhaust facility	5 Nos.					
3	Welding accessories like welding shield, chipping hammer, Wire	5 Sets					
	brush, etc.,						
4	Power Tool: Angle Grinder	2 Nos.					
5	Sheet metal working tools	15 Sets.					
6	Standard working tools	15 sets					
	ELECTRICAL	1					
1	Assorted electrical components for house wiring	15 Sets					
		1					

2	Electrical Measuring Instruments	10 Sets						
3	Study purpose items: Iron box, fan and regulator, emergency lamp	1 Each						
4	Megger (250V/500V)	1No.						
5	Power Tools: (a) Range Finder (b) Digital Live-wire detector	2 Nos						
	ELECTRONICS							
1	Soldering guns	10 Nos.						
2	Assorted electronic components for making circuits	50Nos.						
3	Small PCBs	10 Nos.						
4	Multimeters	10Nos.						
Text Boo	ks							
1. Jey	rachandran K., Natarajan S. & Balasubramanian S., "A Primer on Engineer	ing Practices						

Laboratory", Anuradha Publications, 2007.

2. Jeyapoovan T., Saravanapandian M. & Pranitha S., "Engineering Practices Lab Manual", Vikas Puplishing House Pvt.Ltd, 2006.

- 3. Bawa H.S., "Workshop Practice", Tata McGraw Hill Publishing Company Limited, 2007.
- 4. Rajendra Prasad A. & Sarma P.M.M.S., "Workshop Practice", Sree Sai Publication, 2002.

Web Resources

1. https://mechanicalenotes.com/engineering-workshop/

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2
1	3	2	2						1			1	3	
2	2	3	2						1			1	3	
3	3	3	1						1			1	3	
4	3	2	2						1			1	3	
5	2								1				1	

CO Vs PO Mapping and CO Vs PSO Mapping

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Students will be able to fabricate carpentry components (Apply)

COURSE OUTCOME 1: Students will be able to fabricate carpentry components (Apply)

1) Make a T-lap joint from the given wood pieces as shown in the drawing.

2) Make a dovetail joint from the given wooden work piece as per the drawing given below.

COURSE OUTCOME 2: Students will be able to Use welding equipment's to join the structures and sheet metal works (Apply)

1. Make a Lap joint from the given pieces using arc welding as shown in the drawing.

1. Prepare a 'T' joint from the given M.S. plates using arc welding as shown in thediagram

2. Prepare a 'Butt' joint from the given M.S. plates using arc welding as shown in the diagram

COURSE OUTCOME 3: Students will be able to perform basic plumbing operations

1. Make a pipe fitting connections from the given GI / PVC pipes and fittings as shownin the drawing.

3. Prepare the GI / PVC Pipe joint by using the given pipes and fittings as per thediagram given below.

3. Study of basic construction materials, masonry and concretes COURSE OUTCOME 4: Students will be able to carry out basic home electricalworks and appliances.

1. Make an industrial illumination circuit wiring using switches, fuse, indicator, lampand energy meter.

COURSE OUTCOME 5: Students will be able to measure the electrical and electronic parameters and quantities

1. Conduct an experiment using a starter to show the lamp will continue to glow even

when starter is removed.

COURSE OUTCOME 6: Students will be able to elaborate on the components,

gates, soldering practices

1. Assemble the below circuit in the given board and verify the connectivity of the circuit using multimeter and disassemble the components from the board.

		1			1					
21FF2611	ELECTRICAL CIRCUIT	L	Т	Р	С					
2122011	ANALYSIS LABORATORY 0 0 4 2									
Prerequisites	for the course									
Matrice	es and Calculus									
Physics	For Engineers									
Preamble										
The significan	ce of the Electrical Circuits and Simulation Lab is renowned i	n the	vari	ous fi	elds					
of engineering	g applications. For an Electrical Engineer, it is obligatory to	have	the	prac	tical					
ideas about th	e Electrical Circuits and Simulation. By this perspective we	have	intr	oduc	ed a					
Laboratory ma	anual cum Observation for Electrical Circuits and Simulation. T	'he ma	anua	l uses	s the					
plan, cogent a	nd simple language to explain the fundamental aspects of Ele	ectrica	ıl Cir	cuits	and					
Simulation in	practical. The manual prepared very carefully with our level l	best. I	t giv	ves al	l the					
steps in execut	ting an experiment.									
Objectives										
1. To simulate	various electric circuits using MATLAB and gain practical expe	erienc	e on	elect	ric					
circuits.										
2. To gain prac	ctical experience on verification of theorems.									
3. To impart k	nowledge of measurement using CRO.									
4. To instil pra	ctical experience on RL, RC and RLC circuits.									
5. To learn pra	ctically resonance and three phase circuits.									
S.No	List of Experiments			CO						
1	Simulation and experimental solving of electrical circuit			1						

		01						
	problems using Kirchhoff's voltage and current laws.							
2	Simulation and experimental solvingproblems usin Theyenin's theorem	ıg	2					
3	Simulation and experimental solving of electrical circuit 2							
4	problems using Norton's theorem.Simulation and experimental solving problems using2							
5	Superposition theorem. Simulation and experimental verification of Maximum		2					
	Powertransfer Theorem.							
6	Simulation and experimental verification of Reciproc	ity	2					
	Theorem and Milliman's Theorem							
7	Study of analog and digital oscilloscopes and		3					
	measurement of sinusoidal voltage, frequency and power factor.							
8	Simulation and Experimental validation of RL and RC		4					
	electricalcircuit transient.							
9	Simulation and Experimental validation of frequency		4					
	response of RLC electrical circuit transient.							
10	Design and Simulation of series and parallel resonance		4					
	circuit.							
11	Simulation of three phase balanced and unbalanced star, deltanetworks circuits.	5						
12	Determination of average value, rms value, form factor, peak factor of sinusoidal wave, square wave using hard ware anddigital simulation.		5					
S.No	List of Projects		Related	•				
•	L	E	xperiment					
1.	24V/12V Battery Voltage Level Indicator	1,2	2,	1				
2.	Liquid Dispenser For Bottling Plants	2,3	3,4,5,6	2				
3.	On/Off Remote Control For Two Appliances	1,2	2,3,4,5,6	1,2				
4.	DIY electronic Piano	2,3	3,4,5,6	2				
5.	Brightness controller	2,3	3,4,5,6	2				
6.	Security Alarm For Two-Wheelers	2,3	3,4,5,6	2				
7.	Smart fan	7-1	12	3,4				
8.	UP down fading LED light	7-1	12	4				
	Electronic repellent7-12							
9.		TV remote control jammer7-125						
9. 10.	TV remote control jammer	7-	12	C				
9. 10. 11.	TV remote control jammer Non-contact AC line detector	7- 7-	12 12	5				
9. 10. 11. 12.	TV remote control jammer Non-contact AC line detector Music reactive LED	7- 7- 7-	12 12 12	5 5				

14.	Water level sensing device	7 - 12	5	
15.	Continuity tester circuit		7 - 12	5
Suggestive	Assassment Methods			
Lab Comn	onents Assessments	End Semes	ter	
	-)		Marka)	
(60 Marks	5j	Exams(40	магкѕј	
Record No	oteViva	Experimen	it	
Model Exa	imination	Viva		
Upon con	, pletion of the course, the stu	dents will be able (to:	
CO1	Conduct tests on basic electr	ic circuits and able	to verify the laws and p	rincipl
	of electrical circuits.			•
CO2	Perform practical verification	n of theorems.		
<u>CO3</u>	Perform measurements using	g CRO.		• • • • •
<u>C04</u>	Perform practical verification	OF RL, RC and RLC	AR /o. Sim /Scilab	ircuits
Laborator	v Requirements	Sing I SI ICE/ MATE	AD/ C-SIIII/ SCIIAD	
LIST OF E	OUIPMENT FOR A BATCH OF 3	80 STUDENTS:		
1. Regulate	ed Power Supply: 0 – 15 V D.C -	10 Nos / Distributed	d Power Source.	
2. Function	n Generator (1 MHz) - 10 Nos.			
3. Single P	hase Energy Meter - 1 No.			
4. Oscillos	cope (20 MHz) - 10 Nos.			
5. Digital S	torage Oscilloscope (20 MHz) –	1 No.		
6. 10 Nos.	of PC with Circuit Simulation So	ftware (min 10 Use	rs) (e-Sim / Scilab/Pspi	ce /
MATLAB /	other Equivalent software Pack	age) and Printer (1	No.)	
7. AC/DC -	Voltmeters (10 Nos.), Ammeter	s (10 Nos.) and Mul	ti-meters (10 Nos.)	
8. Single P	hase Wattmeter – 3 Nos.			
9. Decade	Resistance Box, Decade Inducta	nce Box, Decade Cap	oacitance Box - 6 Nos ead	ch.
10 Circuit	Connection Boards - 10 Nos.			
11. Necess	ary Quantities of Resistors, Indu	ictors, Capacitors of	f various capacities (Qua	rter Wa
to 10 Watt)			
Reference	e Books			
1. Lab	manual			
Web Reco	urses	nob-75		
1 DTT	35777 viao amrita equi/(siin=18)h	$\Gamma \cap \Pi = / \Im$		

CO Vs PO Mapping and CO Vs PSO Mapping

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2
1	3		2	3		3				2		2	3	
2	3		2	3		3				2		2	3	
3	3		2	3		3				2			3	
4	3			3		3				2			3	
5	3			3		3				2		2	3	

CO Vs PO Mapping and CO Vs PSO Mapping

1- Low, 2- Medium, 3- High

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CO1	CO2	CO3	CO4	CO5	MODEL EXAM	END SEM EXAM
REMEMBER	0	0	0	0	0	0	0
UNDERSTAND	40	40	40	40	40	40	20
APPLY	60	60	60	60	60	60	40
ANALYZE	0	0	0	0	0	0	0
EVALUATE	0	0	0	0	0	0	0
CREATE	0	0	0	0	0	0	0

COURSE LEVEL ASSESSMENT QUESTIONS COURSE OUTCOME 1:

- 1. Draw a two loop resistive network with a voltage source. Do the KCL and KVL verification.
- 2. Convert the circuit into a single voltage source with internal resistance by suitable theorem.

COURSE OUTCOME 2: CO2 (Apply)

1. Conduct an experiment to determine the current through the 100Ω resistor for the given circuit using Thevenins theorem and compare with

1. Conduct an experiment to determine the current through the 100Ω resistor for the given circuit using superposition theorem and compare with theoretical result

COURSE OUTCOME 3: CO3 (Understand)

- 1. Infer the measurement of sinusoidal voltage, frequency and power factor using digital oscilloscopes
- 2. For an Input of 5 V 250 KHz for sinusoidal and square wave calculate the time period manually and plot it using suitable experiment. Compare the results

COURSE OUTCOME 4: CO4 (Apply)

- 1. Construct steady state analysis of series and parallel resonance circuits with sinusoidal excitation.
- 2. Design a parallel resonance circuit for a frequency of 2KHz with R= $1K\Omega$, C= $0.6\mu f$ and simulate it by using any one of simulation tool.

COURSE OUTCOME 5: CO5

- 1. Problems on analysis of balanced and unbalanced Y/Δ configurations.
- 2. Use circuit simulation software to build the three phase circuit under unbalanced condition as shown with magnitude of 220V50Hz, Va = 190 $\angle 0$ o, line impedance of 5+j6 Ω , load impedance of 20+j20 Ω and analyze it by observing line currents, neutral current, power loss in each line and power factor of each phase.

REQUI	REQUIREMENTS									
SL.No	Name of the Equipments / Software	Required	Available	Deficiency %						
1	FUNCTION GENERATORS 1 MHZ	10	10	0						
2	SINGLE PHASE ENERGY METER	1	1	0						
3	OSCILLOSCOPE 20MHZ	10	10	0						
4	DIGITAL STORAGE OSCILLOSCOPE20MHZ	1	1	0						
5	PC WITH CIRCUIT SIMULATION SOFTWARE	10	10	0						
6	PRINTER	1	1	0						
7	AC OR DC VOLTMETERS	10	10	0						
8	AC OR DC AMMETERS	10	10	0						
9	MULTIMETERS	5	5	0						
College Dept of EEE R202	1/Curriculum and	Syllabi								
---	---	---	---							
NGLE PHASE	3	3	0							
ECADE RESISTANCE	6	6	0							
ECADE INDUCTANCE	6	6	0							
ECADE CAPACITANCE OX	6	6	0							
IRCUIT CONNECTION DARD	10	10	0							
ECESSARY UNATITIES OF ESISTOR INDUCTORS APACITORS OF ARIOUSCAPACITIES	25	25	0							
EGULATED OWERSUPPLY 0	10	10	0							
	College Dept of EEE R202 NGLE PHASE ATTMETER ECADE RESISTANCE DX ECADE INDUCTANCE DX ECADE CAPACITANCE DX ECADE CAPACITANCE DX ECADE CAPACITANCE DX ECADE CAPACITON DARD ECESSARY JNATITIES OF ESISTOR INDUCTORS APACITORS OF ARIOUSCAPACITIES EGULATED DWERSUPPLY 0	College Dept of EEE R2021/Curriculum andNGLE PHASE ATTMETER3CADE RESISTANCE DX6CADE RESISTANCE DX6CADE INDUCTANCE DX6CADE CAPACITANCE DX6CADE CAPACITANCE DX6RCUIT CONNECTION DARD10CESSARY JNATITIES OF ESISTOR INDUCTORS APACITORS OF ARIOUSCAPACITIES25EQULATED DWERSUPPLY 010	College Dept of EEE R2021/Curriculum and SyllabiNGLE PHASE ATTMETER33SCADE RESISTANCE DX66SCADE INDUCTANCE DX66SCADE INDUCTANCE DX66SCADE CAPACITANCE DX66SCADE CAPACITANCE DX66SCADE CAPACITANCE DX1010SCADE CAPACITON DARD1010SCADE CAPACITORS ARD2525SISTOR INDUCTORS APACITORS OF ARIOUSCAPACITIES1010SGULATED OWERSUPPLY 01010							

Semester III

21HS3101	ETHICS AND VALUES	L	Т	Р	C
				0	3
Preamble					

The course is designed with the purpose of helping students in developing a holistic perspective about life. It opens the space for the student to explore his/her role (value) in all aspects of living – as an individual, as a member of a family, as a part of the society and as a unit in nature.

Prerequisites for the course

• Nil

Objectives

- To help students distinguish between values and skills.
- To help students identify what they 'really want to be' in their life and profession.
- To help students understand the meaning of happiness and prosperity for a human being.

• To facilitate the students to understand harmony at all the levels of human living, and live accordingly.

• To facilitate the students in applying the understanding of harmony in existence in their profession and lead an ethical life.

- 1. Understanding the need, basic guidelines, content and process for Value Education
- 2. Self Exploration–what is it? its content and process; 'Natural Acceptance' and Experiential Validation- as the mechanism for self exploration
- 3. Continuous Happiness and Prosperity- A look at basic Human Aspirations
- 4. Right understanding, Relationship and Physical Facilities- the basic requirements for fulfillmentof aspirations of every human being with their correct priority
- 5. Understanding Happiness and Prosperity correctly- A critical appraisal of the current scenario

Method to fulfill the above human aspirations: understanding and living in harmony at various levels.

SUGGESTED EVALUATION METHODS:

Include practice sessions to discuss natural acceptance in human being as the innate acceptance

for living with responsibility (living in relationship, harmony and co-existence) rather than as

arbitrariness in choice based on liking-disliking

MODULE 2	Understanding Harmony in the Human Being -	9
	Harmony in Myself	

- 1. Understanding human being as a co-existence of the sentient 'I' and the material 'Body'
- 2. Understanding the needs of Self ('I') and 'Body' Sukh and Suvidha (happiness and physical facility)
- 3. Understanding the Body as an instrument of 'I' (I being the doer, seer and enjoyer)
- 4. Understanding the characteristics and activities of 'I' and harmony in 'I'
- 5. Understanding the harmony of I with the Body: Sanyam(control) and Swasthya (Health); correct appraisal of Physical needs, meaning of Prosperity in detail
- 6. Programs to ensure Sanyam and Swasthya

SUGGESTED EVALUATION METHODS:

Include practice sessions to discuss the role others have played in making material goods available to me. Identifying from one's own life. Differentiate between prosperity and accumulation. Discuss programs for ensuring health vs dealing with disease.

MODULE 3	Understanding Harmony in the Family and	9
	Society- Harmony inHuman-Human Relationship	

- 1. Understanding the meaning of *Vishwas*; Difference between intention and competence
- 2. Understanding the meaning of *Samman* (respect), Difference between respect and differentiation; the other salient values in relationship
- 3. Understanding the harmony in the society (society being an extension of family):

Samadhan, Samridhi, Abhay, Sah-astitva (Resolution, Prosperity, fearlessness, co-existence) as comprehensive Human Goals

SUGGESTED EVALUATION METHODS:

Include practice sessions to reflect on relationships in family, hostel and institute as extended family, real life examples, teacher-student relationship, goal of education etc. Gratitude as a universal value in relationships. Discuss scenarios. Elicit examples from students' lives. Pay a visit to the old age home / orphanage / physically & mentally challenged asylum and support them in catering their needs to ensure mutual happiness.

MODULE 4	Understanding Harmony in the Nature and Existence – Whole existence as Coexistence	9

- 1. Understanding the harmony in the Nature
- 2. Interconnectedness and mutual fulfillment among the four orders of naturerecyclabilityand self-regulation in nature
- 3. Understanding Existence as Coexistence (*Sah-astitva*) of mutually interacting units in all-pervasive space
- 4. Holistic perception of harmony at all levels of existence

SUGGESTED EVALUATION METHODS:

Include practice sessions to discuss human beings as cause of imbalance in nature (film "Home" can be used), pollution, depletion of resources and role of technology etc. Submit a video documentary highlighting the ways of humans creating an imbalance in nature and ways to prevent it.

	Implications of the above Holistic Understanding of	0
MODULE 5	Harmony on Professional Ethics	9

- 1. Natural acceptance of human values
- 2. Definitiveness of Ethical Human Conduct
- 3. Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order
- 4. Competence in Professional Ethics:a) Ability to utilize the professional competence for augmenting universal human order,

b) Ability to identify the scope and characteristics of people-friendly and eco-friendly production systems, technologies and management models

5. Case studies of typical holistic technologies, management models and production systems

6. Strategy for transition from the present state to Universal Human Order

SUGGESTED EVALUATION METHODS:

• Include a presentation session on identifying human inventions that are non eco friendly and brainstorming to come up with eco friendly production systems or eco friendly alternatives.

Total Periods 45

Suggestive Assessment Methods

Continuous Assessment Test (30 Marks)	Formative Assessment Test (20 Marks)	End Semester Exams (60 Marks)
Written Assessment	Activity / Presentation in	Written
MCQ / written exam	theclassroom / on or off campusactivities	Examination

Upon completion of the course, the students will be able to:

CO1 - Understand the significance of value inputs in a classroom and start applying them intheir life and profession

CO2 Distinguish between values and skills, happiness and accumulation of physicalfacilities, the Self and the Body, Intention and Competence of an individual, etc.

CO3 Understand the value of harmonious relationship based on trust and respect in their lifeand profession

CO4 Understand the role of a human being in ensuring harmony in society and nature.

CO5 Distinguish between ethical and unethical practices, and start working out the

strategyto actualize a harmonious environment wherever they work.

Text Books

1. R R Gaur, R Sangal, G P Bagaria, 2009, A Foundation Course in Human Values and Professional Ethics.

Reference Books

- 1. Ivan Illich, 1974, Energy & Equity, The Trinity Press, Worcester, and Harper Collins, USA
- 2. E.F. Schumacher, 1973, Small is Beautiful: a study of economics as if people mattered, Blond& Briggs, Britain.
- 3. Sussan George, 1976, How the Other Half Dies, Penguin Press. Reprinted 1986, 1991
- 4. Donella H. Meadows, Dennis L. Meadows, Jorgen Randers, William W. Behrens III, 1972, Limits to Growth Club of Rome's report, Universe Books.
- 5. A Nagraj, 1998, JeevanVidyaEkParichay, Divya Path Sansthan, Amarkantak.

СО	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	РО 9	PO 10	PO 11	PO 12	PSO 1	PO 2	PSO 3
1								3							
2								3							
3								3							
4								3				2			
5								3				2			

CO Vs PO Mapping and CO Vs PSO Mapping:

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOM'S		END			
CATEGORY	CAT - 1	CAT -2	FAT - 1	FAT - 2	SEMESTER EXAMINATION
REMEMBER	20	20	5	5	20
UNDERSTAND	30	30	5	5	30
APPLY	30	30	5	5	30
ANALYZE	20	20	10	10	20
EVALUATE					
CREATE					

1- Low, 2- Medium, 3-High

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1 (CO 1) : Need, Basic Guidelines, Content and Process for Value Education

- 1) Explain the process of value education.
- 2) Illustrate the content of value education.
- 3) What should be the content of value education to make it complete? How do values relate to our day to day living?
- 4) Explain the content of self exploration?
- 5) "Mutual fulfilment in human relationships is something we want, we aspire for." Explain
- 6) What is value education? Why is there a need for value education?
- 7) How does value education help in fulfilling one's aspirations?
- 8) What are the basic guidelines for value education?
- 9) Write a short note on the need for value education in today's scenario.
- 10)Values and skill complement each other. Elaborate.

COURSE OUTCOME 2 (CO 2) : Understanding Harmony in the Human Being - Harmony in Myself

- 1) Distinguish between Sukh and Suvidha in detail taking needs of yourself as an example
- 2) How can we ensure harmony in self ('I')?
- 3) The needs of the self are qualitative. Illustrate.
- 4) 'The need for physical facilities is temporary' explain the meaning of this statement with any two examples.
- 5) Do you think that human beings are a sum-total of sentiments and physical aspects, the 'self' and the 'body'? Explain your answer using examples.
- 6) 'Human being is the co-existence of the Self and the Body' elaborate on this statement.
- 7) Explain how activities in 'I' are continuous.
- 8) "I am the seer, doer and enjoyer. The body is my instrument" Explain.
- 9) Explain the relation between the self and the body. What is the responsibility of the self towards the body?
- 10)Define Sanyam and Swasthya. How are they helpful in keeping harmony between self and body?

COURSE OUTCOME 3 (CO 3) :Understanding Harmony in the Family and Society- Harmony in Human-Human Relationship

- 1) Define trust. or How is 'trust' the foundation value of relationships?
- 2) Define 'affection'. or How does affection lead to harmony in the family?
- 3) How can you say that love is the complete value?
- 4) What is the meaning of justice in human relationships? How does it follow from family to world family?
- 5) 'Discrimination leads to acrimony in relationships'. Explain. What problems are created when we discriminate?
- 6) What values are necessary in human relationships? Explain each briefly.
- 7) What is the basis of 'respect' for a human being? Do you see that other human beings

are also similar to you? Explain.

- 8) Explain the comprehensive human goal. How does fearlessness follow from right understanding and prosperity?
- 9) Critically examine the state of society today in terms of fulfillment of comprehensive human goals.
- 10)What is the comprehensive human goal? Explain how this is conducive to sustainable happiness and prosperity for all.

COURSE OUTCOME 4 (CO 4) : Understanding Harmony in the Nature and Existence - Whole existence as Coexistence

- 1) What is sanskaar? Explain its effects or the conformance of the human order.
- 2) Explain the harmony in nature.
- 3) Define harmony in nature and how you will create it. Explain with examples.
- 4) What are the four orders of nature? Briefly explain them.
- 5) Present the difference and similarity between a human being and an animal. Give examples to support your answer.
- 6) "Other than human order, the three orders are mutually fulfilling to each other". Explain with examples.
- 7) 'Existence is coexistence'. Give your opinion.
- 8) How is the activity in human order different from that of animal and plant order?
- 9) Explain the concept of holistic perception of harmony in

existence. 10)Explain how there is recyclability and self

regulation in nature.

COURSE OUTCOME 5 (CO 5) : Implications of the above Holistic Understanding of Harmony on Professional Ethics.

- 1) How does right understanding provide the basis for ethical human conduct? Give two examples.
- 2) What is ethical human conduct? Explain in terms of values, policies and character with appropriate examples.
- 3) What do you understand about the definitiveness of ethical human conduct? Why is this definiteness desirable?
- 4) Describe briefly the criteria for evaluation of holistic technology. Support your answer with an example.
- 5) Give a critical review of the current management models in the profession.
- 6) Elaborate on the meaning of swatwa (innateness), swatantrata (self organization) and swarajya (self expression). How are they related?
- 7) What do you mean by professional ethics?
- 8) What do you understand by competence in professional ethics? Give two examples of its implications in industry.
- 9) What are the implications of value based living at all four levels of living? Explain.

10)What is utility value and artistic value? How are both important in human life? Explain with example

21MA3204	Transforms Techniques and Numerical Methods	L	Τ	Р	C
		3	1	0	4

Preamble

This course is designed to train students with the basic Integral Transform techniques. Application of these transforms techniques in solving ordinary differential equations and partial differential equations will be discussed. Numerical methods contain solution of system of linear equations, roots of non-linear equations, interpolation, numerical differentiation and integration. It plays an important role for solving various engineering sciences problems.

Prerequisites for the course

Basic Knowledge about transforms.

Objectives

The Course will enable learners:

1. To acquaint the student with Fourier transform techniques used in wide variety of situations

2. To introduce the effective mathematical tools for the solutions of partial differential equations that model several physical processes and to develop Z transform techniques for discrete time systems

3. To acquaint the student with understanding of numerical techniques of differentiation and integration, this plays an important role in engineering and technology disciplines.

4. To acquaint the knowledge of various techniques and methods of solving ordinary differential equations

5. To understand the knowledge of various techniques and methods of solving various types of partial differential equations.

UNIT I	FOURIER TRANSFORMS	9+3
Statement of	Fourier integral theorem - Fourier transform pair - Pro	perties of Fourier

transforms - Fourier sine and cosine transforms – Transforms of simple functions –

Convolution theorem – Parseval's identity.

SUGGESTED EVALUATION METHODS:

Tutorial Problems on Fourier sine and cosine transforms, Convolution theorem, Parseval's identity

UNIT II	Z - TRANSFORMS AND DIFFERENCE EQUATIONS	9+3	
---------	---	-----	--

Z-transforms - Elementary properties – Inverse Z-transform (using partial fraction) -Convolution theorem - Formation of difference equations – Solution of difference equations using Z - transform.

SUGGESTED EVALUATION METHODS:

Tutorial Problems on Inverse Z-transform (using partial fraction) - Convolution theorem, Solving of difference equations

Francis Xavier Engineering College| Dept of EEE | R2021/Curriculum and Syllabi SOLUTION OF ALGEBRAIC AND SYSTEM OF UNIT III 9+3 **EQUATIONS** Solution of algebraic and transcendental equations – Fixed point iteration method – Newton Raphson method - Solution of linear system of equations - Gauss elimination method -Pivoting - Gauss Jordan method - Iterative methods of Gauss Jacobi and Gauss Seidel SUGGESTED EVALUATION METHODS: Tutorial Problems on Gauss elimination ,Gauss Jordan , Gauss Jacobi and Gauss Seidel method. INTERPOLATION AND NUMERICAL INTEGRATION UNIT IV 9+3 Lagrange's interpolation formula for unequal intervals – Newton's forward and backward difference interpolation for Equal interval – Numerical single integrations using Trapezoidal methods, Simpson's 1/3 rule and Simpson's 3/8 rule SUGGESTED EVALUATION METHODS: Tutorial Problems on Newton's forward and backward interpolation, Numerical integration NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL 9+3 UNIT V **EQUATIONS** Solution of Ordinary Equations by Single step methods: Taylor's series method - Euler's method - Fourth order Runge-Kutta method for solving first order equations - Multi step methods : Milne's method for solving first order equations. SUGGESTED EVALUATION METHODS: Tutorial Problems on Taylor's series ,Euler's method Fourth order Runge-Kutta method Total Periods 45 + 15 = 60Periods **Suggestive Assessment Methods Continuous Assessment Formative Assessment Test End Semester** Test (20 Marks) (20 Marks) Exams (60 Marks) **1. Descriptive Questions** 1.Assignment 1. Descriptive Questions 2. Online Quizzes **Outcomes** Upon completion of the course, the students will be able to : CO 1 Apply the mathematical principles on transforms and partial differential equations would provide them the ability to formulate and solve some of the physical problems of engineering. (Apply) Utilize the effective mathematical tools for the solutions of partial differential CO 2

	equations by using Z transform techniques for discrete time systems. (Apply)
CO 3	Solve the algebraic and transcendental equations using numerical techniques (Apply)
CO 4	Apply numerical techniques in interpolations and integrations (Apply)
CO 5	Solve the ordinary differential equation using numerical techniques (Apply)

Text Books

- 3. Grewal B.S, Higher Engineering Mathematics, Khanna Publications, 45nd Edition, 2017.
- 4. Grewal. B.S. and Grewal. J.S., "Numerical Methods in Engineering and Science ", 11th Edition, Khanna Publishers, New Delhi, 2016

Reference Books

- Kreyszig.E, "Advanced Engineering Mathematics", John Wiley & Sons. Singapore, 15th edition, 2017
- Burden, R.L and Faires, J.D, "Numerical Analysis", 9th Edition, Cengage Learning, 2016
- Veerajan, T., Engineering Mathematics I, Tata McGraw Hill Publishing Co., New Delhi, 5th edition 2017
- Gerald. C.F. and Wheatley. P.O. "Applied Numerical Analysis" Pearson Education, Asia, New Delhi, 2016

Web Resources

- 1. Fourier transforms <u>https://youtu.be/lkAvgVUvYvY</u>
- 2. Z transform <u>https://youtu.be/zmxWaXvKfdc</u>
- 3. Solving System of equations <u>https://youtu.be/oD8-Bb5YYmo</u>
- 4. Numerical Integration https://youtu.be/YTHt4Sp8Hag
- 5. Numerical Solution of Ordinary Differential Equations https://youtu.be/m2p6hrQGaxQ

CO Vs PO Mapping and CO Vs PSO Mapping

С	PO	PO	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2
0	1	2												
1	3	2												
2	3	2												
3	3	2												
4	2	3												
5	2	3												

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOM'S		ASS	ESSMENT 1	rests	END SEMESTER
CATEGORY	CAT – 1	CAT -2	FAT – 1	FAT - 2	EXAMINATION
REMEMBER	10	10	5	5	10
UNDERSTAND	30	30	10	10	30
APPLY	60	60	10	10	60
ANALYZE	0	0	0	0	0
EVALUATE	0	0	0	0	0
CREATE	0	0	0	0	0

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1 (CO 1) : (Apply)

- 1) Find the Fourier transform for $f(x) = \begin{cases} 1 |x| & |x| \le 1\\ 0 & |x| \le 1 \end{cases}$ and hence deduce that (i) $\int_0^\infty (\frac{\sin x}{x})^2 dx = \frac{\pi}{2}$ (ii) $\int_0^\infty (\frac{\sin x}{x})^4 dx = \frac{\pi}{3}$
- 2) Find the Fourier sine and cosine transform of

 $f(x) = e^{-ax} : x > 0, a > 0.$ Hence deduce that (i) $\int_0^\infty \frac{s}{s^2 + a^2} \sin sx \ ds = \frac{\pi}{2} e^{-ax}$

(ii)
$$\int_0^\infty \frac{1}{s^2 + a^2} \cos sx \, ds = \frac{\pi}{2a} e^{-ax}$$

COURSE OUTCOME 2 (co 2) : (apply)

- 1) solve by using z- transform $x_{n+2} 3x_{n+1} + 2x_n = 0$ given that $x_1 = 1$.
- 2) Find $Z^{-1}(\frac{z^2}{(z-1)(z-3)})$ using convolution theorem

Course outcome 3 (co 3) : (apply)

- 1) Solve x + y + 54z = 110, 27x + 6y z = 85, 6x + 15y + 2z = 72by Using gauss jacobi and gauss-seidel iteration method
- 2) find by newton's method the real positive root of to three decimal places

COURSE OUTCOME 4 (CO 4) : (Apply)

1) Find the y(3) in the following table using Lagrange's interpolation formula

Х	0	1	2	4
У	1	3	9	81

2) From the following table of half yearly premium for policy maturing at different ages, Estimate the premium maturing at the age 46 and 63.

Age	45	50	55	60	65
premium	114.84	96.16	83.32	74.48	68.48

COURSE OUTCOME 5 (CO 5) : (Apply)

- 1) Find y(0.8) given that $dy/dx = y-x^2$, y(0.6) =1.7393 by using Runge Kutta method of fourth order. Take h = 0.1
- 2) Using Eular's method, solve $dy/dx = xy + y^2$, y(0) = 1 at x = 0.1, 0.2, 0.3 and continue the solution at x = 0.4 by Milne's predictor corrector method.

21EE3601	ANALOG AND INTEGRATED CIRCUITS	L	Т	P	C
		3	0	0	3
Preamble					
It is an introdu	ctory course which emphasizes the fundamental concepts an	d ove	ervie	w of	
Electronic dev	ices and the concepts discussed herein are intended to provid	le cla	rifica	ation	on
basic integrate	d circuits for Electrical Engineering graduates.				
Prerequisites	for the course				
1. Physics F	or Engineers				
Objectives					
To study	the structure of basic semiconductor devices.				
To learn	the functionality of positive, negative feedback amplifiers and	d Osc	illato	ors.	
To famil	arize the IC fabrication procedure and Voltage regulators				
To intro	duce the characteristics and applications of OP-AMP.				
To impa	rt knowledge on special ICs				
UNIT I	SEMICONDUCTOR DEVICES AND ITS APPLICATIONS			9	
PN junction dio MOSFET- Analy	de - Rectifiers – Display devices- LED, Laser diodes, Zener dio sis of CE, CB, CC amplifiers	de-B	JT, JF	FET,	

Negative feedback – voltage / current, series , Shunt feedback –positive feedback – Condition for oscillations, Expression for frequency and phase shift – Wien bridge, Hartley, Colpitts and Crystal oscillators.

UNIT III	IC FABRICATION & ITS APPLICATIONS	Τ

9

9

9

IC classification, fundamental of monolithic IC technology, epitaxial growth, masking and etching, diffusion of impurities. Realization of monolithic ICs and packaging, IC voltage regulators – LM78XX, LM79XX, SMPS - ICL 8038 function generator IC.

UNIT IV	CHARACTERISTICS & APPLICATIONS OF OP AMP	
---------	---	--

Ideal OP-AMP characteristics, DC characteristics, AC characteristics, Basic applications of opamp – Inverting and Non-inverting amplifiers- V/I & I/V converters. Multi-vibrators, clipping, clamping, rectifiers; Amplifiers: biasing, equivalent circuit and frequency response.

UNIT V		SPECIAL I	NTEGRATED CI	RCUITS		9	
Single stage	active filter	s, Sallen Ke	y, Butterworth,	VCOs ar	nd timers	Functional	block,
characteristics	of 555 Tim	er and its PW	M application -	IC-566 vo	oltage cont	rolled oscilla	tor IC;
565- phase loc	ked loop IC, A	AD633 Analog	, multiplier ICs.				

	45									
Suggestive Assessment Methods										
Continuous Assessment Test (20 Marks)		Formative Assessment Test (20 Marks)	End Semester Exams (60 Marks)							
		Assignment								
	Descriptive	Online Quizzes	Descriptive							
		Problem-Solving Activities								
Outcome	S	11								
Upon con	npletion of the course, the	e students will be able to :								
CO 1	Illustrate the characteri	stics of semiconductor devices and to A	nalyse the amplifiers							
CO 2	Design the feedback ar	nplifiers oscillators.								
CO 3	Apply IC fabrication te	Apply IC fabrication techniques and design of voltage regulators								
CO 4	Analyze the characteri	Analyze the characteristics of Op-Amp								
CO 5	Design circuits using s	pecial IC's.								

Text Books

1. Boylestad / Nashelsky "Electronic Devices and Circuit "Pearson ,Eleventh Edition, January 2015.

2. Choudhary D. Roy , Shail B. Jain "Linear Integrated Circuits " new age publishers 2018 Reference Books

- 1. Balbir Kumar, Shail.B.Jain, "Electronic devices and circuits" PHI learning private limited, 2ndedition2014.
- 2. Donald A Neamen, "Electronic Circuit Analysis and Design" Tata McGrawHill, 3rdEdition, 2003
- 3. Robert L.Boylestad, "Electronic devices and circuit theory", 2002.
- 4. Fiore, "Opamps & Linear Integrated Circuits Concepts & applications", Cengage, 2010.
- 5. Floyd, Buchla, "Fundamentals of AnalogCircuits, Pearson, 2013.
- 6. Jacob Millman, Christos C.Halkias, 'Integrated Electronics Analog and Digital circuitssystem',McGrawHill,2003.

Web Resources

- 1. https://nptel.ac.in/courses/108102112
- 2. https://nptel.ac.in/courses/108108111

CO Vs PO Mapping and CO Vs PSO Mapping

0	PO	P01	P01	P01	PSO	PSO								
LU	1	2	3	4	5	6	7	8	9	0	1	2	1	2
1	3	2							2		1		3	3
2	3	2	3						1				3	3
3	3								1				3	3
4	3	2	3						2				3	3
5	3								2				3	3

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOM CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	10	10	0	0	10
UNDETSTAND	30	30	5	5	30

APPLY	60	60	10	10	60
ANALYZE	0	0	10	10	0
EVALUATE	0	0	0	0	0
CREATE	0	0	0	0	0
	100	100	25	25	100

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1:

- 1. Illustrate the drift and diffusion currents for PN diode.(Illustrate)
- 2. Contrast the construction and operation of PN junction with zener diode (Analyze)

COURSE OUTCOME 2:

- 1. Design a negative feedback amplifier has an open loop gain of 60000 and a closed loop gain of 300. If the open loop upper cut off frequency is 15KHz, Choose the closed loop upper cutoff frequency. Also, calculate the total harmonic distortion with feedback if there is 10% harmonic distortion without feedback.(Design)
- 2. A crystal has the following parameters L = 0.5 H, Cs = 0.06 pF, Cp = 1pF and R = $5k\Omega$. Design the series and parallel resonant frequencies and Q-factor of the crystal. (Design)

COURSE OUTCOME 3:

- 1. Apply the basic fabricating technology of ICs using planar technology (Apply)
- 2. Design a suitable IC voltage regulators LM78XX with the specifications of input voltage less than 50v (Design)

COURSE OUTCOME 4:

- 1. What is Slew rate? Analyze the causes of slew rate and explain its significance in applications (Analyzing)
- 2. Examine the functions of all the basic building blocks of an Op-Amp. (Analyzing)

COURSE OUTCOME 5:

- 1. Design and draw the waveform of a 1kHz square wave generator using 555 timer for duty cycle of 50%(Design)
- 2. Design a frequency synthesizer circuit using PLL IC 565. Explain in detail about the operation and applications of it(Design) COURSE OUTCOME 5: Interpret quantum theory concepts & study the density of states for various Quantum confinements. (Apply)

L	Т	Р	С
3	0	0	3

21EE3602

DC MACHINES AND TRANSFORMERS

Preamble

Direct Current (DC) machine is a highly versatile energy converting device. They can be designed to give a wide variety of voltage-current or speed- torque characteristics for both dynamic and steady-state operation. Due to their flexibility in speed control, DC motors and transformers are widely used in applications requiring a wide range of speeds or precise control of output.

Prerequisites for the course

1. Physics for Engineers

2. Electrical circuits and network analysis

Objectives

1.To impart knowledge on the learning of magnetic circuits.

2.To acquire knowledge on electromechanical energy conversion

3. To analyse the construction details, operation, performance of DC generators and its applications.

4. To know the construction details, operation, performance, Speed control of DC motors, and its applications.

5. To learn the construction details, operation, performance of single-phase transformers and

various connections of three-phase transformers

UNIT I	ELECTROMAGNETIC CIRCUITS	9

Fundamentals of Magnetic circuits- Statically and dynamically induced EMF - energy balance in

magnetic circuits- magnetic force - co-energy in singly excited and multi excited magnetic field

system MMF of distributed windings - magnetic saturation - leakage fluxes

UNIT II

ELECTROMECHANICAL ENERGY CONVERSION

9

9

Principle of electromechanical energy conversion forces and torque in magnetic field systems--Winding Inductances- magnetic fields in rotating machines- Introduction to Indian Standard

Specifications (ISS) - Role and significance in testing.

UNIT III

DC GENERATORS

Principle of operation, constructional details, armature windings and its types, EMF equation, wave shape of induced EMF, armature reaction, demagnetizing and cross magnetizing Ampere turns, compensating winding, commutation, methods of improving commutation, interpoles, OCC and load characteristics of different types of DC Generators. Parallel operation of DC Generators, equalizing connections- applications of DC Generators.

UNIT IV

DC MOTORS

9 Principle of operation, significance of back EMF, torque equations and power developed by armature, speed control of DC motors, starting methods of DC motors, load characteristics of DC motors, losses and efficiency in DC machine, condition for maximum efficiency. Testing of DC Machines: Brake test, Swinburne's test, Hopkinson's test, Field test, Retardation test, Separation of core losses-applications of DC motors.

9

UNIT V	TRANSFORMER	

SINGLE PHASE TRANSFORMER

Construction and principle of operation, equivalent circuit, testing - polarity test, open circuit and short circuit tests, voltage regulation, losses and efficiency, all day efficiency, back-to-back test

separation of core losses, parallel operation of single-phase transformers.

AUTOTRANSFORMER AND THREE PHASE TRANSFORMER

Construction and working of auto transformer, Three Phase Transformer- Construction, types of connections, Scott connection.

	Total Periods		ls 45			
Suggestive Assessment Methods						
Continue	ous Assessment Test	Formative Assessment Test	End Semester			
	(20 Marks)	(20 Marks)	Exams			
			(60 Marks)			
		1. Assignment				
	Descriptive	2.Online Quizzes	Descriptive			
		3.Problem-Solving Activities				
Outcome	S	· · · · · · · · · · · · · · · · · · ·				
Upon com	pletion of the course, the	e students will be able to :				
CO 1	Apply the concepts of	magnetic circuits and the properties				
CO 2	Observe the electromechanical energy conversion in rotating machines.					
CO 3	Categorize the types of DC generators performance and its applications.					
CO 4	4 Examine (An) the performance, speed control and to apply braking of DC motors.					
CO 5	To analyze the performance behavior of single-phase transformer and various connections of three-phase transformers.					

Text Books

- D. P. Kothari & I. J. Nagrath, "Electrical Machines", Tata- McGraw-Hill, New Delhi, 5th Edition, 2017
- 2. A. K. Sawhney and A. Chakrabarti, " A Course in Electrical Machine Design",6th Edition, Dhanpat Rai & Co (P) Ltd., January 2016.

Reference Books

- 1. R.K.Rajput, "Electrical Technology", Laxmi Publications, 3rd edition, 2005.
- 2. Vincent Deldoro, "Electromechanical Energy Conversion" PHI III edition, 2004.
- 3. Gupta.J.B,"Theory of Performances of Electrical Machines" Katson, 7th Edition, 1987
- 4. M.G.Say, Theory and performance of electrical machines, Tata-McGraw hill, 2000.

Web Recourses

- 1. https://nptel.ac.in/courses/108105155
- 2. https://nptel.ac.in/courses/108105017
- 3. https://nptel.ac.in/courses/10810602

CO Vs PO Mapping and CO Vs PSO Mapping

<u> </u>	PO	РО	P01	P01	P01	PSO	PSO							
υ	1	2	3	4	5	6	7	8	9	0	1	2	1	2
1	3	2	2										2	
2	3	2	2										2	
3	3	2	1										3	
4	3	2		2									2	
5	3	2		3									2	

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	20	20	15	10	20
UNDERSTAND	30	30 30 1		15	30
APPLY	20	20	10	15	20
ANALYZE	15	15	10	10	15
EVALUATE	15	15	0	0	15
CREATE	0	0	0	0	0
	100	100	50	50	100

COURSE LEVEL ASSESSMENT QUESTIONS COURSE OUTCOME 1:

1. Two coupled coils have self and mutual inductance of $L_{11} = 3+0.5x$; $L_{22} = 2+0.5x$; $L_{12} = L_{21} = 0.3x$ over a certain range of linear displacement x. the first coil is excited by a constant current of 15 A and the second by a constant current of -8 A. Determine, (i) Mechanical work done if x changes from 0.6m to 1m. (ii) Energy supplied by each electrical source. (Apply)

2.The magnetic circuit has dimensions: $Ac=4*4 \text{ cm}^2$, lg=0.06 cm, lc=40 cm and N=600 turns. Assume the value of μ r=6000 for iron. Measure the exciting current for Bc =1.2 T and the corresponding flux and flux linkages. (Apply)

COURSE OUTCOME 2:

- 1. An actuator with a rotating vane is shown in Fig. 3.26. You may assume that the permeability of both the core and the vane are infinite ($\mu \rightarrow \Psi$). The total air-gap length is 2g and shape of the vane is such that the effective area of the air gap can be assumed (Apply)
- 2. As shown in Fig. below, an N-turn (N = 100) electromagnet is to be used to lift a slab of iron of mass M. The surface roughness of the iron is such that when the iron and the electromagnet are in contact, there is a minimum air gap of gmin = 0.18 mm in each leg. The electromagnet cross-sectional area Ac = 32 cm2 and coil resistance is 2.8 Ω . Calculate the minimum coil voltage which must be used to lift a slab of mass 95 kg against the force of gravity. Neglect the reluctance of the iron. (Apply)

COURSE OUTCOME 3:

- 1. A separately excited generator when running at 1000rpm supplied 200A at 125V. What will be the load current when the speed drops to 800rpm if it is unchanged? Given that armature resistance= 0.04Ω and brush drop=2V. Derive the necessary equations. (Apply)
- 2. A 4 pole 50 kW 250 V wave wound shunt generator has 400 armature conductors. Brushes are given a lead of 4 commutator segments. Calculate the demagnetization ampere-turns per pole if shunt field resistance is 50Ω . Also calculate extra shunt field turns per pole to neutralize the demagnetization (Apply)
- In a Hopkinson's test on a pair of 500V, 100kW shunt. Generators, the following data was obtained: Auxiliary supply: 30A at 500V Generator output current: 200A Field Currents: 3.5A (Generator) and 1.8A (Motor). Armature circuit resistances: 0.075Ω each machine. Voltage drop at the brushes: 2V (each machine). Calculate the efficiency of the machine acting as a generator (Apply)

COURSE OUTCOME 4:

- A 230 volts DC Shunt motor on no-load runs at a speed of 1200RPM and draw a current of 4.5 Amperes. The armature and shunt field resistances are 0.3 ohm and 230 ohms respectively. Calculate the back EMF induced and speed, when loaded and drawing a current of 36 Amperes. (Apply)
- 2. A 500V DC Shunt Motor running at 700 rpm takes an armature current of 50A. Its effective armature resistance is 0.4Ω . What resistance must be placed in series with the armature to reduce the speed to 600 rpm, the torque remaining constant? (Apply)
- A 220 V, 22 A, 1000 rpm dc shunt motor has armature circuit resistance of 0.1 ohm and field resistance of 100 ohm. Calculate the value of additional resistance to be inserted in the armature circuit in order to reduce the speed to 800 rpm. Assume the load torque to be (i) proportional to the speed and (ii) proportional

to square of the speed (Apply)

COURSE OUTCOME 5:

1. A 100 KVA 1100/200v single phase transformer has the following parameters.R1 = 1 Ω , X1= 3 Ω , R2=0.04 Ω , X2=0.012 Ω . Find the equivalent resistance and leakage reactance as referred to High Voltage winding. (Apply) 2. Calculate the efficiency for half, full load of a 100KVA transformer for the P.F of unity and 0.8, the copper loss at full load is 1000W and iron loss is 1000W. (Apply)

		L	Т	Р	C
21EE3603	FUNDAMENTALS OF APPLIED ELECTROMAGNETICS	3	0	0	3

Preamble

The Course is designed to impart knowledge of fundamentals of vector calculus, concept of electric and magnetic fields (both static and time varying) applicable to electrical engineering. The course exposes the students to the concept of resistance, capacitance, and Inductance. Students will get an idea about behaviour of field in materials (magnetic, conducting, insulating materials) at the interface of two different materials and their applications to Electrical Engineering. Force, torque, generator and transformer working principles are explained with Electromagnetic Fields.

Prerequisites for the course

• Physics for Engineers

• Matrices and Calculus

Objectives

1.To convey the basic concepts of scalars and vector fields.

2. To impart the knowledge on electrostatics and Capacitance.

3. To impose the concept of magnetostatics and inductance

4. To examine the relationship between Magnetic and Electric fields.

5.To study the various electric & magnetic field concepts both in static and time varying

Condition

UNIT I	Review of Scalar and Vector Fields	9

Different Co-ordinate Systems: Cartesian, Cylindrical and Spherical –Differential elements in different coordinate systems – Del Operator: Divergence, Curl and Gradient, Divergence Theorem – Stoke's Theorem - Helmholtz's Decomposition.

UNIT II	Electrostatics	9			
Coulomb's law – Electric Field Intensity – Electric Flux – Gauss's Law – Potential due to Point, Line					
and Surface Charge Distributions. Different current flow mechanisms – Continuity equation and					
relaxation time - Boundary conditions – Laplace and Poisson's equations - Solutions – Analytical					

Methods –	Variables separa	ble meth	ods – Method of images – Numerical Te	echniqu	ues - Finite		
Difference	Method – Electro	static En	ergy – Capacitance Calculations.				
UNIT III		N	lagneto statics	Ģ	7		
Fields – M Forces Ma Inductance	lagnetic Flux – I gnetic Fields – Calculations - M	Biot Sava Vector P agnetic E	rt's Law – Ampere's Law – Magnetic Potential – Magnetic Boundary Condi Cnergy.	Torqu itions	e and Moment - – Inductors and		
UNIT IV	NIT IV Electromagnetic Fields						
Faraday's l	aw – Lenz's Law	- Maxwe	ll's equations – Displacement current –	Maxw	vell's Equations		
in Final Fo	rms – Time Varyi	ng Fields	- Relation between field theory and cir	rcuit th	neory.		
UNIT V	Elec	tromagn	netic Waves Generation & Applicatio	ns	9		
Propagatio Permittivit fields.	n of waves in lo y- Power and P	ossy diel oynting '	ectrics, conductors and free space – Vector, Sources, Effects and applicati	Skin e	effect – Complex Electromagnetic		
			Total Perio	ds	45		
Suggestive	Assessment Me	ethods		I			
Continu	ous Assessment	Test	Formative Assessment Test	E	nd Semester		
	(20 Marks)		(20 Marks)		Exams		
					(60 Marks)		
			1.Assignment				
	Descriptive		2.Online Quizzes		Descriptive		
			3.Problem-Solving Activities				
Outcomes				<u> </u>			
Upon comp	letion of the cou	rse, the st	tudents will be able to :				
CO 1	Apply the basic	mathema	tical concepts related to electromagnetic ve	ector fie	elds.		
CO 2	Analyse the ba	asic conc	epts of electrostatic fields , electrical po	otentia	l and its		
	applications.						
CO 3	Examine the c	oncept o	f magnetostatics fields, and its applicat	ions .			
CO 4	Make use of th	ie relatio	nship between Magnetic and Electric fi	ields.			
	- · · ·						

Text Books

- 1. Matthew N. O. Sadiku & S. V. Kulkarni, 'Principles of Electromagnetics', Oxford University Press, New York, Sixth Edition, 2015.
- 2. William Hayt, John A. Buck, 'Engineering Electromagnetics', McGraw-Hill, EighthEdition, 2012.

Reference Books

- 1. Joseph A. Edminister, 'Schaum's Outline of Electromagnetics', McGraw-HillProfessional, Fourth Edition, 2013.
- 2. Karl E. Lonngren, Sava Savov, Randy J. Jost, 'Fundamental ofElectromagnetic with MATLAB', 2007

Web Resources

1. https://onlinecourses.nptel.ac.in/noc22_ee68/preview

CO Vs PO Mapping and CO Vs PSO Mapping

<u> </u>	PO	P01	P01	P01	PSO	PSO								
CU	1	2	3	4	5	6	7	8	9	0	1	2	1	2
1	3	2		2							2		3	3
2	3	3		2							2		3	3
3	3	2		2							2		3	3
4	3	2		2							2		3	3
5	3	2		2							2		3	3

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	10	10			10
UNDETSTAND	10	10	5	5	10
APPLY	30	50	10	10	40
ANALYZE	50	30	10	10	40
EVALUATE	0	0			0
CREATE	0	0			0
	100	100	25	25	100

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Students will be able to Apply the basic mathematical

1. Find the nature of the following fields by determining divergence and curl A = $30 a_x+2xy a_y+5xz^2a_z$ (Apply)

concepts related to electromagnetic vector fields.

2.Given that $A = 30e^{r}a_{r} - 2r a_{z}$ in cylindrical coordinates evaluate both sides of divergence theorem for the volume enclosed by r =2, z=0 and z=5. (Apply)

COURSE OUTCOME 2: Students will be able to Analyse the basic concepts of electrostatic fields, electrical potential and its applications.

1. Find the Electric Potential at any point given the Electric Field $E=2r/(r^2 + a^2)^2$ rThe Boundary conditions are: at $r=\infty$, V=0and r=0 and V=100.2. Find the potential at r A = 5 m with respect to r B = 15 m due to pointcharge Q=500 Pc at the origin and zero reference at infinity. (Analyse)

COURSE OUTCOME 3: Students will be able to Examine the concept of magnetostatics fields, and its applications

- 1. The core of a toroid is of 12 cm2 area and is made of material with μ r=200. If the mean radius of the toroid is 50cm. Calculate the number of turns needed to obtain an inductance of 2.5H. (Analyse)
- 2. An iron ring with a cross sectional area of 8cm2 and a mean circumference of 120cm is wound with 480 turns of wire carrying a current of 2 A. the relative permeability of the ring is 1250. Calculate the flux established in the ring. (Analyse)

COURSE OUTCOME 4: Students will be able to Make use of the relationship between Magnetic and Electric fields.

- 1. A sinusoidal plane wave is transmitted through a medium whose electric field strength is 10KV/m and relative permittivity of the medium is 4.Determine the mean rms power flow/unit area.(Apply)
- 2. An iron ring with a cross –sectional area of 3 cm*cm and a mean circumference of 15 cm is wound with 250 turns of wire carrying a current of 0.3 A.The relative permeability of the ring is 1500.Calculate the flux established in the ring.(Apply)

COURSE OUTCOME 5:Students will be able to Analyse the concepts of EM Waves and characterizing parameters

- A 6580 MHz uniform plane wave is propagating in a material medium of ɛr =2.25. If the amplitude of the electric field intensity of lossless medium is 500V/m. Calculate the phase constant ,propagation constant, velocity, wave length and intrinsic impedance. (Analyse)
- 2. A free space- silver interface has E(incident)=100V/m on the free space side. The frequency is 15MHz and the silver constants are $\epsilon r \mu r = 1$, $\sigma = 61.7$ MS/m. Evaluate E(reflected) and E(transmitted) at the interface. (Analyse)

21EE3604	SIGNALS AND SYSTEMS		T	Р	C	
		3	0	0	3	

Preamble

It is an advance course which deals with input and output signal variations of system. The fundamental of Transform equations, Laplace equations, Fourier series and Z-Transforms plays the vital role in analyzing the signals of system.

Prerequisites for the course

Transform equations – Laplace equations – Fourier series - Z-Transforms

Objectives

- To understand the basic properties of signal & systems and the various methods of classification
- To analyze the Fourier series, Fourier transform and their properties
- To apply the concept of Laplace transforms in Continuous time signals systems
- To analyze Linear Time Invariant systems in Discrete Time Fourier Transform and Z Transform
- To enhance the knowledge and determine the real time applications of signals and systems

UNIT - 1	INTRODUCTION OF SIGNALS AND SYSTEMS	12

Continuous time signals (CT signals) – Discrete time signals (DT signals) – Step, Ramp, Pulse, Impulse, Sinusoidal, Exponential, Classification of CT and DT signals – Periodic & Aperiodic signals, Deterministic & Random signals, Energy & Power signals

UNIT - 2	ANALYSIS OF CONTINUOUS TIME SIGNALS	12
----------	-------------------------------------	----

Continuous Time Signal systems and Discrete Time Signal systems- Classification of systems – Static & Dynamic, Linear & Nonlinear, Time-variant & Time-invariant, Causal & Non-causal, Stable & Unstable - Fourier series analysis- trigonometric, cosine and Exponential Fourier series -Fourier Transform – Properties of Fourier transform

UNIT - 3	LINEAR TIME INVARIANT CONTINUOUS	12
	TIME SYSTEMS	

Introduction of Impulse response - convolution integrals - Fourier and Laplace transforms in Analysis of Continuous time signals systems - Systems connected in series / parallel

UNIT - 4	ANALYSIS OF DISCRETE TIME SIGNALS	12

Fourier Transform of discrete time signals (DTFT) – Properties of DTFT - Z Transform & Properties - Discrete Fourier Transform and Z Transform Analysis of Recursive & Non-Recursive systems - DT systems connected in series and parallel.

UNIT - 5	6 APPLICATION	APPLICATIONS OF SIGNALS AND SYSTEMS				
Analog to Conversio	Digital Conversion - Sa Digital Conversion - Sa Digital Conversion - Sa	ampling Theorem and its implications –Di ets - modulation for communication, filterin	gital to Analog			
		Total Periods	45			
Suggestive	e Assessment Methods					
Continu	ous Assessment Test	Formative Assessment Test	End Semester			
	(20 Marks)	(20 Marks)	Exams			
			(60 Marks)			
		Assignment				
Descriptive		Online Quizzes	Descriptive			
		Problem-Solving Activities				
Upon com	pletion of the course, t	he students will be able to :				
CO 1	Categorize the types	of signals , properties and their responses				
CO 2	Analyse the continu Fourier Transform	ous time signals and their properties using	Fourier series and			
CO 3	Apply continuous tin in LTI-CT systems	me signals in Laplace transform and solve f	requency response			
CO 4	Analyse Time invaria transform	nt system signal using discrete fourier tran	sform and z			
CO 5	Investigate the real	time usage of signal and systems				
Text Book	S					
1. B.P 201	. Lathi, Roger Green, "Lin 7.	ear Systems and Signals" Oxford University	Press, 3rd Edition,			
2. M. J. Edi	, "Signals and Systems: A tion"McGraw-Hill Scienc	Analysis Using Transform Methods and MA e/Engineering/Math, 2011.	TLAB, 2nd			
Reference	Books					
1. A. Na	goor Kani, "SIGNALS AN	D SYSTEMS" Tata McGraw-Hill, 2010.				
2.K. Dee	ergha Rao, "Signals and S	ystems", Publisher: Birkhäuser, 2018 S. Sal	ivahanan,A.			
Rajalakshn	ni "Physics for Electronic	s Engineering and Information Science"- Ta	ata Mc-Graw Hill			

Web Resources

- 1. https://nptel.ac.in/courses/117101055
- 2. https://nptel.ac.in/courses/108104100

CO Vs PO Mapping and CO Vs PSO Mapping

СО	PO	РО	P01	P01	P01	PSO	PSO							
	1	2	3	4	5	6	7	8	9	0	1	2	1	2
1	3	3	2	1										3
2	3	3	2	2			1							3
3	3	3		3	3									3
4	3	3	3	3	3									3
5	3	3	3	3	3									3

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	10	10	2	3	10
UNDETSTAND	10	10	3	2	10
APPLY	30	30	10	10	30
ANALYZE	50	50	10	10	50
EVALUATE	0	0	0	0	0
CREATE	0	0	0	0	0
	100	100	25	25	100

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1 (CO 1) :

(1) Find even and odd components of following signals (Analyze)

(i) $x(t) = 1+t+3t^2 + 5t^3 + 9t^4$

(ii) $x(t) = (1+t^3) \cos^3(10t)$

(iii) x(t) = Cos(t) + Sin(t) + Sin(t) Cos(t)

(2) Exponential function unit step convolution. Evaluate Continuous Time (CT) convolution integral given below: (**Apply**)

 $y(t) = e^{-2t} u(t) * u(t+2)$

(3) Sketch the following signals(i)

(i) u(t) = u(-t+2)(ii) r(-t+3)(iii) $2\delta[n+2] + \delta[n] - 2\delta[n-1] + 3\delta[n-3]$ (iv) u[n+2] u[-n+3]

Where, u(t), r(t), u(n) represent continuous time unit step, continuous time ramp, discrete time impulse and discrete time step functions respectively. (**Analyze**)

COURSE OUTCOME 2 (CO 2) :

(1) Realize the following by direct form - II (Analyze)

$$\frac{d^3 y(t)}{dt^3} + 4 \frac{d^2 y(t)}{dt^2} + 7 \frac{dy(t)}{dt} + 8y(t)$$
$$= 5 \frac{d^2 x(t)}{dt^2} + 4 \frac{dx(t)}{dt} + 7 x(t)$$

(2) Draw the direct form-I and II implementations of the system described by thefollowing differential equation. (Analyze)

$$7\frac{dy(t)}{dt} + 12y(t) = \frac{dx(t)}{dt} + x(t)$$

COURSE OUTCOME 3 (CO 3) :

Find the response of y(t) for the following system and refer the

(1) block diagram. Where, (Apply)

 $h(t) = e^{-2t}$ for t > 0

0 elsewhere

(2) Analyze the convolution integral and its real time applications in real time. (Analyze)

COURSE OUTCOME 4 (CO 4) :

(1) Find the Nyquist rate and Nyquist interval for following signals. (Analyze) (i) $1/2\pi \cos(4000 \pi t) \cos(1000 \pi t)$

(ii) m(t) = sin 500 π t / π t

(2)Determine z-transform of $x(n) = \cos (\Omega 0 n) u(n)$ (Analyze)

COURSE OUTCOME 5 (CO 5) :

(1) Elucidate & analyze the process of signal filtering in the designed system.

(Analyze)

(2) Investigate the process of Analog to Digital signal conversion (Analyze)

(3) Emphasize the systematical relation between continuous and discrete time systems(**Analyze**)

21EE3611	Analog and Integ	ated Circuit Desig	n Laboratory	L	Т	Р	С
			0	0	4	2	
Prerequisites	for the course						
Basic Ele	ectronics						
Principle	e of Digital Electronics						
Objectives							
1. To impa	rt knowledge on Semi-Con	ductor Devices.					
2. To Intro	duce different configuratio	n of Transistors and	l differential ar	nplifi	er		
3. To impa	rt knowledge on implemen	tation of Op-amp in	different Appl	icatio	ns.		
4. To study	the Design, testing and ch	aracterizing of circu	it behavior wit	h dig	ital a	nd an	alog
TCS. 5 To impa	rt knowledge on Design an	d implementation o	f timer circuit i	icina	sneci	fic tir	mor
ICs.	t kilowieuge oli Design ali	a implementation o		ising	speer		nei
S.No	List o	f Experiments		CO			
1	Characteristics of P-N Jun	ction diode and Zen	er diode.			1	
2	Characteristics of MOSFE	[.				2	
3	Input and Output cha configuration	racteristics of Tra	nsistor in CE			2	
4	Design and Frequency re CommonEmitter amplifie	sponse characterist r.	ics of a			2	
5	Differential amplifiers usi	ng BJT				2	
6	Application of Op-Amp: in amplifier.	verting and non-inv	verting			3	
7	Application of Op-Amp: In	tegrator and Differe	entiator.			3	
8	Implementation of Boolea Subtractor circuits.	n Functions, Adder	and	4			
9	Timer IC application: Stu Astability operation.	dy of NE/SE 555 tir	ner in			5	
10	Variability of Voltage Reg	ulator using IC LM3	17.			5	
Test Proje	ect Re	quirement	Mapping project w experime (Give Ser	of /ith ent /ial			
			Number)				

1. De co DC IR	esign a simple circuit to ontrol the 12V,200rpm, 0.3A C Motor speed using MOSFET F 540	MOSFET - IRF540 Potentiometer – 10KΩ Resistor – 470 Ω, 1MΩ	
Sp	pecification:		
Inj	put – 12V Battery		
DC	C Motor – 12V, 200rpm, 0.3A		
De DC as Sp	esign a circuit to control 12V C Motor speed using MOSFET a high potentiometer. pecification:	Transformer : 230/12V, Centre Tapped Transformer	
DC	Input : 230V AC C Motor – 12V 1 5kW	Diode : 1N5408, 1N4148	1,2,3,6,7,8,9
30	000rpm	MOSFET : IRF540	
		Resistor : $2.2M\Omega$, $680k\Omega$ Potentiometer : $2.2M$ Capacitor : $47nF$	
Mo	otor control with IC 555	Diode : 1N4148	
	Specification:	MOSFET : IRF540	
	Input : 12V DC Supply Motor : 12V DC,	Potentiometer: 100k Capacitor : 0.1uF,0.01uF	
	1.2kw,3000rpm	Resistor : 10k	
De sp	esign a circuit to control the beed of DC Motor using OP-	RCA30471 TIP122	
An	np Specification: Input : 15V DC Supply	Resistor - 22k, 100k, 10k Potentiometer – 2.2k	
	Motor : 15V DC, 1.2kw	Diode 1N4148	

Francis	Xavier Engineering College Dept o	of EEE R2021/Curriculum	and Syllabi	
	Design a circuit to improve the torque at low speed using CMOS PWM control	Transformer – 230v/18V, Centre tapped		
	Specification:	Diode 1N4001,1N4148		
	Input : 230V AC DC Motor – 12V, 1.5kW, 3000rpm	Fuse 1A IC4001, VN66AF		
		Potentiometer – 2.2M Resistor – 680k,220k Capacitor-10nF, 1000uF		
2.	Design a circuit of automatic	Resistor		
	water pumb controller for	33kΩ-1		
	Specification:	1MΩ-2		
	Input : 12V DC Supply	100kΩ-1		
	Motor : 230V AC, 0.5 HP	1ΚΩ-1		
		ic- 555-1		
		LM 317 - 1		
		Relay – 12v 25A-1		
		Transistor – BC547(for small pcb mount relay), 2N2222 for high current Load relay	1,3,4,5,9,10	
		Diode 1N4007		
	Design a circuit of water level warning indicator using a transistor BC547. Specification: Input : 9V Battery	Transistor-BC547-4		
		Resistor- 220Ω- 6		
		Buzzer -1		
		LED-4 nos (Red, Green &Yellow)		
		9V Battery - 1		
3.	Design a circuit of mobile	CA3130 Op-Amp		

Specification: Input - 12V DC supplyCapacitors - 22pF x 2, 0.22nF, 47pF, 100μFAntenna BC548 NPN Transistor LEDDesign a circuit of mobile phone detector using Schottky DiodeResistor - 1kΩ, 100kΩ, 3kΩ, 10Ω, 100Ω, 200Ω IC- LM3391,3,4,5,9,10Specification: Input - 12V DC supplyTransistor - BC547 Inductor - 10uH Capacitor - 100nF 12V Battery3,4,5,6,7,9Design a circuit of rain fall detection using 555 Timer IC. Specification : Input : 9V BatteryRain Sensor 555 Timer IC Transistor BC147 Buzzer3,4,5,6,7,9Design a circuit of rain fall detection using 555 Timer IC. Specification : Input : 9V BatteryCapacitor - 10uF Resistors - 470E, 1k,4.7k,10k,100k(2 nos) 9V Battery3,4,5,6,7,9Design a circuit of rain fall detection using 555 Timer IC. Specification : Input : 9V BatteryCapacitor - 10uF Resistors - 470E, 1k,4.7k,10k,100k(2 nos) 9V BatteryCapacitor - 10uF Resistors - 470E, 1k,4.7k,10k,100k(2 nos)Input : 9V Battery Input : 9V BatteryIC 741 LED (RED)Input - 10UF Resistor - 470E, 1k,4.7k,10k,100k(2 nos)		phone detector using CA3140 & 555 tImer IC.	Resistors – 2.2MΩ x 2, 100KΩ, 1KΩ	
Implete Line boospipsBC548 NPN Transistor LEDBC548 NPN Transistor LEDAntenna 9V BatteryDesign a circuit of mobile phone detector using Schottky DiodeResistor - 1kΩ, 100kΩ, 3kΩ, 10Ω, 100Ω, 200Ω 		Specification:	Capacitors – 22pF x 2, 0.22nF, 47pF, 100μF	
Antenna 9V BatteryAntenna 9V BatteryDesign a circuit of mobile phone detector using Schottky 	Input		BC548 NPN Transistor LED	
Design a circuit of mobile phone detector using Schottky DiodeResistor - 1kΩ, 100kΩ, 3kΩ, 10Ω, 100Ω,200Ω 			Antenna 9V Battery	
Specification: Input - 12V DC supplyTransistor - BC547 Inductor - 10uH Capacitor - 100nF 		Design a circuit of mobile phone detector using Schottky Diode	Resistor – 1kΩ, 100kΩ, 3kΩ, 10Ω, 100Ω ,200Ω IC- LM339	1,3,4,5,9,10
Design a circuit of rain fall detection using 555 Timer IC. Specification :Rain Sensor 555 Timer IC3,4,5,6,7,9Input : 9V Battery555 Timer ICTransistor BC147Design a circuit of rain fall detection using 555 Timer IC. Specification :Capacitor - 10uF Resistors - 470E, 1k,4.7k,10k,100k(2 nos)Input : 9V BatteryIc 741 LED (RED)Ic 741		Specification: Input – 12V DC supply	Transistor – BC547 Inductor – 10uH Capacitor – 100nF 12V Battery	
Design a circuit of rain fall detection using 555 Timer IC.Capacitor - 10uF Resistors - 470E, 1k,4.7k,10k,100k(2 nos)Specification :1k,4.7k,10k,100k(2 nos)Input : 9V Battery9V BatteryIC 741LED (RED)		Design a circuit of rain fall detection using 555 Timer IC. Specification : Input : 9V Battery	Rain Sensor 555 Timer IC Transistor BC147 Buzzer	3,4,5,6,7,9
IC 741 LED (RED)	_	Design a circuit of rain fall detection using 555 Timer IC. Specification : Input : 9V Battery	Capacitor – 10uF Resistors – 470E, 1k,4.7k,10k,100k(2 nos) 9V Battery	
			IC 741	

Design a circuit of 12V audio	1. TIP35C Power
power amplifier. Specification: Input : 12V	transistor. 2. Heat sink for TIP35C. 3. 1k resistor. 4. 470uF 25V capacitor. 5. Audio Input Jack (Depending on the required input source connector). 6. Breadboard. 7. 12V Power
	8. Loudspeaker
Design a circuit of simple microphone amplifier	1. LM386 2. 10uF / 16V capacitor 3,4,5,6,7,8
Specification: Input : 12 V Speaker : 8Ω/ 0.5W	 3. 470uF / 16V 4. 0.047uF / 16V Polystar Flim Capacitor 5. 10R ¼ Watt 6. 12V Power Supply unit 7. 8 Ohms / 0.5 Watt Speaker 8. Capsule or Electret Microphone 91uF capacitor
	10. 10k 1/4 th WattResistor 11. Bread Board

Francis Xavier Engineering College Dept of EEE R2021/Curriculum and Syllabi				
of EEE R2021/Curriculum and Syllabi 1. LM386 2. 10uF / 16V capacitor 3. 470uF / 16V 4. 0.047uF / 16V Polystar Flim Capacitor 5. 10R ¼ Watt 6. 12V Power Supply unit 7. 12V Relay 8. Tactile switch 9. 3.5mm Audio Jack 10. 8 Ohms / .5 Watt Speaker 11. Capsule or Electret 12. 1uF capacitor 13. 10k 1/4th Watt Resistor 14. Bread Board 15. Hook up wires 16. 10k 1/4th Watt				
Resistor 17. Bread Board 18. Hook up wires				
$R1=1K\Omega$, $1M\Omega$, $2M\Omega$, $100K\Omega$ $P1=10K\Omega$,LDR = With resistance @ around 10 to 50 K when illuminated in daylight (under shade).T1 = BC547,				

Francis Xavier Engineering College Dept of EEE R2021/Curriculum and Syllabi							
Design a Automatic vehicle	D1 = 1N4007						
Headlight Dimmer circuit using 555 timer IC and MOSEET with cell phone	Relay = coil 400 Ohms, DPDT, 12 volts						
charger.	Head Light -2						
Input : 12V Battery	Transistor -BC547						
r · · · · · · · · · · · · · · · · · · ·	Capacitor – 1uF,25V						
	12V Battery						
	MOSFET - IRF540						
	IC 555						
	IC7805	1,2,3,4,5,9					
	Photo Transistor L14C1						
	Diode 1N4007						
	Switch						
7. Design a Laser Trip alarm circuit	Laser diode/pointer 5V, 650nm, 5mW	1,3,4,5,9					
Input : 9V DC	Timer IC NE556						
	LDR 5mm						
	Electrolytic Capacitor 100uF, 470uF						
	Ceramic Capacitor 0.1uF						
	Resistor 1K, 10K, 22K						
	Transistor 2n3904						
	DC Battery 9V						
	Speaker 8 ohms/0.5w						
incis Xav	ier Engineering College Dept of EEE R	2021/Curriculum and Syllabi					
------------	---	---	--	--	--	--	--
Suggest		Fred Competen Friend					
Lab Con	iponents Assessments	End Semester Exams					
(60 Marks)		(40 Marks)					
	Experiments	Experiments + Test Project					
Outcom	es						
Upon co	ompletion of the course, the students	will be able to:					
CO1	Understand the characteristics of	Semi-Conductor Devices.					
CO2	Implement different configuratio	n of Transistors and differential amplifier					
CO3	Apply Operational amplifiers in d	ifferent electronic circuits.					
CO4	Design circuit with digital and an	alog ICs.					
CO5	Design timer circuit using specifie	c timer ICs.					
Laborat	ory Requirements						
Transist	or – 10						
	s, Capacitors and inductors –						
IUNECES	sary digital iC o – 10						
Function	Generators – 10						
Regulate	d 3 output Power Supply 5 +_ 15V – 10						
CRO – 10)						
Storage (Oscilloscope –						
1Bread b	boards -10						
Digital M	(Analog) = 2						
ic rester	(Allalog) – Z						
IC 741/ I	C NE555/566/565 – 10						
Digital IC	C types – 10						
LM317, I	LM723, ICSG3524 / SG3525 – Each 10						
Potentio	meter -10						
Step-dov	ep-down transformer 230V/12-0-12V – 5Single Strand Wire -10						

Reference Books

Lab Manual

Web Recourses

- 1. https://nptel.ac.in/courses/117/103/117103063/
- 2. https://nptel.ac.in/courses/108/108/108108112/
- 3. https://nptel.ac.in/courses/108/108/108108111/
- 4. https://nptel.ac.in/courses/108/106/108106069/

CO Vs PO Mapping and CO Vs PSO Mapping

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2
1	3								2				3	
2	3	3	2						2				3	
3		3	2						2				3	
4		3	3						2				3	
5		3	3						2				3	

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1:

Students will be able to Predict the suitable method for......(Apply)

- 1. What is meant by breakdown voltage?
- 2. Write the applications of Zener diode.

COURSE OUTCOME 2:

Students will be able to Predict the suitable method for ... (Apply)

- 1. Derive the equation of MOFET Characteristics equation.
- 2. Explain the frequency response of CE Amplifier.

COURSE OUTCOME 3:

- 1. Define OPAMP.
- 2. Define the summing Amplifier.

COURSE OUTCOME 4:

1. Analyze the Boolean expression and simplify

2. Explain the function of Full adder and full subtractor.

COURSE OUTCOME 5:

1. Write the applications of 555 timer ICs.

2 What is the function of voltage regulator?

21EE3612	DC MACHINES AND TRANSFORMERS LABORATORY	L	Т	Р	C
		0	0	4	2
Preamble					

Electrical Machines Lab provides the essential facilities to the students to augment their concepts about the fundamentals of transformers and rotating machines. The lab is equipped with DC series/shunt motor, compound motor, universal motor, single-phase induction motor, single-phase transformer, three-phase induction motor, three-phase synchronous motor and Three-phase transformer. The lab is equipped with various tests and monitoring equipment also.

Prerequisites for the course

- 1. Basic Electronic Circuits
- 2. Principle of Digital electronics

Objectives

- 1. To determine the performance characteristics of DC Generator.
- 2. To examine the self-excitation in DC generators.
- 3. To impart knowledge in load characteristics of DC Motor.
- 4. To study the need of starters in DC motors.

5. To a	5. To analyse the performance characteristics of transformers and various connections							
S.No	List of Experiments	CO						
1	Open circuit and load characteristics of separately excited DC generators	1						
2	Open circuit and load characteristics of self-excited DC generators	1						
3	Load characteristics of DC series motor	2						

	(() Marka)	(40) Marks)	
	Lab Components	End Sen	nester Exams	
uggestive	e Assessment Methods		· · ·	
14.	Solar panel belt conveyor		1,2,3,8,9	1
13.	Voice based speed control of DC motor		1,2,3,7,8	2
12.	Voice controlled Robot		1,7,8,9	4
11.	Automatic Solar tracker		4,5,8,9	3
10.	Power Supply Circuit		1,2,6,9	4
9.	Electricity generating speed breaker		1,2,6,9,10	5
8.	Power Generation from Footpaths		1,2,3,8,9	5
7.	Design and testing of small DC Motor/Gene	erators	2,4,6,9	3
6.	Automatic Cat Feeder		7,8,9,10	2
5.	Hand Cranked DC Motor Torch		2,3,6	1
4.	Rotating Product Marketing Platform		1,3,5,6,7	5
3.	3D Rotating Laser Disco Lamp		1,5,6,8,9	4
2.	Automatic Fan with Entry Detection		1,2,4,6,8	2
1.	Mini E-bike Using DC Motor		1,3,4,5	2
S.No.	List of Projects		Related Experiment	CC
12	Load Test on three phase transformer		5	
11	Sumpner's test on Single phase transforme	er	5	
10	Separation of no-load losses in single phase	e transformer	5	
9	Open circuit & short circuit test on single p	hase transformer	5	
8	Load test on single-phase transformer		4	
7	Hopkinson's test on DC motor – generator	set	4	
6	Swinburne's test		3	
5	Speed control of DC shunt motor.		3	
4	Load characteristics of DC shunt and DC co	ompound motor.	2	

Outcon	165				
Upon c	completion of the course, the students will be able to:				
CO1	Ability to understand the basic construction of DC Generator				
CO2	Ability to understand and analyse self-excitation in DC generators.				
CO3	Ability to understand and analyse DC Motor characteristics				
CO4	Ability to understand concept of starters in DC Machines.				
CO5	Ability to analyse the equivalent parameters using Transformer and 3-phase transformers				
Labora	tory Requirements				
1.	Laboratory Manual				

Reference Books

- 1. Electrical Technology Vol-II, Theraja, B.L., S. Chand, New Delhi, 2016
- 2. Electrical Machines, Despande, M.V., PHI Learning, New Delhi, 2002
- 3. Electrical Technology, Uppal, S.L., Khanna Publication, New Delhi, 2014
- 4. Electrical Machine, Nagrath, I.J. and Kothari, D.P, Tata McGraw Hill, New Delhi, 2016
- 5. Electrical Machine-I, Gupta, J. B. S. K. Kataria & Sons, New, 2011

Web Recourses

- 1. https://www.ee.iitb.ac.in/course/~emlab/lab-manual.html
- 2. <u>https://www.youtube.com/watch?v=rDqbCEA2Qfc</u>

CO Vs PO Mapping and CO Vs PSO Mapping

0	PO	РО	P01	P01	P01	PSO	PSO							
υ	1	2	3	4	5	6	7	8	9	0	1	2	1	2
1	3	3	2	1								1	3	3
2	2	2	1	1					1	1	1		2	2
3	2	3	2	1					1	1			2	3
4	3	2	2	1		1	1		1	2	1	1	3	2
5	3	2	1	1					1				3	2

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: UNDERSTAND

1. Derive an equation for emf in a DC Generator.

2. How can induced emf in the armature conductors of a DC generator be made unidirectional?

COURSE OUTCOME 2: apply

1. What is Self-Excitation in a DC Shunt generator?

2. What are the advantages of a separately excited generator?

COURSE OUTCOME 3: understand

1. Explain the various methods of excitation of DC Motor.

2. Explain the method of speed control of dc motors with field control.

COURSE OUTCOME 4: analyse

1. Why is starter needed to start the DC motor?

2. Why Is The Starting Current High In A DC Motor (or) Why Do We Use A Starter?

COURSE OUTCOME 5: understand

1. Explain the various types of losses occur in a transformer.

2. Define an Ideal transformer. Draw and explain the no load phasor diagram of an

ideal single phase transformer.

21PT3901	SOFTSKILLS -APTITUDE I	L	Τ	Р	C						
		1	0	0	1						
Prerequisites for the course											
1. Basic Maths											
Objectives											
1. Students	will be able to make sense of problems, develop strategies	to fin	d so	lution	ıs, and						
persevere in solving them.											
2. Students will be able to reason, model, and draw conclusions or make decisions with mathematical, statistical, and quantitative information.											

UNI	ΓI	3			
Num	ber syster	n, Number series, H	CF and LCM of Numbers, Factors	and Decim	als.
UNI	ГІІ	3			
S	Square roo	ots and cube roots, I	ndices and surds, Simplification a	and approx	timation, problems o
iges	and num	pers.			
JNI	ΓIII		MODULE III		3
Perc	entage, Pr	ofit, loss and discou	nt, Average, Ratio and Proportior	1.	
JNI	ΓΙν		MODULE IV		3
Parti	nership ar	nd share, Alligation a	and mixtures, Time, work and wa	ges.	1
UNI	ΓV		MODULE V		3
Pipe	s and ciste	erns, simple interest	, Compound interest, Growth and	l depreciat	ion.
Гota	l Periods				15
Sugg	gestive As	sessment Methods	5		
Cont	tinuous A	ssessment Test	Formative Assessment Test	End Ser	nester Exams
(30	Marks)		(10 Marks)	(60 Mai	rks)
1 DE	SCRIPTIV	/E QUESTIONS	1. ASSIGNMENT	1. DES	SCRIPTIVE
2. FC	ORMATIV	E MULTIPLE	2. ONLINE QUIZZES	QUESTI	UNS
СНО	DICE QUE	STIONS	3.PROBLEM-SOLVING ACTIVITIES	2. FOR CHOICE	MATIVE MULTIPLE QUESTIONS
Outo	comes				
J po i	n comple	tion of the course,	the students will be able to:		
1	Solve rea summar	al-life problems requires which extend be	uiring interpretation and compari yond simple measures of center.	ison of con	plex numerical
2	Solve rea of ratios	al-life problems requ	uiring interpretation and compari	ison of var	ious representations
3	Distingu apply pr	ish between propor oportional reasonin	tional and nonproportional situat g.	tions and, v	when appropriate,
ł	Develop calculati	an answer to an ope ons, data summarie	en-ended question requiring anal s, and/or models.	ysis and sy	nthesis of multiple

Text Books

1. Quantitative Aptitude for Competitive Examinations | 7th Edition (Paperback, AbhijitGuha)

Reference Books

- 1 <u>https://myupsc.com/wp-content/uploads/2020/11/Quantitative-Aptitude-for-Competitive-</u> Examinations-by-Dinesh-Khattar-z-lib.org .pdf
- Quantitative Aptitude for Competitive Examinations Quantitative Aptitude by rs agarwal with
 0 Disc. (English, Paperback, Aggarwal R. S.) Revised, 2021

Web Recourses

- 1. <u>https://pdf.bankexamstoday.com/raman_files/Quant%20Formula.pdf</u>
- 2. <u>https://ugcportal.com/raman-files/QT-TRICKS.pdf</u>
- 3. <u>https://www.javatpoint.com/aptitude/quantitative#speed-and-distance</u>
- 4. <u>https://www.indiabix.com/aptitude/questions-and-answers/</u>

21EE4601	MEASUREMENTS AND MODERN INSTRUMENTS	L	T	Р	C
		3	0	0	3
Preamble		•	•		
This course is	designed to impart fundamental knowledge of analog m	ADSIIT	inσ	inctri	imonte

This course is designed to impart fundamental knowledge of analog measuring instruments characteristics. This course exposes the knowledge about the construction, principle and applications of analog and digital measuring instruments. Students will get the fundamental knowledge of DC and AC null measurement methods along with its behaviors on it's various applications.

Prerequisites for the course

- 2. Physics for Engineers
- 3. Electric Circuits and Network Analysis
- **4.** Analog and Integrated Circuits

Objectives

- 1. To impart knowledge on Basic functional elements of instrumentation
- 2. To learn about the Fundamentals of electrical and electronic instruments
- 3. To study the Comparison between various measurement techniques.
- 4. To discuss about storage and display devices
- 5. To introduce Various transducers and the data acquisition systems

UNIT I	CHARACTERISTICS, ERRORS & STANDARDS OF	9
	INSTRUMENTS	

Functional elements of an instrument – Static and dynamic characteristics – Errors in measurement

– Statistical evaluation of measurement data – Standards and calibration-Principle and types of analog and digital voltmeters, ammeters.

UNIT II	ELECTRICAL AND ELECTRONIC INSTRUMENTS	9
Principle and ty	ypes of multi meters – Single and three phase watt meters and	energy meters –
Magnetic meas	urements –Measurements of iron loss – Instrument transforme	ers – Instruments for

UNI	IT III	COMPARATIVE M	ETHODS OF MEASUREMENTS		9
D.C bric rati	potentiom lges: Maxw o bridges, s	eters, D.C Bridges: V ell bridge, Anderson elf-balancing bridge	Vheatstone Bridge, Kelvin's bridg n bridge, Hays bridge, Schering br es.	e, Kelvin's idge, Wein	double bridge - A.C 's bridge. transforme
UNI	ΤΙ	STORAGE AND DI	SPLAY DEVICES		9
Mag & D	gnetic disk ot matrix d	and tape – Recorder isplay – Data Logge	rs, digital plotters and printers, CI rs.	RT display,	digital CRO, LED, LCI
UNI	T V	TRANSDUCERS AI	ND DATA ACQUISITION SYSTEM	(S	9
Clas Trai acqi	ssification nsducers - uisition sys	of transducers – - Piezoelectric, Ha tem – Smart sensor	Selection of transducers –Res ll effect, optical and digital tr s-Thermal Imagers.	sistive, ca ansducers	pacitive & inductiv – Elements of dat
Tot	al Periods				45
Sug	gestive As	sessment Methods	5		
Con	tinuous A	ssessment Test	Formative Assessment Test	End Sen	nester Exams
(30	Marks)		(10 Marks)	(60 Mar	·ks)
WR	ITTEN TES	ST	3. ASSIGNMENT	WRITTI	EN TEST
			4. ONLINE QUIZZES 3.PROBLEM-SOLVING		
			ACTIVITIES		
Out	comes				
Upo	on complet	tion of the course,	the students will be able to:		
1	Illustrate	e the Basic functiona	al elements of instrumentation.		
2	Compare	e the operation of va	rious types of measuring instrum	ents.	
3	Determin	ne the unknown val	ues of R, L, C using bridges		
4	Analyse t	the operations of sto	orage and display devices		
5	Apply the	e suitable transduce	ers and the data acquisition system	ns	
Гех	t Books				
	2. A.K. Sav	whney, 'A Course i	n Electrical & Electronic Measu	rements &	k Instrumentation',
-					

Reference Books

- 1. H.S. Kalsi, 'Electronic Instrumentation', McGraw Hill, III Edition 2010.
- 2. D.V.S. Murthy, 'Transducers and Instrumentation', Prentice Hall of India Pvt Ltd, 2015.
- 3. David Bell, 'Electronic Instrumentation & Measurements', Oxford University Press, 2013.
- 4. Martin Reissland, 'Electrical Measurements', New Age International (P) Ltd., Delhi, 2001.

Web Recourses

- 1. https://onlinecourses.nptel.ac.in/noc19_ee44/preview
- 2. https://nptel.ac.in/courses/112107242

CO Vs PO Mapping and CO Vs PSO Mapping

CO	PO	P01	P01	P01	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	2	1	2
1	3	2											3	
2	3	3	3										3	
3	3												3	
4	3												3	
5	3												3	

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	10	10	00	00	10
UNDETSTAND	20	20	05	05	20
APPLY	40	40	10	10	40
ANALYZE	30	30	10	10	30
EVALUATE	00	00	00	00	00
CREATE	0	0	0	0	0
Total	100	100	25	25	100

1-Low , 2- Medium, 3- High

COURSE LEVEL ASSESSMENT QUESTIONS COURSE OUTCOME 1:

- 3. The true value of a voltage is 100V. The values indicated by a measuring instrument are 104, 103,105,103 and 105V. Examine the Accuracy and Precision of the measurement. (Analyze)
- 4. Compare Resolution and Precision. (Analyze)

COURSE OUTCOME 2:

- 1. A basic D'Arsonval movement with a full deflection of 50 micro amps and internal resistance of 500 ohm is used as voltmeter. Formulate the necessary equation and Solve the value of multiplier resistance needed to measure a voltage range of 0- 10V. (Apply).
- 2. The Coil of instrument has 42.5 turns. The mean width of the coil is 2.5cm and the axial length of the coil is 2 cm. If the flux density is 0.1 Wb/m2, Solve the torque on the moving coil in NM. (Apply)

COURSE OUTCOME 3:

- 1. Which bridge is used to measure incremental inductance? Develop the expression. (Apply)
- 2. Construct single phase energy meter and explain the principle. (Apply)

COURSE OUTCOME 4:

- 1. Measure the features of FM recording with PDM Recording. (Analyze)
- 2. Compare the dual trace and dual beam CRO. (Analyze)

COURSE OUTCOME 5:

- A 5-plate transducer has plates of dimensions 20mm*20 mm and separated 0.25mm apart. The arrangement is to be used for measuring displacement. Solve the sensitivity of the arrangement. Assume air medium. (Apply)
- 2. Construct the piezo-electric transducer and give the formula for coupling coefficient. (Apply)

21EE4602	CONTROL THEORY	L	Т	Р	С
		3	0	0	3
Preamble					
This course i	s to impart in students a good understanding of fundamental	prin	ciple	es in c	ontrol
engineering.	The course includes: Mathematical Modelling of Linear Contin	nuous	s Tin	ne Inv	variant
Single Input	Single Output Dynamical Systems, Transfer Functions and St	ate S	pace	Mod	els,
Performance	Specifications, Analysis and Design of Closed Loop Control Syste	ems.			
prequisites fo	r the course				
1. Matrice	es and Advance Calculus				
2. Partial	Differential Equation and Application of Fourier Series				
3. Electric	Circuits and Network Analysis				
Objectives					
1. To intr	oduce the use of transfer function models for analysis physical	syste	ms a	nd the	e
control	system components				
2 To prov	ide adequate linewiledge in the time domain analyzic of the grat				
2. To prov	The adequate knowledge in the time domain analysis of the syst	ems.			
3. To disc	uss the frequency domain analysis of the systems				
4. To stud	y the stability analysis.				
5. To lear	n the design of compensators and state variable representation	of ph	ysica	al syst	ems.
UNIT I	SYSTEMS COMPONENTS AND THEIR REPRESENTATION		Ģ	9+3	
Control system	: Terminology and Basic Structure-Feed forward and Feedback	cont	rol t	heory	
Electrical and	Mechanical transfer function models- Electrical analogy of mec	hanic	al sy	vstem	-
Block diagram	reduction technique - Signal flow graph.				
UNIT II	TIME RESPONSE ANALYSIS		Ģ	9+3	
Transient resp	onse-steady state response-Measures of performance of the st	andar	d fir	st ord	lerand
second order s	system- Time domain specifications-Steady state response - St	atic e	rror	const	ants -
steady state er	ror - Effects of proportional derivative, proportional integral sys	stems			
UNIT III	FREQUENCY RESPONSE ANALYSIS		Ģ	9+3	
Closed loop f	requency response-Performance specification in frequency	dom	ain-	Corr	elation
between frequ	iency domain and time domain specifications Frequency re	espon	se	of sta	andard
second order s	ystem- Bode Plot-Polar Plot- Nyquist plots				
UNIT IV	STABILITY ANALYSIS OF CONTROL SYSTEM		Ģ	9+3	

Francis Xavier Engineering College | Dept of EEE | R2021/Curriculum and Syllabi Concept of stability-Bounded-Input Bounded-Output stability-Routh stability criterion-Relative stability-Root locus concept-Guidelines for sketching root locus-Nyquist stability criterion UNIT V COMPENSATOR DESIGN AND STATE VARIABLE 9+3 ANALYSIS Effect of Lag, lead and lag-lead compensation on frequency response-Design of Lag, lead analog lead compensator using bode plots. - Concept of state, state variable, state model, Controllability and observability. **Total Periods** 60 Suggestive Assessment Methods **Continuous Assessment Test Formative Assessment Test End Semester Exams** (30 Marks) (10 Marks) (60 Marks) WRITTEN TEST WRITTEN TEST **1.ASSIGNMENT** 2. ONLINE QUIZZES **3.PROBLEM-SOLVING ACTIVITIES** Outcomes Upon completion of the course, the students will be able to: Develop various representations of system based on the knowledge of Mathematics, 1 Science and Engineering fundamentals. Determine time domain analysis of various models of linear system. 2 3 Analysis frequency domain for various models of linear system. 4 Determine the stability of different control systems. 5 Construct appropriate compensator for the given specifications. **Text Books** 1. Nagarath, I.J. and Gopal, M., "Control Systems Engineering", New Age International Publishers, 2017. 2. Benjamin C. Kuo, "Automatic Control Systems", Wiley, 2018. **Reference Books** atsuhiko Ogata, "Modern Control Engineering", Pearson, 2015. 1. 2. Richard C.Dorf and Bishop, R.H., "Modern Control Systems", Pearson Education, 2009. 3. John J.D., Azzo Constantine, H. and Houpis Sttuart, N Sheldon, "Linear Control System

4. Rames C.Panda and T. Thyagarajan, "An Introduction to Process Modelling Identification and Control of Engineers", Narosa Publishing House, 2017.

Web Recourses

- 1. <u>https://nptel.ac.in/courses/107106081</u>
- 2. <u>https://www.youtube.com/watch?v=RcuGxWc0HyQ</u>

CO Vs PO Mapping and CO Vs PSO Mapping

со	PO	P01	P01	P01	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	2	1	2
1	3	3											3	
2	3	3											3	
3	3	3	2										3	
4	3	3	2										3	
5	3	3	2										3	

1-Low , 2- Medium, 3- High

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	10	10	05	05	10
UNDETSTAND	20	20	05	05	20
APPLY	30	30	15	15	30
ANALYZE	30	30	00	00	30
EVALUATE	10	10	00	00	10
CREATE	0	0	0	0	0
	100	100	25	25	100

Francis Xavier Engineering College| Dept of EEE | R2021/Curriculum and Syllabi COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1:

1. Develop the equations of motion in 's' domain. Determine the transfer function of the system. (Apply)

2. Develop C(S)/R(S) using block diagram reduction rules. (Apply)

COURSE OUTCOME 2:

1. Develop the response of under damped second order system for unit step input. (Apply)

2. The unity feedback system is characterized by an open loop transfer function is G(S)= K / S(S+10). Examine the gain K ,so that the system will have a damping ratio of 0.5.For this value of K, determine settling time, Peak overshoot and time to Peak overshoot for a unit-step input. (Analyze)

COURSE OUTCOME 3:

- **1.** Construct the Bode diagram for the following transfer function and obtain the gain and phase cross over frequencies $G(S) = KS^2 / (1+0.2S) (1+0.02S)$. Determine the value of K for a gain cross over frequency of 20 rad/sec. (Apply)
- 2. Report on the polar plot of an open loop transfer function of a unity feedback system given by G(S) =1/[S (1+S)(1+2S)]. Construct the polar plot. (Apply)

- Examine the value of K of the open loop transfer function given by G(S) = K/(S+1) (S+5) (S²+6S+25), which will cause sustained oscillations in the closed loop system. Find out the corresponding oscillating frequencies. (Analyze)
- 2. Construct the root locus of the system whose open loop transfer function is G(s)
- =K/[S (S+2) (S+4)]. Find the value of K so that damping ratio of the closed loop system is 0.5. (Apply)

COURSE OUTCOME 5:

- 1. Analyze a phase lead compensator for the system G(S) = K/[S (S+1)] to satisfy the phase margin $\geq 45^{\circ}$, steady state error for a unit ramp input $\leq 1/15$ and gain crossover frequency < 7.5 rad/sec. (Analyze)
- 2. Examine whether the system is completely (i) Controllable (ii) Observable (Analyze)

$$\begin{bmatrix} x_1 \\ \dot{x_2} \\ \dot{x_3} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ -2 & -3 & 0 \\ 0 & 2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix} u$$
$$y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

21EE4603	AC MACHINES	L	Т	Р	С
		3	1	0	4

Preamble

It is an introductory course which emphasizes the fundamental concepts and overview of Electrical Machines. The concepts discussed herein are intended to provide clarification on basic electrical engineering for Electrical Engineering graduates. Rotating electrical machines are widely used for the purpose of converting energy from one form to another. AC machines are becoming more and more attractive in many applications such as those requiring variable speed and flexible control. Alternating Current (AC) machines are the most preferred for generation of electric power. AC motors are the commonly used in industry for motive power for applications. There are three families of rotating machines one of which is the synchronous machine commonly in the form of the AC synchronous generator such machines are widely used in power stations for electric power generation. The synchronous motor has limited application.

Prerequisites for the course

- 1. Electric Circuits and Network Analysis
- 2. Fundamentals of Applied Electromagnetics
- 3. DC Machines and Transformers

Objectives

1. To study the construction principle of operation and performance of induction motor

2. To learn the starters and speed control methods of three phase induction motor

3. To impart knowledge on Operation of AC generator and motors (Both three phase and single phase)

4. Analyze the performance characteristics of synchronous motor

5. To introduce the special electrical machines.

 UNIT I
 THREE PHASE INDUCTION MACHINES
 9

Constructional details – Types of rotors – Principle of operation – Slip– Slip- torque characteristics - Condition for maximum torque - No load and blocked rotor tests - Equivalent circuit-– Losses and efficiency – Load test- Circle diagram – Separation of no load losses – Cogging

– Crawling - Double cage rotors –Induction generator – Doubly fed induction generator – Synchronous induction motor

UNIT II	SINGLE PHASE INDUCTION MOTOR AND CONTROL OF
	THREE PHASE INDUCTION MOTOR

9

9

Constructional details of single phase induction motor – Double revolving field theory and operation – Equivalent circuit –– Starting methods of single-phase induction motors. Need for starters – Types of starters: Primary resistor, Autotransformer and Star-delta starters and Rotor resistance – Speed control: Change of voltage, frequency, number of poles and V/f control – Cascaded connection – Slip power recovery scheme- Applications.

UNIT III	SYNCHRONOUS GENERATOR	

Constructional details – Types of rotors – EMF equation – Synchronous reactance – Armature reaction – Voltage regulation – EMF, MMF, ZPF and ASA methods – Synchronizing and parallel operation – Synchronizing torque - Operating characteristics - Capability curves– Salient pole Machine: Two reaction theory – Determination of direct and quadrature axis synchronous reactance using slip test.

UNIT IVSYNCHRONOUS MOTOR9Principle of operation - Methods of starting - Phasor diagram - V and Inverted V curve - Power

angle characteristics - Hunting in synchronous motor - Application of Synchronous motor

UNIT V	SPECIAL ELECTRICALMACHINES	9
Constructional	features- Switched Reluctance motors- PMBLDC and PMSM -Sl	naded poleinduction
motor - Linear	induction motor- Magnetic levitation - reluctance motor – Repu	ulsion motor –

Hysteresis motor-AC series motor - Applications

Total Periods 45

Suggestive Assessment Methods

Francis Xavier Engineering College | Dept of EEE | R2021/Curriculum and Syllabi **Continuous Assessment Test Formative Assessment Test End Semester Exams** (20 Marks) (20 Marks) (60 Marks) WRITTEN TEST **1. ASSIGNMENT** WRITTEN TEST 2. ONLINE QUIZZES **PROBLEM-SOLVING** ACTIVITIES Outcomes Upon completion of the course, the students will be able to: 1 Apply the fundamental Knowledge of Induction motor in Determining the Motor parameters, equivalent circuit parameters and test the Induction motor using direct and Indirect loading methods Discuss the starting and speed control methods for three phase induction motor. 2 Determine the generator Parameters regulation Characteristics phasor and capability curves. 3 4 Solve Problems in phasor diagrams, equivalent circuits and Synchronous motor parameters 5 Summarize the features of special machines Text Books 1. Text of Electrical Technology; Vol -4; B. L. Theraja, and A. K. Theraja; S. Chand Publication 2. Vincent Del Toro, 'Basic Electric Machines' Pearson India Education, 2016 **Reference Books** 1. B.R.Gupta, 'Fundamental of Electric Machines' New age International Publishers, 3rd Edition Reprint 2015 2. D.P. Kothari and I.J. Nagrath, 'Electric Machines', McGraw Hill Publishing Company Ltd, 2017 3. M.N. Bandyopadhyay, 'Electrical Machines Theory and Practice', PHI Learning PVT LTD., New Delhi, 2019. Web Recourses 1. https://onlinecourses.nptel.ac.in/noc22_ee06/preview 2. https://archive.nptel.ac.in/courses/108/105/108105131/ 3. https://www.btechguru.com/courses--nptel--electrical-engineering--electricalmachines- ii-video-lecture--EE--EE10009W.html 4. https://onlinecourses.nptel.ac.in/noc22_ee06/preview

CO Vs PO Mapping and CO Vs PSO Mapping

со	PO	P01	P01	P01	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	2	1	2
1	3	3												3
2	3	3												3
3	3	3	1											3
4	3	3												3
5	3	3	1											3

1-Low, 2-Medium, 3-High

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	10	10	10	10	10
UNDETSTAND	30	30	10	10	30
APPLY	30	30	10	10	30
ANALYZE	20	20	10	10	15
EVALUATE	10	10	10	10	15
CREATE	0	0	0	0	0
	100	100	50	50	100

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1

1. Sketch and Explain the torque slip characteristics of 3 phase cage and slip-ring induction motors. Show the stable region in the graph (Analyze)

2. Develop an equivalent circuit for three phase induction motor. State the difference between exact and approximate equivalent circuit. (Analyze)

COURSE OUTCOME 2:

1. With neat diagrams explains the working of any two types of starters used for squirrel cage type 3 phase induction motor. (Analyze)

2. Explain the different methods of slip power recovery schemes. (Understand)

COURSE OUTCOME 3:

1. Generalize the Equivalent circuit and phasor diagrams of a Synchronousgenerator for different power factor loading (Evaluate)

2. Formulate clearly the A S A method of determining the regulation of an alternator. (Evaluate)

COURSE OUTCOME 4:

1. Explain in detail the V curve and inverted V curve of a synchronous motor (Apply)

2. A 5kW, three-phase Y-connected 50 Hz, 440V, cylindrical rotor synchronous motor operates at rated condition with 0.8 pf leading. The motor efficiency excluding field and stator losses is 95% and Xs=2.5 Ω . Calculate: i) Mechanical power developed ii) Armature Current iii) Back emf iv) Power angle v) Maximumor pull out torque of the motor. (Apply)

COURSE OUTCOME 5:

1. Explain the working of linear induction motor and also write its applications.(understand)

2. Summarize the constructional details, principle of operation and the application of Hysteresis motor and AC Series motor.(Analyze)

21EE4604	Transmission and Distribution in Power Systems	L	Τ	Р	С
		3	0	0	3
Preamble					
lt is an introdu transmission e basic power tra Prerequisites	actory course which emphasizes the fundamental concepts an lements and the concepts discussed herein are intended to pro ansmission and distribution for Electrical Engineering graduate for the course	id ove ovide s.	ervie clari	ew of ficatio	on on
1. Fundam	nentals of Electromagnetics				
2. Electric	Circuits and Network Analysis				
Objectives					
1.	fo impart knowledge on the structure of electric power system	and tl	he		

computation oftransmission line parameters

2. To learn the equivalent circuits for the transmission lines based on distance and todetermine voltage regulation and efficiency.

3. To understand the mechanical design of transmission lines and to analyze the voltagedistribution in insulator strings to improve the efficiency.

4. To familiarize the types, construction and the computation parameters of cables.

5. To study about distribution systems, types of substations, methods of grounding, EHVAC,HVDC and FACTS.

UNIT I TRANSMISSION LINE PARAMETERS

9

9

Structure of Power System -Growth of Power System – Indian overview – Interconnections and their advantages – Parameters of single and three phase transmission lines with single and double circuits -Resistance, inductance and capacitance of solid, stranded and bundled conductors, Symmetrical and unsymmetrical spacing and transposition – application of self and mutual GMD; skin and proximity effects.

UNIT II MODELLING AND PERFORMANCE OF TRANSMISSION LINES

Performance of short line, medium line and long line – equivalent circuits, phasor diagram, attenuation constant, phase constant, surge impedance – transmission efficiency and voltage regulation, real and reactive power flow in lines – Power Circle diagrams – Phenomenon of Corona– Ferranti Effect.

UNIT III MECHANICAL DESIGN OF LINES 9			
	UNIT III	MECHANICAL DESIGN OF LINES	9

Mechanical design of transmission lines – Line Supports –Tower spotting-Types of towers – Stress and Sag Calculation – Effects of Wind and Ice loading. Insulators: Types, voltage distribution in insulator string, improvement of string efficiency, testing of insulators

UNIT IV UNDER GROUND CABLES

Underground cables - Types of cables – Construction of single core and 3 core cables -Insulation Resistance – Potential Gradient - Capacitance of Single-core and 3 core cables -Grading of cables –Dielectric loss - Power factor and heating of cables – DC cables – Comparison between AC and DC cables - Specification of power cables.

UNIT V DISTRIBUTION SYSTEMS

9

9

Classification of Distribution Systems – General Aspects – Kelvin's Law – AC and DC distributions -Techniques of Voltage Control and Power factor improvement – Distribution Loss –Types of Substations -Methods of Grounding – Introduction to EHVAC and HVDC- Wireless power transmission.

	Total P	eriods	45
Suggestive Assessment Methods		I	
Continuous Assessment Test	Formative Assessment Test	End S	emester Exams
(30 Marks)	(10 Marks)	(60 Marks)

Francis Xavier Engineering College | Dept of EEE | R2021/Curriculum and Syllabi WRITTEN TEST **1.ASSIGNMENT** WRITTEN TEST 2. ONLINE QUIZZES **3.PROBLEM-SOLVING** ACTIVITIES Outcomes Upon completion of the course, the students will be able to: Analyze the transmission line models and evaluate its performance parameters. 1 2 Analyze and compute the parameters of the transmission line for different configuration 3 Design the transmission lines under various working conditions and understand the role of insulators Compute the parameters of underground cables. 4 5 Calculate Distribution systems parameters, substations layouts, and grounding. Text Books 1. D.P.Kothari, I.J. Nagarath, 'Power System Engineering', Mc Graw-Hill Publishing Company limited, New Delhi, Third Edition, 2019. 2. C.L.Wadhwa, 'Electrical Power Systems', New Academic Science Ltd, 2018. 3. S.N. Singh, 'Electric Power Generation, Transmission and Distribution', Prentice Hall of India Pvt. Ltd, New Delhi, Second Edition, 2019. **Reference Books** 1. B.R.Gupta, 'Power System Analysis and Design' S. Chand, New Delhi, 2016. 2. Luces M.Fualken berry, Walter Coffer, 'Electrical Power Distribution and Transmission', Pearson Education, 2019. 3. Arun Ingole, "power transmission and distribution" Pearson Education, 2017. 4. J.Brian, Hardy and Colin R.Bayliss 'Transmission and Distribution in Electrical Engineering', Newnes; Fourth Edition, 2015. Web Resources 1.https://www.electrical4u.com/power-system/ 2. https://electrical-engineering-portal.com/electric-power-systems

CO Vs PO Mapping and CO Vs PSO Mapping

60	PO	PO	PO	PO	PO	PO	РО	PO	РО	P01	P01	P01	PSO	PSO
LU	1	2	3	4	5	6	7	8	9	0	1	2	1	2
1	3	3				2					2		2	3
2	3	3				2					3		2	3
3	3	3	2			2		2			2		2	3
4	3	3	2			2		2			2		2	3
5	3	3	2		2	2					3	3	2	3

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	10	10	0	0	10
UNDETSTAND	30	30	5	5	30
APPLY	60	60	10	10	60
ANALYZE	0	0	10	10	0
EVALUATE	0	0	0	0	0
CREATE	0	0	0	0	0
	100	100	25	25	100

1-Low, 2- Medium, 3- High

COURSE LEVEL SSESSMENT QUESTIONS

COURSE OUTCOME 1:

1. Derive the expression for calculation the internal and external flux linkages for a conductor carrying current. Use these expressions to derive the equation for the inductance of a single phase transmission line(Analyse)

2. Calculate the loop inductance per km of a single phase line comprising of 2 parallel conductors 1m apart and 1cm in diameter, When the material of conductor is (1) Copper (2)Steel of relative permeability 50.(Evaluate)

3. Derive the expression for capacitance of symmetrical and unsymmetrical double circuitthree phase line (Analyse)

COURSE OUTCOME 2:

1. Derive the expression for receiving end power circle diagram. (Understand)

2. Derive the power flow performance equation of three phase transmission line in the form and sending-end receiving-end power and voltages at the two ends of the line (Analyse).

COURSE OUTCOME 3:

- 1. Prove that a transmission line conductor between two supports at equal heights takes the form of a catenary (Understand)
- 2. What is sag template? Explain how this is useful for location of towers and stringing of power conductors. (Understand)
- 3. Derive an expression for the insulation resistance, capacitance and the electrostaticstress of a single core cable. (Analyse)

COURSE OUTCOME 4:

- 1. A 2km long 3 core 3 Φ cable has capacitance 0.5 μ F/km between two conductors bunched with sheath and the third conductor. The capacitance between the conductors is also measured when bunched together and the sheath and found to be 0.75 μ F/km. Determine
 - (i) Capacitance between phases (ii) Capacitance between the conductor and the sheath (iii) Effective per phase capacitance (iv) Capacitance between two conductors connecting a third conductor to the sheath (v) Charging current if the supply voltage is 11kv ,50Hz. (Evaluate).
 - 2. Describe an experiment to determine the capacitance of belted cables (Understand).

3. A 33kV single core cable has conductor diameter of 1 cm and a sheath of inside diameter4cm. Find the maximum and minimum stress in the insulation (Evaluate).

COURSE OUTCOME 5:

- 1. A single phase distributor 'AB' 300m long supplies a load of 200A at 0.8pf lagging at its far end 'B' and a load of 100A at 0.0707 pf lagging at 200m from sending end point A. Both pf are referred to the voltage at far end. The total resistance and reactance per km(go and return) of the distributor is 0.2ohm and 0.1ohm. Calculate the total voltage drop in the distributor. (Evaluate)
- 2. Explain the following : (a) Stepped or trapped distributor (b) Ring main distributor (c) DC distributor fed at one end (d) DC distributor fed at both ends. (Understand)

Francis Xavier Engineering College Dept of EEE R2021/Curriculum and Syllabi	

24554605	DIGITAL ELECTRONICS	L	Τ	Р	С
21EE4605		2	0	2	3

Preamble

This Theory cum Practical course gives a Theory knowledge and practical exposure to the students to learn the characteristics of logic gates, various digital circuits such as Multiplexers, Demultiplexers, Encoders, Decoders, Code converters, counters and shift registers and their applications. The use of simulation tool (Verilog HDL) for the performance analysis of digital circuits is also introduced.

Prerequisites for the course

- **1.** Physics For Engineers
- **2.** Analog and Integrated Circuits

Objectives

1. To study various number systems and simplify the logical expressions using Boolean functions.

2.To discuss the K-map minimization and design of combinational circuits.

3. To learn the design o f synchronous sequential circuits.

4.To impart knowledge of asynchronous sequential circuits and PLD.

5. To introduce the digital simulation for development of application oriented logic circuits.

UNIT I	DIGITAL FUNDAMENTALS	6

Review of number system—1's and 2's complements-Types and conversion of codes- BCD, Excess 3 code, Gray code-Error detection and correction codes (Parity and Hamming code). Boolean algebra-Logic gates, Universal gates.

UNIT II	COMBINATIONAL CIRCUIT DESIGN	6

K-map representations - minimization using K maps - Implementation of combinational logic circuits-Design of Half and Full Adders, Half and Full Subtractors, Multiplexer,Demultiplexer, code converters, Decoder and Encoder.

UNIT III	SYNCHRONOUS SEQUENTIAL CIRCUITS	6
0		Ŭ

Flip flops – SR, JK, D, T, Master/Slave FF – operation and excitation tables-Analysis and design of clocked sequential circuits –Moore and Mealy models, state reduction-Design of Synchronous Counters - Modulo counters- Shift registers.

UNIT IV	ASYNCHRONOUS SEQUENTIAL CIRCUITS AND	6
	PROGRAMMABLE LOGIC DEVICES	

Asynchronous sequential logic circuits-Transition table, flow table, race conditions-Analysis of asynchronous sequential Circuits-Introduction to Programmable Logic Devices: PROM, PLA and PAL.

UNIT V			VHDL		6			
RTL	Design – c	ombinational logic	- Adder, Subtractor, Multiplexer, I	Demultiple	exer – Sequential			
circ	uit- Flip Flo	ops, Counters – Ope	rators – Introduction to Packages	– Test ber	ich.			
			Total Per	riods	30			
S.No)	List of Experim	nents	СО				
-	1 Simpli	fication and Realiza	ation of Boolean Functions using lo	C01				
2	2 Parity	generator and pari	ty checking	C01				
	3 Impler	nentation of Adder	and Subtractor circuits		CO2			
4 Code converters: Excess-			3 to BCD and Binary to Gray code o	converter	CO2			
	and vi	ce-versa						
ļ	5 Encod	ers and Decoders			CO2			
(6 Design	esign and implementation of 3-bit modulo synchronous counters.			CO3			
•	7 Design	Design and implementation of 4-bit shift registers in SISO, SIPO,						
	PISO, I	PISO, PIPO modes using suitability IC's						
	Total	Total Periods						
Sug	gestive As	sessment Methods	5					
Con	tinuous As	ssessment Test	Formative Assessment Test	End Ser	nester Exams			
(30	Marks)		(10 Marks)	(60 Ma	rks)			
WR	ITTEN TES	T	1. Lab Experiments	WRITT	EN TEST			
			2. Model Examination					
			3. Test Project					
Out	comes							
Upo	on complet	ion of the course,	the students will be able to:					
1	Apply the	Apply the number systems and simplify the logical expressions using Boolean functions						
2	Design ar	Design and Demonstrate combinational Circuits using logic gates						
	Construc	Construct synchronous sequential circuits for the given requirement.						
3		Design asynchronous sequential circuits and PLDs						
3 4	Design as	synchronous sequel						
3 4 5	Design as Write a p	rogram using VHDI	and to determine the logic circuit	its perforr	nance using verilog			

- **2.** M. Morris Mano, 'Digital Design with an introduction to the VHDL', Pearson Education,6th Edition 2018.
- 3. James W. Bignel, Digital Electronics, Cengage learning, 5th Edition, 2007.

Reference Books

- **1.** D.P.Kothari, J.S.Dhillon, 'Digital circuits and Design', Pearson Education, 2016.
- **2.** Thomas L.Floyd, 'Digital Fundamentals', 11th edition, Pearson Education, 2015.
- 3. Mandal, "Digital Electronics Principles & Application, McGraw Hill Edu, 2013.
- 4. William Keitz, Digital Electronics-A Practical Approach with VHDL, Pearson, 2013.

Web Recourses

- 1. https://nptel.ac.in/courses/108105113
- 2. https://nptel.ac.in/courses/117106086

CO Vs PO Mapping and CO Vs PSO Mapping

60	PO	P01	P01	P01	PSO	PSO								
ιυ	1	2	3	4	5	6	7	8	9	0	1	2	1	2
1	3	3							2				3	
2	3	3							2				3	
3	3	3	2						2				3	
4	3	3	2										3	
5	3	3	2										3	

1-Low , 2- Medium, 3- High BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	10	10	05	05	10
UNDETSTAND	20	20	05	05	20
APPLY	30	30	15	15	30
ANALYZE	30	30	20	20	30
EVALUATE	10	10	05	05	10
CREATE	0	0	0	0	0
	100	100	50	50	100

Francis Xavier Engineering College| Dept of EEE | R2021/Curriculum and Syllabi COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1:

- 1. Solve seven bit even parity hamming code for the binary word 1011. (Apply)
- 2. Examine the correct transmitted message for the received even parity hammingcode 00111101010 and also detect & correct errors if any. (Analyze)

COURSE OUTCOME 2:

- 1. Construct full subtractor circuit and draw its Logic diagram. (Apply)
- 2. Construct 3*8 Decoder with its truth table and Logic gates. (Apply)

COURSE OUTCOME 3:

- 1. Develop the Modulus 3 counters using SR flip flop. (Apply)
- 2. Construct the following shift registers i) Serial in Parallel out ii) Serial in Serialout. (Apply)

COURSE OUTCOME 4:

1. Construct an asynchronous sequential circuit with two inputs X and Y and one output Z whenever Y is 1 input X is transferred to Z when y equal to zero the output does not change for any change X. (Apply)

2. Analyze the fundamental mode of Asynchronous Sequential Circuit with one suitable example. (Analyze)

COURSE OUTCOME 5:

- **1.** Develop the Full Adder circuit and Write VHDL program using BehavioralModeling andStructural modeling. (Apply)
- 2. Construct the sequential Circuit and write the VHDL code for SR Flip-flop.(Apply)

		L	Т	Р	C
21GE4M01	INDIAN CONSTITUTION AND CULTURAL HERITAGE	2	0	0	0
Prerequisite	s for the course				
•	Nil				
Objectives					
1. To ac	quaint the students with legacies of constitutional developme	ent in Ii	ndia a	nd hel	р
those	to understand the most diversified legal document of India a	nd phil	osopł	ıy behi	nd i
2. To ma	ke students aware of the theoretical and functional aspects o	of the Ir	ndian		
Parlia	mentary System.				
3. To ma	ke students learn about the science management and knowle	edge sy	vstem	in our	
India	1 Culture				
4. To se		dition a	and its	5	
comp	osite character				
UNITI	INTRODUCTION AND BASIC INFORMATION ABOUTINDI CONSTITUTION	AN			
Meaning of th	e constitution law and constitutionalism, Historical Backgro	und of	the C	onstitu	ent
Assembly. Go	vernment of India Act of 1935 and Indian Independence Act o	of 1947	,Enfor	cemer	ıt
, au		11	f the C	onstit	utio
of the Constit	ution, Indian Constitution and its Salient Features, The Prear	mble of		•.	
of the Constit	ution, Indian Constitution and its Salient Features, The Prear Rights, Fundamental Duties, Directive Principles of Stat	mble of e Polic	су, Ра	rliame	nta
of the Constit Fundamental System, Fede	ution, Indian Constitution and its Salient Features, The Prear Rights, Fundamental Duties, Directive Principles of Stat ral System, Centre-State Relations, Amendment of the Cor	mble of e Polic nstituti	cy, Pa .onal ∃	rliame Power	nta s ar
of the Constit Fundamental System, Fede Procedure, T	ution, Indian Constitution and its Salient Features, The Prear Rights, Fundamental Duties, Directive Principles of Stat ral System, Centre-State Relations, Amendment of the Con 1e historical perspectives of the constitutional amendmer	mble of e Polic nstituti nts in 1	cy, Pa onal ∃ India,	rliame Power Emer	nta: s ar geno
of the Constit Fundamental System, Fede Procedure, T Provisions: N	ution, Indian Constitution and its Salient Features, The Prear Rights, Fundamental Duties, Directive Principles of Stat ral System, Centre-State Relations, Amendment of the Con ne historical perspectives of the constitutional amendmer itional Emergency, President Rule, Financial Emergency, and	mble of e Polic nstituti nts in 1 Local S	cy, Pa onal ∃ India, Self Go	rliame Power Emer overnn	nta: s ar geno nent
of the Constit Fundamental System, Fede Procedure, T Provisions: N – Constitutior	ution, Indian Constitution and its Salient Features, The Prear Rights, Fundamental Duties, Directive Principles of Stat ral System, Centre-State Relations, Amendment of the Con ne historical perspectives of the constitutional amendmer ational Emergency, President Rule, Financial Emergency, and al Scheme in India.	mble of e Polic nstituti nts in 1 Local S	cy, Pa onal 1 India, Self Go	rliame Power Emer overnn	nta: s ar geno nent
of the Constit Fundamental System, Fede Procedure, T Provisions: N – Constitution	ution, Indian Constitution and its Salient Features, The Pream Rights, Fundamental Duties, Directive Principles of Stat ral System, Centre-State Relations, Amendment of the Con ne historical perspectives of the constitutional amendmer ational Emergency, President Rule, Financial Emergency, and al Scheme in India. UNION EXECUTIVE AND STATE EXECUTIVE	mble of e Polic nstituti nts in 1 . Local S	cy, Pa onal 1 India, Self Go	rliame Power Emer overnn	nta s ar geno nent

	Ι	SCI	ENCE	, MAN	AGEM	ENT A	AND II TEM	NDIAN	I KNO	WLEDG	Έ			
Astrono Medicin Manage India Tr	omy in ne in ement rade in	India, India in Indi Ancie	Chemi ,Metal ia, Tex nt Ind	istry in llurgy ctile T ia/,Inc	n India in In echno lia's D	, Matl dia, (logy i omina	nemati Geogra n Indi ance uj	ics in I iphy, a ,Wri p to Pr	ndia, l Biolog ting T e-colo	Physics gy, Hara Sechnolo onial Tin	in India appan ogy in nes	A, Agricu Techno India P	ulture in ologies, yrotech	n Indi Wate mics i
UNIT IV	Ι	CULT	TURAI	HER	ITAGE	AND	PERF	ORMI	NG AF	RTS				
Indian A Puppetr Current Cinema	Archite ry, Dai devel and its	ect, En nce, M opmer s influe	gineer usic, 7 nts in ence ir	ring ar Fheatr Arts a n cultu	nd Arc e, dra and Cu ral He	hitect ma, F ıltural ritage	ure in Paintin I, India	Ancie g, Mai an's Ci	nt Inc rtial A ultura	lia, Scul arts Tra l Contri	ptures, ditions bution	Seals, , Fairs to the	coins, F and Fe World.	Potter estival India
									1	Total P	eriods	4	5	
Jutcom	ies:											I		
1.	Identi	fy and	explo	re the	basic f	featur	es and	moda	lities	about Ir	ndian co	onstitut	ion.	
2.	Differ state l	entiat	e and	relate	the fu	nction	ing of	Indiar	ı narli	amenta	rv svste	om at th	e cente	r and
2	m	evel.					11			. 1	1	,	, i.	i unu
3.	To ana Cultur	evel. alyze t re	he scie	ence m	anage	ment	and ki	nowle	dge sy	stem de	evelope	d in our	Indian	
3. 4.	To ana Cultur To un mode	evel. alyze t re dersta rn scie	he scie nd, com	ence m nnect p perspe	anage up and ective.	ement l expla	and ki	nowlee sics of	dge sy Indiar	stem de 1 Traditi	velope ional kr	d in our nowledg	· Indian ge and	
3. 4. Continu	To ana Cultur To una <u>mode</u> uous A	alyze t re dersta <u>rn scie</u> ssess	he scie nd, cor <u>ntific</u> ment '	ence m nnect r perspe Fest	anage up and ective.	ement l expla	and ki	nowlee sics of	dge sy Indiar	stem de n Traditi End i	evelope ional kr	d in our nowledg t er Exa	Indian ge and ms	
3. 4. Continu	To ana Cultur To un <u>mode</u> uous A	evel. alyze t dersta <u>rn scie</u> ssessi (30 Ma	he scie nd, cor ntific j ment ' a rks)	ence m nnect p perspe Test	aanage up anc ective.	ment l expla	and ki	nowlee sics of	dge sy Indiar	stem de 1 Traditi End 1	evelope ional kr Semest (50 Ma	d in our nowledg t er Exa t a rks)	r Indian ge and ms	
3. 4. Continu 2. FOR 3. CASI	To ana Cultur To un moder nous A MATIV E STUI	alyze t re dersta <u>rn scie</u> ssess (30 M VE MUI DY	he scie nd, cor ntific j ment ' arks) LTIPLI	ence m nnect p perspe Fest E CHO	up and ective.	ement l expla	and ki	nowled	dge sy Indiar	stem de n Traditi End 1. DESCI 2. FORM QUESTIO	evelope ional kr Semest (50 Ma RIPTIVI ATIVE ONS	d in our nowledg t er Exa arks) E QUES' MULTII	r Indian ge and ms TIONS PLE CH	
3. 4. Continu 2. FOR 3. CASI CO V	To ana Cultur To un moder uous A MATIV E STUI	alyze t ce dersta <u>rn scie</u> ssessi (30 Ma /E MUI DY lappi	he scie nd, con ntific ment arks) LTIPLI	ence m nnect p perspe Test E CHO	anage up and ective. ICE QU	ement l expla JESTI Mapp	and ki ain bas	nowled sics of	dge sy Indiar	stem de n Traditi End 1. DESCI 2. FORM QUESTIO	evelope ional kr Semest (50 Ma RIPTIVI ATIVE ONS	d in our nowledg ter Exat arks) E QUES' MULTII	Indian ge and ms	
3. 4. Continu 2. FOR 3. CASI CO V S.no	To ana Cultur To un mode uous A MATIV E STUI	evel. alyze t dersta <u>rn scie</u> ssessi (30 Ma VE MUI DY 1appir PO2	he sciend, com ntific (ment ' arks) TTIPLI	ence m nnect p perspe Test E CHO I CO V PO4	anage up and ective. ICE QU s PSO PO5	ment l expla JESTI Mapr PO6	and ki ain bas ONS Ding PO7	nowled sics of	lindiar	stem de n Traditi End 1 1. DESCI 2. FORM QUESTIO	evelope ional kr Semest (50 Ma RIPTIVI ATIVE ONS PO11	d in our nowledg ter Exat arks) E QUES' MULTII	r Indian ge and ms TIONS PLE CH	
3. 4. Continu 2. FOR 3. CASI CO V S.no 1	To ana Cultur To un mode uous A MATIV E STUI	evel. alyze t dersta <u>rn scie</u> ssessi (30 Ma /E MUI DY fappin	he sciend, com ntific ment ' arks) TTIPLI	ence m nnect p perspe Test E CHO I CO V PO4	anage up and ective. ICE QU s PSO PO5	ment l expla JESTI Mapp PO6	and ki ain bas ONS Ding PO7 3	nowled sics of PO8	dge sy Indiar	stem de n Traditi End 1. DESCI 2. FORM QUESTIO PO10 3	evelope ional kr Semest (50 Ma RIPTIVI ATIVE ONS PO11	d in our nowledg ter Exat arks) E QUES' MULTII	r Indian ge and ms TIONS PLE CH	OICE

3						3		3		
4						3		3		
5						3		3		
Τ.,	2 1	r. 1 [.] .	11	· . 1.						

1-Low, 2-Medium, 3-High

21EE4611	CONTROL AND INSTRUMENTATION LABORATORY

Preamble

This lab is to provide sound knowledge in the basic concepts of linear control theory and instrumentation, to understand the methods of representation of systems and getting their transfer function models, to provide adequate knowledge in the time response of systems and steady state error analysis, to give basic knowledge is obtaining the open loop and closed–loop frequency responses of systems and to understand the concept of stability of control system and methods of stability analysis. It helps the students to study the compensation design for a control system.

Prerequisites for the course

Control Theory

Objectives

- To impart knowledge on Modeling of electrical and mechanical systems using transfer function.
- To demonstrate the Frequency domain specifications from frequency response plots and introduces Stability of the linear-time invariant system.
- To experimentally design the Lag, Lead and Lag-Lead Compensators
- To simulate the Concept of state space modeling of continuous linear-time invariant systems
- To know the basic knowledge of bridges.

S.No	List of Experiments	СО
1	Transfer function of DC motor	1
2	Time response of Second Order systems using MATLAB Simulation.	1
3	P, PI and PID controllers	2
4	Synchro-Transmitter-Receiver and Characteristics	2
5	Design of Lag, Lead and Lag-Lead Compensators	3
6	Position Control Systems	3
7	Stability analysis of Linear Time Invariant system and check the concepts of controllability and observability using MATLAB Simulation.	4
8	Bridge Networks –AC and DC Bridges	5

9	Dynamics of Sensors/Transducers a. Temperature b. Pressure c.		
	Displacement d. Optical e. Strain f. Flow	5	
10	Power and Energy Measurement	5	
11	Instrumentation Amplifier	5	
12	Analog – Digital and Digital –Analog converters (ADC and DACs)	5	
S.No.	List of Projects	Related Experiment	CO
1.	Build a Custom Servo Motor with a DC Motor	Exp 1,2	1
2.	Servo Motor Control by Flex Sensor	Exp 1	1
3.	Reading a Typical Brushed DC Motor Datasheet and Finding the Motor Transfer Function	Exp 2,3	1
4.	DC Motor Control using MATLAB	Exp 2	1
5.	Automatic headlight dim/bright control system	Exp 4,5	2
6.	Transfer Functions in Simulink, - Creating and Using Transfer Functions	Exp 4,5	2
7.	Temperature Control in a Heat Exchanger	Exp 4,5	2
8.	Assessing Gain and Phase Margins	Exp 4,5	2
9.	Automatic tuning of PID, gain-scheduled, and arbitrary SISO and MIMO control systems	Exp 5	2
10.	To simulate a DC position control system and hence to find the step response using MATLAB.	Exp 5	3
11.	Arduino PID based DC Motor Position Control System	Exp 5,7	3
12.	Time Domain responses of MIMO model	Exp 5,7	3
13.	Analog transmitter and receiver: optimization of power dissipation and maximization of bandwidth	Exp 6	3
14.	Study of the bridges by various types of power supply	Exp 8	5
15.	A Comparative Analysis of PID, Lead, Lag, Lead-Lag, and Cascaded Lead Controllers for a Drug Infusion System	Exp 7	3

Suggest	tive Assessment Methods					
	Lab Components Assessments	End Se	mester Exam	5		
	(60 Marks)	(40 Marks)				
	1. Experiment verification	1.	Experim	ent verification		
	2. Model Exam		2.	Viva Voce		
Outcon	ies					
Upon co	ompletion of the course, the students will be abl	e to:				
CO1	Model the electrical and mechanical systems us	sing transfer	function.			
CO2	Analyze the stability of systems					
CO3	Demonstrate the effect of different types of con	npensators.				
CO4	Determine the Concept of state space modeling systems	g of continuc	ous linear-time	e invariant		

S.No.	Description of Equipment	Quantity required(R)
1	DC And AC Servomotor	1
2	Dc Motor Generator Set Up For Evaluation Of Motor Parameter	1
3	Personal Computer With Control System Simulation Packages	10
4	PID Controller Simulation And LearnerKit	1
5	Tachogenerator Coupling Set	1
6	AC Synchro Transmitter And Receiver	1
7	Position Control System Kit	1
8	Experimental setup for Measurement of Linear displacement using Potentiometer and application,	1

9	Strain gauge and Load cell	1	
10	LVDT characterisation and application	1	
	Hall Effect characterisation and		
	application Measurement of Angular		
	displacement		
11	Thermistor characterisation and	1	
	application Various types of		
	Thermocouple and RTD		
12	Measurement of power and energy	1	
	Sufficient number of power supply,		
13	Galvanometer	1	
14	Bread board, Multimeter, resistors, Decade	1	
	Capacitance box, Decade resistance box, Decade		
	Inductance box,		
	CRO		

Reference Books

1. Laboratory Manual

Web Resourses

- 1. https://www.youtube.com/watch?v=nC71WXm1Rl0
- 2. https://www.youtube.com/watch?v=kZ8093_Cm4M
- 3. https://www.youtube.com/watch?v=sFqFrmMJ-sg

CO Vs PO Mapping and CO Vs PSO Mapping

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2
1	3	3	2	1								1	3	3
2	2	2	1	1					1	1	1		2	2
3	2	3	2	1					1	1			2	3
4	3	2	2	1		1	1		1	2	1	1	3	2
5	3	2	1	1					1				3	2

1-Low , 2- Medium, 3- High

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Students will be able to Predict the suitable method for....(Apply)

1. Develop the transfer function of field Controlled DC servomotor and define transferfunction

2. Derive the expression for second order system for under damped case

and when the inputis unit step.

COURSE OUTCOME 2: Students will be able to Predict the suitable method for....(Analyze)

1. Analyze the transfer function of synchros.

2. Explain briefly the PI controller action with block diagram and obtain its transfer functionmodel. List out its advantages and disadvantages

COURSE OUTCOME 3: Students will be able to Predict the suitable method for....(Demonstrate)

1. The open loop transfer function of the uncompensated system is . (2) () + = s s K G s Design a lag compensator for the system so that the static velocity error constant Kv is 10 sec-1, the phase margin ≥ 600

2. For the given system, (1)(2) () + + = s s s K G s, design a suitable laglead compensator togive, velocity error constant=10 sec-1, phase margin=500, gain margin \ge 10 dB

COURSE OUTCOME 4: Students will be able to Predict the suitable method for....(Determine)

1. For each of the characteristics equation of feedback control system given, determine the range of K for stability. Examine the value of K so that the system is marginally stable and thefrequency of sustained oscillations for second order systems

2. Examine the controllability and observability of a system for second order systems.

COURSE OUTCOME 5: Students will be able to Predict the suitable method for....(Develop)

1. Explain how the inductance is measured in terms of known Capacitance using Maxwell'sbridge. Compose the conditions for balance.

2. Draw a neat diagram of Kelvin double bridge and explain how to measure low resistance.

3.					
21EE4612	AC MACHINES LABORATORY	L	Τ	Р	С
		0	0	4	2
Preamble					

This laboratory gives a practical exposure to the students to fundamental concepts regarding AC Machines that are currently used in Electrical Systems. The students also learn to select the suitable AC Electrical Machines for an application based on its characteristics, perform suitable capacitor additions to improve power factor and to familiarize the standard testing procedures of AC Machines.
Prerequisites for the course

- Circuit Theory
- Transformers
- Electro Magnetic theory

Objectives

- 1. To study the need of AC Machine Starter.
- 2. To impart knowledge on three Phase Induction Motor and its ?Applications.
- 3. To expose the operation of Single Phase Induction Motor.
- 4. To impart knowledge on AC Generator.
- 5. To expose the operation of synchronous machines

S.No	List of Experiments	СО			
1	Study of AC machine Starters	1			
2	No load and blocked rotor tests on three-phase induction motor (Determination of Equivalent circuit parameters).	2			
3	Separation of No-load losses of three-phase induction motor.	2			
4	Load test on single-phase induction motor.	3			
5	Load test on three-phase induction motor.	2			
6	No load and blocked rotor test on single-phase induction motor.	3			
7	Regulation of three phase alternator by EMF and MMFmethods.	4			
8	Regulation of three phase alternator by ZPF and ASAmethods	4			
9	Regulation of three phase salient pole alternator by slip test	4			
10	V and Inverted V curves of Three Phase Synchronous Motor.	5			
S.No.	List of Projects	Related Experiment	СО		
1.	Polarity test of Synchronous machine windings	Exp 9	5		
2.	Soft starter for 3 phase induction motor using microcontroller	Exp 4,5	2,3		
3.	Single Phase Induction Motor With Smooth Start	Exp 4,5 2,3			
4.	Induction Motor Speed & Direction Controller	Exp 4,5 2,3			
5.	Tests for Transient and Sub-transient reactance	Exp 6,7,8	3,4		

6.	Three Phase connection for harmonic elimination in Synchronous machines	Exp 9	5
7.	Determination of Positive sequence resistance for synchronous machine	Exp 9	5
8.	Induction Motor Speed Controller Project	Exp 4,5	2,3
9.	Simulation of an Electrical Machine: With Superconducting Magnetic Bearings	Exp 3,4,5,6	2,3
10.	Slip Power recovery of Wound rotor Induction motors	Exp 3,4,5	2,3
11.	Induction Motor Starter Using Auto Delta Star Starter	Exp 1, 2,3,4	1,2,3
12.	Insulation resistance, winding resistance measurement, current balance, NL current and power measurement of Induction motor	Exp 3,4,5	2,3
13.	Shaft voltage test of induction motor	Exp 5,6	2,3
14.	Simulation of 3 Phase Induction Motor in MATLAB With Direct and Soft Starting Methods	Exp 1,2,3,4,5,	1,2,3
15.	Design of weedeater 12V generator with an Alternator	Exp 7,8,9	4

Suggestive Assessment Methods

Lab Components Assessments	End Semester Exams
(60 Marks)	(40 Marks)
Experiments, Viva Voce , Model Exam	Experiments, Viva Voce

Outcomes

Upon co	pon completion of the course, the students will be able to:							
CO1	Ability to understand the basic concept of AC machine Starters							
CO2	Ability to understand and analyze Three phase induction motor							
CO3	Ability to understand and analyze Single phase induction motor							
CO4	Ability to analyse the characteristics of Alternator							
CO5	Ability to understand the importance of synchronous machines							
Labora	tory Requirements							

S.No. Description of	Equipment	Quantity Required(R)	
----------------------	-----------	-------------------------	--

Francis Xavier Engineering	College Dept of EEE	R2021/Curriculum	and Syllabi
0 0		/	5

1		
1.	Synchronous Induction Motor 3HP	1
2.		
	DC Shunt Motor Coupled With 3 Phase Motor	4
3.	DC Shunt Motor Couples With 3 Phase Slip Ring Induction Motor	1
4.	3 Phase Induction Motor With Loading Arrangement	2
5.	Single Phase Induction Motor With Loading Arrangement	2
6.		
	Tachometer Digital Analog	8
7.		
	Single Phase Auto Transformer	2
8.		
	3 Phase Auto Transformer	3
9.		
	Single Phase Resistive Loading Bank	2
10.		
	Capacitor Bank	2

Reference Books

1. Lab Manual

Web Recourses

- 1. https://nptelmooc2013.appspot.com/noc19_ee01/announcements
- 2. https://www.btechguru.com/courses--nptel--electrical-engineering--electrical machines-ii-video- lecture--EE--EE10009W.html

CO Vs PO Mapping and CO Vs PSO Mapping

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2
1	3	3	2	1								1	3	3
2	2	2	1	1					1	1	1		2	2
3	2	3	2	1					1	1			2	3
4	3	2	2	1		2	2		1	2	1	1	3	2
5	3	2	1	1					1				3	2

1-Low, 2-Medium, 3-High

COURSE LEVEL ASSESSMENT

QUESTIONSCOURSE OUTCOME 1

(CO 1) : Understand

- 1. Why is starter needed to start the Ac motor
- 2. Explain the various methods of AC Starter

COURSE OUTCOME 2 (CO 2) : Apply

- 1. Derive an equation for emf in Ac machine.
- 2. Why emf method is called as pessimistic method

COURSE OUTCOME 3 (CO 3) : Understand

- 1. In comparison with transformer Induction motor is having high efficiency or low efficiency
- 2. Is Short circuit and Open circuit test is Possible for both type of Induction motors.

COURSE OUTCOME 4 (CO 4) : Analyze

1. Explain the principle operation of a synchronous motor with circuit diagram.

2. What is the application of Synchronous Motor?

COURSE OUTCOME 5 (CO 5) : understand

1. What is the phase displacement in space between the two windings?

2. How is the starting winding disconnected from the supply?

21PT3902	SOFT SKILLS-VERBAL ABILITY	L	Т	Р	С
		0	0	2	1

Preamble:

This course is developed to enhance the Verbal competency of the students as Verbal Ability is commonly a part of the various competitive exams conducted. This course equips the students in all the aspects of grammar and helps to enhance comprehensive abilities and Analytical skills.

Prerequisites for the course

• Foundational English

Objectives

1. To help the student understand the importance of having his language skills kept ready for effective use.

2. To provide a host of varied opportunities for the student to hone his acquired language skills basic components, namely, Grammar, Vocabulary, Spelling and Comprehension.

Module I	Error Ident	ification		6
Articles, Tense	es, Voices, Prepo	sition, Conjunctions, Subject-verb	agreement, Adve	erbials.
Module II	Sentence St	ructure		6
Parts of speed Sentences, De	ch, Simple, Com grees of Compar	plex & Compound Sentences, D rison, Clauses.	irect & Indirect	Speech, Kinds of
Module III		6		
Reading Comp	prehension, Anal	logies, Synonyms & Antonyms, Idi	oms, One word su	ıbstitutes.
Module IV	Coherence a	and Cohesion		6
Para-jumbles,	Phrasal verbs, N	Aodifiers, Punctuations, Misspelle	d words.	
Module V	Rhetorical 1	reasoning		6
Verbal syllogis	sm, figures of sp	eech.		
• MCQ t Eg. JavaPoint -	test through Goo - Verbal Ability <u>h</u>	gle forms or other online test plat https://www.javatpoint.com/verk	tforms. <u>pal-ability</u>	
• MCQ t Eg. JavaPoint - Suggestive As Formative Ass	test through Goo - Verbal Ability <u>h</u> ssessment Metl	ogle forms or other online test plat https://www.javatpoint.com/verb hods Continuous Assessment Test 1	tforms. <u>pal-ability</u> Total Periods Continuous Ass	30 essment Test 2
• MCQ t Eg. JavaPoint - Suggestive As Formative Ass [20 Marks]	test through Goo - Verbal Ability <u>h</u> ssessment Metl	ogle forms or other online test plat https://www.javatpoint.com/verb hods Continuous Assessment Test 1 (40 Marks)	tforms. <u>pal-ability</u> Total Periods Continuous Ass (40 Marks)	30 essment Test 2
• MCQ t Eg. JavaPoint - Suggestive As Formative Ass (20 Marks)	test through Goo - Verbal Ability <u>h</u> ssessment Metl sessment Test	ngle forms or other online test plat https://www.javatpoint.com/verb hods Continuous Assessment Test 1 (40 Marks) MCQ	tforms. <u>Dal-ability</u> Total Periods Continuous Ass (40 Marks)	30 essment Test 2 MCQ
Eg. JavaPoint - Suggestive As Formative Ass [20 Marks] M Dutcomes	test through Goo - Verbal Ability <u>h</u> ssessment Metl sessment Test	ogle forms or other online test plat https://www.javatpoint.com/verb hods Continuous Assessment Test 1 (40 Marks) MCQ	tforms. <u>pal-ability</u> Total Periods Continuous Ass (40 Marks)	30 essment Test 2 MCQ
• MCQ t Eg. JavaPoint - Suggestive As Formative Ass [20 Marks] M Dutcomes Jpon complet	test through Goo - Verbal Ability <u>h</u> ssessment Meth sessment Test	e, the students will be able to:	tforms. <u>pal-ability</u> Total Periods Continuous Ass (40 Marks)	30 essment Test 2 MCQ
Suggestive As Suggestive As Formative Ass (20 Marks) M Outcomes Upon complet CO1: Identify t CO2: Frame se CO3: Understa reasoning. CO4: Construct CO5: Interpret Fext Books 1 Wross	test through Goo - Verbal Ability <u>h</u> ssessment Meth sessment Test ACQ the grammatical entences using th and the concepts ct sentences logic t and analyze tex	pgle forms or other online test plat https://www.javatpoint.com/verk hods Continuous Assessment Test 1 (40 Marks) MCQ e, the students will be able to: errors in a sentence. he correct syntax. s stated in a sentence or paragrap cally and make the texts semantic kts on a deeper level. Prasada Page N D V (1072, 2010	tforms. <u>pal-ability</u> Total Periods Continuous Ass (40 Marks) oh and analyze us cally meaningful as	30 essment Test 2 MCQ ing verbal s a whole.

Reference Books

1. Guptha S C, (2012) Practical English Grammar & Composition, 1 st Edition, India: Arihant Publishers

2. Steven Brown, (2011) Dorolyn Smith, Active Listening 3, 3 rd Edition, UK: Cambridge University Press.

Web Resources:

- 1. Indiabix : <u>https://www.indiabix.com/online-test/verbal-ability-test/</u>
- 2. All India Exams : <u>https://www.allindiaexams.in/online-test/online-verbal-ability-test/all</u>
- 3. faceprep: <u>https://www.faceprep.in/verbal-ability/</u>

CO Vs PO Mapping and CO Vs PSO Mapping

CO	PO	PSO	PSO											
u	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1										3				
2										3				
3										3				
4										2		1		
5										2		1		

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	20	10	5	5	10
UNDERSTAND	40	20	10	10	20
APPLY	30	50	5	5	50
ANALYSE	10	20	5	5	20
EVALUATE					
CREATE					

SEMESTER - V

		L	Τ	Р	С
21EE5601	MICROCONTROLLERS AND ITS APPLICATIONS	3	0	0	3
Preamble		I	I		
Microprocessor electronics design. I microprocessor and in programming, and int programming and inte covered in this course.	and microcontroller have become important bu it is important for student to understand t ts interfacing with various modules. 8086 micro cerfacing is dealt in detail in this course. Interfact erfacing of 8051 microcontroller and its applicati	lding he a proce ng, as on in	bloc rchite ssor sseml indu	ks in ecture archit oly la stry a	digital e of a tecture, nguage tre also
Prerequisites for the	course				
Analog and Integr	rated Circuits				
Digital Electronic	S				
Objectives					
• To study the basic	cs of 8085 Processor				
• To educate the co	ncepts on Hardware structure of μ C 8051.				
To impart knowle	edge on functions of μP8085				
• To understand th	e Programming & instruction set of 8085 & 8051.				
• To enlighten the l	Interfacing of 8051.				
UNIT I	BASICS OF 8085 & 8086 PROCESSOR			9	
Hardware Architectur	e of 8085 and 8086 Processor, Pin Diagram– Func	ional	Build	ling B	locks
of Processor – Addres	sing Modes, Instruction set: Memory organization	- I/0]	ports	and o	lata
transfer concepts– Tir	ning Diagram – Interrupts.				
UNIT II	INTRODUCTION OF MICROCONTROLLERS			9	
Block diagram of micr	ocontroller: CPU, input device, output device, men	iory a	nd bı	ises, (common
features of Microcor	ntrollers: On-chip Oscillator, program and dat	a me	emory	7, I/C) Ports,
Watchdog- timer reset	t, SFRs, Timers, Counters, Interrupts.				
UNIT III	8051 HARDWARE			9	
Blocks of Microcontrolle	er 8051, Ports, Functions of each pin of 8051, Cl	ock c	ircuit	, rese	et Circuit,
phase and state in m	achine cycle of 8051, Memory organization o	f 80	51.Sta	nck c	peration,
Timers/Counters logic	diagram and its operation in various modes, I/	O Poi	ts st	ructu	re, Serial
Communication in vario	us modes, Interrupt structure, vector address, prio	rity aı	nd op	eratio	on.

UNIT IV	8051 PROGRAMMING	9
Addressing Modes, Ir Control, Looping, Co programming, Configu TLx.	nstruction set: Data Transfer, Arithmetic, Logical, I ounting, sorting and Indexing, Data manipulation uration and programming of Timer/Counter using S	Branching, and Machin n, Masking, Condition SFRs: TMOD, TCON, TH
UNIT V	8051 INTERFACING	9
Switch: Push button, I Temperature sensor I MAX 232,	DIP, Tilt, Relay, Keyboard & LED,7 segment LED, LCI LM35, DAC0808, ADC0804, Stepper motor, Serial co	D, ADC0804, mmunication using
	Total Periods	45
Suggestive Assessme	ent Methods	
Continuous	Formative Assessment Test	End Semester
Assessment Test	(10 Marks)	Exams
(30 Marks)		(60 Marks)
WRITTEN	1. ASSIGNMENT	WRITTEN TEST
TEST	2. ONLINE QUIZZES	
	3. PROBLEM-SOLVING ACTIVITIES	
Outcomes		
Upon completion of 1. Illustrate th computer a 2. Enlighten f 3. Select app memory ar 4. Clarify the 5. Interface In Text Books 1. Sunil Mathur & Je Learning Pvt. Ltt 2. R.S. Gaonkar, 'Mi 8085, Wiley Eas	the course, the students will be able to: he functions of each block diagram of a generic digit and identify the addressing mode, instruction set. functions of each block of 8051 microcontroller and ropriate 8051 instructions based on size, exemplify ad ports of 8051. programming concepts of 8051 microcontrollers. put & Output Devices with 8051 microcontrollers. put & Output Devices with 8051 microcontrollers. eebananda Panda, "Microprocessor and Microcontro d, 2016. croprocessor Architecture Programming and Applic tern Ltd., New Delhi, 2013.	cal timer. the ollers", PHI cation', with
Deference Deelve		

- 1. Krishna Kant, "Microprocessor and Microcontrollers", Eastern Company Edition, Prentice Hall of India, New Delhi, 2017.
- 2. B.RAM," Computer Fundamentals Architecture and Organization" New Age International Private Limited, Fifth edition, 2017.
- 3. Soumitra Kumar Mandal, Microprocessor & Microcontroller Architecture, Programming & Interfacing using 8085,8086,8051,McGraw Hill Edu,2013.
- 4. Ajay V.Deshmukh, 'Microcontroller Theory & Applications', McGraw Hill Edu, 2016.
- 5. Douglas V.Hall, 'Microprocessor and Interfacing', McGraw Hill Edu, 2016.
- 6. Muhammad Ali Mazidi & Janice Gilli Mazidi, R.D. Kinely 'The 8051 Microcontroller and Embedded Systems', PHI Pearson Education, 5th Indian reprint, 2013.

Web Resources

- 1. https://nptel.ac.in/courses/108105102
- 2. https://www.udemy.com/course/8051-architecture-bharat-acharya/

						P.	0							
CO	PO	PSO1	PSO2											
ιυ	1	2	3	4	5	6	7	8	9	10	11	12		
1	3	2	2		2						1		3	
2	3	2	2		2						1		3	
3	3	2	2		2						1		3	
4	3	2	2		2						1		3	
5	3	2	2		2						1		3	

CO Vs PO Mapping and CO Vs PSO Mapping

1-Low , 2- Medium, 3- High

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	10	10	5	5	10
UNDERSTAND	30	30	10	10	30
APPLY	60	60	10	10	60
ANALYZE	0	0	0	0	0
EVALUATE	0	0	0	0	0
CREATE	0	0	0	0	0

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1:

- 1. State any four pins of 8085 processor which are used to generate control and status signals.(Understand).
- 2. If the memory address of the last location of a 1Kbyte memory chip is FBFFH, What is the starting address? (Apply)

COURSE OUTCOME 2:

- 1. Summarize the functions of TMOD register in 8051 microcontroller. (Remember)
- 2. What are I/O instructions in 8051 microcontroller? (Understand)

COURSE OUTCOME 3:

- 1. Compare microprocessor and microcontroller. (Analyze)
- 2. Examine, how the microcontrollers respond to any interrupt request? (Understand)

COURSE OUTCOME 4:

- 1. Differentiate CALL and JUMP instruction. (Apply)
- 2. Discuss how time delay is generated using subroutines? (Understand)

COURSE OUTCOME 5:

1.Find the Pushbutton is configured as output in mode 0. (Apply)2..What are the steps in interfacing peripherals with the microprocessor? (Understand)

04555(00		L	T	Р	C
21EE5602	POWER ELECTRONICS AND DRIVES	3	0	0	3
Preamble	•	1			
Power electrical energelectrical source turbine into a technology with	tronics involves the study of electronic circuits inten y. It deals with the processing and control of 'raw' e such as an AC mains supply, a battery bank, a pho form and quality suitable for a particular electric a very wide range of applications.	ded to elect tovolt al loa	o con rical caic a d. It	trol tl powe rray, is an	ne flow o r from a or a wing enabling
Prerequisites f	or the course				
1. Electric Cir 2. Analog and	cuits and Network Analysis Integrated Circuits				
Objectives					
• To impart operation ch	knowledge on different types of power semiconductor aracteristics.	devic	es an	d theii	switchir
• To introdue	ce the performance parameters of controlled rectifiers	opera	tion.		
• To familiar	ize the switching techniques and basics topologies of D	C-DC	switc	hing r	egulators
• To learn th discuss the o	e different modulation techniques of pulse width modu peration of AC voltage controller.	lated	inver	ters a	nd to
• To explain based dc driv	the basics of electric drives and design 1 phase and 3 p ves.	hase c	ontro	olled r	ectifier
UNIT I	POWER SEMI-CONDUCTOR DEVICES			8	
Study of switchi commutation ci	ng devices, SCR, TRIAC, GTO, BJT, MOSFET, IGBT and I rcuit for SCR. Introduction to Driver and snubber circu	GBT-T its.	rigge	ring a	nd
UNIT II	PHASE-CONTROLLED CONVERTERS			8	
2-Pulse, 3-pulse Firing Schemes	and 6-pulse converters – performance parameters - E for converter–Dual converters, Applications-light dim	ffect o ner ar	f sou nd Ex	rce ind citatio	luctance n system
UNIT III	DC TO DC CONVERTERS			8	
		1			

Single phase 180°mode)- Single phase Converters UNIT V Essential of dynamics - fed separat recovery du power facto Suggestive As Continu Assessme (30 Ma WRIT Outcomes Upon comple	e and three p Voltage & ha e and Three p I components of -typical load tor tely excited DC p rives-Margin ang or control -Thre sessment Meth uous nt Test rks) TEN TEST 2. 3.	hase voltage source inverter rmonic control-PWM technique ohase AC voltage controllers- INTRODUCTION TO DRIVES Electric drive – Equations rque characteristics -Single and motor drive– Chopper controlle gle control and e phase voltage/current source Total Periods nods Formative Assessment Test (10 Marks) ASSIGNMENT ONLINE QUIZZES PROBLEM- SOLVINC	rs (both120° mode an ues-Multilevel Inverter -Cyclo converters-Matr 12 governing motor load d three phase converter ed DC drives-slip power fed synchronous motor 45 End Semester Exams (60 Marks) WRITTEN TES
UNIT V Essential dynamics - fed separat recovery dr power facto Suggestive As Continu Assessme (30 Mat WRIT Outcomes Upon comple	components of -typical load ton tely excited DC in rives-Margin any or control -Thre seessment Meth uous int Test rks) TEN TEST 2. 3.	INTRODUCTION TO DRIVES Electric drive – Equations rque characteristics -Single and motor drive– Chopper controlle gle control and e phase voltage/current source Total Periods nods Formative Assessment Test (10 Marks) ASSIGNMENT ONLINE QUIZZES PROBLEM- SOLVING	12 governing motor load d three phase convertened DC drives-slip power fed synchronous motor 45 End Semester Exams (60 Marks) WRITTEN TES
Essential dynamics - fed separat recovery du power facto Suggestive As Continu Assessme (30 Ma WRIT Outcomes Upon comple	components of -typical load ton tely excited DC rives-Margin and or control -Thre seessment Meth uous nt Test rks) 1. TEN TEST 2. 3.	Electric drive – Equations rque characteristics -Single and motor drive– Chopper controlle gle control and e phase voltage/current source Total Periods nods Formative Assessment Test (10 Marks) ASSIGNMENT ONLINE QUIZZES PROBLEM- SOLVING	governing motor load d three phase convertened DC drives-slip power fed synchronous motor 45 End Semester Exams (60 Marks) WRITTEN TES
Suggestive As Continu Assessme (30 Ma WRIT' Outcomes Upon comple	ssessment Meth uous nt Test rks) TEN TEST 2. 3.	Total Periods Total Periods Formative Assessment Test (10 Marks) ASSIGNMENT ONLINE QUIZZES PROBLEM- SOLVING	45 End Semester Exams (60 Marks) WRITTEN TES
Suggestive As Continu Assessme (30 Ma WRIT WRIT	ssessment Meth uous int Test rks) TEN TEST 2. 3.	Formative Assessment Test (10 Marks) ASSIGNMENT ONLINE QUIZZES PROBLEM- SOLVING	End Semester Exams (60 Marks) WRITTEN TES
Continu Assessme (30 Ma WRIT WRIT Outcomes Upon comple	uous ent Test rks) TEN TEST 2. 3.	Formative Assessment Test (10 Marks) ASSIGNMENT ONLINE QUIZZES PROBLEM- SOLVING	End Semester Exams (60 Marks) WRITTEN TES
(30 Ma WRIT Outcomes Upon comple	TEN TEST 1. 2. 3.	(10 Marks) ASSIGNMENT ONLINE QUIZZES PROBLEM- SOLVING	(60 Marks) WRITTEN TES
WRIT Outcomes Upon comple	1. TEN TEST 2. 3.	ASSIGNMENT ONLINE QUIZZES PROBLEM- SOLVING	WRITTEN TES
Outcomes Upon comple		ACTIVITIES	
Upon comple			
L Unders	etion of the cou	urse, the students will be able	to:
	stand different p	ower semiconducting devices an	nd their characteristics.
2 Analyze rectifie	e operation and pers and their app	performance parameters of phaselications.	se-controlled
3 Analyze mode re	operation, Switc egulators and re	ching techniques and topologies sonant Converters.	of Switched
4 Apply v phase i	oltage controlle	d and Harmonic control of single rform the operation of AC - AC C	e phase and three Converters.
5 Explain rectifie	the basics of ele r-based dc drive	ectric drives and design 1 phase es.	and 3 phase controlled
Text Books			
1 1 11 1			

Reference Books

- 1. Joseph Vithayathil, 'Power Electronics, Principles and Applications', McGraw Hill Series, 6th Reprint, 2013.
- 2. Philip T. Krein, 'Elements of Power Electronics' Oxford University Press, 2nd Edition 2017.
- 3. L. Umanand, 'Power Electronics Essentials and Applications', Wiley, 2020.
- 4. Ned Mohan Tore. M. Undel and, William. P. Robbins, 'Power Electronics: Converters, Applications and Design', John Wiley and sons, third edition, 2017
- 5. Ashfaq Ahmed 'Power Electronics for Technology', Pearson Education, Indian reprint, 2013.

Web Recourses

- 1. <u>https://swayam.gov.in/nd1 noc19 ee37/preview</u>
- 2. https://nptel.ac.in/courses/108101038/
- 3. https://archive.nptel.ac.in/courses/108/105/108105066/

CO Vs PO Mapping and CO Vs PSO Mapping

60	PO	PS01	PSO2											
U	1	2	3	4	5	6	7	8	9	10	11	12		
1	3	3	2										3	
2	3	3	3										3	
3	3	3	3										3	
4	3	3	3										3	
5	2		3										3	

1. Low, 2- Medium, 3- High

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	20	20	5	5	20
UNDETSTAND	30	30	10	10	30
APPLY	20	20	10	10	20
ANALYZE	30	30	0	0	30
EVALUATE	0	0	0	0	0
CREATE	0	0	0	0	0
	100	100	25	25	100

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1:

- 1. With a neat diagram explain how the snubber circuit protects the MOSFET. (Analyse)
- 2. Examine the structure and different modes of operation of TRIAC with its characteristics. (Apply)

COURSE OUTCOME 2:

- 1. Classify the various modes of operation of single phase fully controlled bridge converter. (Analyse)
- 2. A two-pulse converter is fed with a 230V, 50 Hz supply. The load on the converter is a pure resistance of R=10 Ω . Obtain the average output voltage for a firing angle of α =135° (Analyze)

COURSE OUTCOME 3:

- 1. A step-up chopper is operated with a duty ratio of 0.6 for a dc input of 100 V. Determine the output voltage for a load resistance RL of 5 ohms. (Apply)
- 2. Briefly state the working of four quadrant DC chopper (Apply)

COURSE OUTCOME 4:

- 1. Evaluate the disadvantages of the harmonics present in the inverter system? (Apply)
- Give the expression for RMS and average output voltage of single-phase half wave ac voltage controller. (Understand)

COURSE OUTCOME 5:

- 1. Draw the block diagram of Electric Drive. (Remember)
- 2. A 220V shunt Motor has an armature resistance of 0.062 Ω and with full field has an emf of 215V at a speed of 960 rpm, the motor is driving an overhauling load with a torque of 172 Nm. Calculate the minimum speed at which the motor can hold the load by means of regenerative braking. (Apply)

		L	T	Р	С						
21EE5603	POWER GENERATION SYSTEMS	3	0	0	3						
Preamble											
The aim of this course is to help the student to attain the industry identified competency through various teaching learning experiences and also to maintain the efficient operation of various electric power generating plants.											
Prerequisites for the course											
 Power System Engineering Fundamentals of Electrical and Electronics Engineering 											
Objectives											
 To provide Engineers ir To familiariz operation an To Impart a Engineers ir To learn Ren their operat To familiariz power plant 	an overview of thermal power plant and detailing the their operation and maintenance. The in nuclear power plants and detailing the role of Endomintenance. The overview of hydroelectric power plants and detail in their operation and maintenance ewable energy power plants and detailing the role of Endomination and maintenance. The applications of power plants while extend their know the economics and environmental hazards and estimate the ergy production.	he Igin ing gin Vled	ro] iee: ; tl eer lge sts	le of rs in ne rc rs in to of	their ole of						
UNITI	COAL BASED THERMAL POWER PLANTS			9							
Rankine cycle - improvisations, Layout of modern coal power plant, Subsystems of thermal power plants – Fuel and ash handling, Draught system, Feed water treatment. Binary Cycles and Cogeneration systems											

UN	IT II	NUCLEAR POWER PLANTS		9			
Basic Nucle Deute React	s of Nuclear ear Reactors erium- Urar cors. Safety 1	r Engineering, Layout and subsystems of Nuclear Power : Boiling Water Reactor (BWR), Pressurized Water Reac nium reactor (CANDU), Breeder, Gas Cooled and Li neasures for Nuclear Power plants.	r Plar ctor (iquid	nts, Working PWR), CANa Metal Coo			
UN	IT III	HYDRO ELECTRIC POWER PLANT		9			
Hydro Layou	ology, Hyd ut, auxiliarie	rographs, Flow duration curve, Hydro electric power p es and working of a hydro station.	olants	- classificati			
UN	IIT IV	ALTERNATIVE SOURCES OF ENERGY		9			
Solar gener powe	power generation, Geo 7 r generation	eration-Photo-voltaic and solar thermal generation, Win Thermal, Biomass, Fuel Cell power systems, micro-hydro n and MHD generation.	ndpov o pow	ver ver plants, ti			
UN	UNIT V ENERGY, ECONOMIC AND ENVIRONMENTAL ISSUES OF POWER PLANTS						
Powe select plant Powe	tion criteria s. Pollution r Plants.	es, Load distribution parameters, load curve, Co , relative merits & demerits, Capital & Operating Cost control technologies including Waste Disposal Options fo	ompai c of d or Coa	ifferent pow al and Nucle			
		Total Perio	ods	45			
Sugge	estive Asse	Total Perio ssment Methods	ods	45			
Sugge Con Ass	<mark>estive Asse</mark> Itinuous essment Test	Total Perio ssment Methods Formative Assessment Test (10 Marks)	ods	45 End Semester Exams			
Sugge Con Asso (30	estive Assent ntinuous essment Test Marks)	Total Perio ssment Methods Formative Assessment Test (10 Marks)	ods	45 End Semester Exams 60 Marks)			
Sugge Con Ass (30 WRIT	estive Assent itinuous essment Test Marks) ITEN TEST	Total Perio ssment Methods Formative Assessment Test (10 Marks) 1. ASSIGNMENT 2. ONLINE QUIZZES 3. 3.PROBLEM-SOLVING	ods (WR	45 End Semester Exams (60 Marks) ITTEN TEST			
Sugge Con Ass (30 WRIT	estive Assent tinuous essment Test Marks) TTEN TEST	Total Perio ssment Methods Formative Assessment Test (10 Marks) 1. ASSIGNMENT 2. ONLINE QUIZZES 3. 3.PROBLEM-SOLVING	ods (WR	45 End Semester Exams (60 Marks) ITTEN TEST			
Sugge Con Ass (30 WRIT	estive Assent itinuous essment Test Marks) ITEN TEST omes completio	Total Perio ssment Methods Formative Assessment Test (10 Marks) 1. ASSIGNMENT 2. ONLINE QUIZZES 3. 3.PROBLEM-SOLVING n of the course, the students will be able to:	ods (WR	45 End Semester Exams (60 Marks) ITTEN TEST			
Sugg Con Ass (30 WRIT Outco Upon 1	estive Assent itinuous essment Test Marks) TTEN TEST omes completio	Total Perio ssment Methods Formative Assessment Test (10 Marks) 1. ASSIGNMENT 2. ONLINE QUIZZES 3. 3.PROBLEM-SOLVING n of the course, the students will be able to: trate the layout, construction and working of the compore power plant.	ods (WR	45 End Semester Exams (60 Marks) ITTEN TEST			
Sugg Con Ass (30 WRIT Outco Upon 1 2	estive Assent itinuous essment Test Marks) TTEN TEST omes completio Demonst thermal Illustrate nuclear	Total Period Sament Methods Formative Assessment Test (10 Marks) (10 Marks) 1. ASSIGNMENT ONLINE QUIZZES 3. 3.PROBLEM-SOLVING n of the course, the students will be able to: trate the layout, construction and working of the compor power plant. construction and working of the compor power plants.	ods (WR	45 End Semester Exams (60 Marks) ITTEN TEST ITTEN TEST			
Sugg Con Ass (30 WRIT Outco Upon 1 2 3	estive Assent itinuous essment Test Marks) TTEN TEST omes completio Demonst thermal Illustrate nuclear p Construc plants.	Total Period ssment Methods Formative Assessment Test (10 Marks) 1. ASSIGNMENT 2. ONLINE QUIZZES 3. 3.PROBLEM-SOLVING 1 n of the course, the students will be able to: 1 trate the layout, construction and working of the compore power plant. 1 e the layout and construction and working of the compore power plants. 1 et the layout and working of the components inside hydro 1	ods (WR nents poner oelec	45 End Semester Exams (60 Marks) ITTEN TEST ITTEN TEST inside a inside a tric power			
Sugg Con Ass (30 WRIT Outco Upon 1 2 3 4	estive Assent tinuous essment Test Marks) TEN TEST omes completio Demonst thermal Illustrate nuclear p Construc plants.	Total Period Ssment Methods Formative Assessment Test (10 Marks) 1. ASSIGNMENT (10 Marks) 2. ONLINE QUIZZES 3. 3. 3.PROBLEM-SOLVING Image: Colspan="2">Total Period Image: Colspan="2">Total Period Formative Assessment Test (10 Marks) 1. ASSIGNMENT 2. 2. ONLINE QUIZZES 3. 3. 3.PROBLEM-SOLVING Image: Colspan="2">Total Period Image: Colspan="2"Total Period <t< td=""><td>ods (WR nents poner oelec</td><td>45 End Semester Exams (60 Marks) ITTEN TEST ITTEN TEST inside a inside a tric power</td></t<>	ods (WR nents poner oelec	45 End Semester Exams (60 Marks) ITTEN TEST ITTEN TEST inside a inside a tric power			

Text Book

1. Wiley (1 January 2019) Power Plant Engineering,- 1 January 2019 by Dipak Kumar Mandal (Author), Somnath Chakrabarti (Author), Arup Kumar Das (Author), Prasanta Kumar Das (Author)

Reference Books

- 1. El-Wakil. M.M., "Power Plant Technology", Tata McGraw Hill Publishing Company Ltd., 2010.
- 2. Godfrey Boyle, "Renewable energy", Open University, Oxford University Press in association with the Open University, 2004.
- 3. Thomas C. Elliott, Kao Chen and Robert C. Swanekamp, "Power Plant Engineering", Second Edition, Standard Handbook of McGraw Hill, 1998

Web Resources

- 1. swayam.gov.in > nd1_noc20_me10 > preview
- 2. npti.gov.in > graduate-engineers-course-power-plant-engineering

CO Vs PO Mapping and CO Vs PSO Mapping

co	PO	PSO1	PSO2											
CU	1	2	3	4	5	6	7	8	9	10	11	12		
1	3	1	2				1							
2	2	1	2				1							
3	2	1	1				1							
4	2	2	1				1							
5	2	3	2				3							

1-Low, 2- Medium, 3- High

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	20	20	5	5	20
UNDETSTAND	30	30	10	10	30
APPLY	20	20	10	10	20
ANALYZE	30	30	0	0	30
EVALUATE	0	0	0	0	0
CREATE	0	0	0	0	0
	100	100	25	25	100

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1:

- 1. Draw the schematic layout of coal fired power station. Explain briefly four main circuit of the plant.
- 2. Give the thermal efficiency of steam power station.

COURSE OUTCOME 2:

- 1. Draw the schematic diagram of nuclear power plant. State the factors to be considered for selection and of site for NPS.
- 2. Write down one gram of uranium will produce how much energy produced by coal?

COURSE OUTCOME 3:

- 1. Surge tanks are usually provided in high or medium head hydroelectric power plants when considerably long penstock is required?
- 2. A large hydro power station has head of 324 meter and an average flow of 1370 m3 / sec. The available hydraulic power from the station will be?

COURSE OUTCOME 4:

1. Give the Standard value of solar constant adopted from by the world radiation center 1367 W/m2

2. In a wind Turbine, which measures the wind direction and drives and guides the yaw drive to position the rotor to face the wind Vane.

COURSE OUTCOME 5 :

- 1. A consumer having lower power factor contributes towards which factor?
- 2. Which tariff is also known as the average power factor tariff

	DOWED ELECTRONICS LADORATORY	L	Т	Р	C				
21EE5611	FOWER ELECTRONICS LADORATORY	0	0	4	2				
Preambl	e	ł							
Th electroni such as their con	This laboratory gives a practical exposure to the students to learn the power electronics and drives. The students will be able to design and analyze power converters such as AC-DC converters, DC-DC converters, DC-AC converters, AC- to AC converters and their control circuits for real world applications.								
Prerequi	sites for the course								
Anal	og and Integrated Circuits								
• Anal	og and Integrated Circuit Design Laboratory								
• Pow	er Electronics								
Objective	es								
1. To ii	ntroduce about switching characteristics of various switches.								
2. To fa	amiliarize the knowledge on AC to DC converter circuits.								
3. To le	earn knowledge on DC to DC.								
4. To d	esign and impart knowledge on AC-AC converter circuits and	l Mult	ilevel	Inverter	•				
5. To le	earn knowledge on simulation software.								
S.No	List of Experiments			CO					
1	1 Gate Pulse Generation using R, RC and UJT 1								
2	Characteristics of SCR and TRIAC			1					
3	Characteristics of MOSFET and IGBT	Characteristics of MOSFET and IGBT 1							
4	Characteristics of GTO & IGCT.			1					

	angineering College Dept of EEE R2021/Curriculum and Syli	abi	
5	AC to DC half controlled converter		2
6	AC to DC fully controlled Converter		2
7	Step down and step up MOSFET based choppers		3
8	IGBT based single phase PWM inverter.		4
9	IGBT based three phase PWM inverter		4
10	Simulation of a five-level cascaded multilevel inverter with R load.		4
11	Switched mode power converter.		5
12	Simulation of PE circuits ($1\Phi \& 3\Phi$ semi converters, $1\Phi \& 3\Phi$ full converters, DC-DC converters, AC voltage controllers).		5
		Tota	l Period
S.No.	List of Projects	Relate d Experi	CO
1.	Design and development of Industrial battery charger of voltage 230V ,50Hz using thyristor with firing angle control of	ment 1,2,3,4	1
2.	α=45°,60°,90°,120°Modern Home Automation (DC Motor) Control using thyristor with a range of gate triggering circuit current from 5 mA to 15 mA	1,2,4,5,6	1,2
3.	A product development of Industrial based automatic Boiler controller with DIAC triggering voltage varies from 25V to 40V and SCR gate current ranges from 200uA to 60mA	1,2,5,6	1,2
4.	Design an Industrial DC motor Controller using MOSFET based Chopper for various load R, RL, and RLE with various duty cycles.	3,6,7,8,9, 12	1,2,3
5.	Design and fabrication of Border Security high beam flasher and Proclaimer Circuit using the capacitor 100µF	1, 5, 6, 10	1,2,4
	and 22nF with the battery supply of 9V		

7.	Operation Theatre Doctor friendly luminosity controller for Medical surgery with potentiometer of (0-10K)and a battery of 12 V supply	1,10,11	1,4,5
8.	Simulation of 3 phase,24 Pulse GTO Converter for flow control of transmission system	1,4,5,6, 8,12	1,2,5

Suggestive Assessment Methods						
Lab Comp	onents Assessments	End Semester Exams				
(60 Marks)	(40 Marks)				
Record	Note	Experiment				
• Viva		• Viva				
Model	Examination					
Outcomes						
Upon comp	pletion of the course, the students	s will be able to:				
C01	Experiment about switching chara	acteristics various switches.				
CO2	Analyze about AC to DC converter	circuits.				
CO3	Analyze about DC to DC converter	S.				
CO4	Analyze about AC to AC converter	s and Multilevel Inverter.				
CO5	Simulate PE circuits on simulatior	n software.				
Laboratory	Requirements					
LIST OF E	QUIPMENT FOR A BATCH OF 3	0 STUDENTS:				
1. MOSFET	Based Step-up and Step-down Cho	pper – 1 No.				
2. Switche	d Mode Power Converter Module- 2	2 No.				
3. Cyclo Co	onverter Kit With Firing Module- I N	ю.				
4. LCR Met	ter- 3 No.					
5. Rheosta	ts of Various Ranges- 2 No.					
 SCR And Comport 	l TRIAC Based 1 Phase AC Controlle Ients Inductance Capacitance 3 Set 1	r Along With Lamp or Rheostat Load- 2 Nos. For Each -3 Nos.				
8. IGPT Ba	sed Three Phase PWM Inverter Mo	dule Discrete Component -2 Nos.				
9. Dual Re	gulated Dc Power Supply With Com	mon Ground -5 Nos				
10. Multime	eter -5 Nos.					
11. DC And	AC Meters of Required Ranges – 20	Nos.				
12. Single P With Bu	12. Single Phase SCR Based Half Controlled Converter and Fully Controlled Converter Along With Built In Separate Firing Circuit Module and Meter – 2 Nos					
13. Cathode	13. Cathode Ray Oscilloscope -10 Nos.					
14. IGPT Based Single Phase PWM Inverter Module Discrete Component – 2 Nos.						
15. Isolation Transformer -5 Nos.						
16. Single P	hase Auto Transformer -3 Nos.					
17. Device (Characteristics For SCR ,MOSFET ,TI	RIAC, GTO, IGPT and IGPT Kit With				
Built in	Discrete Power Supply and Meters	-2 Nos.				

Reference Books

• Lab Manual

Web Resources

- 1. <u>https://www.youtube.com/watch?v=rQqb3vcr7KY</u>
- $2. \ \underline{https://www.youtube.com/watch?v=ekXe7qXYyXM}$
- 3. <u>https://www.youtube.com/watch?v=Y9t9uFYxyIo</u>

CO Vs PO Mapping and CO Vs PSO Mapping

C	PO	PO	PO	Р	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO2
0	1	2	3	0 4	5	6	7	8	9	10	11	12	1	
1	3	3	2	2							2		3	
2	3	3	2	2							2		3	
3	3	3	2	2							2		3	
4	3	3	2	2							2		3	
5	3	3	2	2							2		3	

1-Low, 2-Medium, 3-High

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1:

1.Outline the term pinch off voltage of MOSFET. (Remember) 2.Distinguish between SCR and TRIAC. (Understand)

COURSE OUTCOME 2:

- 1. Design and explain the operation of AC to DC half controlled converter. (Analyse)
- 2. Design and explain the operation of AC to DC full controlled converter. (Analyse)

COURSE OUTCOME 3:

- 1. With neat diagrams, describe the construction and working of step- down and step up chopper and its steady state analysis. Also give its application. (Remember)
- 2. Explain the different classes of chopper with neat sketch.(Analyse)

COURSE OUTCOME 4:

- 1. Describe the operation of 3 phase bridge inverter for 120 degree mode of operation with aid of relevant phase and line voltage waveforms. (Apply)
- 2. State the different methods of voltage control of inverters. Also describe about PWM control. (Remember)

COURSE OUTCOME 5:

- 1. Design and Develop 1Φ semi converter and derive the output voltage. (Analyze)
- 2. Design a 3Φ semi converter with appropriate waveform. (Apply)

COURSE CONTENT AND LECTURE SCHEDULE

S.NO	ΤΟΡΙϹ	NO OF WEEKS REQUIRED
1	Introduction and overview of all experiments	04
2	Gate Pulse Generation using R, RC and UJT	04
3	Characteristics of SCR and TRIAC	04
4	Characteristics of MOSFET and IGBT	04
5	Characteristics of GTO & IGCT.	04
6	AC to DC half controlled converter	04
7	AC to DC fully controlled Converter	04
8	Step down and step up MOSFET based choppers	04
9	IGBT based single phase PWM inverter.	04
10	IGBT based three phase PWM inverter	04
11	AC Voltage controller	04

Switched mode power converter.	
	04
Simulation of PE circuits ($1\Phi \& 3\Phi$ semi converters, $1\Phi \& 3\Phi$ full converters, DC-DC converters, AC voltage controllers).	04
Review of all experiments	04
Model Laboratory Examination	04
Total	60 Hrs
	Simulation of PE circuits (1Φ & 3Φ semi converters, 1Φ & 3Φ full converters, DC-DC converters, AC voltage controllers). Review of all experiments Model Laboratory Examination Total

21EE5612	MICROCONTROLLERS	L	Т	Р	C
111001	LABORATORY	0	0	4	2
Preamble	9		Į	I	
Mi	crocontroller has become important building blocks in digital	lelect	tronic	s desig	gn. It is
important	for student to understand the architecture of a microprocesso	r and	its in	erfaci	ng with
various m	nodules. 8086 microprocessor architecture, programming, an	d inte	erfacir	ng is c	lealt in
detail in	this course. Interfacing, assembly language programming	and i	nterfa	cing o	f 8051
microcont	troller and its application in industry are also covered in this co	urse.			
Prerequi	sites for the course				
• Micro	ocontrollers and its applications				
Objective	'S				
1. To in	troduce programming logics for arithmetic operations control i	nstruc	ctions	and	
code 2. To ac	e conversion equire knowledge on A/D and D/A.				
3. To in	npart the I/O interfacing concepts for developing real time	embe	dded	syster	ns.
4. To in	npart knowledge in DC and AC motor interfacing.				
5. To ac	cquire knowledge on software simulators.				
S.No	List of Experiments			CO	
1	Simple arithmetic operations: addition / subtraction /			CO1	
2	Programming with control instructions:			CO1	
_	(i)Ascending / Descending				
	order (ii)Maximum / Minimum				
	of numbers				

3	Code conversion:	CO1
	Hex to Decimal/ASCII to Decimal and vice versa.	
4	Interface Experiments i. ADC interface	C02
	ii. DAC interface with wave form generation.	
5	Traffic light controller.	CO4
6	Programming Practices with Simulators/Emulators/open source.	C05
7	Read a key interface display.	CO3
8	Demonstration of basic instructions with 8051 Micro controller execution, including: Conditional jumps & looping Calling subroutines	C01
9	Stepper motor and DC motor interface.	CO4
10	Application hardware development using	C05

S.No.	List of Projects	Related Experiment	СО
1	Digit Up Down Counter	2,7,8	CO1
2	A Basic 8-bit calculator	1,2,8	CO1
3	Boolean Algebra Calculator	1,2,8,9	CO4
4	5 Channel IR Remote Control System using Microcontroller	4,5,8,9	CO2
5	Automatic Railway Gate Controller with High Speed Alerting System	4,7,10	CO2
6	Digital Temperature Sensor	1,2,3,8	CO3
7	Bipolar LED Driver Circuit	5,7,8	CO5
8	Water Level Indicator	1,2,3,9	CO3

9	Delay using 8051 Timers	1,4,10	CO3
10	3 LED Bike Light using PIC	3,4,5,7	CO2
11	Temperature Controlled Fan (DC Motor based with PWM)	6,9,10	CO3
12	Real time Car Battery Monitoring and Low Voltage Alert System	6,9,10	CO5
13	Real Time Burglar Alarm System	6,9,10	CO3
14	Automatic College Bell System	4,6,10	CO3
15	Auto Intensity Control of Street Lights	4,6,9,10	CO4

Suggestiv	e Assessment Methods						
	Lab Components	End Semester Exams					
	Assessments	(40 Marks)					
	(60 Marks)						
Record	rd Note	End Semester Lab					
• Viva							
• Mode	l Practical						
Outcomes	5						
Upon com	pletion of the course, the stud	lents will be able to:					
CO1 Program and run logics for arithmetic operations control instructions and code conversion.							
CO2	CO2 Perform the operations in A/D and D/A.						
CO3	Analyse the basics of serial co	ommunication.					
CO4	Do the interfacing in DC and A	AC motor.					
CO5	Simulate basics programs usi	ng software simulators.					
Laboratory	y Requirements						
Hardware							
• Interf	acing Units – Each 5 nos						
Micro	ocontroller –1nos						
Software:							
• Intel I	 Intel Desktop Systems with Keil – 15 nos 						

Reference Books

- Mohamed Ali Mazidi, Janice GillispieMazidi, RolinMcKinlay, "The 8051 Microcontroller and Embedded Systems: Using Assembly and C", Second Edition, Pearson education, 2011.
- 2. DoughlasV.Hall, "Microprocessors and Interfacing, Programming and Hardware", TMH, 2012.

Web Resources

1. http://www.vlab.co.in/ba-nptel-labs-electrical-engineering

CO Vs PO Mapping and CO Vs PSO Mapping

<u> </u>	PO	PO	PO	РО	PO	PO	PO	PO	PO	P01	P01	P01	PSO	PSO2
ιυ	1	2	3	4	5	6	7	8	9	0	1	2	1	
1	3	3	3		2				1					3
2	3	3	3		2				1					3
3	3	3	3		2				1					3
4	3	3	3		2				1					3
5	3	3	3		2				1					3

1-Low , 2- Medium, 3- High

COURSE LEVEL ASSESSMENT QUESTIONS COURSE OUTCOME 1:

1. Write an 8051 ALP to perform the following:

Get 5 numbers starting from location 4200H. Arrange them in such a manner that the greatest number occupies the last position

2. Write an 8051 ALP for performing 16 bit multiplication

COURSE OUTCOME 2:

1. Interface different I/O switch processor.

2. Interface 8255 with 8051 and write a program to show that the input -10101010 by the switches connected with port A are read in the LEDs connected with port B.

COURSE OUTCOME 3:

- 1. Generate wave forms using Microprocessors.
- 2. Write an 8051 ALP to generate a saw tooth wave at the output of DAC.

COURSE OUTCOME 4:

- 1. Write an 8051 ALP to find the area of a rectangle whose length is 12cm and breadth is 6cm.
- 2. Write an ALP to perform logical AND operation.

COURSE OUTCOME 5:

- 1. Explain the difference between simulator and Emulator.
- 2. Write an 8051 ALP to pick out the smallest number in an array of 5 numbers.
- 3. Write an 8051 ALP to calculate the Quotient and Reminder using Emulator.

COURSE CONTENT AND LECTURE SCHEDULE

S.NO	ΤΟΡΙϹ	NO OF WEEKS REQUIRED
1	Basic arithmetic and Logical operations	2
2	Programming with control instruction	1
3	Code conversion	1
4	Programming with rotate instruction	1
5	Traffic light controller	1
6	Stepper motor control	1
7	Keyboard and Display	1
8	D/A interface and Waveform Generation	1
9	Programming Practices with Simulators	1

10Demonstration of conditional jump, looping instruction111Demonstration of calling instruction1

		L	Τ	Р	С							
21PT3903	SUFT SKILLS- APTITUDE II	0	0	2	1							
Preamble	Preamble											
It is an introductory course which emphasize the fundamental concepts and Quantitative Aptitude .The concepts discussed herein are intended to provide clarification on basic Logical Reasoning												
Prerequisites for the	he course											
Quantitative Ap	Quantitative Aptitude											
Logical Reason	ing											
Objectives												
To learn about	arithmetical operations with complex numbers											
 To enlighten th partition of a s To impart know any percentag increase / decrease a g To familiarize t Races and cloc To study about and generating 	e meanings of a relation defined on a set, an equivalen set vledge how to Calculate percentages in real life e of a given whole using their knowledge of fraction n iven whole by a percentage he situations like motion in as straight line, Boats and cks the Counting techniques, Permutation and Combinati g functions	nt rela conte nultip l Strea	atio exts olica ams ecu	n a , fi tic , T	nd a nd n and rains, on							
UNIT I	NUMBER SYSTEMS			5								
Introduction - definit cut process -concep divisibility - numbe Utility of percentage - importance of ba values through addi	Introduction - definition- classification on Numbers -power cycles and remainders - short cut process -concept of highest common factor - concept of least common multiple - divisibility - number of zeros in an expression-Percentages-Introduction - definition and Utility of percentage - importance of base/denominator for percentage calculations - concept of percentage values through additions - fraction to percentage conversion table											
UNIT II	AVERAGES				5							
Introduction - average of different groups - addition or removal of items and change in average placement of some of the items. Ratio, Proportions And Variation-Introduction- Ratio- properties-dividing a given number in the given ratio - comparison of ratios - proportions - useful results on proportion- continued proportion - relation among the quantities more than two- variation.												

	PROFIT AND LOSS	5			
Gain/Loss and perc – relation among co an article sold at tw - percentage gain or whole property	entage gain or percentage loss-multiplying equivalents to ost price, sale price, gain/loss and percentage gain or p o different selling price - two different articles sold at sa percentage loss on selling price - percentage gain or pe	to find sale price percentage loss - ame selling price rcentage loss on			
UNIT IV	TIME AND WORK	5			
Cisterns– Work Equ Definition - Basics of Problems based or difference modes of	uivalence (Man Days) -Alternative approach. Time, Sp of Time, Speed and Distance - Relative speed - Problem Boats and Streams -Problems based on Races - tin transport - time and distance between two moving bod	eed And Distand s based on Train ne taken with tw ies			
UNIT V PERMUTATION AND COMBINATION 5					
Probability-Concept estimation of proba while defining even price) of the mixtur	and importance of probability - underlying factors ability -Basic facts about probability - some important t. Mixtures and Allegation- Definition - allegation rule - r e - some typical situations where allegation can be used	s for Real- Life nt consideration nean value (cost			
	Total Periods	25			
Suggestive Assessm	Total Periods	25			
Suggestive Assessm Continuous Assessment Test (50 Marks)	Total Periods nent Methods Formative Assessment Test (50 Marks)	25 End Semester Exams			
Suggestive Assessn Continuous Assessment Test (50 Marks) WRITTEN TEST	Total Periods Total Periods Formative Assessment Test (50 Marks) 1. ASSIGNMENT	25 End Semester Exams NA			
Suggestive Assessn Continuous Assessment Test (50 Marks) WRITTEN TEST	Total Periods Total Periods Formative Assessment Test (50 Marks) 1. ASSIGNMENT 2. ONLINE QUIZZES	25 End Semester Exams NA			
Suggestive Assessn Continuous Assessment Test (50 Marks) WRITTEN TEST	Total Periods To	25 End Semester Exams NA			

SEMESTER – VI

24776604		L	Τ	Р	С	
21EE6601	POWER SYSTEM ANALYSIS	TEM ANALYSIS				
Preamble						

The course is designed to give students the required knowledge for the design and analysis of electrical power grids. Calculation of power flow in a power system network using various techniques, solution technique, formation of Z bus, optimal power flow and its importance are covered in this course. It also deals with short circuit analysis and analysis of power systems for steady state and transient stability.

Prerequisites for the course

• Transmission and Distribution power system

Objectives

- Impact knowledge on need for operational studies, and to model the power system under steady state operating condition.
- To understand and apply iterative techniques for power flow analysis.
- To model of carry out short circuit studies for power system during symmetrical fault.
- To model of carry out short circuit studies during Unsymmetrical fault.

 To study about th 	 To study about the various methods for analyzing power system stability. 									
UNIT I	POWER SYSTEM	12								
Need for system planning and operational studies - Power scenario in India - Power system components, Representation - Single line diagram - per unit quantities - p.u. impedance diagram - p.u. reactance diagram, Network graph Theory - Bus incidence matrices, Primitive parameters, Formation of bus admittance matrix – Direct inspection method – Singular										
Transformation metho	od.									
UNIT II	POWER FLOW ANALYSIS	12								
Bus classification - Fo solution using Gauss S by Newton Raphson m	ormulation of Power Flow problem in polar coo eidel method - Handling of Voltage controlled buse ethod – Flow charts – Comparison of methods.	ordinates - Power flow es - Power Flow Solution								
UNIT III	SYMMETRICAL FAULT ANALYSIS	12								
Assumptions in short cir	cuit analysis - Symmetrical short circuit analysis us	sing Thevenin's theorem								
- Bus Impedance matrix	building algorithm (without mutual coupling) - Syn	nmetrical fault analysis								
through bus impedance i	natrix - Post fault bus voltages - Fault level - Currei	nt limiting reactors.								
UNIT IV	UNSYMMETRICAL FAULT ANALYSIS	12								

Symmetrical components - Sequence impedances - Sequence networks - Analysis of unsymmetrical faults at generator terminals: LG, LL and LLG - unsymmetrical fault occurring at any point in a power system.

UNIT V

STABILITY ANALYSIS

12

Classification of power system stability – Rotor angle stability - Power-Angle equation – Steady state stability - Swing equation – Solution of swing equation by step by step method - Swing curve, Equal area criterion - Critical clearing angle and time, Multi-machine stability analysis – modified Euler method.

	Total Periods	60					
Suggestive Assessme	nt Methods						
Continuous Assessment Test (30 Marks)	Formative Assessment Test End Semeste (10 Marks) (60 Marks)						
WRITTEN	WRITTEN 4. ASSIGNMENT WR						
TEST	5. ONLINE QUIZZES						
	6. PROBLEM-SOLVING ACTIVITIES						
Outcomes							
 Ability to model th Ability to ca Ability to in circuit break Ability to an unsymmetrie Ability to an 	the power system under steady state operating conditionary out power flow analysis using iterative techniques for the significance of short circuit studies in designinaters. The state of the power system for various cal faults. The state of power system using different me	n 3. .g ethods.					
1. John J. Grainger,	William D. Stevenson, Jr, 'Power System Analysis',	Mc Graw Hill					
Education (India	ı) Private Limited, New Delhi, 2017.						
2. Kothari D.P. and	Nagrath I.J., 'Power System Engineering', Tata McC	Fraw-Hill Education,					
3rd edition 2019).						
3. Hadi Saadat, 'Power System Analysis', Tata McGraw Hill Education Pvt. Ltd., New Delhi, 21st reprint, 2010.							
Reference Books							

- 1. Pai M A, 'Computer Techniques in Power System Analysis', Tata Mc Graw-Hill Publishing Company Ltd., New Delhi, Second Edition, 2007.
- 2. J. Duncan Glover, Mulukutla S.Sarma, Thomas J. Overbye, 'Power System Analysis & Design', Cengage Learning, Fifth Edition, 2012.
- 3. P. Venkatesh, B. V. Manikandan, A. Srinivasan, S. Charles Raja, "Electrical Power Systems: Analysis, Security and Deregulation" Prentice Hall India (PHI), second edition - 2017
- 4. Gupta B.R., 'Power System Analysis and Design', S. Chand Publishing, Reissue edition 2005.
- 5. Kundur P., 'Power System Stability and Control', Tata McGraw Hill Education Pvt. Ltd., New Delhi, 2013.

Web Resources

- 1. https://archive.nptel.ac.in/courses/108/107/108107127/
- 2. <u>https://onlinecourses.nptel.ac.in/noc20_ee88/preview</u>
- 3. https://archive.nptel.ac.in/courses/108/107/108107028/

CO Vs PO Mapping and CO Vs PSO Mapping

<u> </u>	PO	PS01	PSO2											
ιυ	1	2	3	4	5	6	7	8	9	10	11	12		
1	3	3	3										3	
2	3	3	3										3	
3	3	3	3		2								3	
4	3	3	3		2								3	
5	3	3	3		2								3	

1-Low , 2- Medium, 3- High

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	10	10	5	5	10
UNDERSTAND	30	30	10	10	30

APPLY	60	60	10	10	60
ANALYZE	0	0	0	0	0
EVALUATE	0	0	0	0	0
CREATE	0	0	0	0	0
	100	100	25	25	100

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1:

- 1. The single line diagram of an unloaded power system is shown in fig. The generators and transformers are rated as follows:
- Generator 1 : 20 MVA, 13.8 KV, Xd"=0.20 p.u

Generator 2 : 30 MVA, 18 KV, Xd''=0.20 p.u

Generator 3 : 30 MVA, 20 KV, Xd"=0.20 p.u

Transformer 1: 25 MVA, 220/13.8 KV , X=0.1 p.u

Transformer 2: 3 Single phase units, each rated 10 MVA, 127/18 KV, X=0.1 p.u

Transformer 3 : 35 MVA, 220/22 KV , X=0.1 p.u

Draw the Reactance diagram using a base of 50 MVA and 13.8 KV on the Generator 1. (Apply)

2. Draw the reactance diagram for the power system shown in figure. Neglect resistance and use a base of 100 MVA, 220 KV in 50 Ω lines. The ratings of the generator, motor and transformer are given below.

Generator : 40 MVA, 25 KV, X" = 20 %.

Synchronous motor : 50 MVA, 11 KV, X" = 30 %.

Y – Y Transformer (T1): 40 MVA, 33 / 220 KV, X = 15 %,

Y – Δ Transformer (T2): 30 MVA, 11 / 220 KV (Δ / Y), X = 15 %. (Analyse)

COURSE OUTCOME 2:

- 1. Draw the flow chart and explain the algorithm for Gauss seidel iterative method for load flow analysis.(Apply)
- 2. Draw the flow chart and explain the algorithm for Newton Raphson iterative method for load flow analysis.(Apply)

COURSE OUTCOME 3:

- 1. With the help of a detailed flowchart, explain how a symmetrical fault can be analysed using Z_{bus.} (Analyse)
- 2. A synchronous generator and motor are rated 30,000KVA, 13.2KV and both have sub transient reactance of 20%. The line connecting them has reactance of 10% on the base of machine ratings. The motor is drawing 20,000KW at

0.8PF leading and terminal voltage of the motor is 12.8KV.When a symmetrical 3- Φ fault occurs at the motor terminals, find the sub-transient current in the generator, motor and at the fault point.(Apply)

COURSE OUTCOME 4:

- 1. Derive the necessary equation to determine the fault current for a single line to ground fault. Draw a diagram showing the interconnection of sequence networks. (Apply)
- 2. A 25MVA, 11KV, three phase generator has a sub transient reactance of 20%. The generator supplies two motors over a transmission line with transformers at both ends as shown in one line diagram a of figure. The motors have rated inputs of 15 and 7.5 MVA both 10KV with 25% sub transient reactance. The three phase transformers are rated 30MVA, 10.8/121KV, and connection delta-star with leakage reactance of 10% each. The series reactance of the line is 100 ohms. Label the positive and negative sequence networks of the system with reactance marked in per unit. (Analyse)

COURSE OUTCOME 5:

- 1. Derive swing equation for a single machine connected to infinite bus system. State the usefulness of this equation. State the reasons for non-linearity of this equation. (Apply)
- 2. Discuss in detail about the method of improving transient stability. (Understand)

21EE6501	EMBEDDED SYSTEM DESIGN AND		Т	Р	С				
	DEVELOPMENT	2	0	2	3				
Preamble		•							
This a programmir This embedo	This advanced course embraces the microcontroller and computer programming to design & operate large, medium and small scale electronic devices. This embedded platform deals with system design and real time operating systems.								
Prerequisites	for the course								
• 21EE	E5601 - Microprocessor & Microcontroller and its applica	tion							
• 21EE	• 21EE5612 - Microprocessor & Microcontroller Lab								
• 21CS1511 - Programming Practice Laboratory using C									
Objectives	Objectives								

- To provide knowledge on the basics, building blocks of Embedded Systems
- To understand Interfacing & Bus Communication with processors
- To perform automation using scheduling algorithms and Real time operating system
- To design a new embedded software and hardwares
- To analyse new advancements of real-time embedded systems

Syllabus		
UNIT - 1	INTRODUCTION TO EMBEDDED SYSTEMS	9
Introduction memory de Counting d compiler, li	n to Embedded Systems - selection of Embedded proc evices – Memory management methods-memory mappin evices, Watchdog Timer - Software Development tools-II nker, simulator, debugger and emulator	essor – DMA- g - Timer and DE, assembler,
UNIT - 2	EMBEDDED NETWORKING BY PROCESSORS	9
Embedded communica – Wireless Pi	Networking: Introduction, I/O Device Ports & Buses ation protocols -RS232 standard–RS485 –Inter Integrated protocol based on Wifi , Bluetooth - Function of Arduino a	 Serial Bus Circuits (I2C) and Raspberry
UNIT - 3	RTOS BASED EMBEDDED SYSTEM DESIGN	9
routines in - shared da	n to basic concepts of RTOS- Need, Task, process & thread RTOS - Multiprocessing and Multitasking - Scheduler, - in ta memory - Inter-process Communication	terrupt latency
UNIT - 4	MODELLING WITH HARDWARE/SOFTWARE	9
	DESIGN APPROACHES	
Modelling of Overview of Architecture uniprocesso	of embedded systems- embedded software developm of UML modeling with UML, UML Diagrams - S es & Multi-Processor Architectures - design approach o rs & Multiprocessors	ent approach - Single-processor n parallelism in
UNIT - 5	EMBEDDED SYSTEM APPLICATION	9
	DEVELOPMENT	
Embedded A Systems-Cas machine	Application Development for Control Dominated system, se studies on Digital Camera, Electric Vehicles, Mobi	Data Dominated le Phones, ATM
S.N o.	List of Experiment	СО
-----------	---	-----
1	Read input from switch and Automatic control/flash LED. (soft-ware delay)	C01
2	Interrupts programming example using GPIO.	C01
3	Configure watchdog timer in watchdog mode & interval mode.	C02
4	Read Temperature of MSP430 with the help of ADC.	C02
5	Test various Power Down modes in MSP430.	C03
6	Speed Control of DC Motor using embedded program.	C04
7	Networking MSPs using Wi-Fi.	C05

Suggestive Assessment Methods										
Continuous Assessment Test	Lab Components Assessments	End Semester Exams (50 Marks)								
(30 Marks)	(20 Marks)									
Written Examination	 1. Lab Experiments 2. Model Examination 	Written Examination								
Outcomes	·	·								

Upon completion of the course, the students will:

CO1: Able to gain the knowledge on embedded system operations

CO2: Able to understand the embedded networking and processor control

CO3: Able to perform automation using real-time Kernel algorithm

CO4: Able to solve the design issues in embedded systems

CO5: Able to analyse the new advancements in real-time embedded systems

Text Books

- 1. Jorgen Staunstrup, Wayne Wolf, Hardware / Software Co- Design Principles and Practice, Springer, 2021.
- 2. Rajkamal, 'Embedded system-Architecture, Programming, Design', TMH, 2021.

Reference Books

- 1. Peckol, "Embedded system Design", JohnWiley&Sons, 2020
- 2. Lyla B Das," Embedded Systems-An Integrated Approach", Pearson 2019
- 3. Bruce Powel Douglass," Real-Time UML Workshop for Embedded Systems, Elsevier, 2019

Web Recourses

- 1. https://archive.nptel.ac.in/courses/106/105/106105193/
- 2. https://nptel.ac.in/courses/108102045

CO Vs PO Mapping and CO Vs PSO Mapping

<u> </u>	PO	PS01	PSO2											
CU	1	2	3	4	5	6	7	8	9	10	11	12		
1	3	2			2				2		2		2	
2	3	2	2		2				2		2		2	
3	3	3	3	2	3				2		2		2	
4	3	3	3		3			1	2		2		2	
5	3	3	3	3	3		2	1	2		2		2	

1-Low , 2- Medium, 3- High

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	10	10	5	5	10
UNDERSTAND	30	30	10	10	30
APPLY	60	60	10	10	60
ANALYZE	0	0	0	0	0
EVALUATE	0	0	0	0	0
CREATE	0	0	0	0	0
	100	100	25	25	100

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1 (CO 1)

Think - Pair - Share → Model question
 Data: Reset, Delete Date, Counter, Timer0, Timer1, Timer2, PIC16xxx, 8-bit, 16-bit,

Watchdog, EEPROM

(2) Clarify the concept of *External Interrupts* using your mobile phone

COURSE OUTCOME 2 (CO 2) :

- (1) Differentiate the following \rightarrow Wifi (vs) Bluetooth (vs) Arduino (vs) Raspberry Pi
- (2) Wordle type question → *Wireless Protocol* (Find the questions using clues)

COURSE OUTCOME 3 (CO 3) :

- (1) Elaborate the interrupt latency in details.
- (2) Find the coding errors in the Embedded C \rightarrow Smart Home Automation

COURSE OUTCOME 4 (CO 4) :

(1) Explain the basic functions of a real-time kernel.

(2) Differentiate the design approach on parallelism in uniprocessors & Multiprocessors

COURSE OUTCOME 5 (CO 5) :

(1) Compare the Normal Camera and Embedded based Digital Camera. Discuss about the

major design implementation

(2) Case studies on features of Mobile Phones in the view of embedded system

21GE2M02	ENVIRONMENTAL AND SUSTAINABLE	L	Т	Р	С
	ENGINEERING	2	0	0	0

Preamble

To inculcate knowledge on the environment and all sorts of biotic and abiotic components related to its ecosystem, climate changes and challenges faced due to global warming and the importance of renewable sources of energy. Inspire students to find ways in contributing personally and professionally thereby rectifying environmental and social problems.

Prerequisites for the course

- Basic theoretical concepts of biological science in higher secondary level.
- Basic theoretical concepts of Engineering Chemistry.

Objectives

- To make the students conversant with the interdisciplinary and holistic nature of the environment.
- To make the students understand the impacts of environmental degradation and to minimise vulnerability to future disasters.
- To enrich the students with the significance of natural resources and environment on the quality of life.
- To have an increased awareness among students to create a quest on issues in areas of sustainability.
- To have a thorough understanding of the concepts of sustainable habitat.

UNIT I	ENVIRONMENT, ECOSYSTEMS AND	7
	BIODIVERSITY	

Environment: Definition, Scope and Importance of environment studies. Ecosystem: Structure and function of an ecosystem - Producers - Consumers – Decomposers- Types – Characteristic features: Forest ecosystem - Desert ecosystem - Pond ecosystem-Ocean ecosystem. Biodiversity - Value of biodiversity - Hot-spots of biodiversity- Threats to biodiversity - Endangered and Endemic species - Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity. Field study of common plants, insects, birds; Field study of simple ecosystems – pond, river, hill slopes, etc.

	ENVIRON	MENTAL POLLUTION & DISASTER	R MANAGEMENT	6	
Pollution: (Sewage v Noise poll Disaster 1	Definition - Ca water treatment lution. management: Ca	uses - Effects - Control measures by activated sludge and trickling auses - Effects - Control measures	of air pollution - Wate filter process) - Marine s of Floods - Earthqua	er pollution e pollution ke -	
Cyclone. F	field study of loc	al polluted sites – Urban / Rural / I	ndustrial / Agricultural		
UNIT III		NATURAL RESOURC	CES	6	
Conflicts of and using Fertilizer- logging - energy so	over water. Mine g mineral resour Pesticide probl Salinity - case s urces.	eral resources: Use - Exploitation -I rces - Case studies. Food resource lems (Eutrophication, Blue baby syn tudies. Energy resources: Renewal	Environmental effects o s: Effects of Modern A ndrome, Biomagnificati ble (Solar, Wind) - Non	of extractin griculture on) - Wate renewab	
UNIT IV		SUSTAINABILIT	Y	6	
Environmental legislations in India - Water Act, Air Act.UNIT VSUSTAINABLE HABITAT5Basic concepts of sustainable habitat, Environment Impact Assessment (EIA) - Procedures of EIA in India, Green Engineering, Social and technological change, Industrial Processes: Pollution Prevention_Industrial Ecology					
Environm UNIT V Basic cone EIA in Ind Preventio	cepts of sustaina ia, Green Engine n, Industrial Ecc	Sustainable Development, Challen is in India - Water Act, Air Act. SUSTAINABLE HABI able habitat, Environment Impact As eering, Social and technological chan ology.	ges for Sustainable De TAT ssessment (EIA) - Proce nge, Industrial Processe	evelopmen 5 edures of es: Pollutio	
Environm UNIT V Basic cone EIA in Ind Preventio	ental legislation cepts of sustaina ia, Green Engine n, Industrial Ecc	Sustainable Development, Challen as in India - Water Act, Air Act. SUSTAINABLE HABI able habitat, Environment Impact As eering, Social and technological chan ology.	ges for Sustainable De TAT ssessment (EIA) - Proce nge, Industrial Processe Total Periods	evelopmen 5 edures of es: Pollutio 30	
Environm UNIT V Basic cone EIA in Ind Preventio	ental legislation cepts of sustaina ia, Green Engine n, Industrial Ecc re Assessment I	Sustainable Development, Challen as in India - Water Act, Air Act. SUSTAINABLE HABI able habitat, Environment Impact As eering, Social and technological chan ology. Methods	ges for Sustainable De TAT ssessment (EIA) - Proce nge, Industrial Processe Total Periods	evelopmen 5 edures of es: Pollutio 30	
Environm UNIT V Basic cone EIA in Ind Preventio Suggestiv Cor Assess	ental legislation cepts of sustaina ia, Green Engine n, Industrial Ecc re Assessment I ntinuous sment Test	Sustainable Development, Challen as in India - Water Act, Air Act. SUSTAINABLE HABI able habitat, Environment Impact As eering, Social and technological char ology. Methods Formative Assessment Test	ges for Sustainable De TAT ssessment (EIA) - Proce nge, Industrial Processe Total Periods End Semeste	evelopmen 5 edures of es: Pollutio 30 er Exams	
Environm UNIT V Basic cone EIA in Ind Preventio Suggestiv Cor Assess (10)	ental legislation cepts of sustaina ia, Green Engine n, Industrial Ecc ve Assessment I ntinuous sment Test 0 Marks)	Sustainable Development, Challen as in India - Water Act, Air Act. SUSTAINABLE HABI able habitat, Environment Impact As eering, Social and technological char ology. Methods Formative Assessment Test	ges for Sustainable De TAT ssessment (EIA) - Proce nge, Industrial Processe Total Periods End Semeste	evelopmen 5 edures of es: Pollutio 30 er Exams	
Environm UNIT V Basic cond EIA in Ind Preventio Suggestiv Cor Assess (10)	ental legislation cepts of sustaina ia, Green Engine n, Industrial Ecc re Assessment I ntinuous sment Test 0 Marks) TTEN TEST	Sustainable Development, Challen as in India - Water Act, Air Act. SUSTAINABLE HABI able habitat, Environment Impact As eering, Social and technological char ology. Methods Formative Assessment Test N A	ges for Sustainable De TAT ssessment (EIA) - Proce nge, Industrial Processe Total Periods End Semeste N A	evelopmen 5 edures of es: Pollutio 30 er Exams	
Environm UNIT V Basic cone EIA in Ind Preventio Suggestiv Cor Assess (10) WRI Outcome	ental legislation cepts of sustaina ia, Green Engine n, Industrial Ecc re Assessment I ntinuous sment Test 0 Marks) TTEN TEST	Sustainable Development, Challen as in India - Water Act, Air Act. SUSTAINABLE HABI able habitat, Environment Impact As eering, Social and technological char ology. Methods Formative Assessment Test N A	ges for Sustainable De TAT ssessment (EIA) - Proce nge, Industrial Processe Total Periods End Semeste N A	evelopmen 5 edures of es: Pollutio 30 er Exams	
Environm UNIT V Basic cone EIA in Ind Preventio Suggestiv Cor Asses (10) WRI	ental legislation cepts of sustaina ia, Green Engine n, Industrial Ecc re Assessment I ntinuous sment Test 0 Marks) TTEN TEST s	Sustainable Development, Challen as in India - Water Act, Air Act. SUSTAINABLE HABI able habitat, Environment Impact As- beering, Social and technological char ology. Methods Formative Assessment Test N A	ges for Sustainable De TAT ssessment (EIA) - Proce nge, Industrial Processe Total Periods End Semeste N A	evelopmen 5 edures of es: Pollutio 30 er Exams	
Environm UNIT V Basic cone EIA in Ind Preventio Suggestiv Cor Asses (10) WRI Outcome	ental legislation cepts of sustaina ia, Green Engine n, Industrial Ecc re Assessment I ntinuous sment Test 0 Marks) TTEN TEST s	Sustainable Development, Challen as in India - Water Act, Air Act. SUSTAINABLE HABI able habitat, Environment Impact As- beering, Social and technological char ology. Methods Formative Assessment Test N A Durse, the students will be able to:	ges for Sustainable De TAT ssessment (EIA) - Proce nge, Industrial Processe Total Periods End Semeste N A	evelopmen 5 edures of es: Pollutio 30 er Exams	
Environm UNIT V Basic cond EIA in Ind Preventio Suggestiv Cor Asses (10 WRI Upon com I Dem (Rem	ental legislation cepts of sustaina ia, Green Engine n, Industrial Ecc re Assessment I ntinuous sment Test 0 Marks) TTEN TEST s upletion of the co onstrate the know hember)	Sustainable Development, Challen as in India - Water Act, Air Act. SUSTAINABLE HABI able habitat, Environment Impact As- eering, Social and technological char ology. Methods Formative Assessment Test N A Durse, the students will be able to: owledge on the interdisciplinary and	ges for Sustainable De TAT ssessment (EIA) - Proce nge, Industrial Processe Total Periods End Semeste N A d holistic nature of the e	evelopmen 5 edures of es: Pollutio 30 er Exams	

3 Understand the significance of natural resources on the quality of life.

- 4 Identify the issues in areas of sustainability.
- 5 Acquire knowledge on the concepts of sustainable habitat

Text Books

- 1. Benny Joseph, 'Environmental Science and Engineering', Tata McGraw-Hill, New Delhi, 2006.
- 2. Gilbert M.Masters, 'Introduction to Environmental Engineering and Science', 2nd edition, Pearson Education, 2004.

Reference Books

1. Nibin Chang, Systems Analysis for Sustainable Engineering: Theory and Applications, McGraw- HillProfessional.

2. G. Tyler Miller and Scott E. Spoolman, "Environmental Science", Cengage Learning India PVT, LTD, Delhi, 2014.

Web Resources

- 1. NPTEL Lecture: <u>https://www.youtube.com/watch?v=hihFHam_wNE</u>
- 2. NPTEL Lecture: <u>https://www.youtube.com/watch?v=DNUYxyaYh3g</u>

21PT3904	PT3904 SOFT SKILLS - REASONING		Т	Р	С						
	SOF I SKILLS - REASONING										
Prerequisites for	Prerequisites for the course										
• Verbal A	Ability										
Objectives											
2. To identif 3. To develo for students	fy own true potential and build a very good personal branding op critical thinking to solve real world problems and competiti	u sc ve e	exam j	probl	ems						
Syllabus											
UNIT - 1	Social Media			3							
Effective use	of social media - Types of social media, Moderating personal ir	ıfor	matic	on, So	cial						
media for job	/profession, Communicating diplomatically. Networking on so	ocial	med	ia -							
Maximizing n	etwork with social media, How to advertise on social media.										
1											

ncis Xavier Engir	neering College Dept of E	EE R2021/Curriculum and Syllabi	
UNIT - 2	Social	Interaction	3
Event managem	ent - Event manageme	ent methods, Effective techniques	s for better ever
management Inf	luencing - How to win	friends and influence people, Bui	ilding relationship
Persistence and	resilience, Tools for talki	ng when stakes are high Conflict re	solution - Definitio
and strategies ,St	yles of conflict resolution		
UNIT - 3	Non Ver	bal Communication	3
Proximecs - Typ	es of proximecs, Rapport	building. Reports and Data Transcod	ing - Types of
reports. Negotia	tion Skill - Effective negot	tiation strategies. Conflict Resolution	- Types of conflict
UNIT - 4	Interp	ersonal Skill	3
Social Interactio	n - Interpersonal Commu	nication, Peer Communication, Bond	ing, Types of social
interaction. Resp	ponsibility - Types of resp	onsibilities, Moral and personal resp	onsibilities.
Networking - Co	mpetition, Collaboration,	Content sharing. Personal Branding	- Image Building,
Grooming, Using	g social media for brandin	g. Delegation and compliance - Assig	nment and
responsibility, G	rant of authority, Creation	n of accountability	
UNIT - 5	R	easoning Ability	3
Analytical Reaso	ning Data Arrangement(I	Linear and circular & Cross Variable	Relationship), Bloo
Relations, Orc	lering/ranking/grouping,	Puzzle test, Selection Decision table	
		Total Periods	15
Suggestive Asse	essment Methods		
Continuous Asso	essment Test	Form	ative Assessment
WRITT	EN TEST	1.ASSIGNMENT	
		2. ONLINE QUIZZES	
		3. 3. PROBLEM-SOLVING	ACTIVITIES
Outcomes		1	
Upon completion	n of the course, the studen	nts will be able to:	
1 Understand	ling the various strategies	s of conflict resolution among peers a	nd supervisors and
respond ap	propriately	toraction	
	ie knowieuge on social m		

Improve speaking skills in academic and social col	ontexts
--	---------

4 Improve interpersonal communication through proper pronunciation.

5 Interpret the analytic reasoning ability which would help them in their professional career.

Text Books

1. ETHNUS, Aptimithra, 2013, First Edition, McGraw-Hill Education Pvt.Ltd.

2. Mark G. Frank, David Matsumoto, Hyi Sung Hwang, Nonverbal Communication: Science and Applications, 2012, 1 st Edition, Sage Publications, New York.

Reference Books

1. Kerry Patterson, Joseph Grenny, Ron McMillan, Al Switzler, Crucial Conversations: Tools for Talking When Stakes are High, 2001,1st edition McGraw Hill Contemporary, Bangalore.

2. Dale Carnegie, How to Win Friends and Influence People, Latest Edition,2016. Gallery Books, New York

Web Recourses

1. https://www.fresherslive.com/online-test/logical-reasoning-test/questions-and-answers

2. https://www.indiabix.com/non-verbal-reasoning/questions-and-answers/

3. https://www.indiabix.com/logical-reasoning/questions-and-answers/

60	PO	PSO1	PSO2											
U	1	2	3	4	5	6	7	8	9	10	11	12		
1	1	2	2											
2		2		2		2			1		3			
3	1			1	1		2			1	2	2		
4	1	2	2		3			3	2					
5	2		2	2		2			2		1			

CO Vs PO Mapping and CO Vs PSO Mapping

1-Low , 2- Medium, 3- High

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2
REMEMBER	20	10	5	5
UNDERSTAND	40	20	10	10
APPLY	40	50	5	5
ANALYZE	-	20	5	5
EVALUATE	-	-	-	-
CREATE	-	-	-	-

	COMPREHENSION	L	Т	Р	С
21EE6911		0	0	4	2

OBJECTIVES:

To encourage the students to comprehend the knowledge acquired from the first Semester to Sixth Semester of B.E Degree Course through periodic exercise

METHOD OF EVALUATION:

The students will be assessed 100% internally through weekly test with objective type questions on all the subject related topics.

TOTAL: 30 PERIODS

COURSE OUTCOME(S):

Ability to review, prepare and present technological developments

21EE6912	MINI PROJECT CUM INTERNSHIP	L	Т	Р	С					
		0	0	4	2					

OBJECTIVES:

- To develop their own innovative prototype of ideas
- To train the students in preparing mini project reports and examination

The students in a group of 3 to 4 work on a topic approved by the head of the department and prepare a comprehensive mini project report after completing the work to their satisfaction. The progress of the project is evaluated based on a minimum of two reviews. The review committee may be constituted by the Head of the Department. A mini project report is required at the end of the semester. The mini project work is evaluated based on oral presentation and the mini project report jointly by external and internal examiners constituted by the Head of the Department.

GUIDELINES:

- Students should select a problem which addresses some basic home, office or other real life applications.
- Students should understand testing of various components.
- Soldering of components should be carried out by students.
- Students should develop a necessary PCB for the circuit.
- Students should see that the final circuit submitted by them is in working condition.
- Group of maximum four students can be permitted to work on a single mini project.
- The mini project must have hardware parts. The software part is optional.
- Department may arrange demonstrations with poster presentations of all mini projects developed by the students at the end of semester.
- It is desirable that the electronic circuit/systems developed by the students have some novel features.
- 20-30 pages report to be submitted by students

TOTAL: 45 PERIODS

COURSE OUTCOME(S):

At the end of the course the student will be able to

CO.1 Take up their final year project work and find a solution by formulating proper methodology.

CO2 Design of electrical and electronics projects

CO.3 Evaluate the process of implementation of electrical and electronics projects

CO.4 Implement the principles of project design, reporting and progress monitoring

CO.5 Implement the principles of Evaluation of mini project complete work

Semester VII

21GE7101	TOTAL QUALITY MANAGEMENT	L	Τ	Р	С
		3	0	0	3

Preamble

This course is an intensive and comprehensive introductory study and analysis of the management process and the concepts of strategic and tactical organizational planning; organizational design and structure to achieve company objectives, leadership skills, employee motivational approaches; conflict management; interpersonal communication, the staffing and supervising processes; performance appraisal, management ethics and the concepts of controlling and control systems. QM is customer oriented management philosophy and strategy. TQM demands organizations in every sector to focus on customer satisfaction, by involving every employee in their process improvement projects. The tools and techniques of total quality management leads all manufacturing and service oriented organization do excellence in their process by control cost and improve quality.

Prerequisites for the course

NIL

Objectives

- 1. To understand the need for quality and its evolution over time.
- 2. To understand the need for quality and its evolution over time.
- 3. To equip with a thorough understanding of quality management tools and techniques
- 4. To enable them to effectively implement these tools and techniques to optimize quality management practices.
- 5. To understand the need for quality and its evolution over time.

UNIT I		INTRODUCTION		9						
Introductior and service Crosby - Bar complaints,	- Need for quality - E quality - Basic concep riers to TQM - Custon Customer retention.	volution of quality - Definitions of ts of TQM - TQM Framework - Con ner focus - Customer orientation, (quality - I tributions Customer :	Dimensions of product s of Deming, Juran and satisfaction, Customer						
UNIT II		TQM PRINCIPLES		9						
Leadership involvement Performance	- Quality Statemen - Motivation, Emp e appraisal - Continuo	ts, Strategic quality planning, powerment, Team and Teamwo us process improvement - PDCA cy	Quality (rk, Recog ycle, 5S, Ka	Councils - Employee gnition and Reward, aizen.						
UNIT III	TQM	TOOLS AND TECHNIQUES I		9						
The seven tr applications Bench mark	aditional tools of qua to manufacturing, sen ing process - FMEA - S	lity - New management tools - Six rvice sector including IT - Bench m Stages, Types.	sigma: Co arking - F	oncepts, Methodology, Reason to bench mark,						
UNIT IV	TQM	TOOLS AND TECHNIQUES II		9						
Quality Circl - TPM - Conc	Quality Circles - Cost of Quality - Quality Function Deployment (QFD) - Taguchi quality loss function - TPM - Concepts, improvement needs - Performance measures.									
UNIT V	QUA	LITY MANAGEMENT SYSTEM		9						
Introductior Standards—	Benefits of ISO	Registration—ISO 9000 Series	of Stand	ards—Sector-Specific						
Registration	. ENVIRONMENTAL	MANAGEMENT SYSTEM : Int	roduction	—ISO 14000 Series						
Standards—	Concepts of ISO 1400	1—Requirements of ISO 14001— Tota	Benefits o l Periods	f EMS. 45						
Suggestive .	Assessment Methods	S								
Continuous	Assessment Test	Formative Assessment Test	End Sen	iester Exams						
(20 M	arks)	(20 Marks)	(60 Mar	ks)						
WF	RITTEN TEST	1.ASSIGNMENT	W	RITTEN TEST						
		2. ONLINE QUIZZES								
		3.PROBLEM-SOLVING ACTIVITIES								
Outcomes										
Upon comp	letion of the course,	the students will be able to:								
1 To familiarized with the basic concept and framework of Total Quality management.										
2 To Une	lerstand the contribu	tion of Quality Gurus in TQM Journ	ey							
3 To pro	vide a comprehensive	e understanding of the traditional t	cools and e	equipping with the						

knowledge and skills to drive quality improvement initiatives effectively.

- **4** To Explain the various types of Techniques and foster their ability to drive organizational improvement and enhance quality management practices.
- **5** To Apply various Quality Systems and Auditing on implementation of TQM.

Text Books

- Dale H.Besterfiled, Carol B.Michna,Glen H. Besterfield,Mary B.Sacre,Hemant Urdhwareshe and Rashmi Urdhwareshe, "Total Quality Management", Pearson Education Asia, Revised Third Edition, Indian Reprint, Sixth Impression, 2013.
- 2. Poornima M., Pearson publication, rd Edition, Total Quality Management 2017

Reference Books

- 1. Subburaj Ramasamy, Total Quality Management, Mc Graw Hill Publications
- Sunil Luthra, Dixit Garg, Ashish Agarwal, Sachin K. Mangla, Total Quality Management (TQM): Principles, Methods, and Applications, Publisher: CRC Press, 2020; ISBN 1000194493,
- 3. D.R. Kiran, Total Quality Management: Key Concepts and Case Studies, Publisher Butterworth-Heinemann, 2016, ISBN 0128110368,
- W. Edwards Deming, The Essential Deming: Leadership Principles from the Father of Quality, Editors Joyce Orsini, Diana Deming Cahill, Publisher: McGraw Hill Professional, 2012, ISBN: 0071790217, 9780071790215

Web Recourses

- 1. http://www.notesengine.com/dept/cse/7sem/anna-university-7-sem-cse-notes.html
- 2. http://www.vidyarthiplus.com/vp/Thread-GE2022-Total-Quality-Management-Lecture-Notes- Lonely-Edition
- 3. <u>http://freshupdates.in/lecture-notes/anna-university-total-quality-management-lecture-notes/</u>
- 4. http://www.iannauniversity.com/2012/06/ge2022-total-quality-management-lecture.html

CO Vs PO Mapping and CO Vs PSO Mapping

<u> </u>	PO	P01	P01	P01	PSO	PSO								
ιυ	1	2	3	4	5	6	7	8	9	0	1	2	1	2
1		3		2					3					2
2						3			3	2	3			2
3	3	3		3		2								2
4		3		3						2				2
5	1	3		3		3		2	3	3	3	3		2

1-Low, 2- Medium, 3- High

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	10	10	10	10	10
UNDETSTAND	30	30	10	10	30
APPLY	30	30	10	10	30
ANALYZE	20	20	10	10	15
EVALUATE	10	10	10	10	15
CREATE	0	0	0	0	0
	100	100	50	50	100

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1:

- 1. Describe Deming's philosophy for quality management.
- 2. Elaborate on TQM framework and importance of each element.

COURSE OUTCOME 2:

- 1. Briefly explain about recognition and reward system along with its effects.
- 2. Enumerate the Japanese 5S as applicable to services and manufacturing company. **COURSE OUTCOME 3:**
 - 1. Evaluate the purpose and methodology of construction of an Ishikawa diagram with an example.

2. Analyze the three main types of benchmarking. In what circumstances would each type be more appropriate?

COURSE OUTCOME 4:

- 1. Draw the house of quality for a product of your choice and describe the QFD methodology.
- 2. List and explain the various measures of performance in evaluating the success of an organization.

COURSE OUTCOME 5:

- 1. Discuss the various elements of ISO 9000-2000 quality system.
- 2. Estimate the role of audit checklist for quality management system.

21EE7601	RENEWABLE ENERGY SYSTEMS	L	Т	Р	С
		3	0	0	3
Droomblo					

Preamble

Large scale shift to renewable energy resources from fossil fuels is needed in order to limit and reduce the greenhouse gases released by the human use of fossil fuels. Among the renewable energy options available, solar energy represents a promising and major energy resource. This course focuses on solar photovoltaic (PV) energy systems, Wind energy system. Students will be posed to the status of energy resources, its interaction with environment, different renewable energy sources technologies, different techniques and technologies for energy management and energy conservation along with the economic aspects of renewable energy based power generation.

Prerequisites for the course

1. Power Generation systems

Objectives

To impart knowledge on the following Topics

- **1.** Awareness about renewable Energy Sources and technologies.
 - 2. Understanding of technical and commercial aspects of Wind and Alternative Sources of Energy
- **3.** Adequate inputs on a Solar PV and Thermal systems
- 4. Recognize current and possible future role of Bio mass Energy
- 5. Tidal, wave Energy and other renewable energy resources and technologies and their applications.

UNIT I	RENEWABLE ENERGY (RE) SOURCES	9

Environmental consequences of fossil fuel use, Importance of renewable sources of energy, Role of renewable energy in sustainable development, global potential for solar electrical energy systems, Types of RE sources, Limitations of RE sources, renewable energy availability in India and international energy scenario of conventional and RE sources.

<u>а 11</u> .. . F _ . 10 - -.

U	JNIT II		WIND ENERGY		9
Proj Pow issu	perties of ver Plants ies of WPP	' wind, availability (WPPs)–Componen Ps.	of wind energy in India, Power its of WPPs-Working of WPPs- S	in the Wi Siting of W	nd – Types of Win PPs-Grid integratio
U	NIT III	SOLAR P	PV AND THERMAL SYSTEMS		9
Sola PCM Typ Cha poir	ar Radiati A-Solar Pl pes of Sc racteristic nt tracking	on, Radiation Meas hotovoltaic systems blar Cells, Photov cs, Efficiency &Qual g, Applications.	surement, Solar Ponds Therma s : Basic Principle of Solar PV con oltaic cell concepts: Cell, mo ity of the Cell, series and paralle	al Energy version – 7 odule, arra l connectio	storage system wit Fypes of PV Systems ay ,PV Module I- ons, maximum powe
U	NIT IV	E	NERGY STORAGE DEVICES		9
Ene Mag Stor	gnetic Stora rage -Stor	ge Farameters-Lea orage System-Pumj age Heat -Energy S	ped Hydroelectric Energy Stora Storage as an Economic Resource	is-riywnee ige – Com e.	pressed Air Energ
U	JNIT V	0		9	
		gy Huai Lifergy.	Energy from the tides, Barrage	and Non	Barrage Tidal powe
syst Con type	tems. Waversion ((es -constru	ve Energy: Energy DTEC)- Hydrogen P uction and applicati	Energy from the tides, Barrage from waves, wave power de roduction and Storage- Fuel cell ions. Energy Storage System- Hyb	and Non evices. Oce : Principle rid Energy	Barrage Tidal powe an Thermal Energ of working- variou Systems. 45
syst Con type	tems. Waversion (Construction)	ve Energy: Energy DTEC)- Hydrogen P uction and applicati	Energy from the tides, Barrage v from waves, wave power de production and Storage- Fuel cell tons. Energy Storage System- Hyb Tot	and Non evices. Oce : Principle rid Energy al Periods	Barrage Tidal powe an Thermal Energ of working- variou Systems. 45
syst Con type Sugg Cont	tems. Way oversion ((es -constru gestive As cinuous As	ve Energy: Energy DTEC)- Hydrogen P uction and applicati sessment Methods	Energy from the tides, Barrage y from waves, wave power de production and Storage- Fuel cell ions. Energy Storage System- Hyb Tot s Formative Assessment Test	and Non evices. Oce : Principle rid Energy al Periods End Sen	Barrage Tidal powe an Thermal Energ of working- variou Systems. 45 nester Exams
syst Con type Sugg Cont	tems. War aversion ((es -constru gestive As cinuous As Marks)	ve Energy: Energy DTEC)- Hydrogen P action and applicati sessment Methods	Energy from the tides, Barrage y from waves, wave power de production and Storage- Fuel cell cons. Energy Storage System- Hyb Tot s Formative Assessment Test (20 Marks)	and Non evices. Oce : Principle rid Energy al Periods End Sen (60 Mai	Barrage Tidal powe an Thermal Energ of working- variou Systems. 45 nester Exams ·ks)
syst Con type Sugg Cont (20 M	tems. War lversion ((es -constru gestive As cinuous As Marks) WRIT	ye Energy: Energy DTEC)- Hydrogen P action and applicati sessment Methods ssessment Test	Energy from the tides, Barrage y from waves, wave power de production and Storage- Fuel cell tons. Energy Storage System- Hyb Tot S Formative Assessment Test (20 Marks) 1.ASSIGNMENT	and Non evices. Oce : Principle rid Energy al Periods End Sen (60 Mar	Barrage Tidal powe an Thermal Energ e of working- variou Systems. 45 nester Exams ·ks) VRITTEN TEST
syst Con type Sugg Cont	tems. War aversion (C es -constru gestive As cinuous As Marks) WRIT	ye Energy: Energy DTEC)- Hydrogen P action and applicati sessment Methods ssessment Test	Energy from the tides, Barrage y from waves, wave power de production and Storage- Fuel cell cons. Energy Storage System- Hyb Tot s Formative Assessment Test (20 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES	and Non evices. Oce : Principle rid Energy al Periods End Sen (60 Mar	Barrage Tidal powe an Thermal Energ of working- variou Systems. 45 nester Exams 'ks) VRITTEN TEST
syst Con type Sugg Cont (20 M	tems. War aversion (C es -constru gestive As cinuous As Marks) WRIT	ye Energy: Energy DTEC)- Hydrogen P action and applicati sessment Methods ssessment Test	Energy from the tides, Barrage y from waves, wave power de roduction and Storage- Fuel cell ions. Energy Storage System- Hyb Tot S Formative Assessment Test (20 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES	and Non evices. Oce : Principle rid Energy al Periods End Sen (60 Mar	Barrage Tidal powe an Thermal Energ e of working- variou Systems. 45 nester Exams ks) VRITTEN TEST
syst Con type Sugg Cont (20 M	tems. War aversion (C es -constru- gestive As cinuous As Marks) WRIT	ye Energy: Energy DTEC)- Hydrogen P action and applicati sessment Methods ssessment Test	Energy from the tides, Barrage y from waves, wave power de production and Storage- Fuel cell tons. Energy Storage System- Hyb Tot S Formative Assessment Test (20 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES	and Non evices. Oce : Principle rid Energy al Periods End Sen (60 Mai	Barrage Tidal powe an Thermal Energ e of working- variou Systems. 45 nester Exams vks) VRITTEN TEST
syst Con type Sugg Cont (20 M (20 M Dutc Upon	tems. Waversion ((es -constru- gestive As cinuous As Marks) WRIT	tion of the course,	Energy from the tides, Barrage y from waves, wave power de production and Storage- Fuel cell tons. Energy Storage System- Hyb Tot S Formative Assessment Test (20 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES the students will be able to:	and Non evices. Oce : Principle rid Energy al Periods End Sen (60 Mar	Barrage Tidal powe an Thermal Energ e of working- variou Systems. 45 nester Exams ·ks) VRITTEN TEST
Syst Con type Sugg Cont (20 M (20 M (20 M (20 M) (20 M) (2	tems. War iversion (C es -constru- gestive As cinuous As Marks) WRIT WRIT	ye Energy: Energy DTEC)- Hydrogen P action and applicati sessment Methods ssessment Test TEN TEST	Energy from the tides, Barrage y from waves, wave power de production and Storage- Fuel cell ions. Energy Storage System- Hyb Tota s Formative Assessment Test (20 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES the students will be able to: able Energy Sources and technology	and Non evices. Oce : Principle rid Energy al Periods [60 Man (60 Man y	Barrage Tidal powe an Thermal Energ e of working- variou Systems. 45 nester Exams ·ks) VRITTEN TEST
Syst Con type Sugg Cont (20 M Cont (20 M Cont (20 M Cont (20 M Cont (20 M Cont (20 M Cont (20 M Cont) (20 M Con (20 M CON (20)	tems. War iversion (C es -constru- gestive As inuous As Marks) WRIT WRIT	ye Energy: Energy DTEC)- Hydrogen P action and applicati sessment Methods ssessment Test TEN TEST tion of the course, yledge about renew uate inputs on a var	Energy from the tides, Barrage y from waves, wave power de roduction and Storage- Fuel cell tons. Energy Storage System- Hyb Tot: S Formative Assessment Test (20 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES the students will be able to: able Energy Sources and technology riety of issues in harnessing renew	and Non evices. Oce : Principle rid Energy al Periods (60 Man (60 Man (60 Man y (60 Man y) (70 Man y (70 Man y (70 Man y) (70 Man y (70 Man y) (70 Man	Barrage Tidal powe an Thermal Energe of working- variou Systems. 45 nester Exams ·ks) /RITTEN TEST
syst Con type Sugg Cont (20 M (20 M (20 M (20 M (20 M (20 M)) (20 M (20 M)) (20 M) (20	tems. War iversion (C es -constru- gestive As cinuous As Marks) WRIT WRIT comes n complet Get know Get adeq Recogniz	ye Energy: Energy DTEC)- Hydrogen P action and applicati sessment Methods ssessment Test TEN TEST tion of the course, yledge about renew uate inputs on a van	Energy from the tides, Barrage y from waves, wave power de roduction and Storage- Fuel cell tons. Energy Storage System- Hyb Tota s Formative Assessment Test (20 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES the students will be able to: able Energy Sources and technoloc riety of issues in harnessing renew able future role of renewable energy	and Non evices. Oce : Principle rid Energy al Periods (60 Man (60 Man (60 Man v))))))))))))))))))	Barrage Tidal powe an Thermal Energe of working- variou Systems. 45 nester Exams ·ks) /RITTEN TEST gy.

5 Understand basics about biomass energy.

Text Books

- 1. Joshua Earnest, Tore Wizeliu, 'Wind Power Plants and Project Development', PHILearning Pvt.Ltd, New Delhi, 2011.
- 2. D.P.Kothari, K.C Singal, RakeshRanjan "Renewable Energy Sources and EmergingTechnologies", PHI Learning Pvt.Ltd, New Delhi, 2013.
- 3. Scott Grinnell, "Renewable Energy & Sustainable Design", CENGAGE Learning, USA, 2016

Reference Books

- 1. A.K.Mukerjee and Nivedita Thakur," Photovoltaic Systems: Analysis and Design",PHI Learning Private Limited, New Delhi, 2011
- 2. Richard A. Dunlap," Sustainable Energy" Cengage Learning India Private Limited, Delhi, 2015.
- 3. Chetan Singh Solanki, "Solar Photovoltaics : Fundamentals, Technologies and Applications", PHI Learning Private Limited, New Delhi, 2011
- 4. Bradley A. Striebig, AdebayoA.Ogundipe and Maria Papadakis," Engineering Applications in Sustainable Design and Development", Cengage Learning IndiaPrivate Limited, Delhi, 2016.
- 5. Godfrey Boyle, "Renewable energy", Open University, Oxford University Press in association with the Open University, 2004.
- 6. ShobhNath Singh, 'Non-conventional Energy resources' Pearson Education, 2015.

Web Recourses

- 1. https://nptel.ac.in/courses/103103206
- 2. https://archive.nptel.ac.in/courses/115/105/115105127/
- 3. https://archive.nptel.ac.in/courses/103/103/103103206/

CO Vs PO Mapping and CO Vs PSO Mapping

<u> </u>	PO	P01	P01	P01	PSO	PSO								
ιυ	1	2	3	4	5	6	7	8	9	0	1	2	1	2
1	1		1				1				1			3
2	1		2				1				1			3
3	2		2				2				2			3
4	2	2	2				2				2			3
5	3	3	2				3							3

1-Low, 2-Medium, 3-High

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	10	10	10	10	10
UNDETSTAND	30	30	10	10	30
APPLY	30	30	10	10	30
ANALYZE	20	20	10	10	15
EVALUATE	10	10	10	10	15
CREATE	0	0	0	0	0
	100	100	50	50	100

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1:

- 1. Demonstrate the importance of renewable sources of energy.
- 2. Compose the necessity of sustainable design and development for the prosper growth of human life in the world. (Analyze)

COURSE OUTCOME 2:

1. Explain about the various types of Wind Power Plant (WPPs). (Remember)

2. Summarize the environmental impact due to installation of Wind power plant. (Analyze) **COURSE OUTCOME 3:**

- 1. Discuss the construction and working principle of Central Receiver power plants.(Understand)
- 2. Summarize the maximum power point tracking in the Solar Photo voltaic system and discuss the advantages and disadvantages (Analyze)

COURSE OUTCOME 4:

- 1. Discuss the following methods of biogas generation (i). Gasification
 - (ii) Anaerobic Digestion
- 2. Discuss with a neat sketch the bioenergy generation through fermentation.

COURSE OUTCOME 5:

1. Discuss, what is the minimum tidal range required for the working of tidal plant. Explain how much the potential in tides is. (Analyze)

2. Explain the 'single-basin' and 'two-basin' systems of tidal power harnessing. Further, discuss their advantages and limitations (Analyze)

Compiled By: Mr.S.Selvakumar, AP/EEE

Verified By

21EE7611	POWER SYSTEM SIMULATION LABORATORY	L	Т	Р	С		
		0	0	4	2		
Preamble							
The aim of coding. The numerical analysis un using MAT introduced	this course is to train the students for solving the power system pro- e formation of bus admittance matrix followed by power flow so- methods is introduced. Students get the exposure in short circuit der steady state and transient state. Economic load dispatch prob- LAB coding. Also, understanding different types of power system p- using protective relay test benches.	oblem olutio anal <u>y</u> olem i orotec	ns usin ns us ysis a s also tion n	ng MA ing va nd sta perfo nodul	ATLAB arious ability ormed es are		
Prerequisi	tes for the course						
• Trar	asmission and Distribution in Power Systems						
• Pow	er System Analysis						
• Pow	er System Operation and Control						
Objectives							
 To s stud To e find To a 	etudy the techniques for power flow analysis and to carry out sh ies on power system. Inhance the model of single machine infinite bus system and tran Symmetric and Unsymmetrical fault. Inalyze the load – frequency and voltage controls. Inalyze the load – frequency and understand the economic dispatch proble	ort ci nsient em.	rcuit cond	and s	tability and to		
S.No	List of Experiments			C O			
1	Computation and modelling of transmission Lines		C	01			
2	Formation of Bus Admittance and Impedance Matrices		C	01			
3	Power Flow Analysis Using Gauss-Seidel Method.		C	02			
4	Power Flow Analysis Using Newton Raphson Method.		C	02			
5	Symmetric and Unsymmetrical Fault Analysis.		C	03			
6	Transient Stability Analysis of SMIB System.		C	03			
7	7 Electromagnetic Transients in Power Systems : Transmission Line Energization						
8	Load – Frequency Dynamics of Single- Area and Two-Area Power		C	04			

	Systems		
9	Economic Dispatch in Power Systems.	C05	
10	State estimation: Weighted least square estimation.	C05	
S.No.	List of Projects	Related Experiment	С
1.	Simulate the Fault Detection circuit for a 150 km three Phase Transmission Line Using MATLAB.	1,2	
2.	Design a Three-dimensional admittance matrix Using MATLAB for the given diagram. $1 \underbrace{j_{0.8}}_{j_{0.2}} \underbrace{j_{0.6}}_{j_{0.4}} \underbrace{j_{0.6}}_{j_{0.8}} \underbrace{j_{0.8}}_{=}$	1,2,5	1
3.	Transmission line three phase fault analysis using MATLAB Simulink.	1,2,5,6	1
4.	GA Optimized PI controller for Load Frequency Control	1,2,8	1
5.	Design and implementation of Automatic Generation Control of Two Area System Using MATLAB/SIMULINK	1,2,3,8	1
6.	BUS Network Load Flow Analysis using MATLAB Simulink	1,2,3	1
7.	50 Watt rating Solar Power Generation for Home Appliance using MATLAB Simulink.	1,2,5,6,7	1
8.	Economic Dispatch of BESS and Renewable Generators in DC Microgrids Using Voltage-Dependent Load Models	1,9,10	1
9.	Design a 5 MW, 1500 RPM, 50 Hz, 540 V Synchronous Generator using MATLAB.	1,2,4,7	1,2
10.	A 60 kW, 400 V, 4 Pole, wave connected DC Motor Speed Control Design with MATLAB and Simulink.	1,2,4,8,10,	1,2
11.	Simulate the ALFC loop parameters using MATLAB Simulink for a control area having Total area capacity= 3000 MW, Normal operating load= 1500 MW, Inertia constant= 5.0, Regulation= 2.4Hz/pu MW.	1,2,8	1
12.	Load frequency control in a hybrid thermal wind photovoltaic	1,2,8	1

Siloge	estive Assessment Methods							
Jugge								
Lab C	omponents Assessments	End Semester Exams						
(60 N	Marks)	(40 Marks)						
Outco	omes							
Upor	n completion of the course, the studer	nts will be able to:						
CO1	Provide a better understanding of admittance forms.	f modelling of transmission lines in impedance and						
CO2	Apply iterative techniques for pov stability studies on power system	wer flow analysis and to carry out short circuit and						
CO3	Simulate the model of single machine infinite bus system and transient conditions and to find Symmetric and Unsymmetrical fault.							
CO4	Analyze the load – frequency and	voltage controls.						
CO5	Simulate and Analyze state estima	ation and understand the economic dispatch problem.						
Labor	ratory Requirements							
Perso	nal computers (Intel i3, 80GB, 2GBRAM)- 30						
Printe	er laser – 1							
Dot m	atrix - 1							
Serve	r (Intel i5, 80GB, 2GBRAM) (High Speed	Processor)- I						
Softw	are: any power system simulation softw	vare with 5 user license						
Comp	liers: C, C++, VB, VC++ - 30							
Refer	ence Books							
1.	V.K.Mehta, Rohit Mehta, 'Principles o	f power system'. S. Chand & Company Ltd. New Delhi.						
	2013.	· · · · · · · · · · · · · · · · · · ·						
2.	B.R.Gupta, 'Power System Analysis and	d Design' S. Chand, New Delhi, Fifth Edition, 2008.						
3.	Hadi Saadat, 'Power System Analysis'	, Tata McGraw Hill Education Pvt. Ltd., New Delhi, 21st						
	reprint, 2010.							
4.	Kothari D.P. and Nagrath I.J., 'Power S	ystem Engineering', Tata McGraw-Hill Education, Second						
	Edition, 2008.							
Web I	Recourses							

- 1. https://nptel.ac.in/courses/108104051
- 2. <u>https://www.youtube.com/watch?v=2vOwntegb2A</u>

CO Vs PO Mapping and CO Vs PSO Mapping

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2
1	3	3			2				3				3	
2	3	3							3				3	
3	3	3			2				3				3	
4	3	3			2				3				3	
5	3	3			2				3				3	

1-Low , 2- Medium, 3- High

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1:

1. Calculation of inductance and capacitance of single-phase line has two parallel conductor 2m apart and diameter of each conductor is 1cm. Also, verify the obtained result with calculated value. (Evaluate)

2. Examine the applications of Y-bus (Evaluate)

COURSE OUTCOME 2:

1. For the three bus system shown in figure. The relevant per unit line admittances on 100 MVA base are indicated on the diagram. Form bus admittance matrix and determine the voltage at bus 2 and bus 3 after the second iteration using Gauss Siedel method. Assume acceleration factor as 1.6. Use available software and print the output of the load flow problem. Using the voltage solution of the converged power flow obtained from the available program compute the sending end and receiving end line flow in each of the transmission line. Solve the power flow problem using the available program for different value of acceleration factors and plot the convergence characteristics.

2. Define Acceleration factor. (Understand)

COURSE OUTCOME 3:

- **1.** Design a Simulink Model for Evaluating the Transient Stability of Single Machine Connected to Infinite Bus.
- 2. List the different types of fault in Power System. (Understand)

COURSE OUTCOME 4:

1. For an isolated single area consider the following data:

Area capacity Pr = 1000 MW

Nominal operating load PD0 = 500 MW

Inertia constant H =5sec

Regulation = 5 Hz/p.u. MW

Nominal frequency = 50Hz

Load decreases by 1% for a decrease in frequency by 1%.

Find 1) Gain & Time constant of power system and 2) Change in frequency under static condition. Also, verify the obtained result with calculated value. (Evaluate)

2. A two-area system connected by a tie-line has the following parameters with base MVA for each area.

Area	1	2
Turbine output power	200 MVA	1000 MVA
Nominal frequency	50 HZ	50 HZ
Inertia constant	3%	4%
Power system gain (K _p)	50 Hz/p.u. MW	40 Hz/p.u. MW
Governor time constant	0.3	0.2
Turbine time constant	0.6	0.4

The synchronizing power coefficient is computed from the initial operating condition T_{12} = 2.0 p.u. A load change of 400 MW occurs in area 1. Determine the steady state frequency and the change in the tie-line flow. Also, verify the obtained result with calculated value.

COURSE OUTCOME 5:

1. The fuel cost of two units are given by $F_1 = 0.1 P_1^2 + 25P_1 + 1.6 Rs/hr$. $F_2 = 0.1 P_2^2 + 32 P_2 + 2.1 Rs/hr$.

If the total demand on the generation is 250 MW, find the economic load scheduling of the two units. (Evaluate)

2. Determine the economic generation schedules of three generating units in a power system to meet the system load of 925 MW. The operating limit and cost function is given below:

Operating limits 250 MW $\leq P_{G1} \geq 450$ MW

200 MW ≤ P_{G2}≥ 350 MW

125 MW ≤ P_{G3}≥ 225 MW

Cost function is

 $F_2(P_{G2}) = 0.0056 P_{G2}^2 + 4.5 P_{G2} + 640.$

 $F_1(P_{G1}) = 0.0045 P_{G1}^2 + 5.2P_{G1} + 580.$

 $F_{3}(P_{G3}) = 0.0079 P_{G3}^2 + 5.8 P_{G3} + 820.$

Also, verify the obtained result with calculated value.

COURSE CONTENT AND LECTURE SCHEDULE

S.NO	ΤΟΡΙϹ	NO OF WEEKS REQUIRED
1	Computation and modelling of transmission Lines	1
2	Formation of Bus Admittance and Impedance Matrices	1
3	Power Flow Analysis Using Gauss-Seidel Method.	1
4	Power Flow Analysis Using Newton Raphson Method.	1
5	Symmetric and Unsymmetrical Fault Analysis.	1
6	Transient Stability Analysis of SMIB System.	1

7	Electromagnetic Transients in Power Systems : Transmission Line Energization	1
8	Load – Frequency Dynamics of Single- Area and Two-Area Power Systems	1
9	Economic Dispatch in Power Systems.	1
10	State estimation: Weighted least square estimation.	1

Compiled By: Mr.J.Antony Robinson, AP/EEE

2

3

4

Verified By

C01

CO2

CO2

	DENEWADI E ENEDCY CYCTEMC I ADODATODY	т	т	D	C
	RENEWABLE ENERGY SYSTEMS LABORATORY	L	1	Р	Ľ
21EE7612		0	0	4	2
Preamble		<u> </u>			<u> </u>
This labor	ratory gives a practical exposure to the students to learn the Ma	ıtlab S	imuli	nk m	odel
based sol	ar and wind that are used nowadays in most of the Renewable	energ	gy sys	stem.	Lab
consists o	of solar, wind, hybrid system and intelligent controller This	lab al	lso co	overs	the
industrial	implementation of advanced Renewable energy system via diffe	erent o	comp	uter t	ools
such as M	ATLAB and Simulink. To validate the experimental results, the us	e of si	imula	tion t	ools
for the pe	riormance analysis is also introduced to the students.				
Prerequisit	tes for the course				
• Powe	er Generation systems				
Objectives					
1. MAT	LAB simulink for Solar PV Energy System.				
2. Basic	c Knowledge on voltage current characteristic and efficiency of 1	lKW	Solar	PV e	nergy
Syste	ems and diode based applications				
3. Reco	gnize current and possible future role of of micro Wind Energy Ger	nerato	or.		
4. Trair	n the students in Assessment of Hybrid (Solar-Wind) Power Syste	em Re	newa	ble E	nergy
Sour	ces and technologies.				
5. Prov	ide better understanding of Intelligent Controllers				
S.No	List of Experiments		C	0	
1	Simulation study on Solar PV Energy System.		CC)1	
		1			

VI-Characteristics and Efficiency of 1kWp Solar PV System.

Performance assessment of Grid connected and Standalone

Partial shading of solar PV Systems

	1kWp Solar Power System		
5	Simulation study on Wind Energy Generator.	C03	
6	Performance assessment of micro Wind Energy Generator.	CO3	
7	Performance Assessment of Hybrid (Solar-Wind) Power System.	CO4	
8	Simulation study on Bio gas generation.	CO4	
9	Simulation study on fuel cell	CO4	
10	Experiment on Intelligent Controller.	C05	
11	Simulation study on Hybrid (Solar-Wind) Power System.	C05	
S.No.	List of Projects	Related Experiment	CO
1.	Design and fabrication of solar mobile charging circuit using Li iron battery 1500 mah 3.7V , TP4056 Lithium battery charger and 5V output Usb boost converter	1,2,3	C01
2.	Design of 24v/48v (1500W) DC to DC buck boost converter for solar panel and wind output of 24v to 230V to run BLDC motor	1,2,3,4,5,6	C01
3.	Design and implementation of 24v/12v DC-DC Buck Converter for solar water pumping application using MATLAB	1,2,3,5,6	C01
4.	12V, 20W, Maximum power current 1.04 poly crystalline solar panel based 12v, 1.2A battery charging system	1,2,3,,5,6	CO2
5.	Design of 12V Dual Power Generation Solar Plus Windmill Generator using Atmega328 microcontroller, LM320 ac voltage regulator with the battery supply of 12V, 1.2A and continuous current 7.5A servomotor	1,2,3,7,8	CO2
6.	A single-Stage Grid Connected 8A, 500 V H bridge Inverter Topology for 12V, using capacitor Cp=2000uf, Cf=4.4uf inductor $L_p=220_{uf}$, $L_f=3.25_{Mh}$, $T_s=100_{us}$, $Vp=150_V$ and $Vp_v=80_V$ Solar PV	1,2,3,4,10	CO3
	Inverter Specification		
	Systems with Maximum Power Point TrackingInverter SpecificationS.noParameters DetailedDetailed specification		
	Systems with Maximum Power Point TrackingInverter SpecificationS.noParameters DetailedDetailed specification1Nominalvoltage230V/415V230V/415V		
	Systems with Maximum Power Point TrackingInverter SpecificationS.noParameters DetailedDetailed specification1Nominalvoltage230V/415V230V/415V2VoltageBand Between 80% and110% of V nominal110% of V nominal		
	Systems with Maximum Power Point TrackingInverter SpecificationS.noParameters DetailedDetailed specification1Nominalvoltage230V/415V230V/415V2VoltageBand Between 80% and 110% of V nominal3Nominal Frequency50 Hz		

		Range			
	5	Waveform	Sine wave		
	6	Harmonics	AC side total harmonic current distortion < 3%		
	7	Ripple	DC Voltage ripple content shall be not more than 1%		
	8	Efficiency	Efficiency shall be >97%		
	9	Casing protection levels	Degree of protection: Minimum IP-54 for internal units and IP-65 for outdoor units		
	10	Operating ambient Temp range	-10 to + 60 degree Celsius		
7. C	A proc Solar I 1000µ	luct development of home base power Inverter with dual AC ou F and 0.1 μ F with the P75N75	ed Poly Crystalline 10W 12V atput using the capacitor & CD4047 iC	1,2,3,	CO4
8.	Case s	study		1,2,3,4,5,6,9	CO5
	SOLLWS	ire			
	2. Sin	are nulation for Wind Turbine (AB-Simulink Modules	Generators—With FAST and	1	
Suggestiv	2. Sim MATL	are nulation for Wind Turbine (AB-Simulink Modules sment Methods	Generators—With FAST and		
Suggestiv Lab Comp	2. Sin MATL	are nulation for Wind Turbine (AB-Simulink Modules sment Methods Assessments	Generators—With FAST and	ms	
Suggestiv Lab Comj (60 Marl	2. Sin MATL Ze Asses ponents (s)	are nulation for Wind Turbine (AB-Simulink Modules sment Methods Assessments	Generators—With FAST and End Semester Exam (40 Marks)	ms	
Suggestiv Lab Comj (60 Mari	2. Sin MATL	are nulation for Wind Turbine (AB-Simulink Modules sment Methods Assessments	Generators—With FAST and End Semester Exam (40 Marks)	ms	
Suggestiv Lab Comp (60 Mark Dutcome	2. Sin MATL ve Asses ponents (s)	are nulation for Wind Turbine (AB-Simulink Modules sment Methods Assessments	Generators—With FAST and End Semester Exam (40 Marks)	ms	
Suggestiv Lab Comp (60 Mark Jutcome Upon con	2. Sim MATL ve Asses ponents (s)	are nulation for Wind Turbine (AB-Simulink Modules sment Methods Assessments n of the course, the students	Generators—With FAST and End Semester Exam (40 Marks) will be able to:	ms	
Suggestiv Lab Comp (60 Mark Outcome Upon con CO1	softwa 2. Sim MATL ve Asses ponents cs) s mpletion The st	are nulation for Wind Turbine (AB-Simulink Modules sment Methods Assessments n of the course, the students udents can able to create the M	Generators—With FAST and End Semester Exam (40 Marks) will be able to: IATLAB Simulink for Renewal	ms ble energy sys	tems.
Suggestiv Lab Comp (60 Mark Outcome Upon con CO1 CO2	softwa 2. Sim MATL ve Asses ponents (s) s mpletion The st To acq System	are nulation for Wind Turbine (AB-Simulink Modules sment Methods Assessments n of the course, the students udents can able to create the M juire knowledge on Shadowing n and variety of issues in harne	Generators—With FAST and End Semester Exam (40 Marks) will be able to: IATLAB Simulink for Renewal effect & diode based solution essing Renewable energy	ms ble energy sys	tems. r PV
Suggestiv Lab Comp (60 Mark Outcome Upon con CO1 CO2 CO3	softwa 2. Sim MATL Ze Asses ponents (s) s mpletion The st To acq System To trai Power	are nulation for Wind Turbine (AB-Simulink Modules sment Methods Assessments Assessments udents can able to create the M quire knowledge on Shadowing n and variety of issues in harne in the students in assessment co System Renewable Energy Sou	Generators—With FAST and End Semester Exam (40 Marks) will be able to: ATLAB Simulink for Renewal effect & diode based solution essing Renewable energy of Grid connected and Standal urces and technologies.	ble energy sys	tems. r PV ar

	Renewable energy sources.
CO5	Ability to recognize current and possible future role of Renewable energy sources.

Laboratory Requirements

S.no	Description of Equipment	Quantity required
1	Personal computers (Intel i3, 80GB, 2GBRAM)	15
2	CRO 30MHz	8
3	Digital Multimeter	10
4	PV panels - 100W, 24V	1
5	Battery storage system with charge and discharge control 40Ah	1
6	PV Emulator	1
7	Micro Wind Energy Generator module	1
8	Potentiometer	5
9	Step-down transformer 230V/12-0-12V	5

Reference Books

- 1. .K.Mukerjee and Nivedita Thakur," Photovoltaic Systems: Analysis and Design PHI Learning Private Limited, New Delhi, 2011
- 2. Richard A. Dunlap," Sustainable Energy" Cengage Learning India Private Limited Delhi, 2015

Web Recourses

- 1. <u>https://onlinecourses.nptel.ac.in/noc21_ch11/preview</u>
- 2. http://digimat.in/nptel/courses/video/103103206/L01.html
- 3. <u>https://www.mathworks.com/videos/commissioning-and-validating-renewable-energy-systems-using-matlab-and-simulink-1651166405798.html</u>

CO Vs PO Mapping and CO Vs PSO Mapping

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2
1	3	2			2				3				3	
2	3	2							3				3	
3	3	2			2				3				3	
4	3	2			2				3				3	
5	3	2							3				3	

1-Low , 2- Medium, 3- High

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1:

- 1. Mention the various wave energy conversion devices. (Understand)
- 2. Explain the working principle of wind energy conversion systems. (Analyze)

COURSE OUTCOME 2:

- 1. Explain the I-V characteristics of a solar cell with a neat sketch.(understand)
- 2. Briefly explain the working of solar PV cell. (Analyze)

COURSE OUTCOME 3:

- 1. Explain with neat sketch thermal energy storage system with Phase Change Material (PCM) (Analyze)
- 2. Justify, short circuit power ratio and mention how this ratio affects the grid strength (Evaluate)

COURSE OUTCOME 4:

- 1. How to do 24h Solar PV System simulation in less time? (understand)
- 2. Study on simulation of wind load characteristics for photovoltaic generation systems (Analyze)

COURSE OUTCOME 5:

- 1. List the different types of tidal power plant. Explain the principle of tidal generation with neat sketch.(Analyze)
- 2. Discuss the performance characteristics of wind mill

COURSE CONTENT AND LECTURE SCHEDULE

S.NO	ΤΟΡΙϹ	NO OF WEEKS REQUIRED
1	Simulation study on Solar PV Energy System.	1
	1. Design and implementation of 24v/12v DC-DC Buck	

		Converter for solar wa	ter numning application using					
		MATLAB	ter pumping application using					
2	 VI-Characteristics and Efficiency of 1kWp Solar PV System. 1. Design and fabrication of solar mobile charging circuit using Li iron battery 1500 mah 3.7V, TP4056 Lithium battery charger and 5V output Usb boost converter 2. Design of 24v/48v (1500W) DC to DC buck boost converter for solar panel and wind output of 24v to 230V to run BLDC motor 							
3	Sha Sys 1. 2.	adowing effect & diode base stem 12V, 20W, Maximum pov solar panel based 12v, 1.2A A product development of 12V Solar power Inverter capacitor 1000µF and 0.1 µ	d solution in 1kWp Solar PV ver current 1.04 poly crystalline battery charging system home based Poly Crystalline 10W r with dual AC output using the F with the P75N75 & CD4047 iC	1				
4	 Performance assessment of Grid connected and Standalone 1kWp Solar Power System A single-Stage Grid Connected 8 A, 500 V H bridge Inverter Topology for 12V,using capacitor Cp=2000uf, Cf=4.4uf inductor Lp=220uf, Lf=3.25Mh,Ts=100us,Vp=150v and Vpv=80v Solar PV Systems With Maximum Power Point Tracking 							
	S no Deremotors Detailed Detailed specification							
	1	Nominal voltage 230V/415V	Nominal voltage 230V/415V					
		voltage	110% of V nominal					
	3	Nominal Frequency	50 Hz					
	4	Operating Frequency Range	47.5 to 50.5 Hz					
	5	Waveform	Sine wave					
	6	Harmonics	AC side total harmonic current distortion < 3%					
	7	Ripple	DC Voltage ripple content shall be not more than 1%					
	8	Efficiency	Efficiency shall be >97%					
	9	Casing protection levels	Degree of protection: Minimum IP-54 for internal units and IP-65 for outdoor					
			units					

ancis Xavier	Engineering College Dept of EEE R2021/Curriculum and Syllabi	
5	Simulation study on Wind Energy Generator. 1. Case study Simulation for Wind Turbine Generators—With FAST and MATLAB-Simulink Modules	1
6	Performance assessment of micro Wind Energy Generator. 1. Design of 12V Dual Power Generation Solar Plus Windmill Generator using Atmega328 microcontroller, LM320 ac voltage regulator with the battery supply of 12V, 1.2A and continuous current 7.5A servomotor	1
7	Simulation study on Hybrid (Solar-Wind) Power System.	1
8	Experiment on Performance Assessment of Hybrid (Solar-Wind) Power System.	1

Compiled By: Mr.S.Selvakumar,AP/EEE

Verified By

PROFESSIONAL ELECTIVE - I

21EE5701	DESIGN OF ELECTRICAL MACHINES	L	Τ	Р	С
		3	0	0	3

Preamble:

This course is to impart in students a good understanding of fundamental design principles in electrical machines. This course imparts knowledge about the design of magnetic circuits, main dimensions, armature circuit and field circuit of electrical machines.

Prerequisites for the course

1. DC Machines and Transformers

2. AC Machines

Objectives

- 1. To Introduce Engineering Materials and thermal rating of various types of electrical machines.
- To impart knowledge on armature and field systems for D.C. machines and its 2. Computer Program.
- To educate the Armature and field systems for D.C. machines and its Computer 3. Program.
- 4. To learn the design of stator and rotor of induction machines and the importance of computer aided design method.
- 5. To understand the design of stator and rotor of synchronous machines and the importance of computer aided design method.

UNIT I	INTRODUCTION	9						
Major considerations in Electrical Machine Design – Materials for Electrical apparatus – choice								
of specific e	of specific electrical and magnetic loadings-Design of Magnetic circuits-thermal considerations-							
heat flow-te	heat flow-temperature rise-rating of machines.							
UNIT II	DESIGN OF TRANSFORMERS	9						

		-
KVA output fo	r single and three phase transformers – Overall dimensions – o	design of yoke, core and
winding for co	re and shell type transformers – Estimation of No load curren	t – Temperature rise in
Transformers	– Design of Tank and cooling tubes of Transformers. Compute	r Aided design of single
phase core tra	nsformer.	

Francis Xavier Engineering College| Dept of EEE | R2021/Curriculum and Syllabi UNIT III 9 **DESIGN OF DC MACHINES** Output Equations – Main Dimensions – Choice of specific loadings – Carter's Coefficient – Net length of Iron – Real & Apparent flux densities-Selection of number of poles – Design of Armature - Design of commutator and brushes -Design of lap winding and wave winding- Computer Aided design of Armature main dimensions. UNIT IV **DESIGN OF INDUCTION MOTORS** 9 Output equation of Induction motor – Main dimensions – choice of specific loadings – Design of squirrel cage rotor and wound rotor -Magnetic leakage calculations - Operating characteristics : Magnetizing current - Short circuit current - Computer Aided design of slip-ring rotor. UNIT V **DESIGN OF SYNCHRONOUS MACHINES** 9 Output equations – choice of specific loadings – Design of salient pole machines – Short circuit ratio - Armature design - Estimation of air gap length - Design of rotor -Design of damper winding - Determination of full load field MMF - Design of field winding - Design of turbo alternators -Computer Aided design of Stator main dimensions. **Total Periods** 45 **Suggestive Assessment Methods Continuous Assessment Test Formative Assessment Test End Semester Exams** (10 Marks) (60 Marks) (30 Marks) **1. Descriptive Questions** 1.Assignment **1. Descriptive Questions** 2. Online Quizzes Outcomes Upon completion of the course, the students will be able to: 1. Understand basics of design considerations for rotating and static electrical machines 2. Determine overall Dimensions of single and three phase transformers core, windings and cooling systems for transformers. **3.** Design armature and field of DC machines. **4.** Interpret main dimensions of squirrel cage and Slip ring induction machines. 5. Illustrate enhanced dimensions of synchronous machines.

Text Books

- 1. Sawhney A.K. and Chakrabarti A, "A Course in Electrical Machine Design", Dhanpat Rai & Sons, 2016.
 - 3. M V Deshpande "Design and Testing of Electrical Machines" PHI learning Pvt Lt, 2021.

Reference Books

- 1. A. Shanmugasundaram, G. Gangadharan and R. Palani, "Electrical Machine Design Data Book", New Age International Pvt. Ltd., 2015.
- 2. K. L. Narang, "A Text Book of Electrical Engineering Drawings", Satya Prakashan, 2016.
- 3. V Rajini, V.S Nagarajan, 'Electrical Machine Design', Pearson, 2017.
- 4. K.M.Vishnumurthy 'Computer aided design of electrical machines' B S Publications,2018

Web Resources

- 1. https://nptel.ac.in/courses/108106023/
- 2. https://www.udemy.com/course/learn-design-of-electrical-apparatus-in-tamillanguage/

CO Vs PO Mapping and CO Vs PSO Mapping

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2
1	3	2											3	
2	3	3	2										3	
3	3	3	3										3	
4	3	3	2										3	
5	3	3	2										3	

1-Low 2-Medium 3-High

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	20	20	10	5	20
UNDERSTAND	30	30	10	10	30
APPLY	20	20	5	10	20
ANALYZE	30	30	0	0	30
EVALUATE	0	0	0	0	0
CREATE	0	0	0	0	0

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1:

- A 350 KW, 500V, 450rpm, 6-pole, dc generator is built with an armature diameter of 0.87m and core length of 0.32m. The lap wound armature has660 conductors. Calculate the specific electric and magnetic loadings. (Apply)
- 2. Obtain the Temperature rise Equation. (Apply)

COURSE OUTCOME 2:

- 1. Distinguish between shell type and core type transformer (Understand)
- 2. Calculate the main dimensions and winding details of a 100 kVA 2000/400 V 50 Hz single phase shell type, oil immersed, self-cooled transformer. Assume voltage per turn 10 V, flux density in core 1.1 wb/m2, current density 2 A/mm2, window space factor 0.33. The ratio of window height to window width and ratio of core depth to width of central limb = 2.5, the stacking factor is 0.9. (Apply)

COURSE OUTCOME 3:

- 1. Write down the expression for output equation of a DC Machine. (Understand)
- Determine the number of poles, main dimensions, pole pitch and armature mmf/pole of a 92kW, 220Volt; 1480 rpm D.C motor whose full load efficiency is 89.76%. Specific magnetic loading is 0.545 tesla and specific electric loading is 32,750 AC/m. The pole arc to pole pitch ratio is 0.6%. Assume square pole face. (Apply)

COURSE OUTCOME 4:

- 15KW, 400V, 3 phase, 50Hz, 6 pole induction motor has a diameter of 0.3m and the length of core 0.12m. The number of stator slots is 72 with 20 conductors per slot. The stator is delta connected. Estimate the value of magnetizing current per phase if the length of air gap is 0.55m. The gap contraction factor is 1.2. Assume the mmf required for the iron parts to be 35 percent of the air gap mmf. Coil span = 11 slots. (Apply)
- Estimate the stator core dimensions and the total number of stator conductor for a 3φ, 100kW, 3300V, 50Hz, 12 pole star connected slip ring induction motor. Assume: average gap density=0.4Wb/m2, conductors per metre = 25000 A/m, efficiency = 0.9, power factor = 0.9, winding factor = 0.96. choose the main dimension to give best power factor. (Apply)

COURSE OUTCOME 5:

- 1. Give Short notes on the effects of large airgap length on the performance of synchronous machine? (Apply)
- Find main dimension of 100 MVA, 11 KV, 50 Hz, 150 rpm, three phase water wheel generator. The average gap density = 0.65 wb/m2 and ampere conductors / m are 40000. The peripheral speed should not exceed 65 m/s at normal running speed in order to limit runaway peripheral speed. (Apply)

			Т	Р	C					
21EE5702	3	0	0	3						
Preamble	Preamble									
The study and design of automatic Control Systems, has become important in modern										
technical society. From devices as simple as a toaster or a toilet, to complex machines like space										
shuttles and power steering, control engineering is a part of our everyday life.										
Prerequisites for the course

- 1. Control Systems
- 2. Digital Signal Processing

Objectives

- 1. To understand the fundamentals of physical systems in terms of its linear and nonlinear models.
- 2. To educate on representing systems in state variable form
- 3. To educate on solving linear and non-linear state equations
- 4. To exploit the properties of linear systems such as controllability and observability
- 5. To educate on stability analysis of systems using Lyapunovs theory

UNIT I	NONLINEAR CONTROL SYSTEM	9								
Introduction to	Nonlinear systems and their properties, Common Non-linea	rities, Describing								
functions, Phase	e plane method, Lyapounov's method for stability study, con	cept of Limit Cycle.								
UNIT II	OPTIMAL CONTROL THEORY	9								
Introduction, O	ptimal control problems, Mathematical procedures for opti	imal control design:								
Calculus of variations, Pontryagin's optimum policy, Bang-Bang Control, Hamilton-Jacobi										
Principle.										
UNIT III	Z-PLANE ANALYSIS OF DISCRETE-TIME	9								
CONTROL SYSTEMS										
Introduction, Impulse sampling and data hold, Reconstructing original signal from sampled										
signals, concept	signals, concept of pulse transfer function, Realization of digital controllers.									
signals, concept of pulse transfer function, Realization of digital controllers.										
UNIT IV	DESIGN OF DISCRETE-TIME CONTROL SYSTEMS	9								
UNIT IV Introduction, Sta	DESIGN OF DISCRETE-TIME CONTROL SYSTEMS ability analysis of closed-loop systems in the z-plane, Transic	9 ent and steady state								
UNIT IV Introduction, Sta response analys	DESIGN OF DISCRETE-TIME CONTROL SYSTEMS ability analysis of closed-loop systems in the z-plane, Transic is, Design based on the rootlocus method, Design based on t	9 ent and steady state he frequency-								
UNIT IV Introduction, Staresponse analys response metho	DESIGN OF DISCRETE-TIME CONTROL SYSTEMS ability analysis of closed-loop systems in the z-plane, Transic is, Design based on the rootlocus method, Design based on t od.	9 ent and steady state he frequency-								
UNIT IV Introduction, Staresponse analys response metho UNIT V	DESIGN OF DISCRETE-TIME CONTROL SYSTEMS ability analysis of closed-loop systems in the z-plane, Transic sis, Design based on the rootlocus method, Design based on t od. STATE-SPACE ANALYSIS	9 ent and steady state he frequency- 9								
UNIT IV Introduction, Staresponse analys response metho UNIT V Introduction, St	DESIGN OF DISCRETE-TIME CONTROL SYSTEMS ability analysis of closed-loop systems in the z-plane, Transic is, Design based on the rootlocus method, Design based on t od. STATE-SPACE ANALYSIS ate-space representations of discrete-time systems, Solving	9 ent and steady state he frequency- 9 discrete-time state-								
UNIT IV Introduction, Staresponse analys response metho UNIT V Introduction, Staspace equations	DESIGN OF DISCRETE-TIME CONTROL SYSTEMS ability analysis of closed-loop systems in the z-plane, Transic sis, Design based on the rootlocus method, Design based on t od. STATE-SPACE ANALYSIS ate-space representations of discrete-time systems, Solving s, Pulse transfer function matrix, Discretization of continuo	9 ent and steady state he frequency- 9 discrete-time state- ous time state space								
UNIT IV Introduction, Staresponse analys response metho UNIT V Introduction, Staspace equations equations, Lyap	DESIGN OF DISCRETE-TIME CONTROL SYSTEMS ability analysis of closed-loop systems in the z-plane, Transic sis, Design based on the rootlocus method, Design based on t od. STATE-SPACE ANALYSIS ate-space representations of discrete-time systems, Solving s, Pulse transfer function matrix, Discretization of continuo punov stability analysis, Controllability and Observabilit	9 ent and steady state the frequency- 9 discrete-time state- ous time state space ty, Design via pole								
UNIT IV Introduction, Staresponse analys response metho UNIT V Introduction, Sta space equations equations, Lyap placement, State	DESIGN OF DISCRETE-TIME CONTROL SYSTEMS ability analysis of closed-loop systems in the z-plane, Transic is, Design based on the rootlocus method, Design based on t od. STATE-SPACE ANALYSIS ate-space representations of discrete-time systems, Solving s, Pulse transfer function matrix, Discretization of continuo punov stability analysis, Controllability and Observabilit e observer design.	9 ent and steady state he frequency- 9 discrete-time state- ous time state space cy, Design via pole								
UNIT IV Introduction, Staresponse analys response metho UNIT V Introduction, Sta space equations equations, Lyap placement, State	DESIGN OF DISCRETE-TIME CONTROL SYSTEMS ability analysis of closed-loop systems in the z-plane, Transic is, Design based on the rootlocus method, Design based on t od. STATE-SPACE ANALYSIS ate-space representations of discrete-time systems, Solving s, Pulse transfer function matrix, Discretization of continuo punov stability analysis, Controllability and Observabilit e observer design. Total Periods	9 ent and steady state the frequency- 9 discrete-time state- ous time state space cy, Design via pole 45								

Sug	gestive Assessment Metho	ds	
C	ontinuous Assessment Test	Formative Assessment Test	End Semester Exams
	(30 Marks)	(10 Marks)	(60 Marks)
	WRITTEN TEST	1.ASSIGNMENT	WRITTEN TEST
		2. ONLINE QUIZZES	
		3.PROBLEM-SOLVING ACTIVITIES	
Out	comes		L
Upo	on completion of the course	e, the students will be able to:	
1	Demonstrate non-linear sy	stem behavior by phase plane and	describing function methods
2	Perform the stability analy in optimal control problem	sis nonlinear systems by lyapunov s.	method develop design skills
3	Apply mathematical model and z-domain (transfer fun	s in both time domain (difference e ction using z-transform).	equations, state equations)
4	Analyze transient and stea loop and closed-loop linear	dy-state responses and stability an , time-invariant, discrete-time con	d sensitivity of both open- trol systems.
5	Analyze state space and sta of state observers and outp	nte feedback in modern control sys out feedback controllers.	tems, pole placement, design
Ref	erence Books / Text Book?		
-	1. Slotine & Li, Applied Non-	Linear Control, Englewood Cliffs, N	IJ: Prentice-Hall, (1991).
4	2. Bandyopadhyay, M.N., Co Private Limited (2003).	ntrol Engineering: Theory and Prac	ctice, Prentice-Hall of India
	3. Ogata, K., Discrete-time C	ontrol Systems, Pearson Education	(2005).
Wel	b Recourses		
-	1. https://nptel.ac.in/cours	<u>ses/108/101/108101037/</u>	
-	2. <u>https://freevideolecture</u>	s.com/course/2337/control-eng	<u>ineering/5</u>

CO Vs PO Mapping and CO Vs PSO Mapping

C O	P 0 1	P 0 2	P 0 3	Р О 4	Р О 5	Р О 6	Р О 7	P 0 8	P 0 9	PO 10	P0 11	PO 12	PS O 1	PS O 2
1	3	3			2									2
2	3	3			2									2
3	3	3	2		2									2
4	3	3	3	3	2									2
5	3	3	3	3	2									2
									1-Lov	v, 2- Me	dium, 3	3- High		

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	10	10	5	5	10
UNDETSTAND	30	30	10	10	30
APPLY	60	60	10	10	60
ANALYZE	0	0	0	0	0
EVALUATE	0	0	0	0	0
CREATE	0	0	0	0	0

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Students will be able to predict the suitable method

for

- 1. Briefly discuss the following:
- (i) State modeling of linear systems.
- (ii) Linearization of state equation (Understand).

2. Obtain the state space model for a system characterized by the following

differential equation ... $y + 6y^{-} + 5y^{-} + y = u(t)$. (Apply)

COURSE OUTCOME 2:

1. Given the time invariant system $x \cdot 1 x \cdot 2 = 0 \alpha 0 - 1 x \cdot 1 x \cdot 2 + 0 \cdot 1 u$; $y = [10] x \cdot 1 x \cdot 2$ and that u(t) = e - 1 and $y(t) = 2 - \alpha t - 1$, find $x \cdot 1(t)$ and $x \cdot 2(t)$. Find also $x \cdot 1(0)$ and $x \cdot 2(0)$. What happen if $\alpha = 0$?

2. Explain the concepts of Controllability and Observability. Mention the conditions for complete state controllability, complete output controllability and complete state observability of continuous time systems. Using these, explain the principle of duality between controllability and observability. (Understand)

COURSE OUTCOME 3:

1. Discuss the basic features of the following non linearities: non linear friction, On-Off controllers, Back lash.(Analyse)

2. With neat sketches, explain (i) ON-OFF relay with dead-zone (ii) saturation (iii) multi variable non-linearity. (Understand)

COURSE OUTCOME 4:

1. What is a phase plane plot? Describe (i) delta method (ii) isocline method (iii) analytical method of drawing phase plane trajectories. (Understand)

2. Explain the properties of non-linear systems. Explain the stability analysis of nonlinear systems by phase plane method. (Remember) **COURSE OUTCOME 5:**

1. Explain with a example: Krasovskii's theorem. Briefly explain the Krasovskii method of construction Liapunov functions for nonlinear systems. (Remember)

2. Explain terms: (i) Positive (ii) Negative and (iii) Semi definiteness

Determine the sign definiteness of the quadratic form (Understand).

		L	Т	Р	
21EE5703	DIGITAL SIGNAL PROCESSING AND ITS APPLICATIONS	3	0	0	
Prerequisites	for the course		<u> </u>		
• Enginee	ering Physics				
• Enginee	ering Mathematics				
Objectives					
To impart kn	owledge about the Signals and systems & their mathematical re	eprese	entat	ion.	
To learn abo	ut Discrete time systems.				
To understar	nd the transformation techniques & their computation.				
To know abo	ut Filters and their design for digital implementation.				
To implemer	t the Programmability of digital signal processor.				
Syllabus					
UNITI	SIGNALS AND SYSTEMS		ļ)	
Review of Disc stability/causa	rete -Time Signals and Systems – Classification, Convolution- z- lity analysis, DTFT: Frequency response-System analysis.	trans	form	: ROC	2
Review of Disc stability/causa UNIT II	rete -Time Signals and Systems – Classification, Convolution- z- lity analysis, DTFT: Frequency response-System analysis. DISCRETE FOURIER TRANSFORM	trans	form	:: ROC 9	2
Review of Disc stability/causa UNIT II DFT-Properties Applications of	rete -Time Signals and Systems – Classification, Convolution- z- lity analysis, DTFT: Frequency response-System analysis. DISCRETE FOURIER TRANSFORM s. Frequency analysis of signals using DFT-FFT Algorithm-Radiz FFT	trans	form T alg	: ROC 9 orith	m
Review of Disc stability/causa UNIT II DFT-Properties Applications of UNITIII	rete -Time Signals and Systems – Classification, Convolution- z- lity analysis, DTFT: Frequency response-System analysis. DISCRETE FOURIER TRANSFORM s. Frequency analysis of signals using DFT-FFT Algorithm-Radiz FFT DESIGN OF ANALOG AND DIGITAL FILTERS	trans k-2 FF	form Talg	: ROC 9 orith	m
Review of Disc stability/causa UNIT II DFT-Properties Applications of UNITIII Design techniq	rete -Time Signals and Systems – Classification, Convolution- z- lity analysis, DTFT: Frequency response-System analysis. DISCRETE FOURIER TRANSFORM s. Frequency analysis of signals using DFT-FFT Algorithm-Radiz FFT DESIGN OF ANALOG AND DIGITAL FILTERS ues for analog low pass filter -Butterworth and Chebyshev app	trans x-2 FF	form T alg	: ROC 9 orith 9	m
Review of Disc stability/causa UNIT II DFT-Properties Applications of UNITIII Design techniq filter design: B	rete -Time Signals and Systems – Classification, Convolution- z- lity analysis, DTFT: Frequency response-System analysis. DISCRETE FOURIER TRANSFORM s. Frequency analysis of signals using DFT-FFT Algorithm-Radiz FFT DESIGN OF ANALOG AND DIGITAL FILTERS ues for analog low pass filter -Butterworth and Chebyshev app ilinear and Impulse Invariant Techniques	trans k-2 FF	form T alg ation	: ROC orith orith	m
Review of Disc stability/causa UNIT II DFT-Properties Applications of UNITIII Design techniq filter design: B UNIT IV	rete -Time Signals and Systems – Classification, Convolution- z- lity analysis, DTFT: Frequency response-System analysis. DISCRETE FOURIER TRANSFORM s. Frequency analysis of signals using DFT-FFT Algorithm-Radiz FFT DESIGN OF ANALOG AND DIGITAL FILTERS ues for analog low pass filter -Butterworth and Chebyshev app ilinear and Impulse Invariant Techniques REALIZATION OF DIGITAL FILTERS	trans k-2 FF	form T alg ation	: ROC orith orith	m
Review of Disc stability/causa UNIT II DFT-Properties Applications of UNITIII Design techniq filter design: B UNIT IV Design of FIR fr	rete -Time Signals and Systems – Classification, Convolution- z- lity analysis, DTFT: Frequency response-System analysis. DISCRETE FOURIER TRANSFORM s. Frequency analysis of signals using DFT-FFT Algorithm-Radiz FFT DESIGN OF ANALOG AND DIGITAL FILTERS ues for analog low pass filter -Butterworth and Chebyshev app ilinear and Impulse Invariant Techniques REALIZATION OF DIGITAL FILTERS Iters using window functions (Rectangular, Hamming, Hann, B	x-2 FF	form T alg ation	: ROC orith orith orith orith orith orith	
Review of Disc stability/causa UNIT II DFT-Properties Applications of UNITIII Design techniq filter design: B UNIT IV Design of FIR fi Kaiser) ,Direct,	rete -Time Signals and Systems – Classification, Convolution- z- lity analysis, DTFT: Frequency response-System analysis. DISCRETE FOURIER TRANSFORM s. Frequency analysis of signals using DFT-FFT Algorithm-Radiz FFT DESIGN OF ANALOG AND DIGITAL FILTERS ues for analog low pass filter -Butterworth and Chebyshev app dinear and Impulse Invariant Techniques REALIZATION OF DIGITAL FILTERS Iters using window functions (Rectangular, Hamming, Hann, B Cascade, Parallel, State space representations, Basic FIR and II	k-2 FF	form T alg ation ann, tal fil	: ROC P orith P is, IIR P and ter	
Review of Disc stability/causa UNIT II DFT-Properties Applications of UNITIII Design techniq filter design: B UNIT IV Design of FIR fi Kaiser) ,Direct, structures	rete -Time Signals and Systems – Classification, Convolution- z- lity analysis, DTFT: Frequency response-System analysis. DISCRETE FOURIER TRANSFORM s. Frequency analysis of signals using DFT-FFT Algorithm-Radiz FFT DESIGN OF ANALOG AND DIGITAL FILTERS ues for analog low pass filter -Butterworth and Chebyshev appr ilinear and Impulse Invariant Techniques REALIZATION OF DIGITAL FILTERS Iters using window functions (Rectangular, Hamming, Hann, B Cascade, Parallel, State space representations, Basic FIR and II	k-2 FF	form T alg ation ann, tal fil	: ROC P orith P as, IIR P and ter	
Review of Disc stability/causa UNIT II DFT-Properties Applications of UNITIII Design techniq filter design: B UNIT IV Design of FIR fi Kaiser) ,Direct, structures UNIT V	rete -Time Signals and Systems – Classification, Convolution- z- lity analysis, DTFT: Frequency response-System analysis. DISCRETE FOURIER TRANSFORM s. Frequency analysis of signals using DFT-FFT Algorithm-Radix FFT DESIGN OF ANALOG AND DIGITAL FILTERS ues for analog low pass filter -Butterworth and Chebyshev app ilinear and Impulse Invariant Techniques REALIZATION OF DIGITAL FILTERS Iters using window functions (Rectangular, Hamming, Hann, B Cascade, Parallel, State space representations, Basic FIR and II DIGITAL SIGNAL PROCESSORS	k-2 FF roxima	form T alg ation ann, tal fil	: ROC orith orith orith orith orith orith orith orith orith orith orith	
Review of Disc stability/causa UNIT II DFT-Properties Applications of UNITIII Design techniq filter design: B UNIT IV Design of FIR fi Kaiser) ,Direct, structures UNIT V Introduction -	rete -Time Signals and Systems – Classification, Convolution- z- lity analysis, DTFT: Frequency response-System analysis. DISCRETE FOURIER TRANSFORM s. Frequency analysis of signals using DFT-FFT Algorithm-Radiz FFT DESIGN OF ANALOG AND DIGITAL FILTERS ues for analog low pass filter -Butterworth and Chebyshev app ilinear and Impulse Invariant Techniques REALIZATION OF DIGITAL FILTERS Iters using window functions (Rectangular, Hamming, Hann, B Cascade, Parallel, State space representations, Basic FIR and II DIGITAL SIGNAL PROCESSORS	k-2 FF roxima lackma R digit	form T alg ation ann, tal fil	: ROC orith	
Review of Disc stability/causa UNIT II DFT-Properties Applications of UNITIII Design techniq filter design: B UNIT IV Design of FIR fr Kaiser) ,Direct, structures UNIT V Introduction - , unit - Multiple	rete -Time Signals and Systems – Classification, Convolution- z- lity analysis, DTFT: Frequency response-System analysis. DISCRETE FOURIER TRANSFORM s. Frequency analysis of signals using DFT-FFT Algorithm-Radix FFT DESIGN OF ANALOG AND DIGITAL FILTERS ues for analog low pass filter -Butterworth and Chebyshev app ilinear and Impulse Invariant Techniques REALIZATION OF DIGITAL FILTERS Iters using window functions (Rectangular, Hamming, Hann, B Cascade, Parallel, State space representations, Basic FIR and II DIGITAL SIGNAL PROCESSORS Architecture - Features - Addressing Formats - Functional mode ALUS, Pipelining - Introduction to Commercial DS Processors	k-2 FF	form T alg ation ann, tal fil	: ROC 9 orith 9 as, IIR 9 and ter 9 ted M	

aggestive Assessment Metho	ds			
Continuous Assessment Test (30 Marks)	Formative Assessment Test (10 Marks)	End Semester Exams (60 Marks)		
(i)Google Form based-on- line Test ii) Written Test	(i) Google Form based – online Test incorporating Listening, Speaking and Reading	(i) Written Test		
lutcomes				
pon completion of the course	e, the students will be able to:			
 Comprehend, classify and domain signals to frequer Analyze the discrete time Implement the discrete ti Fourier Transform algorit Design digital filters using Apply the architectural ov 	analyze the signals and systems, acy domain for analyzing system systems using Z-transform and I me systems in Discrete Fourier T thm g delay elements, summer, etc. verview and addressing modes in	also, transform the time response . nverseZ-transform ransform using Fast		
1. J.G. Proakis and D.G. Man	olakis, 'Digital Signal Processing	Principles,		
Algorithms and Applicat	ions', Pearson Education, New De	elhi, PHI,2007		
 S.K. Mitra, 'Digital Signal Edu, 2013 Tarun Kumar Rawat, Dig 	Processing - A Computer Based A ital Signal Processing, Oxford Un	Approach', McGraw Hill iversity Press,2015		
eference Books				

2. S.Salivahanan, A.Vallavaraj, Gnanapriya, Digital Signal Processing, McGraw-Hill, 2nd Edition, 2011.

CO Vs PO Mapping and CO Vs PSO Mapping

C	Р О	PO 10	P0 11	P0 12	PS O	PS O								
	1	2	3	4	5	6	7	8	9				1	2
1	3			1			3				2	1	3	
2	3	2	3	1			3				2	1	3	
3	3	3	3	2			2				1	1	3	
4	3	3	3	3			2				3	2	3	
5	3	3	3	2			1				3	1	3	
									1-Lov	v, 2- Me	edium, 3	8- High		

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	10	10	5	5	10
UNDETSTAND	30	30	10	10	30
APPLY	60	60	10	10	60
ANALYZE	0	0	0	0	0
EVALUATE	0	0	0	0	0
CREATE	0	0	0	0	0

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1 (CO 1) :

- 1. Classify the types of signals. (Understand)
- 2. Distinguish between Linear and Nonlinear systems. (Remember)

COURSE OUTCOME 2 (CO 2) :

- 1. Calculate DFT for the sequence $x(n) = \{1, 1, 0, 0\}$. (Apply)
- 2. Differentiate DIT radix-2 FFT and DIF radix-2 FFT (Remember)

COURSE OUTCOME 3 (CO 3) :

- 1. Define the term bilinear transformation? List the advantages of it. (Remember)
- 2. Obtain the transfer function for a normalized butterworth filter of order 2 (Analyse)

COURSE OUTCOME 4 (CO 4) :

- 1. Formulate the equation specifying Hamming window (Remember)
- 2. Distinguish between IIR and FIR filter. (Remember)

COURSE OUTCOME 5 (CO 5) :

- 1. Mention the role of the MAC unit in DSP? (Remember)
- 2. List some example of commercial digital signal processor (Remember)

		L	Т	Р	С					
21EE5704	VIRTUAL INSTRUMENTATION	3	0	0	3					
Preamble										
Ι	t is an introductory course which emphasizes the funda	ament	al c	oncep	ots and					
overview of Electrical Engineering. A Virtual Instrumentation system consists of an industry-										
standard con	standard computer or workstation equipped with powerful application software, cost-effective									
hardware such as plug- in boards, and driver software, which together perform the functions of										
traditional instruments The concepts discussed herein are intended to provide clarification on										
basic industr	y-standard for Electrical Engineering graduates.									
Prerequisite	es for the course									
1. Embe	edded Systems									
2. Micro	ocontroller and its application									
Objectives										
1. To pro	ovide knowledge on design of process control by using virtual i	nstru	men	tation	l					
2. To pr	iques ovide knowledge in process analysis by VI tools.									
3. To giv	e basic knowledge in describing function analysis.									
4. To Ge	et adequate knowledge VI tool sets									
5. To ana interfa	alyze and document in the laboratory prototype measurement aces	syste	ns u	sing I	DAQ					
UNIT I	VIRTUAL INSTRUMENTATION			9						
Historical per	rspective, advantages, blocks diagram and architecture of a vir	rtual i	nstr	umen	t, data-					
flow technic	ques, graphical programming in data flow, comparison	n wi	th o	conve	ntional					
programming	g. Development of virtual instrument using GUI, Real-time syst	ems.								

UNI	IT II	VI P	ROGRAMMING TECHNIQUES	9							
VIS a form	and sub-V 1ula node	VIS, loops and charts es, local and global v	s, arrays, clusters and graphs, case a variables, string and file I/O. Use of s	and sequence structures, spread sheet for data loggi							
UNI	T III	D	ATA ACQUISITION BASICS	9							
Intro buse inter	oduction es. ADC, rface req	to data acquisition DAC, Software and uirements.	n on PC, Sampling fundamentals, hardware installation, Calibration	Input/output techniques , Resolution, Data acquisi							
UNI	TIV	HARDWARI	E INTERFACING & STATE MACHIN	IES 9							
com Mac Mac	municati hine, Tes hine, Dra	on, NI DAQ MAX. St Executive-Style S wbacks to Using Sta	Enumerated Types and Type Def State Machine, Classical-Style State ate Machines.	initions, Sequence-Style S Machine, Queued-Style S							
UN	IT V	9									
data	ng syste	ssessment Metho	Total Pe	riods 45							
Con	tinuous	Assessment Test	Formative Assessment Test	End Semester Exam							
	(30 Ma		Continuous Assessment TestFormative Assessment TestEnd Semester Exams								
	-	arks)	(10 Marks)	(60 Marks)							
	WRI	arks) FTEN TEST	(10 Marks) 1.ASSIGNMENT	(60 Marks) WRITTEN TEST							
D	WRI	arks) FTEN TEST ION	(10 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES	(60 Marks) WRITTEN TEST							
D) QI	WRI' ESCRIPT UESTION	arks) FTEN TEST HON IS	(10 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM- SOLVING ACTIVITIES	(60 Marks) WRITTEN TEST							
D) QI	WRI ESCRIPT UESTION	arks) FTEN TEST ION IS	(10 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM- SOLVING ACTIVITIES	(60 Marks) WRITTEN TEST							
D) Ql Outo Upo	WRI ESCRIPT UESTION comes n compl	arks) FTEN TEST TON IS etion of the course	(10 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM- SOLVING ACTIVITIES e, the students will be able to:	(60 Marks) WRITTEN TEST							
Di Qi Outo Upo 1	WRI ESCRIPT UESTION comes n compl Apply t	arks) FTEN TEST ION IS etion of the course he concepts of virtu	(10 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM- SOLVING ACTIVITIES e, the students will be able to: al instrumentation in real world ex	(60 Marks) WRITTEN TEST							
D Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q	WRI ESCRIPT UESTION Comes n compl Apply t Compa	arks) FTEN TEST HON IS etion of the course he concepts of virtu re basic knowledge	(10 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM- SOLVING ACTIVITIES e, the students will be able to: al instrumentation in real world ex of graphical programming language	(60 Marks) WRITTEN TEST amples.							
D) Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q	WRI ESCRIPT UESTION comes n compl Apply t Compar Implem	arks) FTEN TEST ION IS etion of the course he concepts of virtu re basic knowledge	(10 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM- SOLVING ACTIVITIES c, the students will be able to: al instrumentation in real world ex of graphical programming language n techniques and its interface instru	(60 Marks) WRITTEN TEST amples. es uments							
D) Q Upo 1 2 3 4	WRI ESCRIPT UESTION Comes n compl Apply t Compar Implem Demon	arks) FTEN TEST ION IS etion of the course he concepts of virtu re basic knowledge ent Data acquisition strate the preparati	(10 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM- SOLVING ACTIVITIES e, the students will be able to: al instrumentation in real world ex of graphical programming language n techniques and its interface instru- on of RS 232, GPIB, PCI card commu	(60 Marks) WRITTEN TEST amples. es uments unication, NI DAQ MAX							

- 1. Rick Bitter, Taqi Mohiuddin, Matt Nawrocki, 'LabVIEW: Advanced Programming Techniques', Second Edition, CRC Press, 2019.
- 2. National Instruments Malan Shiralkar, 'LabVIEW Graphical Programming Course', National Instruments, 2018.
- 3. 'Virtual Instrumentation using LabVIEW' by Sanjeev Gupta.
- 4. Jovitha, Jerome, "Virtual Instrumentation and LABVIEW", PHI Learning, New Delhi, 1st Edition, 2018.

Reference Books

- 1. Ronald W. Larsen, 'LabVIEW for Engineers', Prentice Hall, 2019.
- 2. LabVIEW Basic 1 & Basic 2 course guide' by National Instruments.

Web Recourses

- 1. <u>https://www.youtube.com/watch?v=YW0IRNiREi4</u>
- 2. <u>https://www.youtube.com/watch?v=cSbTp-XjzeY</u>
- 3. <u>https://www.youtube.com/watch?v=Rzr4EJcaxSo</u>

CO Vs PO Mapping and CO Vs PSO Mapping

C O	P 0 1	P 0 2	P 0 3	P 0 4	Р О 5	Р О 6	P 0 7	P 0 8	P O 9	PO 10	P0 11	P0 12	PS O 1	PS O 2
1	3	3											3	
2	3	3	1										3	
3	3	3											3	
4	3	3	1										3	
5	3	3											3	

1-Low , 2- Medium, 3- High

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	10	10			10
UNDETSTAND	30	30	5	5	30
APPLY	60	60	10	10	60
ANALYZE	0	0	10	10	0
EVALUATE	0	0			0
CREATE	0	0	0	0	0

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1:

- **1.** Explain the essential need for Virtual Instrumentation and compare it with the traditional instruments (Understand)
- **2.** Explain the architecture of virtual instrumentation with neat diagram (Understand)
- 3. Describe the methods of analyzing the PC Based data acquisition (Apply)

COURSE OUTCOME 2:

- **1.** Write a note on Cardiopulmonary measurement system (Remember)
- 2. Explain how VI can be used in test, Control and Design process. (Understand)
- **3.** Compare the difference between local variables and global variables (Apply)

COURSE OUTCOME 3:

- 1. Compare Graphical programming with traditional programming (Apply)
- 2. Name the different operations of cluster (Remember)
- 3. What is string? Explain various string functions and formatting functions. (Understand)

COURSE OUTCOME 4:

- 1. Compare RS232, R488 (Apply)
- 2. Explain in detail about GPIB or IEEE488 with block diagram, various signals (understand)
- **3.** Summarize the different techniques used to bus protocols of MOD bus and CAN bus (Analyze)

COURSE OUTCOME 5:

- **1.** What are the major components of Windowing and filtering tools (Remember)
- **2.** What is P&I Diagram? Mention the abbreviation meaning for letters used in P&ID tag name (Analyze)
- **3.** Explain how DAQ Assistant is used to acquire and generate signals with procedure for creating, configuring, Test and generate Lab VIEW code using DAQ Assistant. (Apply)

24665705	ADTIELCIAL INTELLICENCE AND EVDEDT SYSTEMS	L	Τ	Р	С
21EE5705	ARTIFICIAL INTELLIGENCE AND EXPERT SYSTEMS	3	0	0	3

Preamble

An expert system is a computer program that uses artificial intelligence (AI) technologies to simulate the judgment and behavior of a human or an organization that has expertise and experience in a particular field. Expert systems are usually intended to complement, not replace,

human experts.

Prerequisites for the course

NIL

Objectives

- 1. To know about basic concepts of intelligent agents and search methods
- 2. To study about representing knowledge
- 3. To study the reasoning and decision making in uncertain world
- 4. To construct plans and methods for generating knowledge
- 5. To know about various Expert System tools and applications.

UNIT I	INTRODUCTION	9				
Introduction to AI: Intelligent agents – Perception –natural language processing – Problem – Solving agents – Searching for solutions: Uninformed search strategies – Informed search strategies.						
UNIT II	KNOWLEDGE AND REASONING	9				
Adversarial search – Optimal and imperfect decisions – Alpha, Beta pruning – Logical agents: Propositional logic – First order logic – Syntax and semantics – Using first order logic – Inference in first order logic.						

	9				
Uncertainty – Acting under uncertainty – Basic probability notation – Axioms of probabi					
Baye's rule –	Probabilistic reason	ning – Making simple decisions.			
UNIT IV	P	PLANNING AND LEARNING		9	
Planning: Pla	anning problem – Pa	artial order planning – Planning and	l acting in	n non-determinis	
domains – I	Learning: Learning	decision trees – Knowledge in lea	rning –	Neural networks	
Reinforceme	ent learning – Passiv	e and active.			
UNIT V		EXPERT SYSTEM		9	
Definition –	Features of an exper	rt system – Organization – Character	ristics – I	Prospector –	
Knowledge I	Representation in ex	pert systems – Expert system tools	– MYCIN	– EMYCIN.	
		Total Pe	eriods	4	
				5	
Suggestive A	Assessment Metho	ds	ł		
Continuous	s Assessment	Formative Assessment	End	Semester Exam	
Continuou: Te	s Assessment est (30 Marks)	Formative Assessment Test	End	Semester Exam (60 Marks)	
Continuou: Te	s Assessment est (30 Marks)	Formative Assessment Test	End	Semester Exam (60 Marks)	
Continuou: Te	s Assessment est (30 Marks)	Formative Assessment Test (10 Marks)	End	l Semester Exam (60 Marks)	
Continuou: Te WRI	s Assessment est (30 Marks) TTEN TEST	Formative Assessment Test (10 Marks) 1.ASSIGNMENT	End	l Semester Exam (60 Marks) VRITTEN TEST	
Continuou: Te WRI	s Assessment est (30 Marks) TTEN TEST	Formative Assessment Test (10 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES	End	l Semester Exam (60 Marks) VRITTEN TEST	
Continuou: Te WRI	s Assessment est (30 Marks) TTEN TEST	Formative Assessment Test (10 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES	End	l Semester Exam (60 Marks) VRITTEN TEST	
Continuou: Te WRI	s Assessment est (30 Marks) TTEN TEST	Formative Assessment Test (10 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING	End	l Semester Exam (60 Marks) VRITTEN TEST	
Continuou: Te WRI	s Assessment est (30 Marks) TTEN TEST	Formative Assessment Test (10 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES	End	l Semester Exam (60 Marks) VRITTEN TEST	
Continuou: Te WRI	s Assessment est (30 Marks) TTEN TEST	Formative Assessment Test (10 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES	End	l Semester Exam (60 Marks) VRITTEN TEST	
Continuou: Te WRI Outcomes Upon comp	s Assessment est (30 Marks) TTEN TEST	Formative Assessment Test (10 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES e, the students will be able to:	End	l Semester Exam (60 Marks) VRITTEN TEST	
Continuou: Te WRI Outcomes Upon compl 1 Apply t	s Assessment est (30 Marks) TTEN TEST letion of the course	Formative Assessment Test (10 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES e, the students will be able to: ence concepts for solving problems	End V	l Semester Exam (60 Marks) VRITTEN TEST	
Continuou: Te WRI Outcomes Upon compl 1 Apply to 2 Repres	s Assessment est (30 Marks) TTEN TEST letion of the course the Artificial Intellig	Formative Assessment Test (10 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES e, the students will be able to: ence concepts for solving problems problem solving and game playing u	End V	l Semester Exam (60 Marks) VRITTEN TEST	
Continuou: Te WRI Outcomes Upon compl 1 Apply t 2 Repres	s Assessment est (30 Marks) TTEN TEST letion of the course the Artificial Intellig	Formative Assessment Test (10 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES e, the students will be able to: ence concepts for solving problems problem solving and game playing u	End V	l Semester Exam (60 Marks) VRITTEN TEST ous logics	
Continuou: Te WRI Outcomes Upon compl 1 Apply 1 2 Repres 3 Apply 1	s Assessment est (30 Marks) TTEN TEST letion of the course the Artificial Intellig sent knowledge for p knowledge inference	Formative Assessment Test (10 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES e, the students will be able to: ence concepts for solving problems oroblem solving and game playing u es over production based and frame	End V	l Semester Exam (60 Marks) VRITTEN TEST ous logics ystem	

Text Books

- 1. Stuart Russel and Peter Norvig, 'Artificial Intelligence A Modern Approach', Second Edition, Pearson Education, 2021 / PHI.
- 2. Donald A.Waterman, 'A Guide to Expert Systems', Pearson Education, 2017.

Reference Books

- 1. George F.Luger, 'Artificial Intelligence Structures and Strategies for Complex Problem Solving', sixth Edition, Pearson Education, 2015.
- 2. Elain Rich and Kevin Knight, 'Artificial Intelligence', Tata McGraw Hill,2018.
- 3. Janakiraman, K.Sarukesi, 'Foundations of Artificial Intelligence and Expert Systems', Macmillan Series in Computer Science.
- 4. W. Patterson, 'Introduction to Artificial Intelligence and Expert Systems', Prentice Hall of India, 2016

Web Recourses

- 1. https://nptel.ac.in/courses/106105077
- 2. https://nptel.ac.in/courses/106102220

CO Vs PO Mapping and CO Vs PSO Mapping

C O	P 0 1	P 0 2	P 0 3	Р О 4	Р О 5	Р О 6	P 0 7	P 0 8	P 0 9	P 0 1 0	P 0 1	P 0 1 2	PS 0 1	PS 0 2
1	3	2					2	2			2			2
2	3	3					3	2			3			2
3	3	3					3	2			3			2
4	3	2	3				3	2			3			2
5	3	3	3				3	2			3			2

1-Low , 2- Medium, 3- High

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	0	0	0	0	0
UNDETSTAND	30	30	10	10	30
APPLY	60	60	10	10	60
ANALYZE	10	10	5	5	10
EVALUATE	0	0	0	0	0
CREATE	0	0	0	0	0
	100	100	25	25	100

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Students will be able to Predict the suitable method for....(Apply)

- 1. Explain briefly the various problem characteristics? (Analyze)
- 2. Discuss the memory bounded heuristic search. (Apply)

COURSE OUTCOME 2:

- 1. Explain the Minimax algorithm in detail. (Apply)
- 2. State Representation of facts in propositional logic with an example. (Analyze)

COURSE OUTCOME 3:

- 1. Discuss about Bayesian Theory a Bayesian Network. (Apply)
- 2. Construct a Bayesian Network and define the necessary CPTs for the given scenario. We have a bag of three biased coins a,b and c with probabilities of coming up heads of 20%, 60% and 80% respectively. One coin is drawn randomly from the bag (with equal likelihood of drawing each of the three coins) and then the coinis flipped three times to generate the outcomes X1, X2 and X3. (Analyze)

COURSE OUTCOME 4:

1. Explain about Adaptive learning with example? (Analyze)

2. Write short notes on the Learning by Parameter Adjustment ((Analyze) **COURSE OUTCOME 5:**

- 1. With neat sketch explain the architecture, characteristic features and roles of expert system. (Understand)
- 2. Write notes on Meta Knowledge and Heuristics in Knowledge Acquisition (Apply)

21EE5706	INTERNET OF THINGS AND ITS APPLICATIONS		Τ	Р	C	
		3	0	0	3	
Preamble				1		
The course p	rovides knowledge and skill on Internet of Things (IoT). It inclu	udes t	he o	vervie	ew	
and building	of IoT network.					
Prerequisite	es for the course					
1. Micro	processors, Microcontrollers and its applications.					
2. Comm	unication Engineering					
3. Princi	ples of Sensors and Transducers					
Objectives						
• To un	derstand Smart Objects and IoT Architectures					
• To lea	rn about various IOT-related protocols					
• To bu	ild simple IoT Systems using Arduino and Raspberry Pi.					
• To un	derstand data analytics and cloud in the context of IoT					
• To dev	velop IoT infrastructure for popular applications					
UNIT I	FUNDAMENTALS OF IOT			9		
Evolution of	Internet of Things - Enabling Technologies - IoT Architectu	ares:	onel	И2М,	IoT	
World Forum	n (IoTWF) and Alternative IoT models – Simplified IoT Archite	cture	and	Core	IoT	
Functional Stack - Fog, Edge and Cloud in IoT – Functional blocks of an IoT ecosystem –						
Sensors, Actuators, Smart Objects and Connecting Smart Objects						

Francis Xavier Engineering College | Dept of EEE | R2021/Curriculum and Syllabi **UNIT II** IOT PROTOCOLS 9 IoT Access Technologies: Physical and MAC layers, topology and Security of IEEE 802.15.4, 802.15.4g, 802.15.4e, 1901.2a, 802.11ah and LoRaWAN - Network Layer: IP versions, Constrained Nodes and Constrained Networks - Optimizing IP for IoT: From 6LoWPAN to 6Lo, Routing over Low Power and Lossy Networks - Application Transport Methods: Supervisory Control and Data Acquisition – Application Layer Protocols: CoAP and MQTT UNIT III **DESIGN AND DEVELOPMENT** 9 Design Methodology - Embedded computing logic - Microcontroller, System on Chips - IoT system building blocks - Arduino - Board details, IDE programming - Raspberry Pi -Interfaces and Raspberry Pi with Python Programming. **UNIT IV** DATA ANALYTICS AND SUPPORTING SERVICES 9 Structured Vs Unstructured Data and Data in Motion Vs Data in Rest – Role of Machine Learning - No SQL Databases - Hadoop Ecosystem - Apache Kafka, Apache Spark - Edge Streaming Analytics and Network Analytics – Lively Cloud for IoT, Python Web Application Framework – Django – AWS for IoT – System Management with NETCONF-YANG UNIT V **CASE STUDIES/INDUSTRIAL APPLICATIONS** 9 Cisco IoT system - IBM Watson IoT platform - Manufacturing - Converged Plant wide Ethernet Model (CPwE) – Power Utility Industry – Grid Blocks Reference Model – Smart and Connected Cities: Layered architecture, Smart Lighting, Smart Parking Architecture and Smart Traffic Control **Total Periods** 45 Suggestive Assessment Methods **Continuous Assessment Formative Assessment End Semester** Test (30 Marks) Test (10 Marks) Exams (60 Marks) WRITTEN TEST WRITTEN TEST **1.ASSIGNMENT** 2. ONLINE QUIZZES **3.PROBLEM-**SOLVING ACTIVITIES **Outcomes**

Upon completion of the course, the students will be able to:

1 Explain the concept of IoT.

- **2** Explore various protocols for IoT.
- **3** Design a PoC of an IoT system using Raspberry Pi/Arduino.
- **4** Apply data analytics and use cloud offerings related to IoT.
- **5** Analyse applications of IoT in real time scenario.

Text Books

1. S. Misra, A. Mukherjee, and A. Roy, 2020. Introduction to IoT. Cambridge University Press.

2. David Hanes, Gonzalo Salgueiro, Patrick Grossetete, Rob Barton and Jerome Henry, —IoT Fundamentals: Networking Technologies, Protocols and Use Cases for Internet of Things, Cisco Press, 2017.

Reference Books
1. Olivier Hersent, David Boswarthick, Omar Elloumi , —The Internet of Things – Key applications and Protocols, Wiley, 2012 (for Unit 2).
 Jan Ho Iler, VlasiosTsiatsis, Catherine Mulligan, Stamatis, Karnouskos, Stefan Avesand. David Boyle, "From Machine-to-Machine to the Internet of Things – Introduction to a New Age of Intelligence", Elsevier, 2014(for Unit 1 & 3).
3. Dieter Uckelmann, Mark Harrison, Michahelles, Florian (Eds), —Architecting the Internet of Things, Springer, 2011(for Unit 4).
4. Michael Margolis, Arduino Cookbook, Recipes to Begin, Expand, and Enhance Your Projects, 2nd Edition, O'Reilly Media, 2011(for Unit 5).

Web Recourses

1. https://onlinecourses.nptel.ac.in/noc22_cs53/preview

2. https://nptel.ac.in/courses/108108098

CO Vs PO Mapping and CO Vs PSO Mapping

C O	P 0 1	P 0 2	Р О З	P 0 4	Р О 5	Р О 6	P 0 7	Р О 8	Р О 9	P0 10	P0 11	P0 12	PS O 1	PS O 2
1	2	2	3		1									2
2	2	2	3											2
3	3	2	3	2	3									2
4	3		3	2	2									2
5	3	2	3	3	1									2

1-Low, 2- Medium, 3- High

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER					
UNDETSTAND	30	30	5	5	30
APPLY	30	30	10	10	30
ANALYZE	40	40	10	10	40
EVALUATE					
CREATE					
	100	100	25	50	100

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: The students will be able to explain the concept of IoT.

(Understand)

- 1. Explain the physical and logical design of IoT in detail.
- 2. Summarize the various IoT enabled technologies.

COURSE OUTCOME 2: The students will be able to explore various protocols for IoT. (Understand)

- 1. Describe a use case example of M2M and IoT approach.
- 2. Explain various trends in Information and Communication Technologies.

COURSE OUTCOME 3: The students will be able to design a PoC of an IoT system using Raspberry Pi/Arduino. (Apply)

- 1. Design a neat sketch, discuss the M2M high-level ETSI architecture.
- 2. Explain how Information is shared between the devices through IoT.

COURSE OUTCOME 4: The students will be able to apply data analytics and use cloud offerings related to IoT. (Apply & Analyse)

- 1. List out the various phases of CRISP-DM model and explain each with a diagram.
- 2. Explain in detail about the Devices and Gateways

COURSE OUTCOME 5: The students will be able to analyse applications of IoT in real time scenario. (Apply & Analyse)

- 1. Construct the Design of Smart home with Raspberry Pi and other hardware devices with a neat sketch.
- 2. Formulate the significant use of Raspberry Pi in Smart cities and Industrial appliances.

Professional Elective II

21EE5707	POWER SYSTEM TRANSIENTS	L	Т	Р	C
		3	0	0	3
Preamble					

The aim of the subject is to develop a Power system transient assessments of power systems provide detailed technical information appropriate for power system equipment design and specifications pertaining to a wide variety of phenomena related to power system voltage levels. This subject explores the topic of transient problems on electric utility and industrial power systems. The purpose is to teach students the fundamentals and to enable them to recognize and solve transient problems in power networks and components. The EMTP is a powerful tool used worldwide for the computer simulation of transients in power systems. This subject stresses the physical aspects of the electromagnetic transient phenomena and also broadens the computational treatment of transients.

Prerequisites for the course

- 1. Electric Circuit and Network Analysis
- 2. Transmission and Distribution in Power Systems

Objectives

- 1. To provide knowledge on basic concept of different types of transient in power systems.
- 2. To provide knowledge in different types of switching transients in power system
- 3. To analyze the mathematical model of lightning and protection of power system from lighting.
- 4. To Get adequate knowledge Travelling wave concept

restrike, Illustration for multiple restriking transients - Ferro resonance.

5. Interpret the impacts of transients and EMTP for Transient computations

UNIT I	INTRODUCTION AND SURVEY	9	
Review	and importance of the study of transients - causes for tr	ansients. RL	,
transient with	sine wave excitation - double frequency transients - basic tra	ansforms of t	tl

transient with sine wave excitation - double frequency transients - basic transforms of the RLC circuit transients. Different types of power system transients - effect of transients on power systems – role of the study of transients in system planning.

circuit

UNIT II	SWITCHING TRANSIENTS	9
Over vo	ltages due to switching transients - resistance switching and t	he equivalent circuit
for interrupting	ng the resistor current - load switching and equivalent circ	uit - waveforms for
transient volta	age across the load and the switch - normal and abnormal s	switching transients.
Current suppr	ession - current chopping -Capacitance switching -Capacitan	ice switching with a

	1 0						
UNIT III	INIT III LIGHTNING TRANSIENTS						
Review	of the theories in the formation of clouds and charge formati	on - rate of charging					
of thunder clo	uds – mechanism of lightning discharges and characteristics of	of lightning strokes-					
model for light	tning stroke - factors contributing to good line design –						
using ground	wires - tower footing resistance - Interaction between lightnin	g and power system.					

UN	IIT IV	TRAVELIN	G WAVES ON TRANSMISSION LIN PUTATION OF TRANSIENTS	Е	9
paraı diagr Ul	Computa meters an ram - stanc NIT V	tion of transients d distributed line ling waves and nat TRANSIENT	- transient response of systems w es. Traveling wave concept - step tural frequencies - reflection and re S IN INTEGRATED POWER SYSTE	vith serie o respon efraction	s and shunt lumpe se -Bewely"s lattic of travelling waves 9
The s and integ	short line load rejeo rated syst	and kilometric fau ction - voltage tra em Qualitative app	Ilt - distribution of voltages in a po ansients on closing and reclosing plication of EMTP for transient com	ower sys g lines–s putation	tem - Line droppin witching surges o
Suga	estive As	sessment Method	Total I	Periods	45
Cont	inuous As	sessment Test	Formative Assessment Test	End	Semester Exams
(30 Marks)			(10 Marks)		(60 Marks)
DE	WRITT SCRIPTIC	TEN TEST	1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES	W	RITTEN TEST
Outc Upor	omes n complet Ability to	ion of the course , understand and a	the students will be able to:	sients.	
2	Ability to	acquire knowledg	e on generation of switching transi	ents and	their control.
3	Ability to	analyse the mecha	anism of lighting strokes		
4	Ability to waves.	understand the in	portance of propagation, reflection	n and ref	raction of travelling
5	Ability to power sy	understand the co stem.	oncept of circuit breaker action, loa	d rejectio	on on integrated
Text	Books				
1. 2. 3.	. Allan G NewYor . Pritindr Inc., Sec . C.S. Ind	reenwood, 'Electı k, 2ndEdition, 199 aChowdhari, 'Elect ond Edition, 2009. ulkar, D.P.Kothari	rical Transients in Power Syster 1. tromagnetic transients in Power Sy , K. Ramalingam, 'Power System	ms', Wil rstem', Jo Transier	ey Inter Science hn Wiley andSons nts – A statistical

Reference Books

- 1. M.S. Naidu and V. Kamaraju, "High Voltage Engineering", McGraw Hill, Fifth Edition, 2013.
- 2. R.D. Begamudre, "Extra High Voltage AC Transmission Engineering", Wiley Eastern Limited, 1986.
- 3. Y. Hase, Handbook of Power System Engineering," Wiley India, 2012.
- 4. J.L. Kirtley, "Electric Power Principles, Sources, Conversion, Distribution and use", Wiley, 2012.
- 5. Akihiro Ametani," Power System Transient theory and applications", CRC press, 2013.

Web Recourses

- 1. <u>https://www.youtube.com/watch?v=vit8S1YmQiA</u>
- 2. https://www.youtube.com/watch?v=1IECmlljjp8
- 3. <u>https://easyengineering.net/ee6002-power-system-transients/</u>
- 4. <u>https://www.youtube.com/watch?v=UsrR5WtKYL4</u>

CO Vs PO Mapping and CO Vs PSO Mapping

CO	PO	РО	PO	PSO	PSO									
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	2					2						3	
2	3	3	2	2	2								3	
3	3	3		3	3								3	
4	3	3	2	3	3		2						3	
5	3	3					2						3	

1-Low, 2- Medium, 3- High

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	10	10			10
UNDETSTAND	30	30	5	5	30

APPLY	50	40	10	10	40
ANALYZE	10	20	10	10	20
EVALUATE	0	0			0
CREATE	0	0			0
	100	100	25	25	100

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1:

- 1. Derive the expression for RL circuit transient with sine wave excitation (Apply)
- 2. Enumerate the review and importance of the study of transients (Understand)

COURSE OUTCOME 2:

- 1. A power transformer draws a heavy magnetizing inrush current. Now this current is suddenly interrupted before it reaches natural zero by means of a circuit breaker. What would happen between the contacts of circuit breaker? What do you call this phenomenon? (Analyze)
- 2. Analyze in detail the resistance switching with suitable diagram(Analyze)

COURSE OUTCOME 3:

- 1. If you want to protect the transmission line from the direct and indirect lightning discharge what are steps you will take to protect the transmission line. (Analyze)
- 2. Analyze and compare the different lightning theories. (Understand)

COURSE OUTCOME 4:

- Analyze the Transient response of systems with series and shunt lumped parameters in a mathematical way approach. (Analyze)
- 2. A long transmission line is energized by a unit step voltage 1.0 V at the sending end and is open circuited at the receiving end. Construct the Bewley's lattice diagram and obtain the value of the voltage at the receiving end after a long time. Take the attenuation factor $\alpha = 0.9$ (Apply)

COURSE OUTCOME 5:

- **1.** Explain about line dropping and load rejection in integrated power system (Understand)
- **2.** Discuss in details about the Kilometric Fault with necessary diagrams, expression and recovery voltage wave forms. (Understand)

21EE5708	PROTECTION AND SWITCHGEAR	L	Τ	Р	С					
		3	0	0	3					
Preamble										
In order to	supply power from generating end to receiving end severa	al eq	uipr	nents	are					
connected ir	n to the system. In order to protect the equipments and co	ompo	nent	ts aga	ainst					
various oper	various operating conditions and over voltages protective devices are required to be installed									
in the system	n. Topics specified in this subject deal with various types of prot	tectiv	ve eq	luipm	ents					
and their wo	rking principle including limitations etc.									
Prerequisites	s for the course									
 DC : AC : Mea Pov Em 	 DC machines and Transformers AC Machines Measurements and Instrumentation Power Systems Embedded Systems 									
Objectives	v									
• To	impart knowledge on the causes of abnormal operating contract the second system.	ondit	ions	(faul	ts,					
• To	introduce the characteristics and functions of relays and prote	ction	sche	emes						
• To	impart knowledge on apparatus protection									
• To	introduce static and numerical relays									
• To	impart knowledge on functioning of circuit breakers									
UNIT I	FUNDAMENTALS OF POWER SYSTEM PROTECTION			9						
Principles	and need for protective schemes – nature and causes of faults -	- typ	es of	fault	s –					
fault curre	nt calculation using symmetrical components – Methods of New	utral	grou	inding	<u>z</u> –					
Zones of p	rotection and essential qualities of protection – Protection scher	nes								
UNIT II	ELECTROMAGNETIC RELAYS			9						
Operating Relays – sequence r	principles of relays - the Universal relay – Torque equation. Overcurrent, Directional, Non-Directional, Distance, Differ relays.	Elec entia	tron al, N	nagne Vegati	tic ve					

ncis Xa	avier Eng	ineering College De	ept of EEE R2021/Curriculum and	d Syllabi	
UN	III TII		CIRCUIT BREAKERS		9
P) st in va	hysics of riking vo iterruptio acuum cii	arcing phenomeno oltage and recovery on of capacitive cur rcuit breakers – com	on and arc interruption - DC and voltage - RRRV- resistance swite rent - Types of circuit breakers – parison of different circuit breake	AC circu ching - cu air blast rs.	it breaking – re- urrent chopping - t, MOCB, SF6 and
UN	NIT IV		STATIC RELAYS		9
St cc di	tatic rela omparato ifferentia	ys – Phase, Amplitu ors – Block diagram I protection.	ude Comparators – Synthesis of v of Numerical relays – Overcurre	various re nt protec	elays using Static tion, transformer
U	NIT V	APPA	RATUS PROTECTION		9
C sc	urrent tr chemes -	ransformers and Po Protection of transf	otential transformers and their a	applicatio and trans	ns in protection mission line.
			Total P	eriods	45
Sugg	estive A	ssessment Method	S	E J C	
Con	tinuous.	Assessment lest	Formative Assessment Test	End Sei	(60 Marks)
	WRIT	TFN TFST	1 ASSIGNMENT	W	RITTEN TEST
	•• ••		2. ONLINE OUIZZES		MITIEN ILJI
			3.PROBLEM-SOLVING		
			ACTIVITIES		
Outc	omes				
Upor	n comple	tion of the course,	the students will be able to:		
1	Unders	stand different prote	ection in power system , faults , g	rounding	method and able
	to com	pute fault calculatio	ns		
2	Underst applicat	and different types ions	of electromagnetic relays and able	to use th	nem in appropriat
3	Apply i	nstruments like CTs	and PTs in Protection schemes an	d use the	m for safety
4	Underst behavio	and the working of r in different condit	different kinds of static and numer ions.	ical relay	s and analyze thei
5	Underst	and the working of	different kinds of Circuit breakers	and analy	ze their behavior
	in differ	ent conditions and s	select them based on the need.	5	
Text	Books				
	1. Sun	il S.Rao, 'Switchgea	r and Protection', Khanna Publishe	rs, New D	elhi, 2008.
	2. B.R Nev	abindranath and N.(w Age International	Chander, 'Power System Protectior (P) Ltd., First Edition 2011.	and Swit	tchgear',
D - C	3. M.L Eng	Soni, P.V.Gupta, U.S gineering', Dhanpat I	.Bhatnagar, A.Chakrabarti, 'A Text Rai & Co.,1998.	Book on I	Power System
ĸete	rence Bo	OOKS			
	1. Bac	lri Ram, B.H. Vishwa ernational Pvt Ltd Pi	karma, 'Power System Protection a ublishers, Second Edition 2011	and Swite	chgear', New Age
	1110				

- Y.G.Paithankar and S.R.Bhide, 'Fundamentals of power system protection', Second Edition, Prentice Hall of India Pvt. Ltd., New Delhi, 2010.
- 3. C.L.Wadhwa, 'Electrical Power Systems', 6th Edition, New Age International (P) Ltd., 2010
- 4. Ravindra P.Singh, 'Switchgear and Power System Protection', PHI Learning Private Ltd., New Delhi, 2009.
- **5.** Bhavesh Bhalja, R.P. Maheshwari, Nilesh G. Chotani, 'Protection and Switchgear' Oxford University Press, 2011.

Web Resources

- 1.https://nptel.ac.in/courses/108/101/108101039/
- 2. https://2ee406gbb.wordpress.com/nptel-lectures/

CO Vs PO Mapping and CO Vs PSO Mapping

<u> </u>	РО	PO	PO	PO	PO	РО	PO	PO	PO	P01	P01	P01	PSO	PSO
ιυ	1	2	3	4	5	6	7	8	9	0	1	2	1	2
1	3	3												
2	3	3												
3	3				3									
4		3			3									
5		3			3									

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	20	20	15	10	20
UNDERSTAND	30	30	15	15	30
APPLY	20	20	10	15	20
ANALYZE	15	15	10	10	15
EVALUATE	15	15	0	0	15
CREATE	0	0	0	0	0
	100	100	50	50	100

1-Low, 2- Medium, 3- High

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1:

- 1. Summarize the importance of protective schemes employed in power system.(Understand)
- 2. Explain clearly about the Zones of protection in power system.(Understand)

COURSE OUTCOME 2:

- 1. Explain impedance relay. (Understand)
- 2. Develop the different inverse time characteristics of over current relays and mention how the characteristics can be achieved in practice for an EM relay?(Understand)
- 3. Describe the operating principle, constructional features and area of applications of directional relay.(Understand)

COURSE OUTCOME 3:

1. Describe the principle constructional features of all types of air blast CB. Give its advantages and disadvantages. (Understand)

2. Explain current chopping with suitable diagrams. (Understand)

3. With a neat block diagram, explain the construction, operating principle and applications of SF6 circuit breaker. What are its advantages over other types of circuit breakers? (Understand)

COURSE OUTCOME 4:

- 1. Explain with a neat block diagram the operation of static relay and list the advantages and disadvantages. (Understand)
- 2. Describe the Over current protection and explain its types briefly. (Understand)

COURSE OUTCOME 5:

1. A 11 kV, 100 MVA alternator is provided with differential protection. The percentage of winding to be protected against phase to ground fault is 85%. The relay is set to operate when there is 20% out of balance current. Determine the value of resistance to be placed in the neutral to ground connection. (Apply)

2.Describe the types of protective schemes employed for the protection of Bus bar. (Understand)

21EE5700		L	Т	Р	(
21EE3/09	COMMUNICATION ENGINEERING	3	0	0	
Preamble					
To intro demonstration policies with a	duce the relevance of this course to the existing tens, case studies, simulations, contributions of scientist, nate a futuristic vision along with socio-economic impact and issues	echno tional	logy /inte	thro ernati	oug
Prerequisite	s for the course				
1. Electi	ron Devices and Circuits				
Objectives					
1. To St	udy about Amplitude Modulation and Angle Modulation system	l.			
2. To stu	udy the various Pulse modulation techniques				
3. To St	udy modulation schemes relating to Digital Communication sys	tems			
4. To Ar	alyse Information about information theory and coding				
5. To Ga	ain knowledge on Spread spectrum and multiple access.				
UNIT I	ANALOG MODULATION			9	
Amplitude Mo	udulation – AM_DSRSC_SSRSC_VSR – PSD_modulators and de	emod	ulato	nrs –	And
		mou	uiuco	10 1	
modulation -	PM and FM – PSD, modulators and demodulators – Super heter	odvn	e rec	eiver	s
modulation –	PM and FM – PSD, modulators and demodulators – Super heter PULSE MODULATION	odyn	e rec	eiver:	S
modulation – UNIT II Low pass sam	PM and FM – PSD, modulators and demodulators – Super heter PULSE MODULATION pling theorem – Quantization – PAM – Line coding – PCM, DP	CM. D	e rec M. a	eivers 9 nd AI	s DP(
modulation – UNIT II Low pass sam And ADM. Cha	PM and FM – PSD, modulators and demodulators – Super heter PULSE MODULATION pling theorem – Quantization – PAM – Line coding – PCM, DP nnel coder - Time Division Multiplexing, Frequency Division M	odyno CM, D ultipl	e rec M, a	eivers 9 nd AI	s DP(
modulation – UNIT II Low pass sam And ADM, Cha UNIT III	PM and FM – PSD, modulators and demodulators – Super heter PULSE MODULATION upling theorem – Quantization – PAM – Line coding – PCM, DP unnel coder - Time Division Multiplexing, Frequency Division M DIGITAL MODULATION AND TRANSMISSION	Odyno CM, D ultipl	e rec IM, a exing	eivers 9 nd AI g 9	s DP(
modulation – UNIT II Low pass sam And ADM, Cha UNIT III Phase shift ke	PM and FM – PSD, modulators and demodulators – Super heter PULSE MODULATION upling theorem – Quantization – PAM – Line coding – PCM, DPG unnel coder - Time Division Multiplexing, Frequency Division M DIGITAL MODULATION AND TRANSMISSION eying – BPSK, DPSK, QPSK – Principles of M-ary signaling M	odyno CM, D ultipl 1-ary	e rec PM, a exing PSK	eiver: 9 nd AI g 9 & Q	s DP(
modulation – UNIT II Low pass sam And ADM, Cha UNIT III Phase shift ka Comparison, I	PM and FM – PSD, modulators and demodulators – Super heter PULSE MODULATION upling theorem – Quantization – PAM – Line coding – PCM, DPG unnel coder - Time Division Multiplexing, Frequency Division M DIGITAL MODULATION AND TRANSMISSION eying – BPSK, DPSK, QPSK – Principles of M-ary signaling M SI – Pulse shaping – Duo binary encoding – Cosine filters – Eye	Odyno CM, D ultipl 1-ary patte	e rec DM, a exing PSK rn, e	eivers 9 nd AI g 9 & Q qualiz	S DP(AM zers
modulation – UNIT II Low pass sam And ADM, Cha UNIT III Phase shift ka Comparison, I UNIT IV	PM and FM – PSD, modulators and demodulators – Super heter PULSE MODULATION apling theorem – Quantization – PAM – Line coding – PCM, DP annel coder - Time Division Multiplexing, Frequency Division M DIGITAL MODULATION AND TRANSMISSION eying – BPSK, DPSK, QPSK – Principles of M-ary signaling M SI – Pulse shaping – Duo binary encoding – Cosine filters – Eye INFORMATION THEORY AND CODING	odyno CM, D ultipl 1-ary patte	e rec PM, a exing PSK rn, e	eivers 9 nd AI g 9 & Q qualiz 9	S DP(AM zers
modulation – UNIT II Low pass sam And ADM, Cha UNIT III Phase shift ke Comparison, I UNIT IV Measure of in	PM and FM – PSD, modulators and demodulators – Super heter PULSE MODULATION apling theorem – Quantization – PAM – Line coding – PCM, DP annel coder - Time Division Multiplexing, Frequency Division M DIGITAL MODULATION AND TRANSMISSION eying – BPSK, DPSK, QPSK – Principles of M-ary signaling M SI – Pulse shaping – Duo binary encoding – Cosine filters – Eye INFORMATION THEORY AND CODING formation – Entropy – Source coding theorem – Shannon–Fa	Odyno CM, D ultipl 1-ary patte	e rec PM, a exing PSK rn, e	eiver: 9 nd AI g 9 & Q qualiz 9 g, Hut	S DP(AM zers
modulation – UNIT II Low pass sam And ADM, Cha UNIT III Phase shift ka Comparison, I UNIT IV Measure of in Coding, LZ Co	PM and FM – PSD, modulators and demodulators – Super heter PULSE MODULATION upling theorem – Quantization – PAM – Line coding – PCM, DP unnel coder - Time Division Multiplexing, Frequency Division M DIGITAL MODULATION AND TRANSMISSION eying – BPSK, DPSK, QPSK – Principles of M-ary signaling M SI – Pulse shaping – Duo binary encoding – Cosine filters – Eye INFORMATION THEORY AND CODING formation – Entropy – Source coding theorem – Shannon–Fa ding – Channel capacity – Shannon-Hartley law – Shannon's 1	Odyno CM, D ultipl 1-ary patte	e rec OM, a exing PSK rn, e oding – Er	eiver: 9 nd AI g 9 & Q qualiz 9 g, Hut	S DP(AM zers
modulation – UNIT II Low pass sam And ADM, Cha UNIT III Phase shift ke Comparison, I UNIT IV Measure of in Coding, LZ Co codes – Cycl	PM and FM – PSD, modulators and demodulators – Super heter PULSE MODULATION upling theorem – Quantization – PAM – Line coding – PCM, DP unnel coder - Time Division Multiplexing, Frequency Division M DIGITAL MODULATION AND TRANSMISSION eying – BPSK, DPSK, QPSK – Principles of M-ary signaling M SI – Pulse shaping – Duo binary encoding – Cosine filters – Eye INFORMATION THEORY AND CODING formation – Entropy – Source coding theorem – Shannon–Fa ding – Channel capacity – Shannon-Hartley law – Shannon's I ic codes, Syndrome calculation – Convolution Coding, Seq	Odyno CM, D ultipl 1-ary patte ano co limit juenti	e rec OM, a exing PSK rn, e oding – Ern al a	eiver: 9 nd AI g 9 & Q qualiz 9 g, Hut ror cc nd V	s DP(AM zers
modulation – UNIT II Low pass sam And ADM, Cha UNIT III Phase shift ke Comparison, I UNIT IV Measure of in Coding, LZ Co codes – Cycl decoding	PM and FM – PSD, modulators and demodulators – Super heter PULSE MODULATION apling theorem – Quantization – PAM – Line coding – PCM, DPG annel coder - Time Division Multiplexing, Frequency Division M DIGITAL MODULATION AND TRANSMISSION eying – BPSK, DPSK, QPSK – Principles of M-ary signaling M SI – Pulse shaping – Duo binary encoding – Cosine filters – Eye INFORMATION THEORY AND CODING formation – Entropy – Source coding theorem – Shannon–Fa ding – Channel capacity – Shannon-Hartley law – Shannon's L ic codes, Syndrome calculation – Convolution Coding, Seq	Odyno CM, D ultipl 1-ary patte ano co limit juenti	e rec PM, a exing PSK rn, e oding oding al a	eiver: 9 nd AI g 9 & Q qualiz 9 g, Hut ror cc nd V	AM zers
modulation – UNIT II Low pass sam And ADM, Cha UNIT III Phase shift ka Comparison, I UNIT IV Measure of in Coding, LZ Co codes – Cycl decoding UNIT V	PM and FM – PSD, modulators and demodulators – Super heter PULSE MODULATION apling theorem – Quantization – PAM – Line coding – PCM, DP annel coder - Time Division Multiplexing, Frequency Division M DIGITAL MODULATION AND TRANSMISSION eying – BPSK, DPSK, QPSK – Principles of M-ary signaling M SI – Pulse shaping – Duo binary encoding – Cosine filters – Eye INFORMATION THEORY AND CODING formation – Entropy – Source coding theorem – Shannon–Fa ding – Channel capacity – Shannon-Hartley law – Shannon's D ic codes, Syndrome calculation – Convolution Coding, Seq	Odyno CM, D ultipl 1-ary patte ano co limit juenti	e rec PM, a exing PSK rn, e oding oding al a	eiver: 9 nd AI g 9 & Q qualiz 9 g, Huf ror cc nd V 9	S DP(AM Zers ffm ont
modulation – UNIT II Low pass sam And ADM, Cha UNIT III Phase shift ka Comparison, I UNIT IV Measure of in Coding, LZ Co codes – Cycl decoding UNIT V PN sequence	PM and FM – PSD, modulators and demodulators – Super heter PULSE MODULATION apling theorem – Quantization – PAM – Line coding – PCM, DPG annel coder - Time Division Multiplexing, Frequency Division M DIGITAL MODULATION AND TRANSMISSION eying – BPSK, DPSK, QPSK – Principles of M-ary signaling M SI – Pulse shaping – Duo binary encoding – Cosine filters – Eye INFORMATION THEORY AND CODING formation – Entropy – Source coding theorem – Shannon–Fa ding – Channel capacity – Shannon-Hartley law – Shannon's I ic codes, Syndrome calculation – Convolution Coding, Seq SPREAD SPECTRUM AND MULTIPLE ACCESS s – properties – m-sequence – DSSS – Processing gain,	Odyno CM, D ultipl 1-ary patte ano co limit juenti	e rec PM, a exing PSK rn, e oding oding al a	eiver: 9 nd AI g 9 & Q qualiz 9 g, Huf ror cc nd V 9 - FH	AM Zers ffm ontr iter
modulation – UNIT II Low pass sam And ADM, Cha UNIT III Phase shift ka Comparison, I UNIT IV Measure of in Coding, LZ Co codes – Cycl decoding UNIT V PN sequence Synchronisati	PM and FM – PSD, modulators and demodulators – Super heter PULSE MODULATION apling theorem – Quantization – PAM – Line coding – PCM, DPG annel coder - Time Division Multiplexing, Frequency Division M DIGITAL MODULATION AND TRANSMISSION eying – BPSK, DPSK, QPSK – Principles of M-ary signaling M SI – Pulse shaping – Duo binary encoding – Cosine filters – Eye INFORMATION THEORY AND CODING formation – Entropy – Source coding theorem – Shannon–Fa ding – Channel capacity – Shannon-Hartley law – Shannon's I ic codes, Syndrome calculation – Convolution Coding, Seq SPREAD SPECTRUM AND MULTIPLE ACCESS s – properties – m-sequence – DSSS – Processing gain, on and tracking – Multiple Access – FDMA, TDMA, CDMA	Odyno CM, D ultipl 1-ary patte ano co limit juenti	e rec PM, a exing PSK rn, e oding al a ning	eiver: 9 nd AI g 9 & Q qualiz 9 g, Huf ror cc nd V 9 - FF	AM Zers ffm ont iter

Francis Xavier Engineering College | Dept of EEE | R2021/Curriculum and Syllabi Suggestive Assessment Methods **Continuous Assessment Test Formative Assessment Test End Semester Exams** (30 Marks) (10 Marks) (60 Marks) **1 WRITTEN TEST 1. WRITTEN TEST 1.ASSIGNMENT** 2. ONLINE QUIZZES **3.PROBLEM-SOLVING** Outcomes Upon completion of the course, the students will be able to: 1 Apply information on the various types of communication systems and the possibilities of Amplitude Modulation and Angle Modulation system 2 Illustrate the layout of Pulse modulators and demodulators 3 Apply modulation schemes relating to Digital Communication systems and assessing its performance through bit error rate 4 Analyze Information about information theory and coding Analyze Source and Error control coding. 5 Text Book 1. H Taub, D L Schilling, G Saha, 'Principles of Communication Systems', 3rd Edison, Tata McGraw Hill, 2007 2. S. Haykin, 'Digital Communications', John Wiley, 2005. **Reference Books** 1. B.P.Lathi, 'Modern Digital and Analog Communication Systems', 3rd edition, Oxford University Press, 2007 2. H P Hsu, Schaum Outline Series - 'Analog and Digital Communications', Tata McGraw Hill, 2006 3. B.Sklar, 'Digital Communications Fundamentals and Applications', 2nd Edison, Pearson Education 2007. Web Recourses 1. https://swayam.gov.in/nd1 noc20 ee17/preview 2. https://nptel.ac.in/courses/117101051/

3. <u>https://www.youtube.com/watch?v=ZKro5e2Q1dU</u>

CO Vs PO Mapping and CO Vs PSO Mapping

<u> </u>	PO	PSO	PSO											
LU	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO 1	2	1			1								2	
CO 2	2	1			1								2	
CO 3	2	1			1								3	
CO 4	2	1			1								3	
CO 5	2	1			1								3	

1-Low , 2- Medium, 3- High

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	10	10	5	5	10
UNDETSTAND	30	30	10	10	30
APPLY	60	60	10	10	60
ANALYZE	0	0	0	0	0
EVALUATE	0	0	0	0	0
CREATE	0	0	0	0	0
	100	100	25	25	100

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1 (CO 1):

- 1. Design a envelope detector for the input E(t)= E(1+ m sin ω t) sin ω t and time constant 1/fc<1/Rc<1/fm.
- 2. Solve the expression for Am wave and its power relation and give the time and frequency domain representation of AM wave.
- 3. Derive an expression for the amplitude modulated wave and its power relations. Also give its time and frequency domain representation

,
and
from
ne i) side e iv)
ame
and
ram
- X2.

Γ

21FF5710	CMOS ANALOG IC DESIGN	L	Т	Р	(
2122710		3	0	0	
Preamble					
This c	course builds the basic concepts and the design of advanced CMC	OS an	alog	Integ	rate
Circuit. The co	ourse is intended to teach undergraduate and graduate students. The	nis cou	arse i	focuse	es o
the concepts of	f MOSFETs and design of amplifiers including non-linear effects.	The c	ours	e will	giv
practical aspec	t of CMOS analog IC design.				
Prerequisite	s for the course				
• Net	work theory				
• Sigi	hals and System				
• Con	trol Theory				
Objectives					
• To Ana	lyze analog IC design and MOS device models				
• To gain	h knowledge on various configurations of MOS transistors and feed	lback	conc	epts	
• To plot	and analyse the characteristics of noise and frequency response of	f the a	mpli	fier	
• To app	ly the concepts of Op-Amp frequency compensation, capacitor s	witche	es an	d PLI	Ls i
analog	integrated circuits				
• To dete	ermine the switching operation in the PLLs				
UNIT I	INTRODUCTION TO ANALOG IC DESIGN AND CURRENT			9	
	MIRRORS				
Concepts of A	nalog Design - General consideration of MOS devices – MOS I/V	/ Cha	racte	ristic	s –
Second order	effects - MOS device models. Basic current mirrors- Cascode	e curr	ent i	mirro	rs-
Active current	mirrors- Large and Small signal analysis- Common mode prop	erties	5.		
UNIT II AMPLIFIERS AND FEEDBACK				9	
Basic Concept	s – Common source stage- Source follower- Common gate stag	ge- Ca	iscoc	le sta	ge.
Single and d	and differential operation- Basic Differential pair- Common	moc	le re	spon	se-
Single endeu		ation	of f	eedba	ıck
Differential pa	air with MOS loads- Gilbert Cell. Feedback- General Consider	ation	-		
Differential pacific circuits- Feed	air with MOS loads- Gilbert Cell. Feedback- General Consider back topologies- Effect of loading- Effect of feedback on Noise.	ation	-		

General considerations- Miller Effect and Association of Poles with Nodes, Common source stage- Source followers- Common gate stage- Cascode stage- Differential pair. Noise-Statistical characteristics of noise- Types of noise- Representation of noise in circuits- Noise in single stage amplifiers- Noise in differential pairs- Noise Bandwidth.

UNIT IV OPERATIONAL AMPLIFIER STABILITY AND FREQUENCY COMPENSATION

9

General Considerations- One and Two Stage Op Amps- Gain Boosting- Comparison- Common mode feedback- Input range limitations- Slew rate- Power Supply Rejection- Noise in Op Amps- General consideration of stability and frequency compensation- Multiple system-Frequency compensation- Compensation of two stage op Amps.

UNIT V

SWITCHED CAPACITOR CIRCUITS AND PLLS

9

General Considerations- Sampling switches- Switched Capacitor Amplifiers- Switched Capacitor Integrator- Switched Capacitor Common mode feedback. Phase Locked Loops-Simple PLL- Charge pump PLLs - Non ideal Effects in PLLs- Delay locked loops- its applications.

Total Periods 45								
Suggestive Assessment Methods								
Continuous Assessment Test	ent Test Formative Assessment Test End Semester Exams							
(30 Marks)	(10 Marks)	(60 Marks)						
WRITTEN TEST	1.ASSIGNMENT	WRITT	'EN TEST					
	2. ONLINE QUIZZES							
	3.PROBLEM - SOLVING							
	ACTIVITIES							
Outcomos								

Outcomes

Upon completion of the course, the students will be able to:

-	
1	Realize the concepts of Analog MOS devices and current mirror circuits.
2	Design different configuration of Amplifiers and feedback circuits
3	Analyze the characteristics of frequency response of the amplifier and its noise
4	Analyze the performance of the stability and frequency compensation techniques of Op- Amp Circuits
5	Construct switched capacitor circuits and PLLs
Text	Books

1. Behzad Razavi, —Design of Analog CMOS Integrated Circuits||, Tata McGraw Hill, 2001, 33rd re-print, 2016.

Reference Books

1. Phillip Allen and Douglas Holmberg –CMOS Analog Circuit Design Second Edition,

Oxford University Press, 2004.

2. Paul R. Gray, Paul J. Hurst, Stephen H. Lewis, Robert G. Meyer, Analysis and Design of

Analog Integrated Circuits, 5th Edition, Wiley, 2009

3. Grebene, —Bipolar and MOS Analog Integrated circuit design||, John Wiley & sons, Inc., 2003

Web Recourses

1.https://nptel.ac.in/courses/108/101/108101039/

2. https://2ee406gbb.wordpress.com/nptel-lectures/

CO Vs PO Mapping and CO Vs PSO Mapping

СО	PO	PSO	PSO											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	2		2								3	
2	3	3	2		2								3	
3	3	3	2		2								3	
4	3	3	2		2								3	
5	3	3	2		2								3	

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	20	20	0	0	20
UNDERSTAND	30	30	5	5	30
APPLY	20	20	10	10	20
ANALYZE	30	30	10	10	30
EVALUATE	0	0	0	0	0
CREATE	0	0	0	0	0
	100	100	25	25	100

1-Low, 2- Medium, 3- High

Francis Xavier Engineering College| Dept of EEE | R2021/Curriculum and Syllabi COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1:

- 1. Apply MOS transistors modeling in saturation and cutoff high frequency equivalent circuit. (Apply)
- 2. Analyze MOS transistor characteristics under enhancement mode and depletion mode. (Analyze)

COURSE OUTCOME 2:

- 1. Explain about two stage CMOS operational amplifier. (Understand)
- 2. What do you infer from dominant pole compensation in operational amplifiers? (Apply)

COURSE OUTCOME 3:

- 1. Explain the correlated double sampling techniques with suitable example. (Understand)
- 2.Explain what is meant by channel charge injection error and how it is minimized. (Understand)

3.Explain the function of folding and pipelining. (Understand)

COURSE OUTCOME 4:

- 1. Explain the parameters quantization noise and Nyquist rate with respect to an ideal D/A &A/D converter. (Understand)
- 2. Explain the design procedure for successive approximation type DAC. (Understand)

COURSE OUTCOME 5:

1. Explain about multi bit oversampling converters. (Understand)

2. Define the term over sampling ratio (OSR) in data converters. Explain how oversampling

improves the signal to noise ratio of a data converter. (Understand)

21EE5711	NEURAL NETWORKS AND FUZZY LOGIC CONTROL	L	Т	Р	С				
		3	0	0	3				
Preamble									
The objective of this course is to introduce basic concepts and applications of soft									
computing tools such as neural networks, fuzzy logic systems, and genetic algorithms. Also it									
covers soft computing based solutions for real-world Electrical Engineering problems.									

Prerequisites for the course

1. Control Theory
Objectives

- 1. Explore the Basics of artificial neural network.
- 2. Develop the Concepts of modelling and control of neural and fuzzy control schemes.
- 3. Familiarize the Features of hybrid control schemes.
- 4. Understand the Modelling and control of fuzzy control schemes
- 5. Enlighten knowledge on the hybrid control schemes.

UNIT I	ARTIFICIAL NEURAL NETWORK	9

Review of fundamentals – Biological neuron, artificial neuron, activation function, and singlelayer perceptron – Limitation – Multi layer perceptron – Back Propagation Algorithm (BPA) – Recurrent Neural Network (RNN) – Adaptive Resonance Theory (ART) based network – Radial basis function network – online learning algorithms, BP through time – RTRL algorithms – Reinforcement learning.

UNIT II NEURAL NETWORKS FOR MODELING AND CONTROL
--

Modelling of non-linear systems using ANN – Generation of training data – Optimal architecture– Model validation – Control of non-linear systems using ANN – Direct and indirect neuro control schemes – Adaptive neuro controller – Familiarization with neural network toolbox.

9

UNIT III	FUZZY SET THEORY	9		
Fuzzy set theo	ory – Fuzzy sets – Operation on fuzzy sets – Scalar cardinality	y, fuzzy cardinality,		
union and int	ersection, complement (Mamdani and Sugeno), equilibrium j	ooints, aggregation,		
projection, cor	nposition, cylindrical extension, fuzzy relation – Fuzzy member	rship functions.		
UNIT IV	UNIT IV FUZZY LOGIC FOR MODELING AND CONTROL			
Modelling of	non-linear systems using fuzzy models – TSK model – Fuzz	y logic controller-		
Fuzzification	- Knowledge base - Decision making logic - Defuzzification	n – Adaptive fuzzy		
systems – Fam	niliarization with fuzzy logic toolbox.			
UNIT V	HYBRID CONTROL SCHEMES	9		
Fuzzification and rule base using ANN - Neuro fuzzy systems - ANFIS - Fuzzy neuron- GA -				
Optimization of membership function and rule base using Genetic Algorithm – Introduction to				
other evolutionary optimization techniques, support vector machine- Case study -				
Familiarization with ANFIS toolbox.				

	Total Periods	45
Suggestive Assessment Methods		

Сот	ntinuous Assessment Test	Formative Assessment Test	End Semester Exams
	WRITTEN TEST	1.ASSIGNMENT	WRITTEN TEST
		2. UNLINE QUIZZES	
		3.PROBLEM - SOLVING	
		ACTIVITIES	
Out	comes		
Upo	on completion of the course,	the students will be able to:	
1	Understand the concepts of	ANN, different features of fuzzy log	ic and their modelling,
	control aspects and differen	t hybrid control schemes.	
2	Recognize the basics of artit	ficial neural network.	
3	Identify modelling and cont	rol of neural network.	
4	Aware of modelling and cor	trol of fuzzy control schemes.	
5	Realize the hybrid control s	chemes.	
Гех	t Books		
1	1. Laurence Fausett, "Funda	mentals of Neural Networks", Pren	tice Hall, Englewood Cliff
	N.J., 1992		
2	2. Timothy J. Ross, "Fuzzy Lo	gic with Engineering Applications",	McGraw Hill Inc., 2000.
Refe	erence Books		
1	1. EthemAlpaydin, "Introduc	tion to Machine learning (Adaptive	Computation and Machin
	Learning series)', MIT Pres	ss, Second Edition, 2010.	
2	2. Zhang Huaguang and Liu	Derong, "Fuzzy Modeling and Fuz	zzy Control Series: Contro
	Engineering", 2006		

Web Recourses

1. <u>https://onlinecourses.nptel.ac.in/noc21_ge07/preview</u>

CO Vs PO Mapping and CO Vs PSO Mapping

CO	PO	P01	P01	P01	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	2	1	2
1	2	2	2	1									1	
2	1	2	1	2	1								2	
3	2	1	1	2	1								1	
4	1	2	1	2	1								2	
5	2	2	2	1									1	

1-Low, 2- Medium, 3- High

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER					
UNDETSTAND	30	30	5	5	30
APPLY	30	30	10	10	30
ANALYZE	40	40	10	10	40
EVALUATE					
CREATE					
	100	100	25	25	100

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Understand the concepts of ANN, different features of fuzzy logic and their modelling, control aspects and different hybrid control schemes. (Understand)

1. Explain the role of soft computing tools in building intelligent systems.

2. Explain the architecture of perceptron neural network.

3. Contrast between conventional logic and fuzzy logic.

4. Compare the performance of conventional optimization technique and GA in solving real-world optimization problem.

5. Explain where fuzzy logic can be used with a suitable example.

6. Compare the performances of soft computing tools.

COURSE OUTCOME 2: Recognize the basics of artificial neural network. (Understand)

- 1. Define Fuzzification and defuzzification.
- 2. Explain the working of fuzzy logic controller with a neat block diagram.
- 3. List the steps involved in the design of fuzzy logic controller.
- 4. Compare the two types of fuzzy logic controller.

COURSE OUTCOME 3: Identify modelling and control of neural network. (Apply)

1. How will you control the temperature and pressure in a thermal power plant by the control of throttle action using the concept of fuzzy logic? Assume the triangular membership functions for input and output.

2. Consider the speed control of induction motor problem, apply fuzzy logic to exercise this. Let change in speed and error in change in speed as inputs and output as switching frequency of the inverter.

COURSE OUTCOME 4: Aware of modelling and control of fuzzy control schemes. (Apply).

- 1. Explain supervised and unsupervised learning.
- 2. List the different types of activation functions used in ANN.
- 3. Describe BPN architecture with a neat sketch and explain the steps involved in the training of the network.
- 4. Develop a suitable perceptron neural network model to perform the following classification problem. The vectors (1,1,1,1) and (-1,1,-1,-1) for belonging to the class (target value 1) vectors (1,1,1,-1) and (1,-1,-1,1) for not belonging to the class (target value -1).

COURSE OUTCOME 5: Realize the hybrid control schemes. (Analyse)

1. Apply the concept of neural network to model and control the speed of an induction motor.

2. Apply the concept of neural network to model and control the speed of a DC Motor.

3. Perform two generations of simple binary coded genetic algorithm to solve the following optimization problem. Maximize $f(x) = x_2 \ 0 < x > 31$, x is an integer. Use proportionate selection, single point crossover, binary mutation and population size of six.

4. Perform simple binary coded and real coded genetic algorithm to solve the following optimization problem. Maximize $f(x) = |x| \sin(x) - 5 > x < 5$, x is real number.

21EE5712	BIOMEDICAL ENGINEERING		Т	Р	С			
			0	0	3			
Preamble								
With the advance technology, various biomedical equipment are being used by doctors,								
hospitals as well as industries. Even people are having the measuring devices to monitor blood								
pressure, glucose level, SPO ₂ level monitoring, Heart beat level etc. With the huge demand of such								
devices, biomedi	cal industries require more trained and certifies manpower.							

Prerequisites for the course

- Basic Human Anatomy
- Operation and Characteristics of Sensors Transducers
- Introduction of Robotics

Objectives

- To study about the basic anatomy and operation of human physiology
- To analyze the possibilities of human organ support and replacement by the Bio-Material
- To know importance of engineering in artificial organ implantation process
- To learn about the contribution of Sensors and Transducers in biomedical field
- To understand the contribution of Robots in Medical field

Syllabus

UNIT – 1	ANATOMY AND HUMAN PHYSIOLOGY	

Structure and functions of cell - Specialized tissues and its functions - **Respiratory**: Parts of Respiratory Systems – Types of respiration - Mechanisms of Breathing – Regulation of Respiration - **Cardiovascular:** Structure of Heart – Conducting System of Heart – Properties of Cardiac Muscle - Cardiac Cycle - Heart Beat – Types of Blood vessel – Regulation of Heart rate and Blood pressure - **Nervous:** Mechanisms of Nerve impulse – Brain – Spinal Cord - **Digestive:** Organs of Digestive system – Digestion and Absorption.

9

UNIT – 2	BIO-MATERIALS	9
Definition and c	lassification of Bio-materials , mechanical properties, visco e	lasticity, biomaterial
performance - In	nplants: Metallic implants, Stainless steels, CO-based alloys, T	i-based alloys, shape

memory alloy, nanostructured metallic implants, degradation and corrosion, ceramic implant, body response to implants, - **Biocompatibility**, blood compatibility and tissue compatibility tests, Toxicity tests, sensitization, carcinogenicity, mutagenicity and special tests

UNIT - 3	ARTIFICIAL ORGANS AND IMPLANTS	9

Transplants: Overview, Immunological considerations, Blood transfusions, individual organs – kidney, liver, heart and lung, bone marrow, cornea – **Implant Design**: Principles of implant design, Clinical problems requiring implants for solution, Permanent versus absorbable devices, the missing organ and its replacement - heart valve implants, heart and lung assist devices, artificial heart, cardiac pacemakers, artificial kidney- dialysis membrane and artificial blood.

UNIT – 4	SENSORS AND TRANSDUCERS	9

Transducer: Classification, Characteristics and Instrumentation - Capacitive transducer, Inductive transducer, Piezoelectric active transducer - RTD materials – Thermistor- Photo diodes – Phototransistor - Optical displacement sensors and Optical encoders – **Calibration:** - Errors in Measurements – Primary and secondary standards of Calibration

UNIT – 5 ROBOTICS IN MEDICINE 9					
Robots: Introduction Automation and Robots, Pick and place robot, Continuous path motion robot, Interpolated motion robot, Straight-line motion robot - Bio Engineering Biologically Inspired Robots, Neural Engineering, Application in Rehabilitation – Interactive Therapy, Bionic Arm, Clinical and Surgical – Gynecology, Orthopedics, Neurosurgery					
Suggestive Asso	essment Method	S			
Continuous As (30 Ma	ssessment Test arks)	Formative Assessment Test (10 Marks)	End Semester Exams (60 Marks)		
Written	Test	Google Form based Online Test, Assignment, Slip Test	Written Test		
Outcomes					
Upon completi	on of the course,	the students will:			
CO1 : Able to kno	ow about the basi	c anatomy and operation of huma	ı physiology		
CO2: Able to an	alyze the significa	nce of engineering materials in m	edical field.		
CO3 : Able to kn	ow the importanc	e of engineering in the process of	human organ implantation		
CO4 · Able to Di	agnose the diseas	e and infection of human using Ser	isors and Transducers		
			isors and mansadeers		
CO5 : Able to uno	derstand the cont	ribution of Robots in Medical field			
Text Books					
1. Guyton &	& Hall, "Medical Pl	nysiology", 13th Edition, Elsevier S	Saunders, 2018		
2. Monika S	aini, Yashpal Sing	h, Pooja Arora, Vipin Arora, and K	ratiJain. "Implant biomateri		
A compre	ehensive review".	World Journal of Clinical Cases, 20)19.		
Poforonco Bool	26				
1. Yadin Dav	x3 vid, Wolf W. von N	Aaltzahn, Michael R. Neuman, Jose	ph.D, Bronzino, "Clinical		
Engineer	ing", CRC Press, 1s	st edition, 2019.			
2. A.K.Sawh	ney, "Electrical &	Electronics Measurement and Inst	rumentation",10th edition,		
DhanpatH	Rai& Co, New Delh	ii, 19th Revised edition 2014, Repr	rint 2018		
3. J.J.Craig, "	Introduction to R	obotics", Pearson Education, 2016	1		
Web Recourses	6				
1. <u>https://zli</u>	ibrary.to/pdfs/gu	yton-and-hall-textbook-of-medica	<u>l-physiology-1</u>		
2. <u>https://zli</u>	ibrary.to/pdfs/bio	omaterials-science-third-edition-a	n-introduction-to-materials		
medicine-	<u>pul</u>		ok-third-edition-2-volume-		
3. <u>https://zlibrary.to/pdfs/the-biomedical-engineering-handbook-third-edition-3-volume-set-</u>					
3. <u>https://zli</u> biomedica	<u>ibrary.to/pdfs/the</u> ll-engineering-fun	damentals-the-biomedical-engine	ering-handbook-fourth-edi		
 <u>https://zli</u> <u>biomedica</u> <u>https://zli</u> 	ibrary.to/pdfs/the il-engineering-fun ibrary.to/pdfs/ine	damentals-the-biomedical-engine lustrial-automation-and-robotics-	ering-handbook-fourth-edi an-introduction		

CO Vs PO Mapping and CO Vs PSO Mapping

0	PO	Р	PS	PS										
	1	2	3	4	5	6	7	8	9	10	11	0	0	0
												1	1	2
												2		
CO 1	3	3	-	-	-	-	-	-	-	-	-	-	-	-
CO 2	3	3	-	3	3	-	-	-	-	-	-	-	2	-
CO 3	3	3	3	2	3	-	-	-	-	-	-	-	-	-
CO 4	3	2	3	-	3	-	-	-	-	-	-	-	3	-
CO 5	3	2	3	-	3	-	3	-	2	-	-	-	3	-

1-Low, 2- Medium, 3- High

BLOOMS LEVEL ASSESSMENT PATTERN

DI OOM'S CATECODY		END SEMESTER EXAMINATION			
BLOOM S CATEGORY	CAT-1	CAT-2	FAT -1	FAT-2	
REMEMBER	0	0	5	5	0
UNDERSTAND	20	20	5	5	20
APPLY	30	30	5	5	30
ANALYZE	50	50	10	10	50
EVALUATE	0	0	0	0	0
CREATE	0	0	0	0	0
	100	100	25	25	100

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1 (CO 1) :

(1) Give Brief notes on,

(i) Structure and function of cells

(ii) Nerves System

(2) Analyze the critical relation between human respiratory system and Cardiovascular System in medical science

COURSE OUTCOME 2 (CO 2) :

- (1) Suggest and analyze the best Bio-Material for the Heart Transplantation.
- (2) Discuss about the various testing methodologies for choosing Bio-Material.

COURSE OUTCOME 3 (CO 3) :

- (1) Discuss about various human parts implantation and its design.
- (2) Analyze the medical methodology which is useful for Kidney failure Patients.

COURSE OUTCOME 4 (CO 4) :

(1) Compare the Capacitive transducer, Inductive transducer, Piezoelectric active transducer which is used in medical industry.

(2)Draw and Explain the single channel telemetry system suitable for ECG.

COURSE OUTCOME 5 (CO 5) :

(1) Explain the different types of pacemakers with neat diagram.

(2) Discuss the roles of Robots in Gynaecology, Orthopaedics, Neurosurgery operations.

(3) How the robots used in Rehabilitation process of patients.

Professional Elective III

21EE6701	INDUSTRIAL DRIVES AND CONTROL	L	Τ	Р	С
		3	0	0	3
Preamble				•	•

The electrical engineering applications in many industries use small and large AC and DC motor in some crucial application system. Further electrical speed control in almost all industrial applications is incomplete without the use of the specific electric drive. This course will empower the students with the necessary skills to identify operate and maintain the AC and

DC drives

Prerequisites for the course

- 1. DC Machines and Transformer
- 2. AC Machines
- 3. Power Electronics

Objectives

- 1. To identify the relevant electric drive for the required speed torque characteristics.
- 2. To maintain and functioning of DC Motor Drive
- 3. To maintain and functioning of Induction Motor Drive
- 4. To maintain and functioning of synchronous drive
- 5. To maintain and functioning of BLDC and Switched Reluctance Motor Drive.

UNIT I BASICS OF ELECTRIC DRIVES

Electric Drive : Types and choice of electric dives, Parts of electrical drives- Source, Power modulator, Electric Motor and control Unit, Thermal model of motor for heating and cooling -Classes of duty, Selection of Motor Power rating -Control of Electric Drives- Closed loop control of drives

UNIT II	NIT II DC MOTOR DRIVES			
DC motor and	their performance - Speedcontrol and Braking methods - Sin	gle phase and Three		
phase SCR Driv	es – Power factor in SCR motor drives – Reversible SCR Drives	- Chopper controlled		
DC Drives – Ap	plication of chopper control drive in solar and battery powered	d vehicles.		

UNIT III INDUCTION MOTOR DRIVES

9

9

Speed Control – Inverter fed induction motor drives- Rotor resistance control and slip power recovery scheme - Static control of rotor resistance using DC chopper - Vector control of induction motor - Speed Estimation methods – Slip calculation – Direct Synthesis from state equations – Direct Vector control without Speed signal

UNIT IV	Synchronous Motor Drives	9
Speed control	of three phase synchronous motors - Voltage and current	source inverter fed
synchronous m	otors- Vector control of Synchronous motor - Sensorless contr	ol - Trapezoidal SPM
machine – Sinu	soidal PM Machine	

UNIT V	BLDC and Switched Reluctance Motor Drives	9
BLDC motor dr	ives and its applications - Speed control of BLDC motor - Rel	uctance torque

development - Operation and control of switched reluctance motor

Total Periods

45

Suggestive Assessment Methods

com	tinuous Assessment Test	Formative Assessment Test	End Semester Exams				
[30]	Marks)	(10 Marks)	(60 Marks)				
WRITTEN TEST		1.ASSIGNMENTWRITTEN TEST					
		2. ONLINE QUIZZES					
		3.PROBLEM-SOLVING ACTIVITIES					
Duto	comes						
Jpo	n completion of the course	, the students will be able to:					
L	Explain the basics and advant	ages of electric drives					
2	Design 1 phase and 3 phase co	ontrolled rectifier based dc drive					
3	Illustrate the operation of VSI	and CSI drive in induction motor driv	/es				
ŀ	Explain the operation of Inv	verter fed synchronous motor					
5	Describe the working of SRM	and BLDC motor drive system					
5 Fext	Describe the working of SRM	and BLDC motor drive system					
5 Fext	Describe the working of SRM	and BLDC motor drive system					
5 Fext	Describe the working of SRM Books 1. G. K. Dubey: Fundamenta	and BLDC motor drive system al of Electrical Drives - Narosa Publ	lishing House, Chennai, 2016				
5 Fext	Describe the working of SRM Books 1. G. K. Dubey: Fundamenta 2. R.Krishnan - Electric mo	and BLDC motor drive system al of Electrical Drives - Narosa Publ otor drives – Modeling, analysis a	lishing House, Chennai, 2016 nd control, Pearson Educatio				
5 Fext	 Describe the working of SRM Books 1. G. K. Dubey: Fundamenta 2. R.Krishnan - Electric monomous New Delhi, 2003 	and BLDC motor drive system al of Electrical Drives - Narosa Publ otor drives – Modeling, analysis a	lishing House, Chennai, 2016 nd control, Pearson Educatio				
5 Fext Refe	 Describe the working of SRM Books 1. G. K. Dubey: Fundamenta 2. R.Krishnan - Electric monopolity New Delhi, 2003 	and BLDC motor drive system al of Electrical Drives - Narosa Publ otor drives – Modeling, analysis a	lishing House, Chennai, 2016 nd control, Pearson Educatio				
5 Fext Refe	Describe the working of SRM Books 1. G. K. Dubey: Fundamenta 2. R.Krishnan - Electric mo New Delhi, 2003 Frence Books 1. Bimal K Basa Modern I	and BLDC motor drive system al of Electrical Drives - Narosa Publ otor drives – Modeling, analysis a	lishing House, Chennai, 2016 nd control, Pearson Educatio				
5 Fext	 Describe the working of SRM Books 1. G. K. Dubey: Fundamenta 2. R.Krishnan - Electric monopoly New Delhi, 2003 Frence Books 1. Bimal K.Bose – Modern Fundament Fundament Provide the State of the State o	and BLDC motor drive system al of Electrical Drives - Narosa Publ otor drives – Modeling, analysis a Power Electronics and AC Drives –	lishing House, Chennai, 2016 nd control, Pearson Educatio Pearson Education Asia				
5 Fext	Describe the working of SRM Books 1. G. K. Dubey: Fundamenta 2. R.Krishnan - Electric mo New Delhi, 2003 Frence Books 1. Bimal K.Bose – Modern F Publication, 2003 2. Subrahaman Madam	and BLDC motor drive system al of Electrical Drives - Narosa Publ otor drives – Modeling, analysis a Power Electronics and AC Drives –	lishing House, Chennai, 2016 nd control, Pearson Educatio Pearson Education Asia				
5 Fext	Describe the working of SRM Books 1. G. K. Dubey: Fundamenta 2. R.Krishnan - Electric mo New Delhi, 2003 Frence Books 1. Bimal K.Bose – Modern F Publication, 2003 2. Subrahmanyam, Vedam	and BLDC motor drive system al of Electrical Drives - Narosa Publ otor drives – Modeling, analysis a Power Electronics and AC Drives – – Electrical Drives Concepts and A	lishing House, Chennai, 2016 nd control, Pearson Educatio Pearson Education Asia				
5 Fext	 Describe the working of SRM Books G. K. Dubey: Fundamenta R.Krishnan - Electric monopoly R.Krishnan - Electric monopoly Rew Delhi, 2003 Bimal K.Bose – Modern Fublication, 2003 Subrahmanyam, Vedam Publishing New Delhi 20 	and BLDC motor drive system al of Electrical Drives - Narosa Publ otor drives – Modeling, analysis a Power Electronics and AC Drives – – Electrical Drives Concepts and A 16	lishing House, Chennai, 2016 Ind control, Pearson Educatio Pearson Education Asia				
5 Fext	 Describe the working of SRM Books 1. G. K. Dubey: Fundamenta 2. R.Krishnan - Electric monomory 2. R.Krishnan - Electric monomory 2. R.Krishnan - Electric monomory 3. Ned Mohan, Tore Undela 	and BLDC motor drive system al of Electrical Drives - Narosa Publ otor drives – Modeling, analysis a Power Electronics and AC Drives – – Electrical Drives Concepts and A 16 and & William Robbins, Power Ele	lishing House, Chennai, 2016 Ind control, Pearson Educatio Pearson Education Asia				
5 Fext	 Describe the working of SRM Books 1. G. K. Dubey: Fundamenta 2. R.Krishnan - Electric monomory 3. Ned Mohan, Tore Undelated Applications and Designed 	and BLDC motor drive system al of Electrical Drives - Narosa Publ otor drives – Modeling, analysis a Power Electronics and AC Drives – – Electrical Drives Concepts and A 16 and & William Robbins, Power Ele -John Willey and sons 2003.	lishing House, Chennai, 2016 Ind control, Pearson Educatio Pearson Education Asia Applications – Mcgraw- Hill ectronics : converters				
5 Fext	 Describe the working of SRM Books 1. G. K. Dubey: Fundamenta 2. R.Krishnan - Electric monomory 2. R.Krishnan - Electric monomory 3. Ned Mohan, Tore Undelation 4. Pillai.S.K – A first course 	and BLDC motor drive system al of Electrical Drives - Narosa Publ otor drives – Modeling, analysis a Power Electronics and AC Drives – – Electrical Drives Concepts and A 16 and & William Robbins, Power Ele -John Willey and sons 2003. on Electrical Drives- Wiley Eastern	lishing House, Chennai, 2016 Ind control, Pearson Educatio Pearson Education Asia Applications – Mcgraw- Hill ectronics : converters				
5 Fext Refe	 Describe the working of SRM Books 1. G. K. Dubey: Fundamenta 2. R.Krishnan - Electric monopoly Perence Books 1. Bimal K.Bose – Modern Fublication, 2003 2. Subrahmanyam, Vedam Publishing New Delhi 20 3. Ned Mohan, Tore Undela Applications and Designet 4. Pillai.S.K – A first course 	and BLDC motor drive system al of Electrical Drives - Narosa Publ otor drives – Modeling, analysis a Power Electronics and AC Drives – – Electrical Drives Concepts and A 16 and & William Robbins, Power Ele -John Willey and sons 2003. on Electrical Drives- Wiley Eastern	lishing House, Chennai, 2016 Ind control, Pearson Educatio Pearson Education Asia Applications – Mcgraw- Hill ectronics : converters				
5 Fext Refe	 Describe the working of SRM Books 1. G. K. Dubey: Fundamenta 2. R.Krishnan - Electric monomorphic New Delhi, 2003 Prence Books 1. Bimal K.Bose – Modern Fublication, 2003 2. Subrahmanyam, Vedam Publication, 2003 2. Subrahmanyam, Vedam Publishing New Delhi 20 3. Ned Mohan, Tore Undela Applications and Design- 4. Pillai.S.K – A first course 7. Recourses 1. https://nptel.ac.in/complexity 	and BLDC motor drive system al of Electrical Drives - Narosa Publ otor drives – Modeling, analysis a Power Electronics and AC Drives – – Electrical Drives Concepts and A 16 and & William Robbins, Power Ele -John Willey and sons 2003. on Electrical Drives- Wiley Eastern	lishing House, Chennai, 2016 nd control, Pearson Educatio Pearson Education Asia applications – Mcgraw- Hill ectronics : converters n Ltd, NewDelhi, 2016.				

CO Vs PO Mapping and CO Vs PSO Mapping

60	PO	P01	P01	P01	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	2	1	2
1	2	1											2	
2	1	2	1										2	
3	1	2	1										2	
4	2	1											2	
5	2	1											2	

1-Low , 2- Medium, 3- High BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	10	10			10
UNDETSTAND	40	40	10	10	40
APPLY	30	30	10	10	30
ANALYZE	20	20	5	5	20
EVALUATE					
CREATE					
	100	100	25	25	100

COURSE LEVEL ASSESSMENT QUESTION

COURSE OUTCOME 1: Students will be able to Predict the suitable method for....(Apply)

- 1. Illustrate about the basic elements of Electric Drives?
- 2. List out the advantages of electric drive over mechanical drive?

COURSE OUTCOME 2:

1. A 220V shunt Motor has an armature resistance of 0.062 Ω and with full field has an emf of 215V at a speed of 960 rpm, the

motor is driving an overhauling load with a torque of 172 Nm. Calculate the minimum speed at which the motor can hold the load by means of regenerative braking.

2. A 500V series motor having armature resistance and field resistance of 0.2 Ω and 0.3 Ω respectively runs at 500 rpm when taking 70A. Assuming unsaturated field, find out its speed when field diverter of 0.684 Ω is used constant load torque.

COURSE OUTCOME 3:

- 1. The input to a chopper is from a 100V dc source. The chopper is switched at a frequency of 100KHz with a pulse width of 4s. What is the average output voltage of the chopper
- 2. Discuss the effect of the output voltage, duty ratio and the load current in the determination of the inductor and capacitor value of the filter used in buck converter based DC drives.

COURSE OUTCOME 4:

- 1. Illustrate about the vector control of IM?
- 2. Discuss the operation of 3 phase VSI fed IM.

COURSE OUTCOME 5:

- 1. List the advantages and applications of BLDC motor.
- 2. Evaluate the effect of closed loop speed control of BLDC motor.

21EE6702	HIGH VOLTAGE DIRECT CURRENT TRANSMISSION	L	Т	Р	С
			0	0	3
D 11					

Preamble

High voltage direct current transmission has advantages over ac transmission in special situations. With the advent of thyristor valve converters, HVDC transmission became even more attractive. This course deals with the operation, modelling and control of HVDC link in power system. Also, trends for HVDC applications and practical examples are discussed in this course.

Prerequisites for the course

- 1. Transmission and Distribution in Power Systems
- 2. Power Electronics

Objectives

1. To Know about the knowledge on Planning of DC power transmission and comparison

with AC power transmission.

2. To discuss about the HVDC converters

3. To discribe about HVDC system control strategies and stability techniques used for HVDC system.

4. To learn the concept of Harmonics and design of filters used in HVDC system.

5. To introduce Power flow and Stability analysis in HVDC system under steady state.

UNIT I	INTRODUCTION	9
DC Power tra	nsmission technology-Comparison of AC and DC transmissio	on-Application of DC
transmission-	Components of HVDC transmission Systems -Planning for	HVDC transmission-
Modern trends	s in HVDC technology–DC breakers–Operating problems– HVD0	C transmission based
on VSC – Scher	natic diagram of typical HVDC transmission system	

UNIT II	ANALYSIS OF HVDC CONVERTERS	9

Line commutated converter -Analysis of Graetz circuit with and without overlap -Pulse number-Choice of converter configuration – Converter bridge characteristics– Analysis of a 12 pulse converters- Analysis of VSC topologies and firing schemes.

UNIT III	CONVERTER AND HVDC SYSTEM CONTROL	

Principles of DC link control-Converter control characteristics-System control hierarchy- Firing angle control- Current and extinction angle control-Starting and stopping of DC link -Power control -Higher level controllers -Control of VSC based HVDC link.

9

UNIT IV	REACTIVE POWER AND HARMONICS CONTROL	9
Reactive powe	er requirements in steady state-Sources of reactive power-	SVC and STATCOM-

Generation of harmonics -Design of AC and DC filters- Active filters.

UNIT V	POWER FLOW ANALYSIS AND STABILITY ANALYSIS IN	9
	AC/DC SYSTEMS	

Per unit system for DC quantities–DC system model –Inclusion of constraints –Power flow

analysis –case study- Basic Concepts: Power System Angular, Voltage and Frequency Stability.

	45						
Suggestive Assessment Methods							
Continuous Assessment Test	Formative Assessment Test	End Se	mester Exams				
(30 Marks)	(10 Marks)	(60 Marks)					

	WRITTEN TEST	1.	ASSIGNMENT	WRITTEN TEST
		2. ONL	INE QUIZZES	
		3.PRUBL	EM-SULVING	
		AUI	IVITIES	
Out	comes			
Upo	on completion of the course,	the students w	vill be able to:	
1	Get knowledge about Planni transmission.	ing of DC power	transmission and com	parison with AC power
2	Analyze and understand the	concepts of HV	DC converters.	
3	Acquire knowledge on DC li	nk control.		
4	Understand the concepts of analysis.	reactive power	management, harmon	ics and power flow
5	Understand the importance steady state.	of power flow a	nd stability analysis in	HVDC system under
Tex	t Books			
-	 Padiyar,K.R., "HVDC powe NewDelhi, Second Edition, 	r transmission s 2010.	system", New Age Inter	mational(P)Ltd.
4	2. Arrillaga,J.,"High Voltage	Direct Current T	Transmission", Peter Pi	regrinus, London,1983.
Ref	erence Books			
	1. Kundur P.," Power Systen	n Stability and C	ontrol", McGraw-Hill,1	993.
	2. Colin Adamson and Hingor Garraway Limited, London	rani NG," High V 1, 1960.	oltage Direct Current I	Power Transmission",
	3. Edward Wilson Kimbark," York, London, Sydney,197	Direct Current 7 1.	Fransmission", Vol.I, W	ïley inter science, New
Wel	o Recourses			
	1. https://nptel.ac.in/o	courses/108104	013	
	2. https://archive.npte	l.ac.in/courses/	/108/104/108104013	/

CO Vs PO Mapping and CO Vs PSO Mapping

<u> </u>	PO	P01	P01	P01	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	2	1	2
1	3	1											3	
2	3	2							2				3	
3	3	2							2				3	
4	3	2											3	
5	3	2											3	

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	10	10			10
UNDETSTAND	40	40	10	10	40
APPLY	30	30	10	10	30
ANALYZE	20	20	5	5	20
EVALUATE					
CREATE					
	100	100	25	25	100

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Students will be able to Predict the suitable method

for....

- 1. Explain the comparison of AC and DC transmission in detail. (Understand)
- 2. Analyze the components of HVDC Transmission System. (Analyze)

COURSE OUTCOME 2:

- 1. Draw the schematic circuit diagram of a 6 pulse gratez's circuit and explain its principle of operation. (Apply)
- 2. Explain the individual characteristics of a rectifier and an inverter with sketches. (Understand)

COURSE OUTCOME 3:

- 1. Illustrate the principles of DC Link Control (i) Equivalent and Schematic Diagram (ii) Constant Extinction Angle (iii) Current Margin. (Apply)
- 2. Draw and evaluate the starting and stopping of DC link voltage waveform De-energization, Energization of rectifier and inverter. (Analyze)

COURSE OUTCOME 4:

- 1. Explain the characteristics and non-characteristics harmonics inHVDC System.(Analyze)
- 2. Evaluate the criteria for the design of DC Filter. (Apply)

COURSE OUTCOME 5:

- 1. Analyze the DC System Model with a suitable example (Analyse)
- 2. Evaluate the active and reactive power equation of converterterminals. (Apply)

21EE6703	FUEL CELL AND HYDROGEN ENERGY	L	Τ	Р	С
		3	0	0	3

Preamble

This course will provide an overall review on hydrogen as future energy resource. Renewable energy has huge potential in the market and hydrogen energy is considered to be one of the complementary energy carriers for future. In this course we will learn about production of hydrogen using different sources and purification as well as separation of hydrogen.

Prerequisites for the course

1. Engineering Chemistry

Objectives

- 1. To understand the cell reaction, electrolyte and electrode materials, compatible fuels, typical operating conditions and common applications of the most important fuel cell technologies.
- 2. To Explain the fundamental working principle of polymer electrolyte membrane (PEMFC) and solid oxide (SOFC) fuel cells in terms of their structure and underlying physical phenomena.
- 3. To Sketch and perform simple design calculations of fuel cell systems for portable, transportation and combined heat and power production.
- 4. To Describe the properties of hydrogen as a fuel.
- 5. To Describe safety aspects and storage technologies.

FUEL CELLS

9

Concept, key components, physical and chemical phenomena in fuel cells, advantages and disadvantages, different types of fuel cells and applications, characteristics, Nernst equation, relation of the fuel consumption versus current output

UNIT II	FU	FUEL CELL DESIGN AND PERFORMANCE							9		
Stoichiometric	coefficients	and	utilization	percentages	of	fuels	and	oxygen,	mass	flow	rate

calculation for fuel and oxygen in single cell and fuel cell stack, total voltage and current for fuel cells in parallel and serial connection, over-potential and polarizations, DMFC operation scheme, general issues-water flooding and water management, polarization in PEMFC

UNIT IIIFUEL CELLS - APPLICATION AND ECONOMICS9	UNIT III	FUEL CELLS - APPLICATION AND ECONOMICS	9

Fuel cell usage for domestic power systems, large scale power generation, automobile, space applications, economic and environmental analysis on usage of fuel cell, future trends of fuel cells

UNIT IV	Hydrogen and Production Techniques:	9			
Hydrogen – physical and chemical properties, salient characteristics. Production of hydrogen –					
steam reforming – water electrolysis – gasification and woody biomass conversion – biological					
hydrogen production – photo dissociation – direct thermal or catalytic splitting of water.					

UNIT V	Hydrogen Storage and Applications	9			
Hydrogen storage options - compressed gas - liquid hydrogen - Hydride - chemical Storage -					
comparisons. Hydrogen transmission systems. Applications of Hydrogen.					

Total Periods	45
----------------------	----

Sugg	gestive Assessment Method	S				
Cont	tinuous Assessment Test	Formative Assessment Test	End Semester Exams			
	(30 Marks)	(10 Marks)	(60 Marks)			
	WRITTEN TEST	1.ASSIGNMENT	WRITTEN TEST			
		2. ONLINE QUIZZES				
		3.PROBLEM-SOLVING				
		ACTIVITIES				
Outo	comes					
Upo	n completion of the course,	the students will be able to:				
1	understand the concepts and characteristics of various types of fuel cell					
2	consist and demonstrate the working of fuel cells					
3	know the application of fuel cells with economic and environment analysis					
4	understand and demonstra	te the hydrogen production techno	logies			
5	Understand the hydrogen s	torage methods and its application				
Text	t Books					
1	 Tomorrow's Energy – Hy Hoffman, MIT Rebecca L. and Busby, Hyd Corporation, Oklahoma (2 	drogen Fuel Cells and the Prospe rogen and Fuel Cells: A Comprehen 005)	cts for Cleaner Planet, Pete sive Guide, Penn Well			
Refe	erence Books					
	 Fuel cell Fundamentals Fuel cells: Principles a Press Hydrogen – A fuel for A Fuel Cells: Theory and 	s, John Wiley and sons, Willey and Applications, Viswanathan B a automatic Engines, Prashukumar G Applications, Hart A B and Womack	and AuliceScibioh, Universit P, ISTE c G J, Chapman and Hall			
Web	Recourses					
	 https://nptel.ac.in/ https://www.digima 	courses/108108077 at.in/nptel/courses/video/108104	140/L01.html			

60	PO	P01	P01	P01	PSO	PSO								
ιU	1	2	3	4	5	6	7	8	9	0	1	2	1	2
1	1	3	2											2
2	1	2	2											2
3	1	3	2											2
4	1	3	2											2
5	1	3	2											2

CO Vs PO Mapping and CO Vs PSO Mapping

1-Low, 2-Medium, 3-High

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	10	10			10
UNDETSTAN D	40	40	10	10	40
APPLY	30	30	30	30	30
ANALYZE	10	10	10	10	10
EVALUATE					
CREATE					
	100	100	50	50	100

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Students will be able to Predict the suitable methodfor....(Apply)

1. Obtain the expressions for temperature dependence of the reversible voltageobtained from a fuel cell

2. Illustrate about the different types of fuel cell and its applications. **COURSE OUTCOME 2:**

1. Describe the configuration of fuel cell systems with fuel processors.

Illustrate the following: i) Galvani Potential ii) Butler Volmer Equation iii) Tafel

2. Equation

COURSE OUTCOME 3:

- 1. Illustrate the principle and working of PEM Fuel Cell
- 2. Analyse the design of a fuel cell stack

COURSE OUTCOME 4:

- 1. Illustrate the technologies for hydrogen production
- 2. List the technologies for hydrogen storage.

COURSE OUTCOME 5:

- 1. Describe the challenges of using *hydrogen* as *fuel*?
- 2. Identify the technologies are being developed to enable ships touse *hydrogen* as *fuel*?

21EE6704	EHVAC TRANSMISSION	L	Т	Р	С
		3	0	0	3
Preamble		L			
This course emphasize the basic concepts of EHVAC transmission lines and analyzes the Electrostatic field of AC lines and study about compensation techniques.					
Prerequisites	s for the course				
1. Power	Generation Systems				
2. Power	Systems				
3. Power	System Transients				
4. Transm	nission and Distribution				
Objectives					
1. To unde	erstand the basic concepts of EHVAC Transmission line				
2. To analy	ze electrostatic field and voltage gradients				
3. To stud	y about electrostatic induction in unenergized lines				
4. To unde	erstand about the corona in E.H.V. lines				
5. To analy	yze the steady state and transient limits.				
UNIT I	INTRODUCTION			9	
Necessity of EHV AC transmission-EHVAC Transmission line trends and preliminary aspect - standard transmission voltages – Estimation at line and ground parameters-Bundle conductors: Properties -Inductance and Capacitance of EHV lines – Positive, negative and zero sequence impedance					
UNIT II	ELECTROSTATIC FIELDS			9	
Electrostatic field and voltage gradients – Calculations of electrostatic field of AC lines – Effect of high electrostatic field on biological organisms and human beings – Surface voltagegradients and Maximum gradients of actual transmission lines - electromagnetic interference-Examples- voltage gradients on sub conductor					

U			1 ,	5		
	NIT III	I	POWER CONTROL		9	
Elec phas over Shui	trostatic in se single a voltage in nt and Seri	nduction in unener and double circuit EHV lines: No load les compensation –	gized lines – Measurement of field lines – Unenergized lines. Power l voltage – Charging currents at pov Static VAR compensation.	and volt Frequen wer freq	age gradients for three cy Voltage control and uency-Voltage control –	
U	NIT IV	CORONA EF	FECTS AND RADIO INTERFERENC	E	9	
Cord	ona in EHV	' lines – Corona loss	s formulae-Charge voltage diagram	- Attenua	ation of traveling waves	
due	to Corona	– Audio noise due	to Corona, its generation, characte	eristic an	d limits. Measurements	
of at	udio noise	radio interference	due to Corona - properties of radio	o noise –	Frequency spectrum of	
RI fi	elds – Mea	surements of RI an	d RIV.			
U	NIT V	STEADY	STATE AND TRANSIENT LIMITS		9	
Desi	gn of EHV	/ lines based on st	teady state and transient limits -	EHV cal	ble and their	
char	acteristics	s-Introduction six p	hase transmission – UHV.			
			Total F	Periods	45	
Sug	gestive As	sessment Method	S			
Con	tinuous A	ssessment Test	Formative Assessment Test	End Se	mester Exams	
	(30 Mai	·ks)	(10 Marks)	(60 Ma	rks)	
	WRIT	TEN TEST	1.ASSIGNMENT	WRITTEN TEST		
			2. ONLINE QUIZZES			
			3.PROBLEM-SOLVING ACTIVITIES			
Out	comes					
Upo	n comple	tion of the course,	the students will be able to:			
1 Students learn about the trends in EHV AC Transmission.						
2	2 Students will be able to analyze steady state and transient limits					
3	Students can understand power control in EHVAC transmission lines					
4	Students will gain knowledge about corona effects and radio interference					
5	Students	will learn about pr	actical application in EHVAC transr	nission li	nes	
Tex	t Books					

- Rokosh Das Begamudre, 'Extra High Voltage AC Transmission Engineering'– Wiley Eastern 1. LTD., NEW DELHI 1990.
- 2. S. Rao, 'HVAC and HVDC Transmission, Engineering and Practice', Khanna Publisher, Delhi, 1990.

Reference Books

- 1. Subir Ray, 'An Introduction to High Voltage Engineering', Prentice Hall of India Private Limited, 2013.
- 2. RD Begamudre, 'Extra High Voltage AC Transmission Engineering'- New Academic Science Ltd; 4 edition 2011.

PSO

2

3

3

1

3

3

3

3. Edison, 'EHV Transmission line'- Electric Institution, GEC, 1968.

Web Resourses

5

3

- 1. https://nptel.ac.in/courses/108104013/
- 2. https://nptel.ac.in/courses/108/102/108102047/

PO PO PO PO PO PO PO PO PO P01 P01 P01 PSO CO 1 2 3 4 5 6 7 8 9 0 1 2 1 3 2 1 1 2 2 2 2 1 3 2 2 1 1 4 3 2 2

CO Vs PO Mapping and CO Vs PSO Mapping

1-Low, 2-Medium, 3-High

1

2

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	25	25	15	15	30
UNDETSTAND	30	35	15	15	25
APPLY	25	20	10	10	25
ANALYZE	20	20	10	10	20
EVALUATE					
CREATE					
	100	100	50	50	100

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Students will be able to Predict the suitable methodfor....(Apply)

- 1. Define EHVAC transmission lines.
- 2. Define HV transmission system with regard to power handling capacity, losses, conductor resistance and electrostatic field associate with HV.

COURSE OUTCOME 2:

- 1. Explain surface voltage gradient on conductors.
- 2. Explain how Electrostatic fields to human life, plants and animals.

COURSE OUTCOME 3:

- 1. Explain electrostatic induction in unenergized lines.
- 2. Obtain the electrostatic fields of double circuit 3-phase EHV AC line.

COURSE OUTCOME 4:

- 1. Explain Corona and give the corona loss formulae.
- 2. Define power loss and audible noise.

COURSE OUTCOME 5:

- 1. Define six phase transmission systems.
- 2. Define practical implementation of EHVAC transmission systems.

21EE6705

ENERGY CONSERVATION & AUDITING

Preamble

Energy conservation and auditing are critical components of today's sustainability and environmental preservation efforts. With growing concerns about energy consumption and greenhouse gas emissions, individuals and organizations must take steps to promote energy efficiency and reduce their carbon footprint. The Energy Conservation & Auditing course is designed to give participants a thorough understanding of energy conservation and auditing principles and practices. Through a blend of theoretical knowledge and practical skills, participants will gain the ability to assess energy consumption patterns, identify areas of energy wastage, and recommend measures to reduce energy usage.

Prerequisites for course

- 1. Laws of Thermodynamics and Heat Transfer
- 2. Knowledge of electrical and mechanical systems
- 3. HVAC systems
- 4. Renewable Energy Systems
- 5. Basic knowledge of environmental regulations and sustainability practices

Objectives

1. To provide a thorough understanding of energy conservation and auditing principles and practices.

2. Develop the skills required to conduct energy audits, identify areas of energy waste, and recommend energy-saving measures.

3. To increase understanding of energy-efficient technologies and best practices in energy conservation.

4. To provide participants with the tools and techniques needed to analyze and interpret energy usage data and develop energy-saving strategies.

5. To raise awareness of environmental sustainability and the environmental impact ofenergy use, as well as to encourage the adoption of energy-efficient practices in daily life and work.

UNIT I	Introduction to Energy Conservation and Auditing	9

Overview of energy conservation and auditing - The impact of energy consumption on the environment - The principles of energy efficiency and energy management - Overview of energy auditing and energy management programs - Key concepts in energy auditing and energy management.

UNIT II	Energy Auditing Fundamentals	9		
Types of energy audits - Energy usage patterns and data analysis - Energy data collection and				
measurement - Energy consumption calculation - Energy modeling and simulation.				

UNIT III Energy-Efficient Technologies and Best Practices

Energy-efficient lighting systems - HVAC systems and their impact on energy consumption -Renewable energy systems and alternative energy sources - Energy-efficient appliances and building materials - Energy management systems and building automation.

9

UNIT IV	Energy Conservation Strategies and Implementation	9

Energy management plan development - Implementation of energy conservation measures -Monitoring and evaluation of energy consumption - Energy savings analysis and return on investment - Reporting and communication of energy conservation results.

UNIT V	Regulatory Environment and Sustainability	9

Energy conservation policies and regulations - Environmental sustainability and energy conservation - Corporate social responsibility and energy conservation - Energy labeling and certifications - Energy conservation case studies and best practices.

	Total Pe	riods	45						
Suggestive Assessment Methods									
Continuous Assessment Test	Continuous Assessment Test Formative Assessment Test End Semester Exams								
(30 Marks)	(10 Marks)	(60 Marks)						

WRITTEN TEST	1. ASSIGNMENT	WRITTEN TEST
	2. ONLINE QUIZZES	
	3. PROBLEM-SOLVING	
	ACTIVITIES	

Outcomes

Upon completion of the course, the students will be able to:

1	Conduct thorough energy audits, analyze data on energy usage and identify areas of energy waste.
2	Create and put into action energy-saving strategies and best practices in energyconservation
3	Evaluating the efficacy of energy-saving technologies and recommending appropriate solutions to reduce energy consumption.
4	Develop data analysis and interpretation skills, as well as the ability to monitor and analyze energy data using computer software and tools.
5	Effective communication with stakeholders is essential, as is raising awareness of environmental sustainability and energy conservation initiatives.
Text	Books

- l ext Books
 - 1. "Energy Management Handbook" by Wayne C. Turner
 - 2. "The Principles and Practice of Energy Management" by Keith Eaton and David Boaz

Reference Books

- 1. "Energy Management Handbook" by Wayne C. Turner, published by Fairmont Press, 2009.
- 2. "Building Energy Management Systems: Applications and Implementation" by Stuart R. Wenham, published by Springer, 2009.
- 3. "Energy Management Principles: Practices, Calculations, and Applications" by F. Mohammadzadeh, published by Routledge, 2013.
- 4. "Energy Auditing of Buildings: A Guide to Carbon Footprinting and Energy Conservation" by David M. Beitelman, published by Springer, 2011.
- 5. "Handbook of Energy Audits" by Albert Thumann, published by Fairmont Press, 2012.
- 6. "Sustainable Energy Management: A Guide for Energy Managers, Building Owners, and Facility Managers" by Michael D. Starr, published by Fairmont Press, 2010.
- 7. "Energy Efficiency in Buildings: A Guide to Best Practice in Energy Management" by Peter M. Cusick, published by Routledge, 2014.

Web Resources

- 1. <u>https://sustainabilityeducationacademy.com/learn/introduction-to-energy-auditing/</u>
- 2. <u>https://alison.com/careers/stem/energy-conservation-specialist</u>

60	PO	P01	P01	P01	PSO	PSO								
LU	1	2	3	4	5	6	7	8	9	0	1	2	1	2
1	3	2			2			2		1				2
2	3	2			2			2		1				2
3	3	2	1		2			2		1				2
4	3	2	1		2			2		1				2
5	3	2			2			2		1				2

CO Vs PO Mapping and CO Vs PSO Mapping

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	20	20	10	10	20
UNDERSTAND	30	30	10	10	30
APPLY	20	20	10	10	20
ANALYZE	15	15	10	10	15
EVALUATE	15	15	10	10	15
CREATE	0	0	0	0	0
	100	100	50	50	100

BLOOMS LEVEL ASSESSMENT PATTERN

1-Low, 2- Medium, 3- High

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1:

1. What are energy auditing and conservation, and what effects do they have on theenvironment? What are the foundational tenets of energy management and efficiency?

2. What is energy conservation, why is it vital, and how does energy auditing fit into thescheme of things?

COURSE OUTCOME 2:

- What types of energy audits are there? How are energy consumption measurements and analyses conducted? What best practices and technology are there for saving energy?
- 2. What effect do HVAC units have on energy use? How may renewable energy systems and other energy sources be incorporated into energy conservation efforts? What part do energy management systems and building automation play in energy conservation?

COURSE OUTCOME 3:

- What function can energy management systems and building automation play in energy conservation, and how may energy conservation measures be put in placeand tracked?
- 2. How do going green and sustainable energy interfere? What are energy conservation rules and regulations, and how do they affect energy conservation efforts?

COURSE OUTCOME 4:

- Exactly what function does corporate social responsibility play in energy conservation? What are the benefits of energy certification and labelling, and how does it affect energy efficiency? Can you give an example of a successful energy conservation initiative?
- 2. How does green technology affect a building's or a firm's return on investment?

COURSE OUTCOME 5:

- What function do energy analysis and design play in energy conservation efforts? How else can energy consumption patterns be examined and deciphered? What function do energy management strategies play in attempts to save energy?
- Can you talk about the future prospects for energy conservation and energy auditing? What part do energy reporting and communication play in supporting energy conservation efforts?

21EE6706	ELECTRICAL SUBSTATION ENGINEERING	L	Т	Р	С
		3	0	0	3
Preamble					
This course	is to impart in students a good understanding of fundar	nenta	al of	elec	tricit
generation s	ystems. Electrical substations are supplementary parts of e	lectri	city	gene	ratio
systems, wh	ere voltage is transformed from high to low and vice versa	usin	g tra	ansfor	mer
Substations	containing step-up transformers increase voltage and decr	ease	curi	rent.	If th
current incr	contained within the substation is a step-down, the voltage	on d	ease ictril	s, an	u un
collector.	cases. There are three main types of substation. transmissi	011, u	130111	Jutioi	i, an
Prerequisites	s for the course				
 Transn Power 	nission and Distribution in Power Systems Ouality				
Objectives					
1.To provi	de knowledge about the Distribution systems.				
2. To discu	ss about the Design Consideration of Distribution Feeders and t	he lo	catio	on of	
Substa					
3. To impai	rt the knowledge on Power factor improvement.				
4.To intro	duce about the Voltage control technique and power loss calculation of the control technique and power loss calculation of technique a	ation.			
5. To learı	the objective of protection and coordination of distribution sy	stem			
	GENERAL CONCEPTS		-	9	
Introduction t	o distribution systems, Load modelling and characteristics. Coin	ncide	nce f	actor,	
Contribution f	actor loss factor - Relationship between the load factor and loss	d the	or. .ir		
characteristic:	S		11		
UNIT II	DISTRIBUTION FEEDERS AND SUBSTATIONS			9	
Design Consid	erations of Distribution Feeders: Radial and loop types of prima	ary fe	eder	s, vol	tage
levels, feeder	oading; basic design practice of the secondary distribution syst	em. I	ocat	ion of	f
Substations: R	ating of distribution substation, service area within primary fee	eders	Ben	efits	
UNIT III	gn optimal location of substations. COMPENSATION FOR POWER FACTOR IMPROVEMENT			9	
Canacitive cor	nnensation for nower-factor control Different types of nower c	anaci	tore	shun	tand
series canacito	prs. effect of shunt capacitors (Fixed and switched). Power factor	or cor	rect	ion.	c unu
capacitor allo	cation - Economic justification - Procedure to determine the bes	t cap	acito	r loca	tion.
UNIT IV	VOLTAGE CONTROL AND SYSTEM ANALYSIS	-		9	
Voltage Contro	ا bl: Equipment for voltage control, effect of series capacitors, eff	ect of	AVB	/AVR	, line
dron compone	ation. Voltage drop and power-loss calculations: Derivation for	[.] volta	ige d	Irop a	nd
arop compens	attent vertage allep and perior less calculations Derivation for		0	-	
power loss in	lines, manual methods of solution for radial networks, three ph	ase b	alan	ced	

U	NIT V	PROT	ECTION AND COORDINATION		9
Obje calcu secti Proc	ctives of dist ilations. Prote onalizes, and edure.	ribution syster ective Devices: circuit breaker	n protection, types of common fai Principle of operation of Fuses, Cir s. Coordination of Protective Device	ults and p cuit Reclos es: General	rocedure for faul sures, and line coordination
			Total P	eriods	45
Sugg	gestive Asses	sment Method	s		
Cont	tinuous Asse (30 Marks)	ssment Test	Formative Assessment Test (10 Marks)	End Sem (60 Mark	ester Exams (s)
WRITTEN TEST1.ASSIGNMENTWRITTEN					ITTEN TEST
			2. ONLINE QUIZZES		
			3.PROBLEM-SOLVING ACTIVITIES		
Outo	comes		11		
Upo	n completion	n of the course	, the students will be able to:		
1	Understand t	he Basic concep	ts distributed system and types of load	1.	
2	Understand t	he concepts of d	esign of distributed feeders and location	on of substa	ation.
3	Understand t	he importance of	f power factor improvement.		
4	Analyze the	basic concepts o	f voltage control and system analysis.		
5	Understand t	he importance of	f protection and coordination.		
Text	t Books				
1.	'Electric I Company.	Power Distribut	ion system, Engineering' – by Turar	n Gonen, M	c Graw-hill Book
2.	'Electric F edition, 19	ower Distribut 97.	ion' – by A.S. Pabla, Tata Mc Graw-h	ill Publishi	ng company, 4th
Refe	erence Books	5			
1.	'Electrica & Co, 2006	l Power Distrib	ution and Automation' by S.Sivanag	araju, V.Sa	nkar, Dhanpat Rai
2	. 'Electrica	l Power Distrib	ution Systems' by V.Kamaraju, Right	t Publisher	S.
Web	Recourses				
	1. <u>http</u>	s://www.youtu	be.com/watch?v=5Y XAQMXsC8	10/	

CO Vs PO Mapping and CO Vs PSO Mapping

<u> </u>	PO	P01	P01	P01	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	2	1	2
1	3	1										2	3	
2	3	2										2	3	
3	3	2										2	3	
4	3	2										2	3	
5	3	1										2	3	

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	10	10			10
UNDETSTAND	40	40	10	10	40
APPLY	30	30	10	10	30
ANALYZE	20	20	5	5	20
EVALUATE					
CREATE					
	100	100	25	25	100

1-Low , 2- Medium, 3- High

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Students will be able to Predict the suitable method for....

1. Draw a schematic single line diagram of an electrical distribution system and explain its typical parts in detail. (Analyze)

 Discuss the characteristics of the following categories of loads: (i) Residential (ii) Commercial (iii) Agriculture (iv) Industrial. (Understand)

COURSE OUTCOME 2:

- 3. Discuss in detail about the basic design practice of the secondary distribution system with necessary schematics. (Understand)
- 4. Compare the four and six feeder's patterns in substation location. (Apply)

COURSE OUTCOME 3:

- 1. Discuss the effect of shunt compensation on the distribution system. (Understand)
- 2. Explain the economic justification of installing a capacitor in a distribution system. (Understand)

COURSE OUTCOME 4:

- 1. Briefly explain the line drop compensation on voltage control. (Understand)
- 2. Prove that the power loss due to load currents in the conductors of the 2- phase, 3-wire lateral with multi-grounded neutral is approximately 1.64 times larger than the one in the equivalent 3- phase lateral. (Apply)

COURSE OUTCOME 5:

- Discuss the procedure for fault current calculation in following faults: i)Three phase Ground fault. (ii) Phase to phase ground fault. (Understand)
- 2. Discuss the overall coordination procedure employed for protection of distribution systems. (Understand)

PROFESSIONAL ELECTIVE IV

		L	Τ	Р	С
21EE6707	DESIGN OF SMPS AND UPS	3	0	0	3
Preamble					
This course i	s designed to impart knowledge about the characteristics of p	ower	sem	icond	uctor
devices, worl	king principle and Analysis of DC-DC converters, Switched Mo	de Po	wer	Conv	erters,
Resonant Cor	nverters, DC-AC Converters.				
Prerequisites	s for the course				
1. Power E	lectronics				
Objectives					
1. To intr	oduce the impart knowledge about state space model for DC –	DC co	nver	ters.	
2. To disc	cuss about switched mode power converters.				
3. To Dise	cuss about Resonant Converters.				
4. To intr	oduce PWM techniques for DC-AC converters.				
5. To lear	m about filters and UPS and its applications in electric power u	tility.			
UNIT I	DC-DC CONVERTERS			9	
Principles of s	step down and step-up converters – Analysis and state spa	ice m	odel	ing of	f Buck,
Boost, Buck- B	Boost and Cuk converters.				
UNIT II	SWITCHED MODE POWER CONVERTERS			9	
Analysis and s	state space modeling of fly back, Forward, Push pull, Luo, Half	bridg	e an	d full	bridge
converters- co	ntrol circuits and PWM techniques.				
UNIT III	RESONANT CONVERTERS			9	
Introduction-	classification- basic concepts- Resonant switch- Load Reson	ant c	onve	erters	, ZVS ,
Clamped volta	age topologies- DC link inverters with Zero Voltage Switchin	g- Se	ries	and p	oarallel
Resonant inve	rters- Voltage control.				
UNIT IV	DC-AC CONVERTERS			9	
Single phase a	and three phase inverters, control using various (sine PWM,	SVPW	/M a	nd PS	SPWM)
techniques, va	rious harmonic elimination techniques- Multilevel inverters Co	oncep	ts - 1	ypes	:
Diode clamped	d- Flying capacitor- Cascaded types- Applications.				

UNITV	POWER CON	NDITIONERS, UPS & FILTERS		9
Introduction	- Power line distu	rbances- Power conditioners –I	JPS: offli	ne UPS, Online UP
Applications	– Filters: Voltage	filters, Series-parallel resonant	filters,	filter without serie
capacitors, fi	lter for PWM VSI, cu	rrent filter, DC filters – Design of i	nductor a	nd transformer for F
applications	– Selection of capaci	tors.		
		Total	Periods	45
Suggestive A	ssessment Method	ls		
Continuous	Assessment Test	Formative Assessment Test	End Se	mester Exams
(30 Ma	arks)	(10 Marks)	(60 Ma	rks)
		1. ASSIGNMENT		
WRI	FTEN TEST	2. ONLINE QUIZZES	и	/RITTEN TEST
		3. PROBLEM-SOLVING		
		ACTIVITIES		
Outcomes				
Upon compl	etion of the course	, the students will be able to:		
1 Analyz	e the state space mo	del for DC – DC converters.		
2 Acquir	knowledge on swit	ched mode nower converters		
2 nequit	- knowledge on swit	encu mode power converters.		
³ Unders	tand the importance	e of Resonant Converters.		
4 Analyz	e the PWM technique	es for DC-AC converters.		
5 Acquire	e knowledge on filter	rs and UPS, modern power electron	nic conver	ters and its
applica	tions in electric pow	er utility.		
Text Books				
1. Simo	n Ang, Alejandro Oliv	va," Power-Switching Converters",	Third Edi	tion, CRC Press,
2010				
	l Thorborg, "Power I	Electronics – In theory and Practice	e", Overse	as Press, First Indian
2. Kjelo	0,	-		
2. Kjelo Editio	on 2005.			

- 1. Philip T Krein, "Elements of Power Electronics", Oxford University Press
- 2. Ned Mohan, Tore.M. Undeland, William. P. Robbins, Power Electronics converters, Applications and design- Third Edition- John Wiley and Sons- 2006
- 3. M.H. Rashid Power Electronics circuits, devices and applications- third edition Prentice

Hall of India New Delhi, 2007.

Web Recourses

1. <u>https://nptel.ac.in/courses/108102145</u>

2. https://nptel.ac.in/courses/108101038

CO Vs PO Mapping and CO Vs PSO Mapping

CO	PO	P01	P01	P01	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	2	1	2
1	3	3	2						2				3	
2	3	3	2						2				3	
3	3	3	2						2				3	
4	3	3	2						2				3	
5	3												3	

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	10	10			10
UNDETSTAND	40	40	10	10	40
APPLY	30	30	10	10	30
ANALYZE	20	20	5	5	20
EVALUATE					
CREATE					
	100	100	25	25	100

1-Low , 2- Medium, 3- High

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Students will be able to Predict the suitable method for....

- With circuit summarize the analysis and state space modeling ofboost DC converters. (Analyze)
- 2. Draw and explain the analysis and state space modeling of CUKconverters with its applications. (Apply)

COURSE OUTCOME 2:

- 1. Draw the basic control circuit for power converter. (Apply)
- Explain the analysis and state space modeling of flyback converter with applications. (Apply)

COURSE OUTCOME 3:

- 1. State the basic concept of resonant converter. (Understand)
- 2. Explain with circuit working of series resonant converter. (Apply)

COURSE OUTCOME 4:

- 1. Summarize diode clamped multilevel inverter concept. (Analyse)
- 2. With circuit explain three phase inverter control using sine PWMtechnique. (Apply)

COURSE OUTCOME 5:

- 1. Sketch the circuit for voltage filter. (Apply)
- 2. With circuit diagram explain the working principle of online UPS.(Apply)
F പി . 1 d Sullahi ם ו v

ancis Xavier E	ngineering college Dept of EEE R2021/Curriculum and Syllab)]			
21EE6708	DESIGN OF ELECTRICAL INSTALLATIONS	L	Τ	Р	С
		3	0	0	3
reamble					
It is essential	for the practicing engineers to identify the basic practices an	d safe	ety n	neasu	res in
electrical inst	allations. Design of Electrical Installation gives the basic inst	allatio	on of	felec	tronic
iardware syst	ems familiarization, identification, testing, assembling, disman	tling,	fabri	icatio	n and
epairing such	systems by making use of the various tools and instruments.				
Prerequisites	s for the course				
1. Desigr	of Electrical Apparatus				
2. Transn	nission and Distribution				
Objectives					
1. To uno	lerstand the basic concepts, design and estimation of distributi	on sy	stem	IS,	
substat	tion.				
2. To ena	ble candidate to design earthing system for residential and com	imerc	ial.		
3. To und	erstand practical aspects of condition monitoring of various ele	ectrica	al eq	uipme	ents.
4. To acq	uire the knowledge on maintenance of various electrical equipr	nents			
5. To lear	n the testing of various electrical equipments.				
UNIT I	INTRODUCTION			9	
Purpose of e	stimating and costing, proforma for making estimates, prep	aratio	on o	f mat	erials
chedule, cost	ing, price list, tender document, net price list, market surve	y, ove	erhea	ad ch	arges,
abour charge	es, electrical point method and fixed percentage method,	cont	inge	ncy, j	profit,
purchase syst	em, enquiries, comparative statements.				
UNIT II	ESTIMATING AND COSTING DOMESTIC INSTALLATIONS			8	
Standard prac	tice as per IS and IE rules. Planning of circuits, sub-circuits and	l posi	tion	of dif	ferent
accessories, el	ectrical layout, preparing estimates including cost as per sche	dule r	ate p	oatter	n and
actual market	rate (single storey and multi-storey buildings having similar el	ectric	al lo	ad)	
UNIT III	ESTIMATING AND COSTING INDUSTRIAL INSTALLATIONS:			8	
Relevant IE ru	lles and IS standard practices, planning, designing and estimat	ion of	finst	allati	on for
single phase r	notors of different ratings, electrical circuit diagram, starters,	prepa	aratio	on of	list of
naterials, est	mating and costing exercises on workshop with single phase	, 3-ph	nase	moto	r load
and the light	load (3-phase supply system), Service line connections estim	ate fo	or do	mesti	c and
Industrial load	ls (over-head and Under- ground connections) from pole to en	ergy n	neter	r.	

Francis	s Xavier Engineering	College Dept of EEE R2021/Curriculum a	nd Syllal	Di			
U	NIT IV ESTIMA	ESTIMATING AND COSTING TRANSMISSION AND 9 DISTRIBUTIONLINES					
Plan	ning and designin	nd designing of lines with different fixtures, earthing etc. based on unit cost					
calcu	calculations Substation: Types of substations, substation schemes and components, estimate of						
11/0	0.4 KV pole mounted	substation up to 200 KVA rating.					
U	NIT V	INSTALLATION PLAN FOR MACHINES 11					
Insta	allation plan, single	line diagram and prepare the estimate of c	ost and li	st of material for the			
follo	wing 2HP 3-phase	nduction Motor for screw milling machine,	3HP 3-pl	nase Induction Motor			
for s	small lathe,5HP 3-p	hase Induction Motor for milling machine	, one 1H	P 3-phase Induction			
Mot	or for grinder Instal	ation plan, single line diagram and prepare	the estin	nate of cost and list of			
mate	erial for the followir	g machinery.5, 3, 1, 1/2 HP 3-Phase 400v In	duction l	Motor.			
		Total	Periods	45			
Sug	gestive Assessmen	Methods					
Con	tinuous Assessmer	t Formative Assessment Test	End Se	nd Semester Exams			
Test	t	(10 Marks)	(60 Marks)				
	(30 Marks)	1 ASSIGNMENT					
		2 ONLINE OUT77ES					
	WRITTEN TEST 2. ONLINE QUIZZES			VRITTEN TEST			
		ACTIVITIES					
Out	comes		J				
Upo	n completion of th	e course, the students will be able to:					
1	Estimation and co	ting of residential and commercial building	s.				
2	Learn Distribution	systems, its types and substations.					
3	Condition monitor	ing and Testing of various electrical equipm	ents.				
4	Describe substatio	n readings, planning and cost estimation.					
5	5 Identify tools, appliances, special outlets, motors and motor circuits.						
Text	t Books						
1. A	Course in Electrica	Installation, Estimating and Costing by J.B	Gupta, S.I	K Kataria andSons,			
2	2nd edition,2013.						
2. E	lectrical Design: Est	imation & Costing by Raina & Battacharya, V	Wiley Eas	stern, 2ndedition,			
2	2009.						

Reference Books

- 1. Estimating and Costing by S.K Bhattacharya, Tata McGraw Hill, 3 rd edition, 2006.
- 2. Estimating and Costing by Surjeet Singh, Dhanpat Rai & Co., 2 nd edition, 2003.
- 3. Estimating and Costing by S.L Uppal, Khanna Publishers, 2 nd edition, 2004.

Web Recourses

- 3. <u>https://electrical-engineering-portal.com/design-electrical-installation</u>
- 4. <u>https://www.udemy.com/course/electrical-installations-design/</u>
- 5. <u>https://mscelectrical.com/electrical-installation-design-for-beginners/</u>

CO Vs PO Mapping and CO Vs PSO Mapping

<u> </u>	PO	P01	P01	P01	PSO	PSO								
CU	1	2	3	4	5	6	7	8	9	0	1	2	1	2
1	3		3		2									3
2	3		3		2									3
3	3		3		2									3
4	3		3		2									3
5	3		3		2									3

1-Low, 2- Medium, 3- High

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	10	10	5	5	10
UNDETSTAND	30	30	10	10	30
APPLY	60	60	10	10	60
ANALYZE	0	0	0	0	0
EVALUATE	0	0	0	0	0
CREATE	0	0	0	0	0

Francis Xavier Engineering College| Dept of EEE | R2021/Curriculum and Syllabi COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Students will be able to Predict the suitable method for

- 1. What are the standard color codes for phase, neutral and earth wire? (Apply)
- 2. What is the importance of wiring diagrams and symbols? (Apply)

COURSE OUTCOME 2:

- 1. Mention few house wiring rules as per ISI specification. (Understand)
- 2. What are the different types of earthing methods? (Understand)

COURSE OUTCOME 3:

- 1. Which test is conducted to determine the healthiness of the domestic wiring?(Apply)
- 2. Name the instrument used for measurement of insulation resistance. (Understand)

COURSE OUTCOME 4:

- 1. What are the materials used for manufacturing heating element? (Understand)
- 2. Mention functions of various parts of motors and pumps. (Understand)

COURSE OUTCOME 5:

- 1. What are the steps for planning electrical wiring work? (Apply)
- 2. Mention the criteria for selection of wiring cables(Apply)

21EE6709	SMART GRID TECHNOLOGIES	L	Τ	Р	С
		3	0	0	3
Preamble					
The general	goals of Smart Grid are to ensure a transparent, sustainable	and	envi	ronm	ental-
friendly syst	em operation that is cost and energy efficient, secure and	1 safe	e. Ob	jectiv	ves of
developing th	ne Smart Grid are quite different from country to country for th	eir va	riou	s den	iands
and start poin	nts.				
Prerequisites	s for the course				

1. Transmission and Distribution

To understand concept of smart grid and developments on smart grid.

To understand smart grid technologies and application of smart grid concept in hybrid electric vehicles etc.

To have knowledge on smart substations, feeder automation and application for monitoring and protection.

To have knowledge on micro grids and distributed energy systems.

To know power quality aspects in smart grid.

INTRODUCTION TO SMART GRID

9

Evolution of Electric Grid, Concept of Smart Grid, Definitions, Need of Smart Grid, Functions of Smart Grid, Opportunities & Barriers of Smart Grid, Difference between conventional & smart grid, Concept of Resilient &Self-Healing Grid, Present development & International policies on Smart Grid. Case study of Smart Grid.

UNIT II	SMART GRID TECHNOLOGIES	9

Smart Substations, Substation Automation, Feeder Automation. Geographic Information System (GIS), Intelligent Electronic Devices (IED) & their application for monitoring & protection, Smart storage like Battery, SMES, Pumped Hydro, Compressed Air Energy Storage, Wide Area Measurement System (WAMS), Phase Measurement Unit (PMU).

UNIT III	MICRO GRIDS AND DISTRIBUTED ENERGY RESOURCES	9

Concept of micro grid, need & applications of microgrid, formation of microgrid, Issues of interconnection, protection & control of microgrid. Plastic & Organic solar cells, Thin film solar cells, Variable speed wind generators, fuelcells, microturbines, Captive power plants, Integration of renewable energy sources.

UNIT IV	HIGH PERFORMANCE COMPUTING FOR SMART	9
	GRID APPLICATIONS	

Local Area Network (LAN), House Area Network (HAN), Wide Area Network (WAN), Broadband

over Power line (BPL), IP based Protocols, Basics of Web Service and cloud Computing to make Smart Grids smarter, Cyber Security for Smart Grid.

UNIT V	POWER QUALITY MANAGEMENT IN SMART	9
	GRID	
Power Quality	& EMC in Smart Grid, Power Quality issues of Grid connecte	d Renewable Energy
Sources, Powe	er Quality Conditioners for Smart Grid, Web based Power Quali	ty monitoring, Power
Quality Audit.		

of FFF | P2021 /C 4 6 llahi Fr ~1 n 1 11

		Тс	otal Periods	45
Sugg	gestive Assessment M	ethods	I_	
Continuous Assessment		Formative Assessment Test	End Sen	nester Exams
Test		(10 Marks)	(60 Mar	·ks)
	(30 Marks)			
WRITTEN TEST		1. ASSIGNMENT 2. ONLINE QUIZZES 3. PROBLEM-SOLVING ACTIVITIES	W	RITTEN TEST
Outo	comes			
Upo	n completion of the c	ourse, the students will be able to:		
1	understand smart gr grids.	ids and analyse the smart grid pol	icies and deve	elopments in smar
2	develop concepts of s	mart grid technologies in hybrid elec	trical vehicles	etc.
3	understand smart sub	ostations, feeder automation, GIS etc.		
4	analyse micro grids a	nd distributed generation systems.		
5	analyse the effect of J ICT for smart grid.	oower quality in smart grid and to u	nderstand late	est developments i
Tovt	Books			
1. Ali	i Keyhani, Mohammad	N. Marwali, Min Dai "Integration of G	reen and Rene	ewable Energy in
Elect	tric Power Systems", W	'iley		
2. Cla	ark W. Gellings, "The Sı	nart Grid: Enabling Energy Efficiency	7 and Demand	Response",CRC
Pres	S			
Refe	rence Books			
1. An Susta 2. Jan Distr 3. Ml Auto	ndres Carvallo, John Co ainability:1", Artech Ho mes Northcote, Green, ribution Systems (Powo adenKezunovic, Mark omation (Power Electro	oper, "The Advanced Smart Grid: Edg ouse Publishers July 2011 Robert G. Wilson "Control and Auton er Engineering)", CRC Press G. Adamiak, Alexander P. Apostolov, onics and Power Systems)", Springer	ge Power Drivi nation of Electr Jeffrey George	ng ric Power Gilbert "Substatio
Web	Recourses			
	• <u>https://www</u>	<u>youtube.com/watch?v=fojsAvPjgRs</u>		
	• <u>https://www</u>	youtube.com/watch?v=4L31dHXP6	<u>i0</u>	

CO Vs PO Mapping and CO Vs PSO Mapping

60	PO	P01	P01	P01	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	2	1	2
1	3		3		2									3
2	3		3		2									3
3	3		3		2									3
4	3		3		2									3
5	3		3		2									3

1-Low , 2- Medium, 3- High

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	10	10	5	5	10
UNDETSTAND	30	30	10	10	30
APPLY	60	60	10	10	60
ANALYZE	0	0	0	0	0
EVALUATE	0	0	0	0	0
CREATE	0	0	0	0	0

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Students will be able to Predict the suitable method for

- 1. Evaluate the necessity of Smart Grid system. (Evaluate)
- 2. Examine the major global smart grid initiatives in India. (Apply)

COURSE OUTCOME 2:

- 1. Examine the wide area monitoring system in a transmission network. (Apply)
- 2. Estimate the distribution SCADA. (Understand)

COURSE OUTCOME 3:

1. Discuss the common information model. (Apply)

2. Integrate the Intelligent Electronic Devices (Understand)

COURSE OUTCOME 4:

- 1. Analyze the Thyristor-controlled phase shifting transformer. (Understand)
- 2. Examine the web-based power quality monitoring. (Understand)

COURSE OUTCOME 5:

- 1. Describe the Mitigation Approach to Cyber Security Risks? (Apply)
- 2. Explain the real time path rating. (Understand)

21EE6710	ELECTRICAL SAFETY AND QUALITY ASSURANCE	L	Т	Р	C							
		3	0	0	3							
Prerequisites i	for the course											
Objectives												
• To impar	t knowledge on the electrical hazards											
• To learn about concept of electricity.												
• To know	• To know about various safety portable tools											
• To under	stand the quality management.											
• To imple	ment various accreditation methods.											
Syllabus												
UNIT I	ELECTRICAL HAZARDS		Ģ)								
Review of Elec	ctrical concept, Electrostatic – Electro magnetism – Electrical H	azar	ds –	Ener	gy							
leakage – Clea	rance and insulation- Current surges - Electrical causes of fire	and	expl	osion	ı –							
Human interfac	ce with electricity–Human resistance to electricity											
UNIT II	STANDARDS AND REQUIREMENTS		Ģ)								
National electr	ical Safety code - Standards and statutory requirements – Indian el	ectri	icity a	icts a	nd							
rules – statutory requirements from Electrical inspectorate. Hazardous area classification and												
classification of electrical equipments for hazardous areas (IS, NFPA, API and OSHA standards).												
UNIT III	ELECTRICAL PROTECTION AND MAINTENANCE		Ģ)								
Selection of En	Selection of Environment, Protection and Interlock–Discharge rods and earthing device–Safety in											
the use of por	the use of portable tools - Preventive maintenance. First aid-cardio pulmonary resuscitation											
(CPR).	(CPR).											

UNIT IV STANDARDIZATION OF QUALITY MEDICAL CARE IN 9 HOSPITAL 9										
Define Quality	Define Quality- Need for Standardization & Quality Management, QM in Health care organization-									
Quality assura Classification o	nce methods, QA in (Medical Imaging & Nuclear medicine) Diag of equipments	nostic services –								
UNIT V	REGULATORY REQUIREMENT FOR HEALTH CARE	9								
CE and FDA regulations, Accreditation for hospitals-JCI, NABH and NABL, Other regulatory Codes.										

Suggestive Assessment Methods											
Cont	tinuous Assessment	Formative Assessment Test	End Semester Exams								
Test		(10 Marks)	(60 Marks)								
	(30 Marks)										
(i) on- (ii)	Google Form based- lineTest Written Test	(i) Google Form based – online Test incorporating Listening, Speaking and Reading	WRITTEN TEST								
Outo	comes										
Upo	n completion of the c	ourse, the students will be able to:									
1	1 Understand the concept of Electrical hazards										
2	The purpose of this c	ourse is to help students to develop know	ledge and insight into the								
	procedures used in q	uality control and assurance activities as v	well as safety measures to be								
	followed in hospitals										
3	Analyze the safety po	rtable tools and First aid.									
4	Understand the Quali	ty Management.									
5	Understand the conce	ept of electricity act.									
Text	t Books										
1. B.N	A.Sakharkar, Principles	of Hospital administration and Planning,	JAYPEE Brothers,								
Medical Publishers (P)Ltd.24											
Reference Books											
1. Webster J.G and Albert M.Cook, Clinical Engg, Principles & Practices, Prentice Hall Inc.,											
Engl	ewoodCliffs,New Jersy	,1979.									

Web Recourses

- <u>https://youtu.be/x7gr0rctsrE</u>
- <u>https://nptel.ac.in/courses/108105088</u>

CO Vs PO Mapping and CO Vs PSO Mapping

60	PO	P01	P01	P01	PSO	PSO								
LU	1	2	3	4	5	6	7	8	9	0	1	2	1	2
1	3	2	3		3		2	2			2		2	2
2	3	3	3		3		3	2			3		2	2
3	3	3	3		3		3	2			3		2	2
4	3	2	3		3		3	2			3		2	2
5	3	3	3		3		3	2			3		2	2

1-Low, 2-Medium, 3-High

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	10	10	5	5	10
UNDETSTAND	30	30	10	10	30
APPLY	60	60	10	10	60
ANALYZE	0	0	0	0	0
EVALUATE	0	0	0	0	0
CREATE	0	0	0	0	0

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1 (CO 1):

- 1. Describe the basic electronic circuits (Understand)
- 2. Draw and explain the general rules and parameters in PCB design.(Analyse)

COURSE OUTCOME 2 (CO 2):

- 1. Design the rules for Digital circuit PCBs (Analyse)
- 2. Describe the high frequency and fast pulse applications (Understand)

COURSE OUTCOME 3 (CO 3):

- 1. List the application of Analog circuit PCBs. (Remember)
- 2. Summarize the different techniques for design rules for Digital circuitPCB(Understand)

COURSE OUTCOME 4 (CO 4):

- 1. Explain the construction, working principle of Multilayer PCBs. (Understand)
- 2. Draw and explain the Multiwire PCB (Analyse)

COURSE OUTCOME 5 (CO 5):

- 1. Explain briefly Subsystem/PCB Placement in an enclosure? (Understand)
- 2. Describe the Electronic discharge protection. (Understand)

21EE6711	INTELLIGENT SYSTEMS AND CONTROL	L	Т	Р	С
		3	0	0	3
Preamble					

Intelligent control describes the discipline in which the control methods developed attempt to emulate important characteristics of human intelligence. These characteristics include adaptation and learning, planning under large uncertainty, and coping with large amounts of data.

Prerequisites for the course

1. Control Theory

Objectives

- 1. To learn the basic concepts of Soft Computing
- 2. To become familiar with various techniques like neural networks, genetic algorithms and

fuzzy systems.

- 3. To apply soft computing techniques to solve problems.
- 4. Introduce and use the idea of Neural networks, fuzzy logic and use of heuristics based onhuman experience
- 5. Introduce and use the concepts of Genetic algorithm and its applications to soft computing

rancis Xavier Engine	eering Coll	ege Dept of EEE R2021/Curriculum a	nd Syllal	Di
using some	applicatio	ns.		
UNIT I		Artificial Neural Networks		9
Basic – concepts -	single lay	er perception - Multi layer perception -	Supervis	sed and
unsupervised lear	ning back	propagation networks, Application.		
UNIT II		Fuzzy Systems		9
Fuzzy sets and F	uzzy Reas	oning - Fuzzy Matrices - Fuzzy Functi	ons – D	ecomposition - Fuzzy
automated and lar	nguages -	Fuzzy Control Methods - Fuzzy decision	making	, Applications.
UNIT III		Neuro-Fuzzy Modelling		9
Adaptive networl	ks based	Fuzzy Interfaces - Classification and	Represe	ntation Trees - Data
dustemp algorithr	n –Rule ba	ase structure Identification – Neuro - Fu	zzy cont	rols
UNIT IV		Genetic Algorithm		9
Survival of the fi	ittest - pi	ctures computations - cross over mu	tation –	reproduction - ranl
method - rank spa	ice method	l, Application.		
UNIT V		Artificial Intelligence		9
AI Search algorit	hm - Preo	dicate calculus rules of interface – Se	mantic	networks – frames -
objects - Hybrid m	nodels, app	olications.		
		Total Pe	eriods	45
Suggestive Assess	ment Met	thods		
Continuous Asse	ssment	Formative Assessment Test	End	Semester Exams
Test		(10 Marks)		(60 Marks)
(30 Marks)	4 ACCLONMENT		
		2. ONLINE QUIZZES PROBLEM-	V	VRITTEN TEST
WRITTEN	TEST	SOLVING		
		3. ACTIVITIES		
Outcomes				
Upon completion	of the cou	rse, the students will be able to:		
1 Identify and	d describe	e soft computing techniques and their	r roles i	n building intelligen
machines.				
2 Analyse fuzz	zy system	concepts and perform calculations in Fu	zzy sets	and matrices.
3 Recognize	the feasib	ility of applying a soft computing n	nethodo	logy for a particula
problem.				

	DΟ	ΡΛ	ΡO	PO	ΡO	PO	ΡO	PO	PO	P01	P01	P01	PSO	PSO
C	O Vs P	О Мар	pinga	and CC) Vs PS	SO Ma	pping							
3.	<u>https:</u>	//ww	w.clas	<u>scentr</u>	<u>al.com</u>	<u>/cour</u>	<u>se/swa</u>	ayam-	introd	<u>uction-</u>	<u>to-soft-</u>	<u>comput</u>	<u>ing-10(</u>	<u>)53</u>
Δ.	<u>nttps:</u>	<u>//onli</u>	<u>necou</u>	<u>rses.n</u> j	<u>ptel.ac</u>	<u>.in/no</u>	<u>CZU CS</u>	<u>s17/pi</u>	<u>eview</u>	<u>_</u>				
)	https://	//onl:		,		in /n -	<u></u>	17/						
1.	https:	//npte	el.ac.ir	n/cour:	ses/10)6105	173							
Web	Recou	irses												
Pre	entice H	Hall, 19	996.											
3.	George	J. Kli	r and	Βο Υι	ıan, —	Fuzzy	v Sets	and 1	Fuzzy	Logic-	Theory	and A	pplica	tions ,
2. I	Kwang	H.Lee,	-Firs	st cour	rse on	Fuzzy	7 Theo	ry an	d App	licatio	ıs∥ , Spr	inger, 2	005.	
Pre	entice-l	Hall of	India,	, 2002.										
1. J	lyh-Shi	ng Rog	ger Jai	ng, Chu	ıen-Ts	ai Sur	ı, Eiji N	Mizuta	ni, —N	leuro-F	uzzy a	nd Soft	Comp	uting ,
Refe	rence	Books	5											
Alg	gorithr	n, Syn	thesis	s and A	Applic	ations	s ", PHI	l Lear	ning P	vt. Ltd.,	2017.			
3.	S. Raja	sekara	n, G. A	A. Vijay	alaksh	mi Pa	i, " Neu	iral N	etwor	ks, Fuz	zy Logi	c and G	enetic	
2n	dEditio	n, 201	1.											
2.	S. N. Siv	vanano	dham	, S. N. I	Deepa,	"Prin	ciples	of So	ft Com	puting	", Wiley	' India P	vt. Ltd.	,
Un	iversity	Press	, 2015	5.										
1.	N. P. Pa	adhy, S	S. P. Si	mon, "	Soft Co	ompu	ting w	ith M	ATLAI	3 Progr	ammin	g ", Oxfo	ord	
Гext	Books	5												
	appr	oach a	and ev	aluate	variou	ıs soft	comp	utinga	ipproa	ches fo	r a give	n probl	em.	
5	Effec	tively	use	moder	n soft	ware	tools	to so	ve re	al prob	lems u	sing a	soft co	mputi
	patte	ern cla	ssifica	ation a	nd reg	ressio	n prob	lems.		L.				
	gene	tic alg	gorith	ms to	comb	inator	rial op	otimiza	ation	problen	ns and	neural	netwo	orks to
4	Appl	v fuzz	v logi	c and	reason	ning to	hand	le unc	ertain	tv and	solve e	ngineer	ing pro	blems.

СО	PO	PO	РО	РО	РО	РО	PO	РО	PO	P01	P01	P01	PSO	PSO
ιυ	1	2	3	4	5	6	7	8	9	0	1	2	1	2
1	2	1	2	1	2	1							2	2
2	3		2	1	1	1							1	1
3	1	1	2	1	2	1	1						1	1
4	2	1	2	1	1	1	1						1	1
5	1	1	2	1	2	1	1						2	2

1-Low, 2- Medium, 3- High

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	10	10	5	5	10
UNDETSTAND	30	30	10	10	30
APPLY	60	60	10	10	60
ANALYZE	0	0	0	0	0
EVALUATE	0	0	0	0	0
CREATE	0	0	0	0	0
Total	100	100	50	50	100

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1:

- 1. What do you understand by Soft Computing? Explain Difference between Soft Computing and Hard Computing.
- 2. Explain different techniques used in soft computing.

COURSE OUTCOME 2:

- 1. Distinguish between Supervised Learning and Unsupervised Learning.
- 2. Explain ADALINE and MADALINE Network.

COURSE OUTCOME 3:

- 1. Explain the working of Back propagation neural network.
- 2. Explain in brief Counter Propagation network.

COURSE OUTCOME 4:

- 1. How does Genetic Algorithm is differing from traditional algorithms? Give the advantages of GA over traditional algorithms.
- 2. Explain different types of crossover functions in Genetic Algorithm.

COURSE OUTCOME 5:

- 1. What is Fuzzy Logic? Distinguish between Fuzzy Set and Crisp Set.
- 2. Explain different types membership functions used in Fuzzification process.

21FF	6712	LOW POWER VI SI DESIGN	L	Τ	Р	С
2 I L L	.0712		3	0	0	3
Prea	mble					
*	Over th	ne past few decades, the discipline of Low Power VLSI Design h	nas ad	lvano	ced qu	uickly
	due to	the rising demand for energy-efficient electronics in a s	ociet	y w	nere	energy
	consun	nption has emerged as a major issue.				
*	The de	mand for low-power electronic circuits has increased with	the o	deve	lopme	ent of
	portabl	le electronic devices like smartphones and laptops.				
*	The go	al of low-power VLSI design is to create circuits with acceptab	le pe	rforr	nance	, cost,
	and rel	iability while using less power.				
*	This in	dustry aims to create energy-saving gadgets that will he	p pr	eser	ve na	tural
	resour	ces and lessen our planet's carbon imprint.				
Prere	quisites	s for course				
1.	Analog	and Digital Circuit				
2.	Circuit	Analysis				
3.	Basic E	lectronics				
4.	Mather	natics				
Objec	tives					
1.	To imp	art knowledge of the various low-power design strategies an	nd teo	chnic	jues f	or
	VLSI ci	rcuits.				
2.	To deve	elop the ability to analyze and optimize digital circuit power co	onsun	nptic	on usi	ng
	various	s power reduction techniques such as power gating, clock g	ating,	and	volta	ige
	scaling					
3.	To fami	liarize students with CAD tools and methodologies for low-po	ower	VLSI	desig	gn,
	includi	ng power analysis, timing analysis, and logic synthesis.				
4.	To ena	ble students to apply low-power design concepts to real-	worl	d pr	oblen	15,
	includi	ng the design of low-power VLSI circuits for portable electronic	c devi	ces.		
5.	To prov	ide an understanding of the trade-offs between power consum	ption	,		
	perforr	nance, and cost in low-power VLSI design, and the impact of th	ese tr	ade-	offs o	n
	the ove	erall design process.				

	Lov	w Power Microelectronics		9						
Retrospect an	nd Prospect - Fun	damentals of power dissipation i	n micro	electronic devices						
Estimation of	power dissipation	due to switching, short circuit, sub	threshol	d leakage, and dioc						
leakage curre	nts.									
UNIT II	Device & T	Fechnology Impact on Low Power		9						
Dynamic dissi	ipation in CMOS - 7	Fransistor sizing & gate oxide thick	mess - I	mpact of technolog						
Scaling - Tech	nology & Device inr	novation.								
UNIT III	Simulation Po	wer and Probabilistic power anal	ysis	9						
SPICE circuit simulators, gate-level logic simulation, capacitive power estimation, static state										
power, gate le	evel capacitance est	timation, architecture level analysis	, data co	orrelation analysis						
DSP systems	. Monte Carlo si	mulation. Random logic signals,	proba	bility & frequend						
probabilistic p	oower analysis tech	niques, signal entropy.								
UNIT IV	Low Vol	tage Technologies and Circuits		9						
Threshold Vo	ltage Scaling and	Control, Multiple Threshold CMOS	G (MTCN	40S), Substrate Bi						
Controlled Va	ariable Threshold	CMOS. Testing Issues: Design and	l test o	f low-voltage CM(
circuits.	circuite									
UNIT V	Algorithm an	d architectural level methodologi	ies	9						
UNIT V	Algorithm an	d architectural level methodologi	i es tion. Are	9 chitectural level						
UNIT V Introduction,	Algorithm an design flow, algori d synthesis.	d architectural level methodologi ithmic level analysis and optimizat	ies tion, Arc	9 chitectural level						
UNIT V Introduction, estimation and	Algorithm an design flow, algori d synthesis.	d architectural level methodologi ithmic level analysis and optimizat Total Pe	ies tion, Arc riods	9 chitectural level 45						
UNIT V Introduction, estimation and	Algorithm an design flow, algori d synthesis.	d architectural level methodologi ithmic level analysis and optimizat Total Pe	i es tion, Arc riods	9 chitectural level 45						
UNIT V Introduction, estimation and Suggestive As	Algorithm an design flow, algori d synthesis. ssessment Method	d architectural level methodologi ithmic level analysis and optimizat Total Per s	ies tion, Arc riods End	9 chitectural level 45						
UNIT V Introduction, estimation and Suggestive As Continuous	Algorithm an design flow, algori d synthesis. ssessment Method Assessment Test Marks)	d architectural level methodologi ithmic level analysis and optimizat Total Per s Formative Assessment Test (10 Marks)	ies tion, Arc riods End	9 chitectural level 45 Semester Exams (60 Marks)						
UNIT V Introduction, estimation and Suggestive As Continuous (30 WRIT	Algorithm an design flow, algori d synthesis. ssessment Method Assessment Test Marks) TEN TEST	d architectural level methodologi ithmic level analysis and optimizat Total Per s Formative Assessment Test (10 Marks) 1. ASSIGNMENT 2. ONLINE QUIZZES 3. PROBLEM-SOLVING ACTIVITIES	ies tion, Arc riods End	9 chitectural level 45 Semester Exams (60 Marks) /RITTEN TEST						
UNIT V Introduction, estimation and Suggestive As Continuous (30 WRIT Outcomes	Algorithm an design flow, algori d synthesis. ssessment Method Assessment Test Marks) TEN TEST	d architectural level methodologi ithmic level analysis and optimizat Total Per s Formative Assessment Test (10 Marks) 1. ASSIGNMENT 2. ONLINE QUIZZES 3. PROBLEM-SOLVING ACTIVITIES	ies tion, Arc riods End	9 chitectural level 45 Semester Exams (60 Marks) VRITTEN TEST						
UNIT V Introduction, estimation and Suggestive As Continuous (30 WRIT Outcomes Upon comple	Algorithm an design flow, algori d synthesis. ssessment Method Assessment Test Marks) TEN TEST	d architectural level methodologi ithmic level analysis and optimizat Total Per s Formative Assessment Test (10 Marks) 1. ASSIGNMENT 2. ONLINE QUIZZES 3. PROBLEM-SOLVING ACTIVITIES	ies tion, Ard riods End	9 chitectural level 45 Semester Exams (60 Marks) VRITTEN TEST						
UNIT V Introduction, estimation and Suggestive As Continuous (30 WRIT Outcomes Upon comple	Algorithm an design flow, algori d synthesis. ssessment Method Assessment Test Marks) TEN TEST tion of the course, e and reduce the po	d architectural level methodologi ithmic level analysis and optimizat Total Personal Persona Personal Personal Personal	ies tion, Arc riods End	9 chitectural level 45 Semester Exams (60 Marks) VRITTEN TEST						
UNIT V Introduction, estimation and Suggestive As Continuous (30 WRIT Outcomes Upon comple 1 Analyza 2 Critical	Algorithm an design flow, algori d synthesis. ssessment Method Assessment Test Marks) TEN TEST tion of the course, e and reduce the po ly analyze low powe	d architectural level methodologi ithmic level analysis and optimizat Total Per S Formative Assessment Test (10 Marks) 1. ASSIGNMENT 2. ONLINE QUIZZES 3. PROBLEM-SOLVING ACTIVITIES , the students will be able to: wer consumption of VLSI circuits. er design methodologies and technic	ies tion, Ard riods End V ques.	9 chitectural level 45 Semester Exams (60 Marks) /RITTEN TEST						
UNIT V Introduction, estimation and Suggestive As Continuous (30 WRIT Outcomes Upon comple 1 Analyzo 2 Critical 3 Evaluat	Algorithm an design flow, algori d synthesis. ssessment Method Assessment Test Marks) TEN TEST tion of the course, e and reduce the po ly analyze low powe	d architectural level methodologi ithmic level analysis and optimizat Total Per S Formative Assessment Test (10 Marks) 1. ASSIGNMENT 2. ONLINE QUIZZES 3. PROBLEM-SOLVING ACTIVITIES the students will be able to: wer consumption of VLSI circuits. er design methodologies and technic power consumption of VLSI circuits	ies tion, Ard riods End V ques.	9 chitectural level 45 Semester Exams (60 Marks) /RITTEN TEST						

5 Understand trade-offs between power, performance, and cost..

Text Books

- 1. "Low Power Design Essentials" by Sanjiv K. Arora and Sreedhar Natarajan.
- 2. "Low Power Design Methodologies" by Massoud Pedram.
- 3. Chandrakasan, A.P. and Broderson, R.W., "Low Power Digital CMOS Design", Kluwer, 2000
- 4. Roy, K. and Prasad, Sharat C., "Low Power CMOS VLSI: Circuit Design", John Wiley, 2009.

Reference Books

- "High-Performance Digital VLSI Circuit Design" by Keith D. Jackson and Robert W. Brodersen
- 2. "VLSI Design Techniques for Analog and Digital Circuits" by Eugene D. Fabricius
- 3. "Low-Power Design Techniques and CAD Tools" edited by Abdellatif Bellaouar and Abdussalam Alawini
- 4. "Low-Power and High-Speed Chips" by Kiat-Seng Yeo.
- 5. "Low Power Electronics Design" edited by R. Saleh and A. R. Newton.
- 6. "Analog Circuit Design: Discrete & Integrated" by Alan Hastings
- 7. "Power Management for System-on-Chip Design" edited by N. K. Jha and S. Ha

Web Resources

- 1. <u>https://www.classcentral.com/subject/vlsi</u>
- 2. https://archive.nptel.ac.in/courses/106/105/106105034/

CO Vs PO Mapping and CO Vs PSO Mapping

<u> </u>	PO	P01	P01	P01	PSO	PSO								
ιυ	1	2	3	4	5	6	7	8	9	0	1	2	1	2
1	3	2			2			2		1				2
2	3	2			2			2		1				2
3	3	2	1		2			2		1				2
4	3	2	1		2			2		1				2
5	3	2			2			2		1				2

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	20	20	10	10	20
UNDERSTAND	30	30	10	10	30
APPLY	20	20	10	10	20
ANALYZE	15	15	10	10	15
EVALUATE	15	15	10	10	15
CREATE	0	0	0	0	0
	100	100	50	50	100

1-Low, 2- Medium, 3- High

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1:

- 1. Write down the equation for describing the channellength modulation effect in NMos transistor
- 2. Why the tunneling current is higher for the nMOS transistor than the pMOS transistor with a silica gate?

COURSE OUTCOME 2:

1. Consider the circuit below

(1) State whether the circuit is a latch or edge-triggered register. Justify your answer.

(2) In the circuit consider C1 and C2 as the intrinsic capacitances of inverters and transmission gates. Assuming an ideal clock, compute the setup time, hold time and propagation delay in terms of the inverter I1, I2 delay and transmission gate T1, T2 delay. Show that the output logic level

of pseudo-NMOS logic is independent of the size of the transistor.

2. What are the sources of power dissipation in CMOS and discuss various design techniques to reduce power dissipation in CMOS?

COURSE OUTCOME 3:

- a) Explain in detail the ideal I-V characteristics and non-ideal I-V characteristics of NMOS and PMOS devices
 - b) Derive the expression for current in nMOS transistors in different regions.
- 2. Write short notes on
 - (i) Noise Margin and Effect of βn / βp ratio in the DC characteristic curve.
 - (ii) CMOS inverter layout design

COURSE OUTCOME 4:

- 1. Design a 16-bit carry bypass and carry select adder and discuss their features.
- 2. Give the difference between Booth's recoding and modified Booth's recoding?

COURSE OUTCOME 5:

- 1. i) Discuss in detail FPGA interconnect routing procedures.
 - ii) Draw and explain the Xilinx XC4000 FPGA architecture.
 - iii) Explain the Altera FPGA architecture.
- 2. i)Explain ASIC Design Flow

ii)Explain in detail about FPGA Interconnecting Procedure

PROESSIONAL ELECTIVE V

Image: PreambleImage: Image: Imag	21EE7710	MODERN POWER CONVERTERS	L	Τ	Р	С
Preamble It is a professional elective course which emphasizes the advanced concepts and overview of modern power converters in Electrical Engineering. The concepts discussed herein are intended to provide clarification on modern power converters for Electrical Engineering graduates. Prerequisites for the course 1. 1. SOLID STATE DRIVES 2. 2. POWER ELECTRONICS Objectives 1. To gain knowledge about the harmonics standards and operation of rectifiers in CCM & DC 2. 3. To know the operation of resonant converters for SMPS applications. 3. 4. To carry out dynamic analysis of DC- DC Converters. 5. 5. To introduce the source current shaping methods for rectifiers. 9 Average power-RMS value of waveform-Effect of Power factor. current and voltage harmonics - Effect of source and load impedance - AC line current harmonic standards IEC1000-IEEE 519-CCM and DCM operation of single phase full wave rectifier- Behaviour of full wave rectifier or large and small values of capacitance - CCM and DCM operation of nearly ideal rectifiers. 9 Properties of Ideal single phase rectifiers-Realization of nearly ideal rectifiers. 9 Properties of Ideal single phase rectifiers -Realization of nearly ideal rectifiers - Single-phase converter systems incorporating ideal rectifiers - Losses and efficiency in CCM high quality rectifiers - single-phase PWM rectifier - PWM concepts - device selection for rectifiers - Loss of ZVS and ZCS- half wave and full wave operation (qualitative treatment) - multi			3	0	0	3
It is a professional elective course which emphasizes the advanced concepts and overview of modern power converters in Electrical Engineering. The concepts discussed herein are intended to provide clarification on modern power converters for Electrical Engineering graduates. Prerequisites for the course 1. SOLID STATE DRIVES 2. POWER ELECTRONICS Dijectives 1. To gain knowledge about the harmonics standards and operation of rectifiers in CCM & DC 2. To analyze and design power factor correction rectifiers for UPS applications. 3. To know the operation of resonant converters for SMPS applications. 4. To carry out dynamic analysis of DC- DC Converters. 5. To introduce the source current shaping methods for rectifiers. UNIT I LINE COMMUTATED RECTIFIERS 9 Average power-RMS value of waveform-Effect of Power factor current and voltage harmonics - Effect of source and load impedance - AC line current harmonic standards IEC1000-IEEE 519-CCM and DCM operation of single phase full wave rectifier- Behaviour of full wave rectifier or large and small values of capacitance - CCM and DCM operation of single phase full wave rectifiers. 9 Properties of Ideal single phase rectifiers-Realization of nearly ideal rectifier Single-phase converter systems incorporating ideal rectifiers - Losses and efficiency in CCM high quality rectifiers - single-phase PVM rectifier - PVM concepts - device selection for rectifiers - Lage based PVM rectifier - Shased converters - UNIT III RESONANT CONVERTERS 12 Soft Switching - classification of resonant converters - Quasi resonant converters-basics of ZVS and ZCS multi resonant converter - zero voltage transition PWM converters. UNIT IV SWITCHING CONVERTERS 9 Review of linear system analysis-State Space Average model-State Space Average model for an ideal Buck Converter, ideal Bock Converter, ideal Buck Boost Converter and an ideal Cuk Converter.	Preamble					
modern power converters in Electrical Engineering. The concepts discussed herein are intended to provide clarification on modern power converters for Electrical Engineering graduates. Prerequisites for the course 1. SOLID STATE DRIVES 2. POWER ELECTRONICS Objectives 1. To gain knowledge about the harmonics standards and operation of rectifiers in CCM & DC 2. To analyze and design power factor correction rectifiers for UPS applications. 3. To know the operation of resonant converters for SMPS applications. 4. To carry out dynamic analysis of DC- DC Converters. 5. To introduce the source current shaping methods for rectifiers. UNIT I LINE COMMUTATED RECTIFIERS 9 Average power-RMS value of waveform-Effect of Power factor current and voltage harmonics - Effect of source and load impedance - AC line current harmonic standards IEC1000-IEEE 519-CCM and DCM operation of single phase full wave rectifier for large and small values of capacitance - CCM and DCM operation of three phase full wave rectifier - 12 pulse converters - Harmonic trap filters. UNIT II PULSE WIDTH MODULATED RECTIFIERS 9 Properties of Ideal single phase rectifiers-Realization of nearly ideal rectifier Single-phase converter systems incorporating ideal rectifiers - Losses and efficiency in CCM high quality rectifier s- single-phase full wave eperation (qualitative treatment) - multi resonant converters - signe-phase full wave operation (qualitative treatment) - multi resonant converters - soperation and an	It is a profe	ssional elective course which emphasizes the advanced conc	epts	and o	vervi	ew of
provide clarification on modern power converters for Electrical Engineering graduates. Prerequisites for the course 1. SOLID STATE DRIVES 2. POWER ELECTRONICS Objectives 1. To gain knowledge about the harmonics standards and operation of rectifiers in CCM & DC 2. To analyze and design power factor correction rectifiers for UPS applications. 3. To know the operation of resonant converters for SMPS applications. 4. To carry out dynamic analysis of DC- DC Converters. 5. To introduce the source current shaping methods for rectifiers. UNIT I LINE COMMUTATED RECTIFIERS 9 Average power-RMS value of waveform-Effect of Power factor-, current and voltage harmonics - Effect of source and load impedance - AC line current harmonic standards IEC1000-IEEE 519-CCM and DCM operation of single phase full wave rectifier- Behaviour of full wave rectifier- 12 pulse converters - Harmonic trap filters. UNIT II PULSE WIDTH MODULATED RECTIFIERS 9 Properties of Ideal single phase rectifiers-Realization of nearly ideal rectifier Single-phase converter systems incorporating ideal rectifiers - Losses and efficiency in CCM high quality rectifiers - single-phase PWM rectifier -PWM concepts - device selection for rectifiers - IGBT based PWM rectifier, comparison with SCR based converters with respect to harmonic content -applications of rectifiers. UNIT III RESONANT CONVERTERS 12 Soft Switching - classi	modern powe	er converters in Electrical Engineering. The concepts discussed	herei	n are	intenc	led to
Prerequisites for the course 1. SOLID STATE DRIVES 2. POWER ELECTRONICS Objectives 1. To gain knowledge about the harmonics standards and operation of rectifiers in CCM & DC 2. To analyze and design power factor correction rectifiers for UPS applications. 3. To know the operation of resonant converters for SMPS applications. 4. To carry out dynamic analysis of DC- DC Converters. 5. To introduce the source current shaping methods for rectifiers. UNIT I LINE COMMUTATED RECTIFIERS 9 Average power-RMS value of waveform-Effect of Power factor current and voltage harmonics - Effect of source and load impedance - AC line current harmonic standards IEC1000-IEEE 519-CCM and DCM operation of single phase full wave rectifier. Behaviour of full wave rectifier for large and small values of capacitance - CCM and DCM operation of three phase full wave rectifier 12 pulse converters - Harmonic trap filters. UNIT II PULSE WIDTH MODULATED RECTIFIERS 9 Properties of Ideal single phase rectifiers-Realization of nearly ideal rectifier Single-phase converter systems incorporating ideal rectifiers - Losses and efficiency in CCM high quality rectifiers - single-phase PWM rectifier -PWM concepts - device selection for rectifiers - IGBT based PWM rectifier, comparison with SCR based converters with respect to harmonic content -applications of rectifiers. UNIT III RESONANT CONVERTERS	provide clarif	ication on modern power converters for Electrical Engineering	gradu	ates.		
1. SOLID STATE DRIVES 2. POWER ELECTRONICS Objectives 1. To gain knowledge about the harmonics standards and operation of rectifiers in CCM & DC 2. To analyze and design power factor correction rectifiers for UPS applications. 3. To know the operation of resonant converters for SMPS applications. 4. To carry out dynamic analysis of DC- DC Converters. 5. To introduce the source current shaping methods for rectifiers. UNIT I LINE COMMUTATED RECTIFIERS 9 Average power-RMS value of waveform-Effect of Power factor current and voltage harmonics - Effect of source and load impedance - AC line current harmonic standards IEC1000-IEEE 519-CCM and DCM operation of single phase full wave rectifier- Behaviour of full wave rectifier for large and small values of capacitance - CCM and DCM operation of three phase full wave rectifier 12 pulse converters - Harmonic trap filters. UNIT II PULSE WIDTH MODULATED RECTIFIERS 9 Properties of Ideal single phase rectifiers - Losses and efficiency in CCM high quality rectifiers - single-phase converter systems incorporating ideal rectifiers - Losses and efficiency in CCM high quality rectifiers - single-phase PWM rectifier -PWM concepts - device selection for rectifiers - IGBT based PWM rectifiers. VITI II RESONANT CONVERTERS 12 Soft Switching - classification of resonant converters - Quasi resonant converters - basics of ZVS and ZCS half wave and full wave operation (qualitative treatment) - multi resonant convert	Prerequisites	for the course				
2. POWER ELECTRONICS Objectives 1. To gain knowledge about the harmonics standards and operation of rectifiers in CCM & DC 2. To analyze and design power factor correction rectifiers for UPS applications. 3. To know the operation of resonant converters for SMPS applications. 4. To carry out dynamic analysis of DC- DC Converters. 5. To introduce the source current shaping methods for rectifiers. UNIT I LINE COMMUTATED RECTIFIERS 9 Average power-RMS value of waveform-Effect of Power factor-, current and voltage harmonics - Effect of source and load impedance - AC line current harmonic standards IEC1000-IEEE 519-CCM and DCM operation of single phase full wave rectifier Behaviour of full wave rectifier for large and small values of capacitance - CCM and DCM operation of three phase full wave rectifier - 12 pulse converters - Harmonic trap filters. UNIT II PULSE WIDTH MODULATED RECTIFIERS 9 Properties of Ideal single phase rectifiers - Losses and efficiency in CCM high quality rectifiers - single-phase converter systems incorporating ideal rectifiers - Losses and efficiency in CCM high quality rectifiers - single-phase PWM rectifier - PWM concepts - device selection for rectifiers - IGBT based PWM rectifiers. UNIT III RESONANT CONVERTERS 12 Soft Switching - classification of resonant converters - Quasi resonant converters - basics of ZVS and ZCS - half wave and full wave operation (qualitative treatment) - multi resonant converters - operation and analysis of ZVS and ZCS multi r	1. SOLID S	STATE DRIVES				
Objectives 1. To gain knowledge about the harmonics standards and operation of rectifiers in CCM & DC 2. To analyze and design power factor correction rectifiers for UPS applications. 3. To know the operation of resonant converters for SMPS applications. 4. To carry out dynamic analysis of DC- DC Converters. 5. To introduce the source current shaping methods for rectifiers. UNIT I LINE COMMUTATED RECTIFIERS 9 Average power-RMS value of waveform-Effect of Power factor current and voltage harmonics - Effect of source and load impedance - AC line current harmonic standards IEC1000-IEEE 519-CCM and DCM operation of single phase full wave rectifier- Behaviour of full wave rectifier for large and small values of capacitance - CCM and DCM operation of three phase full wave rectifier for large and small values of capacitance - CCM and DCM operation of nearly ideal rectifier Single-phase converters systems incorporating ideal rectifiers - Losses and efficiency in CCM high quality rectifiers - single-phase to the current with respect to harmonic content -applications of rectifiers. VINIT II PULSE WIDTH MODULATED RECTIFIERS 9 Properties of Ideal single phase rectifiers - Losses and efficiency in CCM high quality rectifier sersingle-phase to device selection for rectifiers - IGBT based PWM rectifier - PWM concepts - device selection for rectifiers - IGBT based PWM rectifier - Stase and full wave operation (qualitative treatment) - multi resonant converters - operation and analysis of ZVS and ZCS multi resonant converter - zero voltage transition PWM converters - zero voltage transition PWM converters.	2. POWEF	RELECTRONICS				
1. To gain knowledge about the harmonics standards and operation of rectifiers in CCM & DC 2. To analyze and design power factor correction rectifiers for UPS applications. 3. To know the operation of resonant converters for SMPS applications. 4. To carry out dynamic analysis of DC- DC Converters. 5. To introduce the source current shaping methods for rectifiers. UNIT I LINE COMMUTATED RECTIFIERS 9 Average power-RMS value of waveform-Effect of Power factor current and voltage harmonics - Effect of source and load impedance - AC line current harmonic standards IEC1000-IEEE 519-CCM and DCM operation of single phase full wave rectifier- Behaviour of full wave rectifier for large and small values of capacitance - CCM and DCM operation of three phase full wave rectifier- 12 pulse converters - Harmonic trap filters. UNIT II PULSE WIDTH MODULATED RECTIFIERS 9 Properties of Ideal single phase rectifiers-Realization of nearly ideal rectifier Single-phase converter systems incorporating ideal rectifiers - Losses and efficiency in CCM high quality rectifier - single-phase PWM rectifier -PWM concepts - device selection for rectifiers - IGBT based PWM rectifier, comparison with SCR based converters - Quasi resonant converters - basics of ZVS and ZCS- half wave and full wave operation (qualitative treatment) - multi resonant converters - operation and analysis of ZVS and ZCS multi resonant converter - zero voltage transition PWM converters -zero current transition PWM converters. UNIT II RESONANT CONVERTERS 9 Review of linear system analysis-State Sp	Objectives					
2. To analyze and design power factor correction rectifiers for UPS applications. 3. To know the operation of resonant converters for SMPS applications. 4. To carry out dynamic analysis of DC- DC Converters. 5. To introduce the source current shaping methods for rectifiers. UNIT I LINE COMMUTATED RECTIFIERS 9 Average power-RMS value of waveform-Effect of Power factor current and voltage harmonics - Effect of source and load impedance - AC line current harmonic standards IEC1000-IEEE 519-CCM and DCM operation of single phase full wave rectifier- Behaviour of full wave rectifier for large and small values of capacitance - CCM and DCM operation of three phase full wave rectifier - 12 pulse converters - Harmonic trap filters. UNIT II PULSE WIDTH MODULATED RECTIFIERS 9 Properties of Ideal single phase rectifiers-Realization of nearly ideal rectifier Single-phase converter systems incorporating ideal rectifiers - Losses and efficiency in CCM high quality rectifiers -single-phase PWM rectifier -PWM concepts - device selection for rectifiers - IGBT based PWM rectifier, comparison with SCR based converters with respect to harmonic content -applications of rectifiers. UNIT III RESONANT CONVERTERS 12 Soft Switching - classification of resonant converters - Quasi resonant converters - basics of ZVS and ZCS half wave and full wave operation (qualitative treatment) - multi resonant converters - operation and analysis of ZVS and ZCS multi resonant converter - zero voltage transition PWM converters -zero current transition PWM converters. UNIT IV	1. To gain	n knowledge about the harmonics standards and operation of re	ctifie	rs in C	CM &	DC
3. To know the operation of resonant converters for SMPS applications. 4. To carry out dynamic analysis of DC- DC Converters. 5. To introduce the source current shaping methods for rectifiers. UNIT I LINE COMMUTATED RECTIFIERS 9 Average power-RMS value of waveform-Effect of Power factor current and voltage harmonics - Effect of source and load impedance - AC line current harmonic standards IEC1000-IEEE 519-CCM and DCM operation of single phase full wave rectifier- Behaviour of full wave rectifier for large and small values of capacitance - CCM and DCM operation of three phase full wave rectifier - 12 pulse converters - Harmonic trap filters. UNIT II PULSE WIDTH MODULATED RECTIFIERS 9 Properties of Ideal single phase rectifiers-Realization of nearly ideal rectifier Single-phase converter systems incorporating ideal rectifiers - Losses and efficiency in CCM high quality rectifiers -single-phase PWM rectifier -PWM concepts - device selection for rectifiers = IGBT based PWM rectifier, comparison with SCR based converters with respect to harmonic content -applications of rectifiers. UNIT III RESONANT CONVERTERS 12 Soft Switching - classification of resonant converters - Quasi resonant converters - basics of ZVS and ZCS half wave and full wave operation (qualitative treatment) - multi resonant converters - operation and analysis of ZVS and ZCS multi resonant converter - zero voltage transition PWM converters -zero current transition PWM converters. 9 Review of linear system analysis-State Space Averaging-Basic State Space Average Model-State Space Average model	2. To ana	lyze and design power factor correction rectifiers for UPS applie	cation	s.		
4. To carry out dynamic analysis of DC- DC Converters. 5. To introduce the source current shaping methods for rectifiers. UNIT I LINE COMMUTATED RECTIFIERS 9 Average power-RMS value of waveform-Effect of Power factor current and voltage harmonics - Effect of source and load impedance - AC line current harmonic standards IEC1000-IEEE 519-CCM and DCM operation of single phase full wave rectifier- Behaviour of full wave rectifier for large and small values of capacitance - CCM and DCM operation of three phase full wave rectifier -12 pulse converters - Harmonic trap filters. 9 Properties of Ideal single phase rectifiers-Realization of nearly ideal rectifier Single-phase converter systems incorporating ideal rectifiers - Losses and efficiency in CCM high quality rectifiers -single-phase PWM rectifier -PWM concepts - device selection for rectifiers - IGBT based PWM rectifier, comparison with SCR based converters with respect to harmonic content -applications of rectifiers. 12 Soft Switching - classification of resonant converters - Quasi resonant converters - basics of ZVS and ZCS - half wave and full wave operation (qualitative treatment) - multi resonant converters - operation and analysis of ZVS and ZCS multi resonant converter - zero voltage transition PWM converters -zero current transition PWM converters. 9 UNIT IV SWITCHING CONVERTERS 12 NUT IV SWITCHING CONVERTERS 9 Review of linear system analysis-State Space Averaging-Basic State Space Average Model-State Space Average model for an ideal Buck Converter, ideal Boost Converter, ideal Buck Boost Converter and an ideal Cuk Conv	3. To kno	w the operation of resonant converters for SMPS applications.				
5. To introduce the source current shaping methods for rectifiers.9UNIT ILINE COMMUTATED RECTIFIERS9Average power-RMS value of waveform-Effect of Power factor current and voltage harmonics - Effect of source and load impedance - AC line current harmonic standards IEC1000-IEEE 519-CCM and DCM operation of single phase full wave rectifier- Behaviour of full wave rectifier for large and small values of capacitance - CCM and DCM operation of three phase full wave rectifier -12 pulse converters - Harmonic trap filters.9UNIT IIPULSE WIDTH MODULATED RECTIFIERS9Properties of Ideal single phase rectifiers-Realization of nearly ideal rectifier Single-phase converter systems incorporating ideal rectifiers - Losses and efficiency in CCM high quality rectifiers - single-phase PWM rectifier -PWM concepts - device selection for rectifiers - IGBT based PWM rectifiers.9NIT IIIRESONANT CONVERTERS12Soft Switching - classification of resonant converters - Quasi resonant converters - basics of ZVS and ZCS- half wave and full wave operation (qualitative treatment) - multi resonant converters - operation and analysis of ZVS and ZCS multi resonant converters - zero voltage transition PWM converters -zero current transition PWM converters.9Review of linear system analysis-State Space Averaging-Basic State Space Average Model-State Space Average model for an ideal Buck Converter, ideal Boost Converter, ideal Buck Boost Converter and an ideal Cuk Converter. Pulse Width modulation - Voltage Mode PWM Scheme - Current Mode PWM Scheme - design of PI controller.9	4. To car	ry out dynamic analysis of DC- DC Converters.				
UNIT ILINE COMMUTATED RECTIFIERS9Average power-RMS value of waveform-Effect of Power factor current and voltage harmonics - Effect of source and load impedance - AC line current harmonic standards IEC1000-IEEE 519-CCM and DCM operation of single phase full wave rectifier- Behaviour of full wave rectifier - I2 pulse converters - Harmonic trap filters.12UNIT IIPULSE WIDTH MODULATED RECTIFIERS9Properties of Ideal single phase rectifiers - Realization of nearly ideal rectifiers - Single-phase converter systems incorporating ideal rectifiers - Losses and efficiency in CCM high quality rectifiers - single-phase PWM rectifier - PWM concepts - device selection for rectifiers - IGBT based PWM rectifier, comparison with SCR based converters with respect to harmonic content -applications of rectifiers.12Soft Switching - classification of resonant converters - Quasi resonant converters- basics of ZVS and ZCS half wave and full wave operation (qualitative treatment) - multi resonant converters - operation and analysis of ZVS and ZCS multi resonant converter - zero voltage transition PWM converters.9Review of linear system analysis-State Space Averaging-Basic State Space Average Model-State Space Average model for an ideal Buck Converter, ideal Boost Converter, ideal Buck Boost Converter and an ideal Curverter. Pulse Width modulation - Voltage Mode PWM Scheme - Curvert Mode PWM Scheme - design of PI controller.9	5. To intr	oduce the source current shaping methods for rectifiers.				
Average power-RMS value of waveform-Effect of Power factor current and voltage harmonics - Effect of source and load impedance - AC line current harmonic standards IEC1000-IEEE 519-CCM and DCM operation of single phase full wave rectifier- Behaviour of full wave rectifier for large and small values of capacitance - CCM and DCM operation of three phase full wave rectifier 12 pulse converters - Harmonic trap filters.UNIT IIPULSE WIDTH MODULATED RECTIFIERS9Properties of Ideal single phase rectifiers-Realization of nearly ideal rectifier Single-phase converter systems incorporating ideal rectifiers - Losses and efficiency in CCM high quality rectifiers -single-phase PWM rectifier -PWM concepts - device selection for rectifiers - IGBT based PWM rectifiers.12UNIT IIIRESONANT CONVERTERS12Soft Switching - classification of resonant converters - Quasi resonant converters - basics of ZVS and ZCS- half wave and full wave operation (qualitative treatment) - multi resonant converters - operation and analysis of ZVS and ZCS multi resonant converter - zero voltage transition PWM converters -zero current transition PWM converters.9UNIT IVSWITCHING CONVERTERS9Review of linear system analysis-State Space Averaging-Basic State Space Average Model-State Space Average model for an ideal Buck Converter, ideal Boost Converter, ideal Buck Boost Converter an ideal Cuk Converter. Pulse Width modulation - Voltage Mode PWM Scheme - Current Mode PWM Scheme - design of PI controller.	UNIT I	LINE COMMUTATED RECTIFIERS				9
Properties of ideal single phase rectifiers rectifiers rectifiers of ideal rectifier. Single-phase converter systems incorporating ideal rectifiers - Losses and efficiency in CCM high quality rectifiers - single-phase PWM rectifier -PWM concepts - device selection for rectifiers - IGBT based PWM rectifier, comparison with SCR based converters with respect to harmonic content -applications of rectifiers. UNIT III RESONANT CONVERTERS 12 Soft Switching - classification of resonant converters - Quasi resonant converters- basics of ZVS and ZCS half wave and full wave operation (qualitative treatment) - multi resonant converters - operation and analysis of ZVS and ZCS multi resonant converter - zero voltage transition PWM converters. UNIT IV SWITCHING CONVERTERS 9 Review of linear system analysis-State Space Averaging-Basic State Space Average Model-State Space Average model for an ideal Buck Converter, ideal Boost Converter, ideal Buck Boost Converter and an ideal Cuk Converter. Pulse Width modulation - Voltage Mode PWM Scheme - Current Mode PWM Scheme - design of PI controller.	Average powe Effect of source and DCM oper small values of converters - H UNIT II	er-RMS value of waveform-Effect of Power factor-, current and se and load impedance - AC line current harmonic standards IF ration of single phase full wave rectifier- Behaviour of full wave of capacitance - CCM and DCM operation of three phase full w armonic trap filters. PULSE WIDTH MODULATED RECTIFIERS	a von EC100 e recti ave re	age n 0-IEE fier fo ectifie	E 519 or larg r- 12	P-CCM e and pulse 9
UNIT IIIRESONANT CONVERTERS12Soft Switching - classification of resonant converters - Quasi resonant converters- basics of ZVS and ZCS- half wave operation (qualitative treatment) - multi resonant converters - operation and analysis of ZVS and ZCS multi resonant converter - zero voltage transition PWM converters -zero current transition PWM converters.9UNIT IVSWITCHING CONVERTERS9Review of linear system analysis-State Space Averaging-Basic State Space Average Model-State Space Average model for an ideal Buck Converter, ideal Boost Converter, ideal Buck Boost Converter and an ideal Cuk Converter. Pulse Width modulation - Voltage Mode PWM Scheme - design of PI controller.9	roperties of converter syst -single-phase rectifier, comp rectifiers.	ems incorporating ideal rectifiers - Losses and efficiency in CCM PWM rectifier -PWM concepts - device selection for rectifier parison with SCR based converters with respect to harmonic co	i high s – I(ontent	er Si qualit GBT b t -app	ingle-] cy rect ased licatic	phase cifiers PWM ons of
Soft Switching - classification of resonant converters - Quasi resonant converters- basics of ZVS and ZCS- half wave and full wave operation (qualitative treatment) - multi resonant converters - operation and analysis of ZVS and ZCS multi resonant converter - zero voltage transition PWM converters -zero current transition PWM converters.9UNIT IVSWITCHING CONVERTERS9Review of linear system analysis-State Space Averaging-Basic State Space Average Model-State Space Average model for an ideal Buck Converter, ideal Boost Converter, ideal Buck Boost Converter and an ideal Cuk Converter. Pulse Width modulation - Voltage Mode PWM Scheme - Current Mode PWM Scheme - design of PI controller.	UNIT III	RESONANT CONVERTERS			1	2
UNIT IVSWITCHING CONVERTERS9Review of linear system analysis-State Space Averaging-Basic State Space Average Model-State Space Average model for an ideal Buck Converter, ideal Boost Converter, ideal Buck Boost Converter and an ideal Cuk Converter. Pulse Width modulation - Voltage Mode PWM Scheme - Current Mode PWM Scheme - design of PI controller.	Soft Switching ZCS- half way operation and converters -ze	- classification of resonant converters - Quasi resonant convert re and full wave operation (qualitative treatment) - multi r analysis of ZVS and ZCS multi resonant converter - zero vol ro current transition PWM converters.	ers- b esona Itage	asics nt co transi	of ZVS nverte tion F	and ers - PWM
Review of linear system analysis-State Space Averaging-Basic State Space Average Model-State Space Average model for an ideal Buck Converter, ideal Boost Converter, ideal Buck Boost Converter and an ideal Cuk Converter. Pulse Width modulation - Voltage Mode PWM Scheme - Current Mode PWM Scheme - design of PI controller.	UNIT IV	SWITCHING CONVERTERS				9
	Review of lin Space Average and an ideal C PWM Scheme	ear system analysis-State Space Averaging-Basic State Space model for an ideal Buck Converter, ideal Boost Converter, ideal cuk Converter. Pulse Width modulation - Voltage Mode PWM S - design of PI controller.	Aver Buck chemo	age 1 Boos e - Cu	Model t Conv rrent	-State verter Mode

UNIT V	EMBEDDED	CONTROL OF POWER ELECTRON	IC CONVERTER	6
Embedded	design of a typical I	Power Conversion System includi	ng: process control,	protection
monitoring,	real-time feedback co	ontrol		
Total Perio	ods			
Suggestive	Assessment Method	S		
Continuou	s Assessment Test	Formative Assessment Test	End Semester	Exams
(2	20 Marks)	(20 Marks)	(50 Mark	s)
Written Fy	amination	1.ASSIGNMENT	Written Examinati	on
		2. ONLINE QUIZZES		011
		3.PROBLEM-SOLVING ACTIVITIES		
Course Out	comes		1	
Upon comp	letion of the course,	the students will be able to:		
CO 1	Apply the concept of	of various types of rectifiers.		
CO 2	Simulate and design	n the operation of resonant convert	ter and its importance	e.
CO 3	Identify the import	ance of linear system, state space n	odel, PI controller.	
CO 4	Design the DC powe	er supplies using advanced techniq	ues.	
CO 5	Understand the sta	ndards for supply current harmoni	cs and significance.	
Text Books				
1. Power Ele	ectronics Handbook, N	I.H.Rashid, Academic press, New y	ork, 2000.	
2. Advanced	DC/DC Converters, F	ang Lin Luo and Fang Lin Luo, CRC	Press,NewYork, 200	4.
3. Control in	Power Electronics- S	elected Problem, Marian P.Kazmie	rkowski,	
Defense as I	4. R.Kris	hnan and Frede Blaabjerg, Academ	ic Press (Elsevier Scie	ence), 2002
	BOOKS		2004	
1. Power Ele	ectronic Circuits, Issa	Batarseh, John Wiley and Sons, Inc.	2004	
2. Power Ele	ectronics for Modern	Wind Turbines, Frede Blaabjerg a	nd Zhe Chen Morgan	& Claypoo
Publishers s	eries, United States o	f America, 2006.		
Web Resou	rces			
Power Elect	ronic Circuits, Issa Ba	tarseh, John Wiley and Sons, Inc.20	004	
 <u>https</u> pdf& https 	:://findsbooks.com/q spid=ac1j89in5o07ei :://link.springer.com/	<u>a/?q=modern+power+electronics</u> - /chapter/10.1007/978-1-4615-11	- <u>converters+and+inv</u> 53-3-5	<u>erters</u> +

CO Vs PO Mapping and CO Vs PSO Mapping

<u> </u>	PO	P01	P01	P01	PSO	PSO								
LU	1	2	3	4	5	6	7	8	9	0	1	2	1	2
1	3	1	2		2									3
2	3	1	2		2									3
3	3	1	2		2									3
4	3	1	2		2									3
5	3	1	2		2									3

1-Low , 2- Medium, 3- High

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	10	10	5	5	10
UNDETSTAND	30	30	10	10	30
APPLY	60	60	10	10	60
ANALYZE	0	0	0	0	0
EVALUATE	0	0	0	0	0
CREATE	0	0	0	0	0
	100	100	25	25	100

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1:

- 1. What are the performance parameters of a converter?
- 2. Discuss operation of Cuk converter. Derive the relation between duty ratio and input voltage.

COURSE OUTCOME 2:

1. Examine the principle of operation for a single-phase full converter with R-L load and no freewheeling diode. Sketch the circuit diagram and draw the waveforms for source voltage, output voltage, load current and source current assuming a large inductor and no ripple in the output current. Derive the expression for RMS output voltage

A six pulse thyristor converter connected on the secondary of delta /star connected 6.6 kV /415V ,50 Hz transformer is supplying to 460 V,200 A DC load. Identify the following (i) converter firing angle (ii)dc power delivered by the converter (iii)AC line current (iv)RMS value of the device current. (13)

COURSE OUTCOME 3:

- 1. Draw and explain the operation of a four level diode clamped multilevel inverter. Write the inverter relationship for R phase. Derive the expression for transistor voltage, freewheeling diode current, capacitor junction current and clamping diode current.
- 2. Explain the principle of operation of a single phase multilevel cascaded H-bridge inverter with neat diagrams

COURSE OUTCOME 4:

- 1. A single-phase full wave ac voltage controller has a resistive load of 5Ω and an input voltage 230 V, 50 Hz. The firing angle of thyristors T1 and T2 is 120 degree. Evaluate the (i) the RMS value of load voltage (ii)input power factor, (iii)average value of current of thyristor (iv)RMS current of thyristor (v)load power.
- 2. Examine the operation of a 3phase AC voltage regulator having six thyristors with neat sketches of voltage waveforms.

COURSE OUTCOME 5:

- 1. With a help of neat circuit diagram and associated waveforms explain the operation of half wave and full wave mode of ZVS Resonant buck converters.
- 2. Explain in detail about M type ZCS resonant converter with waveforms and circuit diagram.

Compiled By: Mrs.R.Aandal,AP/EEE

Verified By

21EE7711	POWER QUALITY	L	Т	Р	С
		3	0	0	3

Preamble

It is an introductory course which emphasizes the fundamental concepts and overview of Electrical Engineering. The concepts discussed herein are intended to provide clarification on basic electrical engineering for Electrical Engineering graduates.

Prerequisites for the course

- 1. Electric Circuit Analysis
- 2. Power Systems
- 3. Power System Analysis
- **4.** Power Systems Transients

Objectives

1. To understand various sources, causes and effects of power quality issues, electrical systems and their

ncis Xavier Engi	neering College De	ept of EEE R2021/Curriculum ar	nd Syllabi	
measures and mi	tigation			
2. To study abou	t voltage sag and sw	vell concepts		
3. To understand	the concepts about	Voltage and current distortions, har	monics	
4. To acquire kn	owledge on compension	sation techniques		
5. To acquire kn	owledge on power q	uality analyzers		
UNIT I		INTRODUCTION		9
Power quality -	Impact of PQ on en	nd users - Need for PQ monitoring	g - Various	PQ problems: Voltag
dips - over volta	ages - short supply	interruptions - voltage fluctuatio	ns and flic	ker
UNIT II	TRANSIENTS, V	OLTAGE AND CURRENT UNBAI	LANCE	9
Transient syst	em model - exam	ples of transient models and th	neir respo	onse - power syste
Transient mod	lel - types and ca	uses of transients — Lightning	g - other s	switching transient
Symmetrical co	omponents of cur	rents and voltages – sources -	– effects	- measurements an
mitigation				
UNIT III	ŀ	ARMONIC ANALYSIS		9
Definition	dd and arran han	moning harmonig above ee		voltage and gurren
Definition - O	dividual and total	hormonic distortion hormoni	uence -	da acuraca offica
narmonics - m	uividual and total	manifold us to tion - narmoni	C Stanuar	us – sources - enec tion Studios
on various elec	ti icai components	- measurements and mitigation	i – Silliula	cion scucies
UNIT IV	POW	ER FACTOR IMPROVEMENT		9
				-
Active and read	tive power flow w	ith nonlinear load - displacemen	t and disto	ortion power factor
power factor p	enalty - power fact	tor improvement - applications of	of synchro	nous condensers a
static VAR com	pensators - automa	tic power factor controller (Case	Studies).	
		D DOWED EACTOR DRODI EMC		0
UNITV	CPDFU	R POWER FACIOR PROBLEMS		9
Power quality	measuring equipm	ent - Smart power quality anal	yzers - Int	troduction to Custo
Power Devices	(CPD) – STATCO	M - Dynamic Voltage Restorer	(DVR) - U	nified Power Quali
Controller (UPC	2C). Active and Pas	sive filters (Case Studies).		
		Tota	l Periods	45
Suggestive Ass	essment Methods			
Continuous As	sessment Test	Formative Assessment Test	End Sen	iester Exams
(20 Marks)		(20 Marks)	(60 Mar	ks)
WRIT	FEN TEST	1.ASSIGNMENT	W	RITTEN TEST
		2. ONLINE QUIZZES		
		3.PROBLEM-SOLVING		
		ACTIVITIES		

Outcomes

Upon completion of the course, the students will be able to:

- **1** Analyze reactive power requirement and management. Assess and evaluate various compensators. Simulate and design compensators, FACTS application.
- 2 Understand use of SVC for Voltage Regulation, Gain Supervision, Reactive Power Control and Coordination, Control Signals for System Transient Stability
- **3** Explain Various Power Quality terms of Electrical Power System
- **4** Evaluate performance of power systems (in regards to Power Quality Issues) under various power quality polluting devices using appropriate power quality monitoring tools.
- **5** Analyze the causes of Harmonics, its effect on various equipment and its mitigation techniques.

Text Books

1.Roger. C. Dugan, Mark. F. McGranagham, Surya Santoso, H.WayneBeaty, "Electrical Power Systems Quality", Tata McGraw Hill Private Limited, 2012.

2.Arrillaga, N.R. Watson, S. Chen, "Power System Quality Assessment", New York: Wiley, 1999.

Reference Books

- 1. G.T. Heydt, "Electric Power Quality", 2nd Edition, West Lafayette, IN, Stars in CirclePublications, 2013.
- 2. M.H.J Bollen, "Understanding Power Quality Problems: Voltage Sags and Interruptions", New York: IEEE Press, 1999.
- 3. C. Sankaran, "Power Quality", CRC Press, 2009.
- 4. Alexander Kusko and Marc. T. Thompson, "Power Quality in Electrical Systems", Tata McGraw Hill Private Limited, 2007.
- 5. Angelo Baggini, "Handbook of Power Quality", John Wiley & Sons, 2008.

Web Resourses

1.https://archive.nptel.ac.in/courses/108/102/108102179/

2. https://archive.nptel.ac.in/courses/108/102/108102179/

3. https://archive.nptel.ac.in/courses/108/102/108102179/

CO Vs PO Mapping and CO Vs PSO Mapping

<u> </u>	PO	P01	P01	P01	PSO	PSO								
ιυ	1	2	3	4	5	6	7	8	9	0	1	2	1	2
1	3										3			3
2	3	1									3			3
3	3	1									3			3
4	3		3								3			3
5	2		1			2	2				3			3

1-Low , 2- Medium, 3- High

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	10	10	5	5	10
UNDETSTAND	25	25	10	10	25
APPLY	25	25	10	10	25
ANALYZE	15	15	5	5	15
EVALUATE	10	10	10	10	10
CREATE	15	15	10	10	15
	100	100	50	50	100

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1:

- 1. Criticize "capacitor switching leads to overvoltage"(E)
- 2. Distinguish sag and swell(E)

COURSE OUTCOME 2:

- 1. With a waveform sketch, explain the terms (13) (a)Voltage sag (b)Voltage interruption (c)Voltage swells (d)Sag with harmonics(E)
- 2. Explain the various types of power quality disturbances(E) **COURSE OUTCOME 3:**
 - 1. Discuss the Power Quality issues of Grid connected Renewable Energy Sources.(E)
 - 2. Analyze the Capacitor Switching(E)

COURSE OUTCOME 4:

- 1. Describe the procedure for estimating motor switching voltage sag(E)
- 2. Discuss the effects of voltage sag and interruption on various electrical equipment(E)

COURSE OUTCOME 5:

- 1. Infer voltage and current distortion(E)
- 2. Explain how commercial and industrial loads are responsible for harmonic distortion(E)

Compiled By: Mrs.M.Subashini, AP/EEE

Verified By

21EE7712	ADVANCED POWER SEMICONDUCTOR DEVICES AND PROTECTION	L	Т	Р	С
		3	0	0	3
D 11					

Preamble

Advancements in power electronics can be traced directly to the development of improved power semiconductor devices. This Course resulted in an experimental merged rectifier structure that exhibits enhanced reverse recovery behaviour with lower forward drop. Moreover, two new power thyristor structures experimentally demonstrated better on-state drop than present technologies.

Prerequisites for the course

1. Electronic Devices

Objectives

To impart knowledge on the following topics

- 1. Apply the knowledge of power semiconductor device structures for adjustable speed motor control applications.
- 2. To understand the static and dynamic characteristics of current controlled power semiconductor devices.
- 3. To analyze the static and dynamic characteristics of voltage controlled power semiconductor devices.
- 4. To enable the students for the selection of devices for different power electronics applications.
- 5. To understand the control and firing circuit for different devices.

UNIT I	INTRODUCTION	9
Power switchin	g devices overview – Attributes of an ideal switch, application	requirements, circuit
symbols; Powe	r handling capability – (SOA); Device selection strategy – O	n-state and switching
losses – EMI d	lue to switching – Power diodes – Types, forward and re	everse characteristics,
switching chara	cteristics – rating- Case Study from Data Sheets.	

UNIT II CURRENT CONTROLLED DEVICES

BJT's – Construction, static characteristics, switching characteristics; Negative temperature coefficient and secondary breakdown; Power darlington – Thyristors – Physical and electrical principle underlying operating mode, Two transistor analogy – concept of latching; Gate and switching characteristics; converter grade and inverter grade and other types; series and parallel operation; comparison of BJT and Thyristor – steady state and dynamic models of BJT & Thyristor- Case Study.

UNIT III	VOLTAGE CONTROLLED DEVICES	9

Power MOSFETs and IGBTs – Principle of voltage controlled devices, construction, types, static and switching characteristics, steady state and dynamic models of MOSFET and IGBTs – Basics of GTO, MCT, FCT, RCT and IGCT- Case Study.

UNIT IV	FIRING AND PROTECTING CIRCUITS	9

Necessity of isolation, pulse transformer, optocoupler – Gate drives circuit: SCR, MOSFET, IGBTs and base driving for power BJT. – Over voltage, over current and gate protections; Design of snubbers- Case Study.

UNIT V	THERMAL PROTECTION
_	

Heat transfer – conduction, convection and radiation; Cooling – liquid cooling, vapour – phase cooling; Guidance for hear sink selection – Thermal resistance and impedance -Electrical analogy of thermal components, heat sink types and design – Mounting types- Case Study.

Total Periods

riods 45

9

9

Suggestive Assessment Methods

Continuous Assessment Test	Formative Assessment Test	End Semester Exams
(20 Marks)	(20 Marks)	(60 Marks)
WRITTEN TEST	1.ASSIGNMENT	WRITTEN TEST
	2. ONLINE QUIZZES	
	3.PROBLEM-SOLVING ACTIVITIES	

Outcomes

Upon completion of the course, the students will be able to:

1	Design a power semiconductor device structures for adjustable speed motor control applications.
2	Understand the static and dynamic characteristics of current controlled power semiconductor devices
3	Explain the static and dynamic characteristics of voltage controlled power

- **4** Enable the students for the selection of devices for different power electronics applications
 - **5** Understand the control and firing circuit for different devices.

Text Books

- 1. B.W Williams 'Power Electronics Circuit Devices and Applications'. 2004
- 2. Rashid M.H., " Power Electronics Circuits, Devices and Applications ", Prentice Hall India, Third Edition, New Delhi, 2004.

Reference Books

- 1. MD Singh and K.B Khanchandani, "Power Electronics", Tata McGraw Hill, 2001.
- 2. Mohan, Undcland and Robins, "Power Electronics Concepts, applications and Design, John Wiley and Sons, Singapore, 2000.

Web Recourses

- 1. https://onlinecourses.nptel.ac.in/noc20_ee28/preview
- 2. https://archive.nptel.ac.in/courses/108/102/108102145/

CO Vs PO Mapping and CO Vs PSO Mapping

СО	PO	P01	P01	P01	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	2	1	2
1	3	2											3	
2	3	2	3										3	
3	3	2	3										3	
4	3	2	3										3	
5	3	2	3										3	

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	20	20	10	10	20
UNDETSTAND	30	30	10	10	30

APPLY	20	20	10	10	20
ANALYZE	15	15	10	10	15
EVALUATE	15	15	10	10	15
CREATE	0	0	0	0	0
	100	100	50	50	100

1-Low , 2- Medium, 3- High

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1:

- 1. Discuss the construction of BJT.Also draw and discuss its I-V characteristics? (Understand)
- 2. Describe the different breakdown voltages. (Evaluate)

COURSE OUTCOME 2:

- 1. Draw and explain the construction details of a GTO
- 2. An IGBT combines the advantages of BJTs and MOSFET's .Justify (Evaluate)

COURSE OUTCOME 3:

- 1. Discuss some new semiconductor materials? (Understand)
- 2. Compare JFET and other power devices

COURSE OUTCOME 4:

1. Explain in detail about the need of Electromagnetic compatibility in power electronic circuits. (Understand)

2. How EMI is estimated? How noise can be suppressed? (Evaluate) **COURSE OUTCOME 5:**

- 1. Explain the steps involved in the design of a transformer. (Understand)
- 2. Write a short note on thermal modeling of any one power switching device. (Understand)

21EE7713	MICROCONTROLLER BASED SYSTEM DESIGN	L	Τ	Р	С
		3	0	0	3

Preamble

It is a professional elective course which emphasizes the advanced concepts and overview of Microcontroller based system design in Electrical Engineering. The concepts discussed herein are intended to provide clarification on Microcontroller based system design in for Electrical Engineering graduates.

Prerequisites for the course

Microcontrollers and its applications

Objectives

1.To introduce the architecture of PIC microcontroller

2. To educate on use of interrupts and timers.

3. To educate on the peripheral devices for data communication and transfer.

4. To introduce the functional blocks of ARM processor.

5. To educate on the architecture of ARM processors.

UNIT I	INTRODUCTION TO PIC MICROCONTROLLER	9
Introduction to	PIC Microcontroller-PIC 16C6x and PIC16C7x Architecture-I	PIC16cxxPipelining -
Program Memo	ory considerations – Register File Structure - Instruction Set	-Addressing modes -
Simple Operati	ons.	

UNIT II	INTERRUPTS AND TIMER	9

PIC micro controller Interrupts- External Interrupts-Interrupt Programming–Loop time subroutine -Timers-Timer Programming– Front panel I/O-Soft Keys– State machines and key switches–

Display of Constant and Variable strings.

UNIT III	PERIPHERALS AND INTERFACING	9							
I2C Bus for Peripherals Chip Access– Bus operation-Bus subroutines– Serial EEPROM—Analog to									
Digital Converter–UART-Baud rate selection–Data handling circuit–Initialization -LCD and									

keyboard Interfacing -ADC, DAC, and Sensor Interfacing.

UNIT IV	INTRO	DUCTION TO ARM PROCESSOR		9							
ARM Architectu	ARM Architecture –ARM programmer's model –ARM Development tools- Memory Hierarchy –AR										
Assembly Lang	uage Programming	-Simple Examples-Architectural	Support fo	or Operating systems.							
UNIT V		APPLICATIONS		9							
Light sensing &	controlling device	s-Temperature sensing and contr	olling devi	ices-Fire detection &							
safety devices-	Industrial instrume	entation devices.									
Total Periods				45							
Suggestive Assessment Methods											
Continuous As	Continuous Assessment Test Formative Assessment Test End Semester Exams										

continuous Assessment rest	i of mative Assessment rest	Lind Semester Ladins
(20 Marks)	(20 Marks)	(60 Marks)

WR	ITTEN TEST	1.ASSIGNMENT	WRITTEN TEST
		2. ONLINE QUIZZES	
		3.PROBLEM-SOLVING ACTIVITIES	
)ut	comes		
Jpc	on completion of the	course, the students will be able to	:
L	Understand and ap	ply computing platform and software f	for engineering problems.
2	Apply the concepts	of Architecture of PIC microcontroller	:
3	Acquire knowledge	on Interrupts and timers.	

Text Books

5

1. Peatman, J.B., "Design with PIC Micro Controllers" PearsonEducation, 3rdEdition, 2004.

2. Furber,S., "ARM System on Chip Architecture" Addison Wesley trade Computer Publication,2000.

Reference Books

1.Mazidi, M.A.,"PIC Microcontroller" Rollin Mckinlay, Danny causey Printice Hall of India, 2007.

Web Recourses

- 1. https://onlinecourses.nptel.ac.in/noc22_ee12/preview
- 2. https://archive.nptel.ac.in/courses/106/105/106105193/

Acquire knowledge in Architecture of ARM processors.

CO Vs PO Mapping and CO Vs PSO Mapping

<u> </u>	PO	P01	P01	P01	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	2	1	2
1	3	1	2		2								3	
2	3	1	2		2								3	
3	3	1	2		2								3	
4	3	1	2		2								3	
5	3	1	2		2								3	

1-Low , 2- Medium, 3- High

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	10	10	5	5	10
UNDETSTAND	30	30	10	10	30
APPLY	60	60	10	10	60
ANALYZE	0	0	0	0	0
EVALUATE	0	0	0	0	0
CREATE	0	0	0	0	0
	100	100	25	25	100

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1:

- 1. Give the register file structure of PIC Microcontroller.
- 2. Explain with neat diagram the architecture of PIC16C6x and PIC16C7x microcontroller.

COURSE OUTCOME 2:

- 1. Give the block diagram of timer1 with suitable block diagram
- 2. How timer 2 is different from timer 0 and 1.

COURSE OUTCOME 3:

- 1. How data is transmitted serially using UART?
- 2. Explain with neat diagram the use of UART to interface two PIC resources.

COURSE OUTCOME 4:

- 1. Explain with examples different types of addressing used in ARM processor.
- **2.** Write and ARM ALP which dumps a register to the display in hexadecimal notation. **COURSE OUTCOME 5:**
- 1. Compare 3-stage and 5-stage ARM pipeline organization
- 2. Explain the co-processor interface of ARM in detail.

Compiled By: Mrs.R.Aandal, AP/EEE

Verified By

21FF7714	WIND ENERGY CONVERSION SYSTEMS	L	Т	Р	C	
		3	0	0	3	
Preamble						
This cc some of the sy Prerequisites	urse introduces about different new and renewable sources of stems are also discussed for the course	of en	ergy	. Desi	gn o	
Introduction to	Power Engineering/ Energy Systems					
Objectives						
1. To	learn the basic concept of sabinin's theory					
2. To	learn the design and control principles of Wind turbine					
3. To conv	understand the concepts of DFIG- PMSG -Variable speed gener ersion systems.	ators	s, wir	nd ene	ergy	
4. To	understand the concepts variable speed in wind energy conver	rsion	syst	ems		
5. To	analyze the grid integration issues					
UNIT I	INTRODUCTION	9				
Compon theory- Power	ents of WECS-WECS schemes-Power obtained from wind coefficient-Sabinins theory-Aerodynamics of Wind turbine.	d-sim	ple	mom	ent	
UNIT II	WIND TURBINES			9		
HAWT- VAWT Tip speed ratio control-Schemo	-Power developed-Thrust-Efficiency- Rotor selection-Rotor de -No. of Blades-Blade profile-Power Regulation-yaw control-Pites for maximum power extraction.	esigr ch ar	i con igle d	sidera	ation ol- st	
UNIT III	FIXED SPEED SYSTEMS			9		
Generat Deciding factor Model wind tu stability analys	ng Systems- Constant speed constant frequency systems - s-Synchronous Generator-Squirrel Cage Induction Generator- N rbine rotor - Drive Train model- Generator model for Steady is- off shore wind analysis.	Choic Mode y stat	e of l of V te an	Gene Wind S d Tra	erato Spec Insic	
UNIT IV	VARIABLE SPEED SYSTEMS			9		
	ble speed systems-Power-wind speed characteristics-Varia	able	spe ators	ed co s mod	onst lelli	
Need of varia frequency syst Variable speed	ems synchronous generator- DFIG- PMSG -Variable speed g variable frequency schemes- off shore wind analysis.	gener				
Need of varia frequency syst Variable speed UNIT V	ems synchronous generator- DFIG- PMSG -Variable speed g variable frequency schemes- off shore wind analysis. GRID CONNECTED SYSTEMS	gener		9		
Need of varia frequency syst Variable speed UNIT V Wind intercon supply of and trends wind system includ	ems synchronous generator- DFIG- PMSG -Variable speed g variable frequency schemes- off shore wind analysis. GRID CONNECTED SYSTEMS nection requirements, low-voltage ride through (LVRT), ramp cillary services for frequency and voltage control, current pr interconnection impact on steady-state and dynamic perfor ing modeling issue.	o rate ractio	e lim ces a ce of	9 itatior nd in f the	ıs, a dust pow	

Francis Xavier Engineering College | Dept of EEE | R2021/Curriculum and Syllabi Suggestive Assessment Methods **Continuous Assessment Test Formative Assessment Test** End Semester Exams (20 Marks) (20 Marks) (60 Marks) WRITTEN TEST **1.ASSIGNMENT** WRITTEN TEST **2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES** Outcomes Upon completion of the course, the students will be able to: 1 Acquire knowledge on the basic concepts of Wind energy conversion system 2 Understand the mathematical modelling and control of the Wind turbine 3 Develop more understanding on the design of fixed speed system Study about the need of Variable speed system and its modelling 4 Analyze Grid integration issues and current practices of wind interconnections with power 5 system **Text Books** 1. L.L.Freris "Wind Energy conversion Systems", Prentice Hall, 1990

- 2. S.N.Bhadra, D.Kastha, S.Banerjee, "Wind Electrical Systems", Oxford UniversityPress, 2010.
- 3. Ion Boldea, "Variable speed generators", Taylor & Francis group, 2006.

Reference Books

- 1. E.W.Golding "The generation of Electricity by wind power", Redwood burnLtd.,Trowbridge,1976.
- 2. N. Jenkins," Wind Energy Technology" John Wiley & Sons, 1997
- 3. S.Heir "Grid Integration of WECS", Wiley 1998

Web Resources

- 1. <u>https://www.ee.iitb.ac.in/~npsc2008/NPSC_CD/Data/Tutorial%202/Wind%20Energy%20</u> <u>Conversion%20Systems%20-%20Prof.%20S.B.%20Kedare.pdf</u>
- 2. <u>https://www.lathamathavan.edu.in/lmgi/antiragging/WECS-%20EEE%20new.pdf</u>
- 3. https://nptel.ac.in/courses/108/105/108105058/

CO Vs PO Mapping and CO Vs PSO Mapping

60	PO	P01	P01	P01	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	2	1	2
1	3	3												
2	3	3												
3	3				3									
4		3			3									
5		3			3									

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	20	20	15	10	20
UNDERSTAND	30	30	15	15	30
APPLY	20	20	10	15	20
ANALYZE	15	15	10	10	15
EVALUATE	15	15	0	0	15
CREATE	0	0	0	0	0
	100	100	50	50	100

1-Low, 2- Medium, 3- High

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1:

- 1. Summarize the importance of components of wind energy conversion system with a neat diagram.(Understand)
- 2. Explain clearly about the sabinin's theory.(Understand)

COURSE OUTCOME 2:

- 1. Difference between HAWT and VAWT. (Understand)
- 2. Explain the Yaw and Pitch angle control in WECS (Understand)
COURSE OUTCOME 3:

1. Describe the constant speed and constant frequency systems. Give its advantages and

disadvantages. (Understand)

2. Explain the different types of generators used in WECS with suitable diagrams.(Understand)

COURSE OUTCOME 4:

- 1. Explain with a neat diagram the operation of variable speed constant frequency system and list the advantages and disadvantages.(Understand)
- 2. Describe the power wind characteristics and explain its types briefly (Understand) **COURSE OUTCOME 5:**
- 1. Explain the briefly about LVRT (Understand)

2. Describe the power dynamic performance and its impacts (Understand)

Compiled By: Dr.R.Rajagopal, AP/EEE

Verified By

21EE7715	POWER ELECTRONICS FOR RENEWABLE	L	Т	Р	С
	ENERGY SYSTEMS	3	0	0	3
Preamble					
It is an introd	luctory course which emphasizes the fundamental concepts ar	nd ov	ervie	w of	power
electronics for	renewable energy systems. The concepts discussed herein ar	e inte	endeo	to p	provide
clarification on	power electronics applications for renewable energy systems.				
Prerequisites fo	or the course				
Power E	lectronics				
Renewat	ble Energy Systems				
AC mach	nines				
Objectives					
To impart know	ledge on the following topics				
1. Introduction t	o renewable energy systems				
2.Solar energy c	onversion				
3.Wind energy c	conversion				
4. Electrical mad	chines for renewable energy conversion.				
5. Standalone an	d grid integrated system.				
UNIT I	INTRODUCTION			9	
Renewable ener	gy sources and their availability - Recent trends in energy consum	ption-	Qua	litativ	e study
of different ren	ewable energy resources: Solar, Wind, Ocean, Biomass, Fuel	cell,	Hydr	ogen	energy
systems and hyb	rid renewable energy systems - Review of reference theory fundamentation	nental	s- Ca	ase stu	idies.

UNIT II	9			
Solar PV charact	eristics, Grid requir	rement for PV, Power electronic conv	erters use	d for solar PV, Con
techniques, MPP	T, Grid connected	and Islanding mode, Grid synchroniz	ation, PL	Ls, battery charging
PV systems, Ene	rgy storage applicat	tions		
UNIT III	WIN	D ENERGY CONVERSION		9
Wind Turbine ch	naracteristics, Grid	requirement for Wind, PMSM and D	FIG for v	vind generators, Po
electronic conve	rters for PMSM an	nd DFIG, Control techniques, MPPT	, Grid co	onnected and Island
mode.				
UNIT IV	HYBRID	RENEWABLE ENERGY SYSTEMS		9
Need for Hybr Maximum Powe	rid Systems- Ran r Point Tracking (M	ge and type of Hybrid systems IPPT).	- Case	studies of Wind-
UNIT V	CONTROL FO	R MICROGRIDS AND SMART G	RIDS	9
Power electronic	converters and con	trol for Microgrids and Smart grids.	Modeling	and stability analys
Coordination and	d control of power e	lectronic converters.	Periods	45
Coordination and	d control of power e ssment Methods	lectronic converters.	Periods	45
Coordination and Suggestive Asse Continuous Ass	d control of power e ssment Methods essment Test	lectronic converters. Total Formative Assessment Test	Periods End Sem	45 nester Exams
Coordination and Suggestive Asse Continuous Ass (20 Marks)	d control of power e ssment Methods essment Test	Formative Assessment Test (20 Marks)	Periods End Sem (60 Marl	45 nester Exams ks)
Coordination and Suggestive Asse Continuous Ass (20 Marks) WRITT	d control of power e ssment Methods essment Test FEN TEST	Formative Assessment Test (20 Marks) 1.CASE STUDY ASSIGNMENT	Periods End Sem (60 Marł W	45 nester Exams ks) RITTEN TEST
Coordination and Suggestive Asse Continuous Ass (20 Marks) WRITT	d control of power e ssment Methods essment Test FEN TEST	Formative Assessment Test (20 Marks) 1.CASE STUDY ASSIGNMENT 2. ONLINE QUIZZES	Periods End Sem (60 Marl W	45 nester Exams ks) RITTEN TEST
Coordination and Suggestive Asse Continuous Ass (20 Marks) WRITT	d control of power e ssment Methods essment Test	Formative Assessment Test (20 Marks) 1.CASE STUDY ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES	Periods End Sem (60 Marl W	45 nester Exams ks) RITTEN TEST
Coordination and Suggestive Asse Continuous Ass (20 Marks) WRITT	d control of power e ssment Methods essment Test FEN TEST	Formative Assessment Test (20 Marks) 1.CASE STUDY ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES	Periods End Sem (60 Marl W	45 nester Exams ks) RITTEN TEST
Coordination and Suggestive Asse Continuous Ass (20 Marks) WRITT Outcomes Upon completio	d control of power e ssment Methods essment Test TEN TEST	Formative Assessment Test (20 Marks) 1.CASE STUDY ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES	l Periods End Sem (60 Marl W	45 nester Exams ks) RITTEN TEST
Coordination and Suggestive Asse Continuous Ass (20 Marks) WRITT Outcomes Upon completio 1 Analyze th	d control of power e ssment Methods essment Test TEN TEST n of the course, the se environmental asp	Formative Assessment Test (20 Marks) 1.CASE STUDY ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES e students will be able to: pects and impacts of renewable energ	Periods End Sem (60 Mart W	45 nester Exams ks) RITTEN TEST
Coordination and Suggestive Asse Continuous Ass (20 Marks) WRITT Outcomes Upon completio 1 Analyze th describe va	d control of power e ssment Methods essment Test TEN TEST n of the course, the he environmental asp arious types of renew	Formative Assessment Test (20 Marks) 1.CASE STUDY ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES e students will be able to: pects and impacts of renewable energ wable energy sources	Periods End Sem (60 Mart W	45 nester Exams ks) RITTEN TEST
Coordination and Suggestive Asse Continuous Ass (20 Marks) WRITT Outcomes Upon completio 1 Analyze th describe va 2 Apply suit	d control of power e ssment Methods essment Test TEN TEST m of the course, the arious types of renew able power converted	Formative Assessment Test (20 Marks) 1.CASE STUDY ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES e students will be able to: pects and impacts of renewable energ wable energy sources	End Sem (60 Mark W y and e to descr	45 nester Exams ks) RITTEN TEST
Coordination and Suggestive Asse Continuous Ass (20 Marks) WRITT Outcomes Upon completio 1 Analyze th describe va 2 Apply suit 3 Apply suit	a control of power e ssment Methods essment Test FEN TEST n of the course, the e environmental asp arious types of renev able power converte able power converte able power converte	Formative Assessment Test (20 Marks) 1.CASE STUDY ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES e students will be able to: pects and impacts of renewable energy wable energy sources ers for solar power generation and able pers for wind power generation and able	End Sem (60 Mark W y and e to descr e to descr	45 nester Exams ks) RITTEN TEST ribe them in detail. ribe them in detail.
Coordination and Suggestive Asse Continuous Ass (20 Marks) WRITT Outcomes Upon completio 1 Analyze th describe va 2 Apply suit 3 Apply suit 4 Know in d	a control of power e ssment Methods essment Test FEN TEST n of the course, the re environmental asp arious types of renew able power converted able power converted able power converted able power converted	Formative Assessment Test (20 Marks) 1.CASE STUDY ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES e students will be able to: pects and impacts of renewable energy wable energy sources ers for solar power generation and able power generation and able power generation and able	Periods End Sem (60 Marl W) y and e to describe to des	45 nester Exams ks) RITTEN TEST ribe them in detail. ribe them in detail. rigy conversion.

Text Books

- 1. Rashid .M. H, "Power Electronics Hand book", Academic press, Second edition, 2006.
- 2. Rai. G.D, "Solar energy utilization", Khanna publishes, 1993.
- 3. Gray, L. Johnson, "Wind energy system", prentice hall linc, 1995
- 4. Rai,G.D., "Non- conventional resources of energy", Khanna publishers, Fourth edition, 2010.

Reference Books

- 1. Rao. S. & Parulekar, "Energy Technology", Khanna publishers, Fourth edition, 2005.
- 2. Pai, B. R. and Ram Prasad, "Power Generation through Renewable Sources of
- 3. Energy", Tata McGraw Hill, New Delhi, 1991.
- Bansal, Kleeman and Meliss, "Renewable Energy Sources and Conversion Techniques", Tata Mc Graw Hill, 1990.
- 5. Godfrey Boyl, "Renewable Energy: Power sustainable future", Oxford University Press, Third edition, 2012.
- 6. Khan B.H., "Non-Conventional Energy Resources", The McGraw Hills, Second edition, 2009.
- 7. John W Twidell and Anthony D Weir, "Renewable Energy Resources", Taylor and Francis, 2006.
- 8. Freris L.L., "Wind Energy Conversion systems", Prentice Hall, UK, 1990.

WEB RESOURCE(S):

- 1. https://nptel.ac.in/courses/108/108/108108078/
- 2. https://nptel.ac.in/courses/108/108/108108034/

CO Vs PO Mapping and CO Vs PSO Mapping

60	PO	P01	P01	PSO	PSO									
ιυ	1	2	3	4	5	6	7	8	9	10	1	2	1	2
1	2	1												
2	2	1												
3	3	2	1	1										
4	3	3	2	2										
5	3	2	1	1										

1-Low , 2- Medium, 3- High

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	20	20	10	10	20
UNDERSTAND	40	30	10	10	30
APPLY	40	40	20	20	40
ANALYZE		10	10	10	10
EVALUATE					
CREATE					
	100	100	50	50	100

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1:

- 1. List the various types of renewable energy sources.
- 2. Write the merits of renewable energy sources.

COURSE OUTCOME 2:

- 1. Discuss the role of power electronics in renewable energy system.
- 2. Explain the merits and demerits of power electronics.

COURSE OUTCOME 3:

- 1. Develop the design procedure of soft switching AC-link universal power converter,
- 2. Compare hard and soft switching converters.

COURSE OUTCOME 4:

1. Consider an induction machine based wind energy conversion system. If induction

2. Machine is replaced by synchronous machine, what are the expected changes in the Performance indices?

3. Consider synchronous machine based wind energy conversion system. If it is replaced by induction machine, analyse change in reactive power scenario.

COURSE OUTCOME 5:

1. Identify the issues related to grid connection of PV system.

2. Compare the issues related to grid connected mode and islanding mode operation of solar power system.

Compiled By: Dr.N.Hemalatha, AP/EEE

Verified By

PROFESSIONAL ELECTIVE VI

21EE8701	GENERATION,UTILIZATION AND CONSERVATION OF ELECTRICAL ENERGY	L	Τ	Р	С
		3	0	0	3

Preamble

To study the generation, conservation of electrical power and energy efficient equipments

and understand the principle, design of illumination systems and energy efficiency lamps.

Prerequisites for the course

- 1. Transmission and Distribution
- 2. Power Systems Transients

Objectives

Upon completion of this course, the students will be able to

- 1. Evaluate domestic wiring connection and debug any faults occurred.
- **2.** Construct an electric connection for any domestic appliance like refrigerator as well as to design a battery charging circuit for a specific household application.
- 3. Realize the appropriate type of electric supply system as well as to evaluate the performance of a traction unit.

4. To understand the main aspects of Traction.

5. Understand the electric traction systems and their performance.

UNIT I	ILLUMINATION	9

Importance of lighting – properties of good lighting scheme – laws of illumination – photometry types of lamps – lighting calculations – basic design of illumination schemes for residential, commercial, street lighting, factory lighting and flood lighting LED lighting and energy efficient lamps

UNIT II	REFRIGERATION AND AIR CONDITIONING	9

Refrigeration-Domestic refrigerator and water coolers - Air-Conditioning-Various types of airconditioning system and their applications, smart air conditioning units - Energy Efficient motors: Standard motor efficiency, need for efficient motors, Motor life cycle, Direct Savings and payback analysis, efficiency evaluation factor

UNIT III	HEATING AND WELDING	9
		to deside a la setta s

Role of electric heating for industrial applications – resistance heating – induction heating – dielectric heating - electric arc furnaces. Brief introduction to electric welding – welding generator, welding transformer and the characteristics. Power supply for radiation welding.

UNIT IVTRACTION9Merits of electric traction – Systems of railway electrification- requirements of electric tractionsystem – supply systems – mechanics of train movement – traction motors and control – braking –

Traction motors and its characteristics. Recent trends in electric traction-Traction substations sizing.

DOMENTIC ITTLIZATION OF ELECTRICAL ENERGY

9

Domestic utilization of electrical energy – House wiring. Induction based appliances, Online and OFF-line UPS, Batteries - Power quality aspects – nonlinear and domestic loads – Earthing – Domestic, Industrial and Substation-Introduction to E-vehicle .

	Tot	45		
Suggestive Assessment Method	ls			
Continuous Assessment Test	Formative Assessment Test	End Semester Exams (60 Marks)		
(20 Marks)	(20 Marks)			
WRITTEN TEST	1.ASSIGNMENT	W	RITTEN TEST	
	2. ONLINE QUIZZES			
	3.PROBLEM-SOLVING ACTIVITIES			

Outcomes

Upon completion of the course, the students will be able to:

1	Understand the main aspects of generation, utilization andconservation.
2	Identify an appropriate method of heating for any particular industrial application
3	Handle domestic wiring connection and debug any faults occurred
4	Construct an electric connection for any domestic appliance likerefrigerator as
	well as to design a battery charging circuit for a specifichousehold application.
5	Understand the concept of electric traction system.
Text	Books

- 1. Wadhwa, C.L. "Generation, Distribution and Utilization of Electrical Energy", New Age international Pvt. Ltd, 2003.
- Dr. Uppal S.L. and Prof. S. Rao, 'Electrical Power Systems', Khanna Publishers, New Delhi, 115th Edition, 2014.

Reference Books

- 1. Partab.H, "Art and Science of Utilisation of Electrical Energy", Dhanpat Rai and Co, New Delhi, 2004.
- Openshaw Taylor.E, "Utilization of Electrical Energy in SI Units", Orient Longman Pvt. Ltd, 2003.

- 3. Gupta.J.B, "Utilization of Electric Power and Electric Traction", S.K.Kataria and Sons, 2002.
- Cleaner Production Energy Efficiency Manual for GERIAP, UNEP, Bangkok prepared by National Productivity Council.

Web Recourses

- 1. https://youtu.be/RhH7ybjSbPg
- 2. https://www.youtube.com/watch?v=ARws_bw4uZM&pp=ygUMZWVndWMgdmlkZW9z
- 3. https://www.youtube.com/watch?v=nMT7MzmG5ZA&list=PLs5_Rtf2P2r7JiPm-TDQ75WYxzMgqm_jk
- 4. https://www.youtube.com/watch?v=M7Uqc-EnO9M&pp=ygUMZWVndWMgdmlkZW9z

CO Vs PO Mapping and CO Vs PSO Mapping

60	PO	P01	P01	P01	PSO	PSO								
ιυ	1	2	3	4	5	6	7	8	9	0	1	2	1	2
1	1	2		1		1		2	2	1	1	2	1	2
2	1	2												
3	1				1	1	3				1			
4			1			1		3	1	1			1	
5	1													

1-Low , 2- Medium, 3- High

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	10	10	5	5	10
UNDETSTAND	20	20	10	10	20
APPLY	10	10	10	10	10
ANALYZE	20	20	10	10	20
EVALUATE	10	10	5	5	10
CREATE	30	30	10	10	30
	100	100	50	50	100

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1:

1. If the total lumens required are 7200 and coefficient of Is 0.3, calculate lamp lumens required

2. Deduce why sodium vapour lamps are not preferred forindoor lighting.

COURSE OUTCOME 2:

- 1. How energy-efficient motor different than a standard motor?
- 2. Evaluate the payback period for selecting energy efficient versus standard efficiency motors

COURSE OUTCOME 3:

- 1. Evaluate causes of failure of heating element.
- 2. List the advantages of coreless induction furnace.

COURSE OUTCOME 4:

- 1. Sketch the speed-time curve for a sub-urban railway system.
- 2. List the factors affecting scheduled speed of a train.

COURSE OUTCOME 5:

- 1. Illustrate the advantages of online UPS over offline UPS.
- 2. Write out the difference between linear and nonlinear loads.

21EE8702	POWER SYSTEM OPERATION AND CONTROL	L	Т	Р	С
		3	0	0	3
Droomblo					

Preamble

The primary intension of power system operation and control is to provide uninterrupted quality power to the required load. Frequency, voltage and uninterrupted power decide the quality of power. The generation of power must be in such way to meet the prevailing demand. The next object is achieved by generating consistent and continuity of service with total output at optimum overall cost.

Prerequisites for the course

- 1. Transmission and Distribution
- 2. Power System Analysis

Objectives

- 1. To have an overview of power system operation and control and load characteristics.
- 2. To study about SCADA and its application for real time operation and control of power systems.
- 3. To model power-frequency dynamics and to design power-frequency controller.
- 4. To model reactive power-voltage interaction and the control actions to be implemented for maintaining the voltage profile against varying system load

5. To study	v the economic oper	ration of power system optimizati	on techini	ques.
	I	OAD CHARACTERISTICS		9
				,
System load va diversity factor	riation - load char - Simple technique	racteristics - load curves and load es of forecasting.	d-duration	curve - load factor
UNIT II	P	OWER SYSTEM SECURITY		9
Security functi	ons- State transiti	on diagram - Contingency analy	sis - Deriv	vation of generalize
constants – AC	load flow method –	State Estimation – LSE and WLSE	– SCADA	0
UNIT III	REAL	POWER CONTROL		9
Control area co	ncepts -P-f control	of single control area- ACE- Two a	irea contro	ol- tie line bias contr
– State variable	model - Extension	to pool operation or multi control	l area syste	ems
UNIT IV		9		
Overview of Re	active Power – Exc	itation Systems – Reactive power	compensa	tion – Facts Devices
Tap Changing T	ransformers			
UNIT V	OP	TIMIZATION TECHNIQUES		9
Unit Commitm	ent- System const	raints- Priority ordering - Dyna	mic prog	ramming - Econom
Dispatch- Coord	dination equation v	vith and without losses – Solution	Technique	es
			1	
		Tota	l Periods	45
Suggestive Ass	sessment Methods	Tota S	l Periods	45
Suggestive Ass Continuous As	sessment Methods sessment Test	Tota 5 Formative Assessment Test	l Periods End Sem	45 nester Exams
Suggestive Ass Continuous As (20 Marks)	sessment Methods sessment Test	Tota S Formative Assessment Test (20 Marks)	l Periods End Sem (60 Mar	45 nester Exams ks)
Suggestive Ass Continuous As (20 Marks) WRIT	sessment Methods sessment Test TEN TEST	Tota Formative Assessment Test (20 Marks) 1.ASSIGNMENT	l Periods End Sem (60 Mar	45 Tester Exams ks) /RITTEN TEST
Suggestive Ass Continuous As (20 Marks) WRIT	sessment Methods sessment Test TEN TEST	Tota Formative Assessment Test (20 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES	l Periods End Sem (60 Mar W	45 nester Exams ks) /RITTEN TEST
Suggestive Ass Continuous As (20 Marks) WRIT	sessment Methods sessment Test TEN TEST	Tota Formative Assessment Test (20 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING	l Periods End Sem (60 Mar W	45 nester Exams ks) /RITTEN TEST
Suggestive Ass Continuous As (20 Marks) WRIT	sessment Methods sessment Test TEN TEST	Tota Formative Assessment Test (20 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES	l Periods End Sem (60 Mar W	45 nester Exams ks) /RITTEN TEST
Suggestive Ass Continuous As (20 Marks) WRIT WRIT	sessment Methods sessment Test TEN TEST	Tota Formative Assessment Test (20 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES	I Periods End Sem (60 Mar W	45 nester Exams ks) /RITTEN TEST
Suggestive Ass Continuous As (20 Marks) WRIT Outcomes Upon complet	sessment Methods sessment Test TEN TEST ion of the course,	Tota Formative Assessment Test (20 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES the students will be able to:	l Periods End Sem (60 Mar W	45 nester Exams ks) /RITTEN TEST
Suggestive Ass Continuous As (20 Marks) WRIT Outcomes Upon complet	sessment Methods sessment Test TEN TEST ion of the course,	Tota Formative Assessment Test (20 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES the students will be able to:	I Periods End Sem (60 Mar W	45 nester Exams ks) /RITTEN TEST
Suggestive Ass Continuous As (20 Marks) WRIT Outcomes Upon complet 1 Have adec protection	sessment Methods sessment Test TEN TEST ion of the course, quate understandir n	Tota Formative Assessment Test (20 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES the students will be able to: Ing to analyze power system operation	I Periods End Sem (60 Mar W	45 nester Exams ks) /RITTEN TEST ity, control and
Suggestive Ass Continuous As (20 Marks) WRIT Outcomes Upon complet 1 Have ade protection 2 Perform 6	sessment Methods sessment Test TEN TEST ion of the course, se quate understandir n	Tota Formative Assessment Test (20 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES the students will be able to: Ing to analyze power system operation	I Periods End Sem (60 Mar W tion, stabil optimizati	45 nester Exams ks) /RITTEN TEST ity, control and on
Suggestive Ass Continuous As (20 Marks) WRIT Outcomes Upon complet 1 Have ade protection 2 Perform e 3 Design va	sessment Methods sessment Test TEN TEST ion of the course, quate understandir n economic operation	Tota Formative Assessment Test (20 Marks) (20 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES the students will be able to: ng to analyze power system operation n of power system and generation niques for frequency control	I Periods End Sem (60 Mar W tion, stabil optimizati	45 nester Exams ks) /RITTEN TEST ity, control and on
Suggestive Ass Continuous As (20 Marks) WRIT Outcomes Upon complet 1 Have ade protection 2 Perform e 3 Design va 4 Compare	sessment Methods sessment Test TEN TEST ion of the course, quate understandir n economic operation rious control techn various devices for	Tota Formative Assessment Test (20 Marks) (20 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES the students will be able to: 1.000000000000000000000000000000000000	I Periods End Sem (60 Mar W tion, stabil optimizati	45 nester Exams ks) /RITTEN TEST ity, control and on

Text Books

1. O.I.Elgerd, "Electric Energy System Theory - an Introduction", - Tata McGraw Hill, New Delhi, 2017

2. Allen. J. Wood and Bruce F. Wollen berg, 'Power Generation, Operation and Control', John Wiley & Sons, Inc., 2016

Reference Books

- 1. Kundur P., 'Power System Stability and Control, McGraw Hill Education Pvt. Ltd., New Delhi, 10th reprint, 2010.
- 2. A.K.Mahalanabis, D.P.Kothari. and S.I.Ahson., "Computer Aided Power System Analysis and Control", Tata McGraw Hill publishing Ltd, 1984.
- 3. D.P. Kothari and I.J. Nagrath, 'Modern Power System Analysis', Third Edition, Tata McGraw Hill Publishing Company Limited, New Delhi, 2003.

Web Recourses

- 1. a https://nptel.ac.in/courses/108101040
- 2. B https://archive.nptel.ac.in/courses/108/104/108104052/
- **3.** C https://freevideolectures.com/course/2354/power-systems-operation-and-control

CO Vs PO Mapping and CO Vs PSO Mapping

<u> </u>	PO	P01	P01	P01	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	2	1	2
1	3	3	1	2										3
2	2	2	3	3										3
3	2	3	1	1										3
4	1	3	2	2										3
5	3	2	2	2										3

1-Low, 2- Medium, 3- High

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	10	10			10
UNDETSTAND	60	60	20	30	60
APPLY	10	10			10
ANALYZE	20	20	30	20	20
EVALUATE					
CREATE					
	100	100	50	50	100

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1:

- 1. Two generators rated at 120MW and 250 MW are operating in parallel. The governor setting on the machines are such that have 4 percent and 3 percent drops. Determine (i) The load taken by each machine for a total load 200MW. (ii) The percentage no load speed and rated output of machine 1 to made by the speeder motor if the machine are to share a load equally (iii) Rated output of machine 1.
- 2. Draw the P f and Q V control channel of a synchronous generator and explain how voltage and frequency are maintained constant

COURSE OUTCOME 2:

- 1. Explain the power system security and control with neat flow chart
- 2. Discuss various functions of SCADA with neat diagram. Also list some of the common features

COURSE OUTCOME 3:

- 1. The area system connected by a tie line describe the following characteristics : Area 1 Area 2 R=0.01 p.u R=0.02 p.u D=0.8p.u D=1.0p.u Base MVA =500 Base MVA =500 A load change of 100MW (0.2p.u) occurs in area 1. What is the new steady state frequency, what is the change in tie line flow? Assume both areas were at nominal frequency (60Hz).
- 2. Draw the block diagram of uncontrolled two area load frequency control system and describe the salient features under static condition.

COURSE OUTCOME 4:

- 1. A 415kV line is fed through an 132/415 kV transformer from a constant 132kV supply. At the load end of the line, the voltage is reduced by another transformer of ratio 415/132 KV. The total impedance of line is 40+ j80 ohms both transformers are equipped with tap changing; the product of the two off nominal setting is unity. if the load on the system is 200 MW at 0.8 p.f lagging. Calculate the settings of the tap changers required to maintain the voltage at 132KV.
- 2. Develop the block diagram of AVR and obtain its transfer function and explain the static and dynamic response.

COURSE OUTCOME 5:

- 3. Explain with neat block diagram integration of economic dispatch with load frequency control
- 4. Analyse the coordination equation for economic dispatch including losses and give the steps for economic dispatch calculation, neglecting losses.

21EE8703	HIGH VOLTAGE ENGINEERING	L	Т	Р	С				
		3	0	0	3				
Preamble									
This course introduces basic terms and techniques applicable to high voltage ac and dc networks.									
Generation of c	lifferent type of High voltage waveforms, their measurement a	and a	naly	sis inc	luding				
the insulation o	coordination of different equipment's and machinery used in H	IV ap	plica	tions.	It also				
provides a basi	c idea of FACTS devices and testing with the help of different t	testin	g cir	cuits.					
Prerequisites f	or the course								
1. Transmi	ssion and Distribution								
Objectives									
1. To under	stand the Various types of over voltages in power system and	prote	ectio	n met	hods				
2. Generatio	on of over voltages in laboratories								
3. Measurer	ment of over voltages.								
4. Nature o	f Breakdown mechanism in solid, liquid and gaseous dielectri	cs.							
5. Testing o	f power apparatus and insulation coordination								
UNIT I	OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS			9					
Causes of over	voltages and its effects on power system – Lightning, s	switcl	ning	surge	es and				
temporary over	voltages, Corona and its effects - Reflection and Refraction	n of 7	Trave	elling	waves				
Protection again	ist over voltages.								

UNIT II	D	DIELECTRIC BREAKDOWN		9
Gaseous break	down in uniform ar	nd non-uniform fields – Corona dis	scharges –	Vacuum breakdow
Conduction ar	nd breakdown in	pure and commercial liquids,	Maintena	nce of oil Quality
Breakdown me	echanisms in solid a	and composite dielectrics		
UNIT III	GENERATION O	F HIGH VOLTAGES AND HIGH CU	RRENTS	9
Generation of	High DC, AC, imp	ulse voltages and currents – Tri	ggering an	d control of impu
generators.	1			
UNIT IV	MEASUREM	IENT OF HIGH VOLTAGES AND H CURRENTS	IGH	9
High Resistanc	e with series amme	eter – Dividers, Resistance, Capaci	tance and	Mixed dividers – P
Voltmeter, Gen	erating Voltmeters	s – Capacitance Voltage Transfor	mers, Elect	rostatic Voltmeter
Sphere Gaps –	High current shunt	s- Digital techniques in high volta	ge measure	ement.
		TECTING & INCLUMATION COODD		0
		IESTING & INSULATION COURD	INATION	9
High voltage t	acting of alactrica			
	esting of electrica	I power apparatus as per Intern	ational an	d Indian standard
Power frequen	cy, impulse voltag	e and DC testing of Insulators, cir	cuit breake	d Indian standard ers, bushing, isolat
Power frequen and transforme	esting of electrical cy, impulse voltage ers- Insulation Coor	I power apparatus as per Intern e and DC testing of Insulators, cir rdination	cuit breake	d Indian standard ers, bushing, isolat
Power frequen and transforme	esting of electrical	power apparatus as per Intern e and DC testing of Insulators, cir rdination Tota	ational an cuit break al Periods	d Indian standard ers, bushing, isolat 45
Power frequen and transforme Suggestive As	esting of electrical ecy, impulse voltage ers- Insulation Coor sessment Method	e and DC testing of Insulators, cir rdination Tota	ational an cuit breake al Periods	d Indian standard ers, bushing, isolat 45
Power frequen and transforme Suggestive Ass Continuous As	sessment Method	e and DC testing of Insulators, cir rdination Tota s Formative Assessment Test	ational an cuit breake al Periods End Sem	d Indian standard ers, bushing, isolat 45 nester Exams
Power frequen and transforme Suggestive Ass Continuous As (20 Marks)	sessment Method	e and DC testing of Insulators, cir rdination Tota s Formative Assessment Test (20 Marks)	ational an cuit breake al Periods End Sem (60 Mar	d Indian standard ers, bushing, isolat 45 nester Exams ks)
Power frequen and transforme Suggestive Ass Continuous As (20 Marks)	sessment Method sessment Test	e and DC testing of Insulators, cir rdination Tota s Formative Assessment Test (20 Marks) 1.ASSIGNMENT	ational an cuit breake al Periods End Sem (60 Mar	d Indian standard ers, bushing, isolat 45 ester Exams ks)
Power frequen and transforme Suggestive Ass Continuous As (20 Marks) WRIT	sessment Method sessment Test	e and DC testing of Insulators, cir rdination Tota s Formative Assessment Test (20 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES	ational an cuit breake al Periods End Sem (60 Mar W	d Indian standard ers, bushing, isolat 45 ester Exams ks) /RITTEN TEST
Power frequen and transforme Suggestive Ass Continuous As (20 Marks) WRIT	sessment Method ssessment Test	e and DC testing of Insulators, cir rdination Tota s Formative Assessment Test (20 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES	ational an cuit breake al Periods End Sem (60 Mar W	d Indian standard ers, bushing, isolat 45 nester Exams ks) /RITTEN TEST
Power frequen and transforme Suggestive Ass Continuous As (20 Marks) WRIT	sessment Method ssessment Test	e and DC testing of Insulators, cir rdination Tota s Formative Assessment Test (20 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES	ational an cuit breake al Periods End Sem (60 Mar W	d Indian standard ers, bushing, isolat 45 ester Exams ks) /RITTEN TEST
Power frequen and transforme Suggestive Ass Continuous As (20 Marks) WRIT Outcomes	ion of the course	e and DC testing of Insulators, cir rdination Tota s Formative Assessment Test (20 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES	ational an cuit breake al Periods End Sem (60 Mar W	d Indian standard ers, bushing, isolat 45 ester Exams ks) /RITTEN TEST
Power frequen and transforme Suggestive Ass Continuous As (20 Marks) WRIT Outcomes	sessment Method ssessment Test TEN TEST	e and DC testing of Insulators, cir rdination Tota s Formative Assessment Test (20 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES the students will be able to:	ational an cuit breake al Periods End Sem (60 Mar W	d Indian standard ers, bushing, isolat 45 ester Exams ks) /RITTEN TEST
Power frequen and transforme Suggestive Ass Continuous As (20 Marks) WRIT Outcomes Upon complet	sessment Method ssessment Test TEN TEST	e and DC testing of Insulators, cir rdination Tota s Formative Assessment Test (20 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES the students will be able to: pes of over voltages in power syst	em	d Indian standard ers, bushing, isolat 45 hester Exams ks) /RITTEN TEST
Power frequen and transforme Suggestive Ass Continuous As (20 Marks) WRIT Outcomes Upon complet 1 Familiar 2 Understa	sessment Method sessment Method sessment Test TEN TEST	e and DC testing of Insulators, cir rdination Tota s Formative Assessment Test (20 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES the students will be able to: pes of over voltages in power syst	em iquid and g	d Indian standard ers, bushing, isolat 45 ester Exams ks) /RITTEN TEST
Power frequen and transforme Suggestive Ass Continuous As (20 Marks) WRIT Outcomes Upon complet 1 Familiar 2 Understa 3 Have ade	sessment Method sessment Method sessment Test TEN TEST	e and DC testing of Insulators, cir rdination Tota S Formative Assessment Test (20 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES the students will be able to: pes of over voltages in power syst Tbreakdown mechanism in solid, literation of over voltages i	em iquid and g n laborator	d Indian standard ers, bushing, isolat 45 ester Exams ks) /RITTEN TEST aseous dielectrics.

5 Familiar with the various testing methods of power apparatus.

Text Books

- 1. S.Naidu and V. Kamaraju, 'High Voltage Engineering', Tata McGraw Hill, Fifth Edition, 2013.
- 2. E. Kuffel and W.S. Zaengl, J.Kuffel, 'High voltage Engineering fundamentals', Newnes Second Edition Elsevier, New Delhi, 2005.

Reference Books

- Subir Ray,' An Introduction to High Voltage Engineering' PHI Learning Private Limited, New Delhi, Second Edition, 2013
- 2. L.L. Alston, 'High Voltage Technology', Oxford University Press, First Indian Edition, 2011.
- 3. C.L. Wadhwa, 'High Voltage Engineering', New Age International Publishers, Third Edition, 2010.

Web Recourses

1. https://nptel.ac.in/courses/108104048

21EE8704	INDUSTRIAL AUTOMATION AND CONTROL	L	Τ	Р	С
		3	0	0	3

Preamble

Compared with manual systems, automation systems provide superior performance in terms of precision, power and speed of operation. Industrial automation is the use of control devices such as PC/PLCs/PACs etc. to control industrial processes and machinery by replacing as much as possible labour intervention and dangerous assembly operations with automated ones. In industrial control a wide number of process variables such as temperature, flow, pressure, distance, and liquid levels can be sensed simultaneously. All the process variables are acquired, processed and controlled by complex microprocessor systems or PC based data processing controllers.

The control systems along with monitoring adapted to the operating environment in an industry for flexible, efficient and reliable production system. The automated system needs special dedicated hardware and software products for implementing control and monitoring systems.

Prerequisites for the course

- Measurement and Modern Instrumentation
- Control Systems

Objectives

ncis Xavier Eng	ineering College D	ept of EEE R2021/Curriculum a	nd Syllabi	
To impart knov 1. An over	vledge on the follov view about industri	ving topics ial automation and control		
2. About th	ne concepts of proce	ess control		
3. About th	ne concepts of sequ	ence control		
4. The con	cepts of distributed	l digital control systems		
5. The con	cepts of production	i control systems		
UNIT I	Introduction t	to Industrial Automation and C	ontrol	9
Hydraulic Actu Proportional ai Integrated Con Drives.	ator Systems: Princ nd Servo Valves Pne trol Systems. Electr	viples, Components and Symbols - eumatic Control Systems: System ric Drives: Introduction, Energy Sa	- Pumps an Componen aving with	d Motors, its - Controllers and Adjustable Speed
UNIT II	Intro	oduction to Process Control		9
P I D Contro : Feed forward Cascade Contro)I - Controller Tunir and Ratio Control. I)I, Overriding Contr	ng. Implementation of PID Contro Predictive Control, Control of Sys ol, Selective Control, Split Range	ollers - Spec tems with I Control- Ca	ial Control Structur Inverse Response - Ise Studies. 0
UNIT III		duction to sequence control		9
Design Approa	ach - Advanced R	LL Programming - Functional	Block diag	gram -The Hardwa
Distributed Dig Field bus Comr loop.	gital Control, Netwo nunication Protoco	orking of Sensors, Actuators and l – Profibus. Introduction to CNC	l Controlle Machines	rs: The Fieldbus -T - Analysis of a cont
UNIT V	Pro	oduction Control Systems		9
Introduction to Control and Da	Production Contro ta Acquisition, Case	el Systems - Programmable Auton e Studies.	nation Cont	roller -Supervisory
		Tot	al Periods	45
Suggestive As:	sessment Methods	3		
Continuous As	sessment Test	Formative Assessment Test	End Sen	nester Exams
(20 Marks)		(20 Marks)	(60 Mar	ks)
WRIT	TEN TEST	1.ASSIGNMENT	N	RITTEN TEST
		2. ONLINE QUIZZES		
		3.PROBLEM-SOLVING ACTIVITIES		
			I	
Outcomes				
Outcomes	ion of the course	the students will be able to:		

1	Explain the architecture of Industrial Automation Systems
2	Distinguish between sequence control, Digital and Numeric control
3	Develop Ladder Logic/ Functional Block based PLC program for a given industrial application
4	Explain the components and operation of Hydraulic Actuator Systems & Pneumatic control

 Systems

 5
 Calculate the energy savings with Electric motor drives. Explain the working principle of Distributed Control and SCADA

Text Books

1.Frank.D.Petruzella – Programmable Logic Controllers, Tata McGraw Hill Publishing company Ltd.,

2. Lukcas M P, "Distributed Control Systems", Van Nostrand Reinhold Co., New York, 1986.

3. Krishna Kant, "Computer based Industrial Control", 2nd Edition, Prentice Hall of India, 2010

Reference Books

1.Bill Hollifield "High Performance HMI Handbook"

- 2.Seborg, Edgar, Mellichamp, Doyle, Process Dynamics and Control, 3ed, Wiley India Publications, 2015
- 3. George Stephanopoulos, "Chemical Process Control: An Introduction to Theory and Practice", Prentice Hall of India, 2008
- 4. B.G. Liptak,"Instrument Engineers Handbook" Vol.1 to Vol.3, Butterworth Hienemann Limited, 2005
- 5.Bill Hollifield, "The Principles of Alarm Management"

WEB RESOURCE(S):

http://www.nptelvideos.in/2012/11/industrial-automation-and-control.html

CO Vs PO Mapping and CO Vs PSO Mapping

60	PO	P01	P01	P01	PSO	PSO								
U	1	2	3	4	5	6	7	8	9	0	1	2	1	2
1	2													
2	2	1												
3	1	2	1		3									
4	2	1												
5	2	2	1	1										

1-Low , 2- Medium, 3- High

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	30	20	20	10	20
UNDERSTAND	50	50	30	20	50
APPLY	20	30		20	30
ANALYZE					
EVALUATE					
CREATE					
	100	100	50	50	100

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1:

- 1. Illustrate the architecture of Industrial Automation Systems.
- 2. Mention the need of data acquisition system in Industrial automation systems.
- 3. List a few final control elements in Industries.

COURSE OUTCOME 2:

- 1. Provide examples for Sequential control in Industries.
- 2. Distinguish between Sequential control and Digital control.
- 3. Enlist the differences between Digital control and Numeric control. **COURSE OUTCOME 3:**

1. When the lights are turned off in a building (assume 2 lights inside the building), an exit door light is to remain ON for additional 2 minutes. Then parking lot lights should remain on for additional 3 minutes after the door light goes out. Develop a PLC program to implement this process

2. A pump is to be used to fill two storage tanks. The pump is manually started by the Operator from a station. When the first tank is full, the control logic must be able to automatically stop flow to the first tank and direct flow to the second tank through the use of sensors and electric solenoid valves. When the second tank is full, the pump must shut down automatically. Indicator lamps are to be included to signal when each tank is full. Develop a PLC program to implement this process.

3. Two part conveyor lines, A and B, feed a main conveyor line M. A third conveyor line, R, removes rejected parts a short distance away from the main conveyor. Conveyors A, B and R have parts counters connected to them. Construct a PLC program to obtain the total parts

COURSE OUTCOME 4:

- 1. Explain the components of Pneumatic control systems.
- 2. Describe the components of Hydraulic control systems.

COURSE OUTCOME 5:

1. List the advantages of distributed control architecture over centralized control architecture

- 2. Define control complexity ratio
- 3. Explain about various types of approaches in designing a LCU control architecture
- 4. Discuss about the input and output devices used for high level operator interface.
- 5. How is the concept of DCS applicable to Water Treatment Plant? Discuss in detail.

Compiled By: Dr.N.Hemalatha, AP/EEE

Verified By

21EE8705	SPECIAL ELECTRICAL MACHINES AND CONTROLLERS	L	Τ	Р	С
		3	0	0	3
Preamble					

This course aims to impart in students, a good understanding of fundamental principles of different types of special machines. The course includes constructional details, operating principles, motor characteristics, microprocessor based controllers and applications of various types of special machines.

Prerequisites for the course

DC Machines and Transformer AC Machines

Objectives

To impart knowledge on the following topics

1. To understand the construction and operating principle and and performance of

synchronous reluctance motors.

2. To introduce the concepts of stepper motors and its applications.

3. To develop the control methods and operating principles of switched reluctance motors.

- 4. To understand the Construction, principle of operation, control and performance of permanent magnet brushless D.C. motors.
- 5. To understand the Construction, principle of operation and performance of permanent magnet synchronous motors.

UNIT I	SYNCHRONOUS RELUCTANCE MOTORS	9

Constructional features – Types – Axial and Radial flux motors – Operating principles – Reluctance torque – Phasor diagram – Characteristics.

UNIT II	STEPPING MOTORS	9
Constructional	features - Principle of operation - Variable reluctance moto	or – Single and multi-

stack configurations – Permanent Magnet Stepper motor – Hybrid motor – Theory of torque predictions – Modes of excitations – Characteristics – Drive circuits – Closed loop control.

UNIT III	SWITCHED RELUCTANCE MOTORS	9

Constructional features – Principle of operation – Inductance profile – Characteristics – Torque equation – Power Converters and their controllers – Methods of Rotor position sensing – Current control schemes – Sensorless operation – Closed loop control of SRM.

UNIT IV	PERMANENT MAGNET BRUSHLESS DC MOTORS	9
Pormanont Ma	anet materials - Magnetic Characteristics - Principle of	operation _ Types _

Permanent Magnet materials – Magnetic Characteristics – Principle of operation – Types – Commutators : Mechanical and electronic commutators – Square wave permanent magnet brushless motor drives – Sensors – Magnetic circuit analysis – EMF and torque equations – Power controllers – Motor characteristics and control.

UNIT V PERMANENT MAGNET SYNCHRONOUS MOTORS

9

Principle of operation – Ideal PMSM – EMF and Torque equations – Armature reaction MMF –Sine wave motor with practical windings – Phasor diagram – Torque / speed characteristics – Power controllers – Converters.

	Total Periods	45
Suggestive Assessment Methods		

Cont	inuous Assessment Test	Formative Assessment Test	End Semester Exams		
(20 N	larks)	(20 Marks)			
	WRITTEN TEST	1.ASSIGNMENT	WRITTEN TEST		
		2. ONLINE QUIZZES			
		3.PROBLEM-SOLVING ACTIVITIES			
Dutc	omes	the students will be able to:			
	Develop the line viladae in e	the students will be able to:	and norformance of		
1	synchronous reluctance mo	tors.	i and performance of		
2	Explain the construction, va motors.	rious operating modes, control ar	nd performance of stepping		
3	Analyze the structure and o motors.	peration, converters, and controll	ers of switched reluctance		
4	Review the construction, pr magnet brushless D.C. moto	rinciple of operation, control and pors.	performance of permanent		
5	Illustrate the construction, synchronous motors.	principle of operation and control	of permanent magnet		
Гext	Books				
1.	Miller T.J.E., "Brushless Pe	ermanent Magnet and Reluctance	Motor Drives", Clarendon Pre		
2.	Venkataratnam K., "Specia	l Electric Machines", Universities	Press, 2009.		
Refe	rence Books				
1.	Krishnan R., "Switched Re and Application", CRC Pre	luctance Motor Drives – Modeling, ss, New York, 2001.	Simulation, Analysis, Design		
2.	Aearnley P.P., "Stepping M Perengrinus, London, 200	otors – A Guide to Motor Theory a 2.	and Practice", Peter		
3.	Kenjo T. and Nagamori S., Press, London, 1988.	""Permanent Magnet and Brushles	ss DC Motors", Clarendon		
4.	Gnanavadivel J., Karthikey Anuradha publications, 3r	an J. and Albert Alexander S., "Spe d Edition, 2007.	cial Electrical Machine",		
5.	Kenjo T., "Stepping Motors 2007.	and Their Microprocessor Contro	ols", Clarendon Press London,		
Web	Recourses				
1.	https://nptel.ac.in/course	s/108104011/28	lastrias] Mashiras Lastrus		
Ζ.	Notes-Study-Material-and	-Important-Questions-Answers	iecuricai-machines-Lecture-		

60	PO	P01	P01	P01	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	2	1	2
1	3	2											3	
2	3	2											3	
3	3	2											3	
4	3	2											3	
5	3	2											3	

CO Vs PO Mapping and CO Vs PSO Mapping

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	20	20	10	10	20
UNDETSTAND	30	30	10	10	30
APPLY	20	20	10	10	20
ANALYZE	15	15	10	10	15
EVALUATE	15	15	10	10	15
CREATE	0	0	0	0	0
	100	100	50	50	100

1-Low , 2- Medium, 3- High

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1:

1. Draw and explain the phasor diagram of synchronous reluctance motor. (Evaluate)

2. Derive the torque equation of synchronous reluctance motor. (Analyze)

COURSE OUTCOME 2:

- **1.** Recommend suitable types of stepper motor for textile mill and explain the reason with the mechanical characteristics. (Evaluate)
- **2.** A variable reluctance stepper motor has 8 poles and they have five teeth in each pole. If the rotor has 50 teeth, calculate the step angle and also resolution. (Evaluate)

COURSE OUTCOME 3:

- 3. Explain the steady state performance analysis of switched reluctance motor. (Evaluate)
- 4. A SRM with 6 stator poles and 4 rotor poles has a stator pole arc of 30 degree and rotor pole arc is 32 degree . The aligned inductance is 10.7mH and unaligned inductance is 1.5mH. Saturation can be neglected. Calculate the instantaneous torque when the rotor is 30° before the aligned position and phase current is 6A. What is the maximum energy conversion for one stroke, if the current is limited to 7A? Determine the average torque corresponding to this energy conversion.

COURSE OUTCOME 4:

- 1. A permanent magnet DC commutator motor has a stalling torque of 2 Nm. The stall current is 5 A.Compute the motor's no-load speed if it is fed with 28 V DC supply.
- 2. Derive the torque equation and torque ratio of permanent magnet brushless DC motor.

COURSE OUTCOME 5:

- 1. When does a PMSM operate as synchronous reluctance motor? (Analyze)
- 2. Discuss PMBLDC and PMSM with respect to torque/ampere and KVA of converter/ kW of power to motor for 4 Pole, 3 Phase motor system. (Evaluate)

Compiled By: Mr.J.Antony Robinson, AP/EEE

Verified By

21EE8706	ELECTRICAL AND HYBRID ELECTRIC VEHICLES	L	Τ	Р	C
		3	0	0	3

Preamble

It is an introductory course which emphasize the fundamental concepts and overview of Electrical vehicles. The concepts discussed herein are intended to provide clarification on basic electrical vehicles, motors and drives for Electrical Engineering graduates.

Prerequisites for the course

1. Solid state drives

Objectives

- 1. To interpret the fundamental concepts of hybrid electric vehicles.
- 2. To develop the need of batteries in Electric and hybrid vehicles.
- 3. To impart knowledge on power electronics converters in Electric vehicles.

4. To analyze the use of AC and DC electrical machines used for hybrid electric vehicles.

5. To design the energy storage components of hybrid electric vehicles.

UNIT I	INTRODUCTION TO ELECTRIC VEHICLE (EV) & HYBRID	
	ELECTRIC VEHICLE (HEV)	

A brief history of Electric and Hybrid vehicles, basic architecture of hybrid drive train and analysis of series drive train., vehicle motion and the dynamic equations for the vehicle, types of HV and EV, advantages over conventional vehicles, vehicle mechanism, limitations of EV and HV, impact on environment of EV and HV technology, disposal of battery, cell and hazardous material and their impact on environment

UNIT II	POWER MANAGEMENT AND ENERGY SOURCES OF EV AND	9
	HV	

Power and Energy management strategies and its general architecture of EV and HV, various battery sources, energy storage, battery based energy storage and simplified models of battery, Battery Management Systems (BMS), fuel cells, their characteristics and simplified models, Super capacitor based energy storage, its analysis and simplified models.

UNIT III		POWER ELECTRONICS IN EV & HV							9		
Introduction,	various	power	electronics	converter	topologies	and	its	comparisons,	Control	of	
				_	_				_		

convertor operations in EV and HV, battery chargers used in EV & HV, emerging power electronic devices.

	-	
UNIT IV	DC AND AC MACHINES & DRIVES IN EV & HV	9

Various types of motors, selection and size of motors, Induction motor drives and control characteristics, Permanent magnet motor drives and characteristics, Brushed & Brushless DC motor drive and characteristics, switched reluctance motors and characteristics, IPM motor drives and characteristics, mechanical and electrical connections of motors.

UNIT V COMPONENTS & DESIGN CONSIDERATIONS OF EV & HV

9

9

Design parameters of batteries, ultra-capacitors and fuel cells, aerodynamic considerations, calculation of the rolling resistance and the grade resistance, calculation of the acceleration force, total tractive effort, torque required on the drive wheel, transmission efficiency, consideration of vehicle mass, electric vehicle chassis & body design, general issues in design, specifications and sizing of components

	Total Periods	45
Suggestive Assessment Methods		

Cont	tinuous Assessment Test	Formative Assessment Test	End Semester Exams		
(20 Marks)		(20 Marks)	(60 Marks)		
	WRITTEN TEST	1.ASSIGNMENT	WRITTEN TEST		
		2. QUIZZES			
		3.PROBLEM-SOLVING ACTIVITIES			
Outo	comes				
Upo	n completion of the course	the students will be able to:			
1	Understand the architectur	e and vehicle dynamics of electric	and hybrid vehicles		
2	Analyze and model the pow	er management systems for electr	ic and hybrid vehicles		
3	Devise power electronics b	ased control strategies for electric	and hybrid vehicles		
4	Analyze and design various concern.	components of electric and hybric	l vehicles with environment		
5	Investigate and model the i electric and hybrid vehicle.	ssues in mathematical domain rela	ited to grid interconnections o		
Text	t Books				

2. James Larminie, John Lowry "Electric Vehicle Technology Explained", 1st Edition, John Wiley and Sons, 2003.

Reference Books

- 1. Chris Mi, M. Abul Masrur, David Wenzhong Gao, "Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives", Wiley publication , 2011.
- 2. Allen Fuhs, "Hybrid Vehicles and the future of personal transportation", CRC Press, 2009.

Web Resources:

- 1. https://nptel.ac.in/courses/108/103/108103009/
- 2. https://nptel.ac.in/courses/108106170

CO Vs PO Mapping and CO Vs PSO Mapping

60	PO	P01	P01	P01	PSO	PSO								
ιυ	1	2	3	4	5	6	7	8	9	0	1	2	1	2
1	2	3	2	2	1	1	3	-	-	-	-	-	-	-
2	3	3	2	2	3	-	3	-	-	-	-	-	-	-
3	2	3	2	2	2	2	3	-	-	-	-	-	-	-
4	3	3	3	3	3	1	3	-	-	-	-	-	-	-
5	2	3	3	3	3	1	3	-	-	-	-	-	-	-

1-Low , 2- Medium, 3- High

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	10	10	5	5	10
UNDETSTAND	30	30	10	10	30
APPLY	60	60	10	10	60
ANALYZE	0	0	0	0	0
EVALUATE	0	0	0	0	0
CREATE	0	0	0	0	0
	100	100	50	50	100

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1:

- 1. Explain the use of Propulsion System Design
- 2. Describe the Dynamics of vehicle motion.

COURSE OUTCOME 2:

- 1. Describe the Technical characteristics of Batteries in detail.
- 2. Elaborate the Battery pack Design.
- 3. Outline the Properties of Batteries in detail.

COURSE OUTCOME 3:

- 1. Write a brief note on Induction machines.
- 2. Describe the use of permanent magnet machines.
- 3. Explain switched reluctance machines.

COURSE OUTCOME 4:

- 1. Summarize the implementation issues of energy strategies in EV,
- 2. Organize the design of a Hybrid Electric Vehicle (HEV)
- 3. Derive the design of a Battery Electric Vehicle (BEV).

COURSE OUTCOME 5:

- 1. Summarize Battery based energy storage and its analysis.
- 2. Describe the fuel cell based and super capacitor based energy storage and its analysis.
- 3. Explain Hybridization of different energy storage devices.

OPEN ELECTIVE I

21EE5801	21EE5801 BIOMEDICAL INSTRUMENTATION										
Preamble	Preamble										
With the	With the advance technology, various biomedical equipment is being used by doctors,										
hospitals as well	hospitals as well as industries. Even people are having the measuring devices to monitor blood										
pressure, glucose	pressure, glucose level, Heart beat level etc. With the huge demand of such devices, biomedical										
industries requ	industries require more trained and certifies manpower.										
Prerequisites for the course											
No prior technical background is required											
Objectives	Objectives										
 To under To learn a To analyz To learn a To study 	stand the operations of Sensors, Transducers and Amplifiers about the contribution of Sensors and Transducers in biomedic te the human body by Non-Electrical Parameters about Bio-Potential measurements equipment to analyze the h about the advanced equipment to analyze the internal organs o	cal fi 1uma of hu	eld an org ıman	ans							
Syllabus											
UNIT - 1	UNIT - 1 SENSORS, TRANSDUCERS AND AMPLIFIERS IN 9 BIOMEDICAL FIELD 9										
Introduction of Nervous system – Cardiovascular system – respiratory system. Basic components of a biomedical system – Piezoelectric Transducers - Ultrasonic Transducers - Temperature measurements - Fibre Optic temperature sensors. Need for bio-amplifier - single ended bio-amplifier, differential bio-amplifier											

	ç

				-								
Biochemical s	sensors	-	pН,	p02	and	pCO2,	Ion	selective	Field	Effect	Transistor	(ISFET),
mmunologically sensitive FET (IMFET), Blood glucose sensors - Blood gas analyzers, colorimeter,												
flame photome	eter, spe	ctro	opho	tomet	er, bl	ood cell	coun	ter, auto a	nalyze	r.		

BIOCHEMICAL MEASUREMENT USING SENSORS AND TRANSDUCERS

UNIT - 3 NON-ELECTRICAL PARAMETER MEASUREMENTS

9

Temperature, respiration rate and pulse rate measurements, Plethysmography, Pulse oximetry, Blood Pressure: direct methods - Pressure amplifiers - systolic, diastolic, mean detector circuit, indirect methods - auscultatory method, Oscillo metric method, ultrasonic method. Blood flow -Electromagnetic and ultrasound blood flow measurement. Cardiac output measurement-Indicator dilution, dye dilution and thermodilution method.

UNIT - 4	BIOPOTENTIAL MEASUREMENT		9
Bio signal ch	aracteristics- frequency and amplitude ranges, EC	G – Ei	inthoven 's triangle.

Bio signal characteristics- frequency and amplitude ranges. ECG – Einthoven 's triangle, standard 12 lead system, block diagram. Measurements of heart sounds - PCG. EEG – 10-20 electrode system, unipolar, bipolar and average mode, Functional block diagram. EMG – unipolar and bipolar mode, block diagram, EOG and ERG.

UNIT - 2

ADVANCED EQUIPMENT AND PATIENT SAFETY

9

Radio graphic techniques – Computer tomography – MRI – Ultrasonography –Endoscopy – Thermography – Pacemakers – Ventilators Electrical safety analyzer – Testing the Electrical safety of medical equipment, Biomedical Laser Safety. Leakage current analysis-Instruments for checking safety parameters of biomedical equipment

Suggestive Assessment Methods								
Continuous Assessment Test (30 Marks)	Formative Assessment Test (10 Marks)	End Semester Exams (60 Marks)						
Written Test	Google Form based Online							
	Test	Written Test						

Outcomes

Upon completion of the course, the students will:

CO1: Able to analyze the characteristics of Sensors, Transducers and Amplifiers in Biomedical field

CO2: Able to Diagnose the disease and infection using Sensors, Transducers and Amplifiers **CO3**: Able to measure and analyze the human body by Non-Electrical Parameters

CO4: Able to investigate the human organs using Bio-Potential Measurements **CO5**: Able to identify the human body disease using advanced equipment

CO5: Able to identify the human body disease using advanced equipment

Text Books

- 1. Joseph J. Carr and John M. Brown, "Introduction to Biomedical equipment technology", Pearson Education, 5th Edition, 2018.
- 2. John G.Webster, "Medical Instrumentation Application and Design", John Wiley and Sons, New York, 6th Edition, 2019.

Reference Books

- 1. Khandpur R.S, "Handbook of Biomedical Instrumentation", Tata McGraw Hill, New Delhi, 4th Edition, 2019.
- 2. L.A Geddes and L.E.Baker, "Principles of Applied Biomedical Instrumentation", John Wiley and Sons, 5th Edition, Reprint 2018.
- 3. Leslie Cromwell, Fred J. Weibell, Erich A. Pfeiffer, Biomedical Instrumentation and Measurements, Pearson Education India, 3rd Edition, 2017.
- 4. Myer Kutz, "Standard Handbook of Biomedical Engineering & Design", McGraw-Hill Publisher, 6th Edition, 2018.

Web Recourses

- 1. <u>https://www.sciencedirect.com/science/article/pii/B9780323854139000050</u>
- 2. <u>https://www.slideshare.net/PrincyRandhawa/biomedical-instrumentation-60215990</u>
- 3. <u>https://www.electrical4u.com/introduction-to-biomedical-instrumentation/</u>
- 4. <u>https://www.robots.ox.ac.uk/~gari/teaching/b18/lecture_slides/B18_LectureA.pd</u> f
- 5. <u>https://www.eecs.umich.edu/courses/bme458/download/bme458 notes1.pdf</u>

CO Vs PO Mapping and CO Vs PSO Mapping

СО	PO	P01	P01	P01	PSO	PSO2								
	1	2	3	4	5	6	7	8	9	0	1	2	1	
2	3	2	2	2				2				2		2
2	3			2	2			2				2		2
2	3	3	2	3	3	2		2				2		2
2	3	3	2	3	2			2				2		2
2	3	3	3	3		2		2		2		2		2

1-Low, 2- Medium, 3- High

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	10	10			10
UNDETSTAND	30	30	5	5	30
APPLY	60	60	10	10	60
ANALYZE	0	0	10	10	0
EVALUATE	0	0			0
CREATE	0	0			0
	100	100	25	25	100

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1 (CO 1) :

- (1) Give Brief notes on,
 - (i) Piezo electric Transducer
 - (ii) Ultrasonic Transducer
- (2) Explain the human respiratory system with necessary diagram.

COURSE OUTCOME 2 (CO 2) :

- (1) Illustrate the working of spirometer with experimental set-up.
- (2) Explain about the measurement of PCO2 with neat diagram.

COURSE OUTCOME 3 (CO 3) :

- (1) Explain the different analyzing methods of human blood flow
- (2) Explain the operation of following,

- (i) Plethysmography
- (ii) Pulse oximetry
- (iii) Pressure amplifiers

COURSE OUTCOME 4 (CO 4) :

(1) Explain the production of X-rays and draw the block diagram of X-Ray Machine.

(2)Draw and Explain the single channel telemetry system suitable for ECG.

COURSE OUTCOME 5 (CO 5) :

- (1) Explain the different types of pacemaker with neat diagram
- (2) Explain the working of MRI machine.
- (3) Elaborate the different safety parameters of biomedical equipments.

21EE5802	SENSORS AND TRANSDUCERS	L	Т	Р	С				
		3	0	0	3				
Preamble									
Transducer is	process of converting non-measurable electrical signal into	mea	surab	le ele	ectrical				
signals. For an	alyzing physiological signals first, it should be converted into	mea	isurał	ole ele	ctrical				
signals. This course will introduce the learners to understand the purpose of measurement, the									
methods of me	asurements, errors associated with measurements, the basic	prin	ciples	s and	design				
issues of biome	edical sensors and Instrumentation.								
Prerequisites	for the course								
Basic electron	Basic electronics								
Measurer	nents and Instruments								
Objectives									
1. To impar	t knowledge on the study of basic Measurement of sensors								
2. To learn	the various sensors used to measure various physical paramet	ers.							
3. To make methods	the students to understand the concepts of measuring instruction of measuring instruction of the students of different transducers.	ume	nts ai	nd the	ý				
4. Ability to electronic	o understand optical, pressure and temperature sensor-b csapplications.	ased	d						
5. To learn systemsu	the fundamentals of signal conditioning, data acquisition and sed in mechatronics system development.	l coi	nmur	licatio	n				
UNIT I	INTRODUCTION			9					
Basics of Meas characteristics of Sensor calibration	surement – Classification of errors – Error analysis – of transducers – Performance measures of sensors – Class on techniques – Sensor Output Signal Types.	Sta ifica	tic ar tion (nd dy of sen	/namic sors –				

	UNIT II	MOTION,	PROXIMITY AND RANGING SENSO	RS	9
Motio LVDT Ultra	on Sensor T – RVDT - asonic Rang	s – Potentiometer - Synchro – Micros ging, Reflective bea	s, Resolver, Encoders – Optical, Ma syn, Accelerometer. GPS, Bluetooth, acons, Laser Range Sensor (LIDAR).	agnetic, Range S	Inductive, Capacitiv ensors – RF beacor
1	UNIT III	FORCE, M	AGNETIC AND HEADING SENSORS	1	9
Strain resis	n Gage, Lo tive – Hall	ad Cell, Magnetic Effect – Current se	Sensors –types, principle, requiren ensor Heading Sensors – Compass, G	nent and yroscope	advantages: Magn e, Inclinometers.
	UNIT IV	OPTICAL, PR	RESSURE AND TEMPERATURE SEN	ISORS	9
Pho Diaj The Sen	phragm, E phragm, E ermocouple sors - Film	ellows, Piezoelec Bellows, Piezoelec e. Acoustic Senso sensor, MEMS & N	Sitaic, Photo resistive, LDR – Fiber stric – Tactile sensors, Temperati rs – flow and level measurement, Nano Sensors, LASER sensors.	r optic s ure – I(, Radiati	ensors – Pressure C, Thermistor, RT on Sensors - Sma
U	NIT V	SIGNAL CO	ONDITIONING and DAQ SYSTEMS		9
Manı	ufacturing,	Environmental m	onitoring.		, FF
Manı Sugg	ufacturing, gestive Ass	Environmental m	onitoring. Total Pe	eriods	45
Manu Sugg Cont	ufacturing, gestive Ass	Environmental m sessment Method ssessment Test	onitoring. Total Pe s Formative Assessment Test	eriods End Sen	45 nester Exams
Manı Sugg Cont	gestive Ass tinuous As (30 Mar	Environmental m sessment Method sessment Test ks)	onitoring. Total Pe s Formative Assessment Test (10 Marks)	eriods End Sen (60 Mar	45 nester Exams ·ks)
Manı Sugg Cont	gestive Ass tinuous As (30 Mar) WRITT	Environmental m sessment Method sessment Test ks) YEN TEST	onitoring. Total Personal Sector Sec	eriods End Sen (60 Mar W	45 nester Exams ·ks) RITTEN TEST
Manı Sugg Cont	gestive Ass tinuous Ass (30 Mar) WRITT	Environmental m sessment Method sessment Test ks) YEN TEST	Total Person on the second sec	eriods End Sen (60 Mar W	45 nester Exams ·ks) RITTEN TEST
Manı Sugg Cont	gestive Ass tinuous As (30 Mar) WRITT	Environmental m sessment Method sessment Test ks) 'EN TEST	Total Person on the second sec	eriods End Sen (60 Mar W	45 nester Exams ·ks) RITTEN TEST
Manı Sugg Cont	gestive Ass tinuous As (30 Mar) WRITT	Environmental m sessment Method sessment Test ks) 'EN TEST	Total Person and a second seco	eriods End Sen (60 Mar W	45 nester Exams vks) RITTEN TEST
Manu Sugg Cont Dutc Upor	gestive Ass tinuous As (30 Mar) WRITT WRITT	Environmental m Sessment Method Sessment Test ks) 'EN TEST ion of the course,	Total Person and a second seco	eriods End Sen (60 Mar W	45 nester Exams ·ks) RITTEN TEST
Manu Sugg Cont Dutc Upor	gestive Ass tinuous Ass (30 Mar) WRITT WRITT	Environmental m Sessment Method Sessment Test ks) 'EN TEST ion of the course, rstand the concept	Total Person and a second seco	eriods End Sen (60 Mar W	45 nester Exams vks) RITTEN TEST
Manı Sugg Cont Dutc Upor 1 2	gestive Ass tinuous Ass (30 Mar) WRITT WRITT	Environmental m Sessment Method Sessment Test ks) 'EN TEST ion of the course, rstand the concept rstand and compar	Total Person and a second seco	eriods End Sen (60 Mar W	45 nester Exams 'ks) RITTEN TEST ranging sensors.
Manu Sugg Cont Dutc Upor 1 2 3	gestive Ass tinuous Ass (30 Mar) WRITT WRITT comes n complet To unde To unde To Apply	Environmental massessment Method sessment Test ks) TEN TEST ion of the course, rstand the concept rstand and company y the various senso	Total Person and Second Provided Provid	eriods End Sen (60 Mar W w	45 nester Exams 'ks) RITTEN TEST ranging sensors. ications
Manu Sugg Cont Dutc Upor 1 2 3 4	sestive Ass inuous Ass (30 Mar) WRITT WRITT comes n complet To unde To unde To unde To Apply	Environmental m Sessment Method Sessment Test ks) 'EN TEST ion of the course, rstand the concept rstand and company y the various senso y the basic principl	Total Person and a second seco	eriods End Sen (60 Mar W w	45 nester Exams 'ks) RITTEN TEST ranging sensors. ications

- 1. Ernest O Doebelin, Measurement Systems Applications and Design, Tata McGraw-Hill, 2009.
- 2. Sawney A K and Puneet Sawney, A Course in Mechanical Measurements and Instrumentation and Control, 12th edition, Dhanpat Rai and Co, New Delhi, 2017.

Reference Books

- 1. Patranabis D, Sensors and Transducers, 2nd Edition, PHI, New Delhi, 2010.
- 2. John Turner and Martyn Hill, Instrumentation for Engineers and Scientists, Oxford Science Publications, 1999.
- 3. Richard Zurawski, Industrial Communication Technology Handbook 2nd edition, CRC Press, 2015.

Web Recourses

- 1. https://nptel.ac.in >courses
- 2. https://www.egr.msu.edu/classes/ece445/mason/Files/4-Sensors_ch2.pdf
- 3. http://www.123seminarsonly.com/Seminar-Reports/018/31005914-Notes-on-Transducers.pdf
- 4. https://www.studocu.com/row/document/jomo-kenyatta-university-of-agriculture-and-technology/measurement-and-instrunmentation/lecture-notes-on-sensors-and-transducers/3804384.

CO Vs PO Mapping and CO Vs PSO Mapping

CO	PO	P01	P01	PSO	PSO									
ιυ	1	2	3	4	5	6	7	8	9	1	1	2	1	2
										0				
1	3	2	3		2		2	2					2	
2	3	2	3		2		2	2					2	
3	3	2	3		2		2	2					2	
4	3	2	3		2		2	2					2	
5	3	2	3		2		2	2					2	

1-Low, 2-Medium, 3-High

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	10	10			10
UNDETSTAND	30	30	5	5	30
APPLY	60	60	10	10	60
ANALYZE	0	0	10	10	0
EVALUATE	0	0			0
CREATE	0	0			0
	100	100	25	25	100

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1:

- **1.** Explain the normal Gaussian error (Analyze)
- 2. Explain the different type of systematic error (Apply)

COURSE OUTCOME 2:

- **1.** List the three application of proximity sensor (Remember)
- 2. Compare capacitive and inductive transducers (Analyze)

COURSE OUTCOME 3:

- **1.** What are the various characteristics features of strain gauge load cell? (understand)
- **2.** Define Magneto restive effect (Apply)
- **3.** Analyze the advantage of semiconductor strain gauge (Analyze)

COURSE OUTCOME 4:

- **1.** How a thermistor differ from a thermo couple as a temperature sensor (Apply)
- 2. State the properties of piezoelectric crystals (Understand)
- **3.** Discuss any one fiber optic sensor for displacement measurement (Analyze) **COURSE OUTCOME 5:**
 - **1.** Explain the function of various sensor in an automated manufacturing process(Understand)

2. Explain how DAQ Assistant is used to acquire and generate signals with procedure for creating, configuring, Test and generate Lab VIEW code using DAQAssistant. (Apply)

21EE5803	PRINCIPLES OF ROBOTICS	L	Т	Р	С						
		3	0	0	3						
Preamble	Preamble										
To impart hi	To impart high technical knowledge, strong fundamentals, practical skills and creative										
knowledge fo	or making successful professionals in Robotics and Automation	•									
Prerequisite	s for the course										
1. Basic E	ngineering Knowledge										
Objectives											
1. T	o introduce the functional elements of Robotics										
2. T	o impart knowledge on the direct and inverse kinematics										
3. T	o introduce the manipulator differential motion and control										
4. T	o educate on various path planning techniques										
5. T	o introduce the dynamics and control of manipulators										

UNITI	INTRODUCTION	9						
Brief history	-Types of Robots-Technology-Robot classifications and spec	cifications-Design and						
control issue	s-Various manipulators–Sensors -work cell-Programming lang	uages.						
UNIT II	DIRECT AND INVERSE KINEMATICS	9						
Mathematical representation of Robots- Position and orientation-Homogeneous transformation-								
Various joints- Representation using the Denavit Hattenberg parameters-Degrees of freedom-								
Direct Kinem	Direct Kinematics-Inverse kinematics-SCARA robots-Solvability -Solution Methods-Closed form							
solution.								
UNITIII	MANIPULATOR DIFFERENTIAL MOTION AND STATICS	9						
Linearanda	${\sf ngularvelocities}$ -ManipulatorJacobian-Prismaticandrotaryjoint	s-Inverse-Wrist and						
arm singula	rity-Static Analysis-Force and moment Balance.							
UNITIV	PATH PLANNING	9						
Definition-Jo	int space technique-Use ofp-degree polynomial-Cubic polyno	mial-Cartesian						
spacetechniq	spacetechnique - Parametric descriptions - Straight line and circular paths - Position and							
orientation p	lanning							

U	JNIT V DYNAMICS AND	CONTROL		9
Lag Ma rob	grangianmechanics-2DOFMa nipulator control problem-Li potic manipulator	nipulator-LagrangeEulerformulati near control schemes-PID control	on-Dynamic scheme-For	model– ce control of
		Total	Periods	45
Sugg	gestive Assessment Method	s		
Cont	tinuous Assessment Test	Formative Assessment Test	End Sem	ester Exams
	(20 Mortes)	(10 Morks)	(CO Mont	
	(50 Mar K5)		(OU Mai P	(5)
	WRITTEN TEST	1.ASSIGNMENT	WR	ITTEN TEST
		2. ONLINE QUIZZES		
		3.PROBLEM-SOLVING ACTIVITIES		
Outo	comes			
Upo	n completion of the course	, the students will be able to:		
1	Ability to develop more u	nderstanding on functional elemer	nts of Roboti	CS
2	Ability to derive the math	ematical model and direct and inv	erse kinema	tics
3	To Analysis manipulator of	lifferential motion and control		
	Ability to model different	path planning techniques		
5	Ability to apply the concept	s dynamics and control of manipu	lators	
Text	t Books			
1.	R.K.MittalandI.J.Nagrath,'Ro	oboticsandControl',TataMcGrawHi	ll,NewDelhi,	4th
2	IohnI Craig 'Introductiontol	RoboticsMechanicsandControl' Th	irdedition Pe	pars
	onEducation, 2009			
3.	M.P.Groover, M.Weiss, R.N.N	agelandN.G.Odrej,'IndustrialRobo	tics',McGrav	V-
	HillSingapore, 1996.			
Refe	erence Books			
1.	Ashitava Ghoshal, Robotic	s-Fundamental Concepts and Ar	nalysis', Oxf	ord University
r	Press, Sixth impression, 20	10. IK International 2007		
۷. ۲	R.R.AppuRuttall, RODOUCS, EdwinWise (AppliedPobet	in international,2007		
з. Д	R D Klafter T A Chimielow	rski and MNegin 'Robotic Eng	oineering_	An
т.	Integrated annroach Prent	ice Hall of India. New Delhi 1994	sincering-	
5.	B.K.Ghosh.'Control in Robo	tics and Automation: Sensor Base	d Integratio	n',Allied
	Publishers, Chennai, 1998.			,
6.	S.Ghoshal, 'Embedded Sys	stems & Robotics -Projects usi	ng the 805	1 Micro
	controller cengage Learnin	g, 2009.		

Web Recourses

- 1. <u>https://nptel.ac.in/courses/112/105/112105249/</u>
- 2. <u>https://nptel.ac.in/courses/112105249https:/</u>

CO Vs PO Mapping and CO Vs PSO Mapping

CO	PO	РО	PO1	PO1	PO1	PSO	PSO							
CO	1	2	3	4	5	6	7	8	9	0	1	2	1	2
1	3												2	
2	1	2	3										2	
3	1	3	3										2	
4	1	2	3	3									2	
5	1	2	3										2	

1-Low , 2- Medium, 3- High

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	40	40	10	10	40
UNDETSTAND	40	40	10	10	40
APPLY	20	20	5	5	20
ANALYZE	0	0	0	0	0
EVALUATE	0	0	0	0	0
CREATE	0	0	0	0	0
	100	100	50	50	100

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1:

- 1. Define Industrial Robotics and How this will be useful in Industry application.
- 2. Explain about the classification of Robot based on i) Configuration ii)Control
COURSE OUTCOME 2:

- 1. Enumerate the significance of Homogeneous transformation Matrix.
- 2. Explain the forward and Reverse Manipulator with 2 degree of freedom.

COURSE OUTCOME 3:

- 1. Derive the Jacobian Matrix for the 2 link planner manipulator.
- 2. Explain the robot parts and its applications.

COURSE OUTCOME 4:

- 1. With the suitable example, brief out the position and orientation of centroid of any system.
- 2. Discuss in details the cubic polynomials.

COURSE OUTCOME 5:

- 1. List out the characteristics of automated guided vehicle and also explain the different types of robots presently in usage?
- 2. Design a robot to transfer material from one place to another place with example.

21EE5804	MICRO ELECTRO MECHANICAL SYSTEMS	L	Т	Р	С		
		3	0	0	3		
Preamble							
An answert exchange is a commuter and more that uses with sight intelligences (AD) to should sight to							

An expert system is a computer program that uses artificial intelligence (AI) technologies to simulate the judgment and behavior of a human or an organization that has expertise and experience in a particular field. Expert systems are usually intended to complement, not replace, human experts.

Prerequisites for the course

• Physics For Engineers

Objectives

- 1. To provide knowledge of semiconductors and solid mechanics to fabricate MEMS devices.
- 2. To introduce various sensors and actuators
- 3. To study different materials used for MEMS
- 4. To learn the rudiments of Micro fabrication techniques.
- 5. To educate on the applications of MEMS to disciplines beyond Electrical and Mechanical engineering.

UNIT I	I		9				
Intrinsic Char Introduction Electrical and – Flexural bea	racteristics of MEMS to Micro fabrication Mechanical concept m bending- Torsion	S – Energy Domains and Transdu n - Silicon based MEMS processes ts in MEMS – Semiconductor devic nal deflection.	icers- Sen s – New M ces – Stres	sors and Actuators - faterials – Review o ss and strain analysis			
UNIT II	SEN	SENSORS AND ACTUATORS-I 9					
Electrostatic Comb drive d expansion – 7 Actuators – M using Shape M	sensors – Parallel pl evices – Micro Gripp Fhermal couples – T licromagnetic comp Aemory Alloys.	late capacitors – Applications – In pers – Micro Motors - Thermal Ser Thermal resistors – Thermal Bimo onents – Case studies of MEMS in	terdigitat nsing and orph - Apj magnetic	ed Finger capacitor Actuation – Therma plications – Magneti actuators- Actuation			
UNIT III	SEN	ISORS AND ACTUATORS-II		9			
– Application – piezoelectr	s to Inertia, Pressure ic effects – piezoele	e, Tactile and Flow sensors – Piezo ectric materials – Applications to	oelectric s Inertia , .	ensors and actuators Acoustic, Tactile and			
Flow sensors							
Flow sensors UNIT IV Silicon Anisot – Deep Reacti	ropic Etching – Anis on Ion Etching (DRI	MICROMACHINING sotrophic Wet Etching – Dry Etchi (E) – Isotropic Wet Etching – Gas I	ing of Silic Phase Etcl	9 con – Plasma Etching hants – Case studies			
Flow sensors UNIT IV Silicon Anisot – Deep Reacti Basic surface sacrificial Etc Foundry proc	ropic Etching – Anis fon Ion Etching (DRI micro machining p ch – Striction and A ress.	MICROMACHINING sotrophic Wet Etching – Dry Etchi (E) – Isotropic Wet Etching – Gas I rocesses – Structural and Sacrific ntistriction methods – LIGA Proc	ing of Silic Phase Etcl cial Materi ess - Asse	9 con – Plasma Etching hants – Case studies ials – Acceleration o embly of 3D MEMS -			
Flow sensors UNIT IV Silicon Anisot – Deep Reacti Basic surface sacrificial Etc Foundry proc UNIT V	ropic Etching – Anis on Ion Etching (DRI micro machining p ch – Striction and A ess.	MICROMACHINING sotrophic Wet Etching – Dry Etchi E) – Isotropic Wet Etching – Gas I rocesses – Structural and Sacrific ntistriction methods – LIGA Proc APPLICATION OF MEMS	ing of Silic Phase Etcl cial Materi ess - Asse	9 con – Plasma Etching hants – Case studies ials – Acceleration o embly of 3D MEMS 9			
Flow sensors UNIT IV Silicon Anisot – Deep Reacti Basic surface sacrificial Etc Foundry proc UNIT V MEMS inertia Digital Micro Acceleration, for Active Opt	ropic Etching – Anis fon Ion Etching (DRI micro machining p ch – Striction and A ress. I sensors in automo o mirror Devices Pressure, Flow and tical MEMS.	MICROMACHINING sotrophic Wet Etching – Dry Etchi (E) – Isotropic Wet Etching – Gas I rocesses – Structural and Sacrific ntistriction methods – LIGA Proc APPLICATION OF MEMS biles, MEMS devices in commercia (DMD), Radio frequency MEM Tactile sensors- Optical MEMS – I	ing of Silic Phase Etcl tial Materi ess - Asse al applicat AS switch Lenses and	9 con – Plasma Etching hants – Case studies ials – Acceleration o embly of 3D MEMS – 9 tions: Inkjet printers hes, Application to d Mirrors – Actuators			
Flow sensors UNIT IV Silicon Anisot – Deep Reacti Basic surface sacrificial Etc Foundry proc UNIT V MEMS inertia Digital Micro Acceleration, for Active Opt	ropic Etching – Anis fon Ion Etching (DRI micro machining p ch – Striction and Ar ess. l sensors in automo o mirror Devices Pressure, Flow and tical MEMS.	MICROMACHINING sotrophic Wet Etching – Dry Etchi (E) – Isotropic Wet Etching – Gas I rocesses – Structural and Sacrific ntistriction methods – LIGA Proc APPLICATION OF MEMS biles, MEMS devices in commercia (DMD), Radio frequency MEM Tactile sensors- Optical MEMS – I Total	ing of Silic Phase Etcl tial Materi ess - Asse al applicat AS switch Lenses and Periods	9 con – Plasma Etching hants – Case studies ials – Acceleration o embly of 3D MEMS – 9 tions: Inkjet printers hes, Application to d Mirrors – Actuators			
Flow sensors UNIT IV Silicon Anisot – Deep Reacti Basic surface sacrificial Etc Foundry proc UNIT V MEMS inertia Digital Micro Acceleration, for Active Opt Suggestive A	ropic Etching – Anis fon Ion Etching (DRI micro machining p th – Striction and An ress. I sensors in automo o mirror Devices Pressure, Flow and tical MEMS. ssessment Method	MICROMACHINING sotrophic Wet Etching – Dry Etchi (E) – Isotropic Wet Etching – Gas I rocesses – Structural and Sacrific ntistriction methods – LIGA Proc APPLICATION OF MEMS biles, MEMS devices in commercia (DMD), Radio frequency MEM Tactile sensors- Optical MEMS – I Total	ing of Silic Phase Etcl cial Materi ess - Asse al applicat AS switch Lenses and Periods	9 con – Plasma Etching hants – Case studies ials – Acceleration o embly of 3D MEMS – 9 tions: Inkjet printers hes, Application to d Mirrors – Actuators			
Flow sensors UNIT IV Silicon Anisot – Deep Reacti Basic surface sacrificial Etc Foundry proc UNIT V MEMS inertia Digital Micro Acceleration, for Active Opt Suggestive A Continuous A	ropic Etching – Anis fon Ion Etching (DRI micro machining pr th – Striction and Ar ress. I sensors in automo o mirror Devices Pressure, Flow and tical MEMS. ssessment Method Assessment Test	MICROMACHINING sotrophic Wet Etching – Dry Etchi (E) – Isotropic Wet Etching – Gas I rocesses – Structural and Sacrific ntistriction methods – LIGA Proc APPLICATION OF MEMS biles, MEMS devices in commercia (DMD), Radio frequency MEM Tactile sensors- Optical MEMS – I Total s Formative Assessment Test	ing of Silic Phase Etcl cial Materi ess - Asse al applicat AS switch Lenses and Periods End Se	9 con – Plasma Etching hants – Case studies ials – Acceleration o embly of 3D MEMS – 9 tions: Inkjet printers hes, Application to d Mirrors – Actuator 45 mester Exams			
Flow sensors UNIT IV Silicon Anisot – Deep Reacti Basic surface sacrificial Etc Foundry proc UNIT V MEMS inertia Digital Micro Acceleration, for Active Opt Suggestive A Continuous A (30 Ma	ropic Etching – Anis fon Ion Etching (DRI micro machining pr th – Striction and Ar tess. I sensors in automo o mirror Devices Pressure, Flow and tical MEMS. ssessment Method Assessment Test arks)	MICROMACHINING sotrophic Wet Etching – Dry Etchi (E) – Isotropic Wet Etching – Gas I rocesses – Structural and Sacrific ntistriction methods – LIGA Proc APPLICATION OF MEMS biles, MEMS devices in commercia (DMD), Radio frequency MEM Tactile sensors- Optical MEMS – I Total s Formative Assessment Test (10 Marks)	ing of Silic Phase Etcl cial Materi ess - Asse al applicat AS switch Lenses and Periods End Sec (60 Ma	9 con – Plasma Etching hants – Case studies ials – Acceleration o embly of 3D MEMS – 9 tions: Inkjet printers hes, Application to d Mirrors – Actuators 45 45 mester Exams orks)			
Flow sensors UNIT IV Silicon Anisot – Deep Reacti Basic surface sacrificial Etc Foundry proc UNIT V MEMS inertia Digital Micro Acceleration, for Active Opt Suggestive A Continuous A (30 Ma WRIT	ropic Etching – Anis fon Ion Etching (DRI micro machining pi th – Striction and Ar tess. I sensors in automo o mirror Devices Pressure, Flow and tical MEMS. ssessment Method Assessment Test irks) TTEN TEST	MICROMACHINING sotrophic Wet Etching – Dry Etchi (E) – Isotropic Wet Etching – Gas I rocesses – Structural and Sacrific ntistriction methods – LIGA Proc APPLICATION OF MEMS biles, MEMS devices in commercia (DMD), Radio frequency MEM Tactile sensors- Optical MEMS – I Total S Formative Assessment Test (10 Marks) 1.ASSIGNMENT	ing of Silic Phase Etcl cial Materi ess - Asse al applicat AS switch enses and Periods End Se (60 Ma	9 con – Plasma Etching hants – Case studies ials – Acceleration o embly of 3D MEMS – 9 tions: Inkjet printers hes, Application to d Mirrors – Actuators 45 45 mester Exams arks) VRITTEN TEST			
Flow sensors UNIT IV Silicon Anisot – Deep Reacti Basic surface sacrificial Etc Foundry proc UNIT V MEMS inertia Digital Micro Acceleration, for Active Opt Suggestive A Continuous A (30 Ma WRIT	ropic Etching – Anis fon Ion Etching (DRI micro machining pi th – Striction and Ar ess. I sensors in automo o mirror Devices Pressure, Flow and tical MEMS. ssessment Method Assessment Test rks) TTEN TEST	MICROMACHINING sotrophic Wet Etching – Dry Etchi (E) – Isotropic Wet Etching – Gas I rocesses – Structural and Sacrific ntistriction methods – LIGA Proc APPLICATION OF MEMS biles, MEMS devices in commercia (DMD), Radio frequency MEM Tactile sensors- Optical MEMS – I Total S Formative Assessment Test (10 Marks) 1.ASSIGNMENT 2. ONLINE QUIZZES	ing of Silic Phase Etcl cial Materi ess - Asse al applicat AS switch Lenses and Periods End Se (60 Ma	9 con – Plasma Etching hants – Case studies ials – Acceleration o embly of 3D MEMS – 9 tions: Inkjet printers hes, Application to d Mirrors – Actuators 45 45 mester Exams arks) VRITTEN TEST			

Upon completion of the course, the students will be able to:

- **1** Illustrate the concepts of MEMS and its process
- 2 Analyze the Electrostatic sensors and thermal sensing
- **3** Apply Piezo resistive and piezo electric sensors and actuators
- **4** Choose a micromachining technique, such as bulk micromachining and surface Micromachining for a specific MEMS fabrication process.
- **5** Apply mems technology in Polymer and optical sensing field.

Text Books

- 1. Chang Liu, 'Foundations of MEMS', Pearson Education Inc., 2012.
- 2. Stephen D Senturia, 'Microsystem Design', Springer Publication, 2020.
- 3. Tai Ran Hsu, "MEMS & Micro systems Design and Manufacture" Tata McGraw Hill, New Delhi, 2014.

Reference Books

1. Nadim Maluf," An Introduction to Micro Electro Mechanical System Design", Artech House, 2019.

2. Mohamed Gad-el-Hak, editor, "The MEMS Handbook", CRC press Baco Raton, 2018.

3. Julian w. Gardner, Vijay K. Varadan, Osama O.Awadelkarim, Micro Sensors MEMS and Smart Devices, John Wiley & Son LTD, 2015.

4. James J.Allen, Micro Electro Mechanical System Design, CRC Press Publisher, 2016.

Web Recourses

- 1. A https://nptel.ac.in/courses/117105082
- 2. B https://www.memsnet.org/material/

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	0	0	0	0	0
UNDETSTAND	30	30	10	10	30
APPLY	60	60	10	10	60
ANALYZE	10	10	5	5	10
EVALUATE	0	0	0	0	0
CREATE	0	0	0	0	0
	100	100	50	50	100

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Students will be able to Predict the suitable method for (Apply)

- 1. Distinguish between bulk micromachining and surface micromachining.(Understand)
- 2. Demonstrate the equations for Mass, Acceleration, Transient time and Power Density using Trimmer Force Vector . (Apply)

COURSE OUTCOME 2:

- 1. Summarize the fabrication steps involved in the design of bimetallic artificial cilia actuator. (Understand)
- 2. Design an infrared sensor by giving out the fabricationsteps in detail. (Apply)

COURSE OUTCOME 3:

- 1. Discuss on the concept of cantilever piezoelectric actuatormodel with neat diagram. (Understand)
- Discover the need of flow rate sensor. Demonstrate the working and 2. fabrication process of piezoelectric flow ratesensor. (Analyse)

COURSE OUTCOME 4:

- 1. Discuss in detail about the Assembly of 3D MEMS with any one Applications. (Analyse)
- 2. Deduce the limitations in micromachining.(Analyse)

COURSE OUTCOME 5:

- Describe about fabrication process for a parylene channel. (Understand) 1.
- Deduce the role of MEMS as Secondary Storage in Computer 2. System.(Analyse)

21EE5805	AUTOMOTIVE FLECTRICAL AND FLECTRONICS SYSTEM	L	Τ	Р	С
		3	0	0	3
Droomblo					

Preamble

This course covers the fundamentals of lighting system, batteries and accessories. It discusses concepts of starting systems, charging systems, sensors and activators and gives exposure to various processes in automotive electronics.

Prerequisites for the course

- 1. DC Machines and Transformer
- 2. Modern Electronics Measuring Instruments

Objectives

- 1. To impart knowledge about the types of lighting system, batteries and accessories.
- 2. To introduce the basics concepts of starting systems.
- 3. To understand the aspects of charging systems.

4. To lea	rn the various pro	cesses in automotive electronics.					
5. To familiarize the sensors and activators using Arduino.							
UNIT I	Γ I ELECTRICAL SYSTEMS 9						
Principle and Construction of Lead Acid and Lithium-Ion Battery - Characteristics of Battery Rating Capacity and Efficiency of Batteries - Various Tests on Batteries - Maintenance and Charging - Lighting System and Photometry: insulated and Earth Return System- Details of Head Light and Side Light- LED Lighting System- Head Light Dazzling and Preventive Methods							
UNIT II	STAR	TING AND IGNITION SYSTEM		9			
Condition at S - Principle ar Starter Drive Advance Mech	Condition at Starting- Behavior of Starter During Starting - Series Motor and Its Characteristics - Principle and Construction of Starter Motor - Over Running Clutch Working of Different Starter Drive Units - Care and Maintenances of Starter Motor - Starter Switches - Spark Plugs – Advance Mechanisms - Different Types of Ignition Systems.						
UNIT III	СНА	RGING SYSTEM		9			
Brush Regula	ation – Cutout - Vo Principle and Cons	Itage and Current Regulators - Contracteristics Itage and Current Regulators - Contracteristics	- Armatt npensate ifiers - No	ed Voltage Regulator ew Developments.			
UNIT IV		ELECTRONICS SYSTEMS		9			
Dashboard infotainmen	Instruments - 0 tand Telematics.	nboard Diagnostic System - S	ecurity	- Warning System			
UNIT V	S	ENSORS AND ACTUATORS		9			
Types of Ser Pressure - Cr for Engine A about actuat	Types of Sensors: Sensor for Speed - Throttle Position - Exhaust Oxygen Level - Manifold Pressure - Crankshaft Position - Coolant Temperature - Exhaust Temperature - Air Mass Flow for Engine Application - Solenoids - Stepper Motors - Relay - Introduction to Arduino about actuators and sensors. Total Periods Suggestive Assessment Methods						
Continuous A	ssessment Test	Formative Assessment Test	End Se	mester Exams			
(30 Ma	rks)	(10 Marks)	(60 Ma	rks)			
WRITTEN TEST		1. ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES	<u>и</u>	VRITTEN TEST			

Outcomes

linon completion of t	be course the students will be c	hlata.
	ne course, me sindenis win de z	inte i o:

1	Distinguish the types of lighting system, batteries and accessories.
---	--

2 Describe the basics concepts of starting systems.

3 Explain the aspects of charging systems.

4 Explain the various processes in automotive electronics.

5 Develop the sensors and activators using Arduino.

Text Books

- 1. Tom denton, "Automotive Electrical And Electronics Systems", Allied Publishers, 2016.
- 2. A. L. Statini, "Automotive Electrical and Electronics", Delmar Publications, 2013.

Reference Books

- 1. William B.Ribbens "Understanding Automotive Electronics", Butter worth Heinemann Woburn, 2017.
- 2. Robert Bosch "Automotive Hand Book", SAE, 2018.
- 3. Ganesan.V. "Internal Combustion Engines", Tata McGraw Hill Private Limited, New Delhi, 2017.
- 4. Young A.P. & Griffiths. L. "Automotive Electrical Equipment", ELBS & New Press.
- 5. Bechhold "Understanding Automotive Electronics", SAE, 8th Edition June 15, 2017.
- 6. Kohli P L., "Automotive Electrical Equipment", Tata McGraw Hill Publishing Co., Delhi, 2004.

Web Recourses

- 1. https://nptel.ac.in/courses/107106088
- 2. https://www.digimat.in/nptel/courses/video/107106088/L01.html

CO Vs PO Mapping and CO Vs PSO Mapping

<u> </u>	PO	P01	P01	P01	PSO	PSO								
ιυ	1	2	3	4	5	6	7	8	9	0	1	2	1	2
1	3						3						3	
2	3						3						3	
3	3						3						3	
4	3						3						3	
5	3						3						3	

1-Low, 2-Medium, 3-High

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	10	10			10
UNDETSTAND	40	40	10 10		40
APPLY	30	30	10	10	30
ANALYZE	20	20	5	5	20
EVALUATE					
CREATE					
	100	100	25	25	100

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Students will be able to Predict the suitable method for....(Apply)

- 1. List out and explain various tests conducted on a lead acid battery usedin automobiles. (Understand)
- 2. Write short notes on LED lightning system. (Understand)

COURSE OUTCOME 2:

- 1. Explain the constructional and working details of solenoid operated pinion driveof a starter motor with a sketch. (Apply)
- 2. Give the requirements of starter motor. (Apply)

COURSE OUTCOME 3:

 State the function of cut-out in charging unit. (Apply)
 Explain in detail the procedure adopted to test the working of a generator regulatorsystem and discuss the common faults occur in generators. (Analyse)

COURSE OUTCOME 4:

1. Write short notes on Electronic Dashboard Instruments. (Apply)

2. Explain in detail About Electronic Fuel Gauge. (Analyse)

COURSE OUTCOME 5:

1. Differentiate sensors and actuators. (Analyse)

2. Discuss the various actuators applied in an Automobile with its typical Applications.(Analyse)

21EE5806	PCB DESIGN AND ITS FABRICATION	L	Т	Р	С
		3	0	0	3
Prerequisites fo	or the course			•	
3.Ele	ectron devices and circuits				
Objectives					
• To impart	knowledge on the PCB and designing.				
• To learn a	bout designing rules and its applications				
• To know	about various production techniques.				
• To analys	e the recent trends involved in PCB.				
• To imple	nent various recycling methods.				
Syllabus					
UNIT I	INTRODUCTION TO PRINTED CIRCUIT BOARD		ļ)	
Fundamental o designing: Layo issues, check an	f electronic components, basic electronic circuits, Basics of prinout planning, general rules and parameters, ground conductor consided inspection of artwork.	ted dera	circu tions,	it bo therr	ard nal
	101				

Francis Xavier Eng	ineering College Dept of EEE R2021/Curriculum and Syllabi						
UNIT II	UNIT IIDESIGN RULES FOR PCB9						
Design rules for	Design rules for Digital circuit PCBs, Analog circuit PCBs, high frequency and fast pulse applications,						
Powerelectronic	Powerelectronic applications, Microwave applications.						
UNIT III	PRINTED CIRCUIT BOARD PRODUCTION TECHNIQUES	9					
Photo printing, f resists, Screen Solders alloys, f	Photo printing, film-master production, reprographic camera, basic process for double sided PCBs photo resists, Screen printing process, plating, relative performance and quality control, Etching machines, Solders alloys, fluxes, soldering techniques, Mechanical operations.						
UNIT IV	PCB TECHNOLOGY TRENDS	9					
Multilayer PCB	s. Multiwire PCB, Flexible PCBs, Surface mount PCBs, Reflow solder	ring, Introduction to					
High-Density In	terconnection (HDI) Technology.						
UNIT V	PCB DESIGN FOR EMI/EMC	9					
Subsystem/PCB Placement in an enclosure, Filtering circuit placement, Decoupling and bypassing, electronic discharge protection, electronic waste; Printed circuit boardsRecycling techniques, Introduction to Integrated Circuit Packaging and footprints NEMA and IPC standards.							

Total Periods

Suggestive Assessment Methods						
Continuous Assessment Test	Formative Assessment Test	End Semester				
(30	(10	Exams(00 Marks)				
Marks)	Marks)					
(i)Google Form based-on- line	(i) Google Form based –					
Test	online Testincorporating	(i) WrittenTest				
(ii) Written Test	Listening, Speaking and Reading					

Outcomes

Upon completion of the course, the students will be able to:

- 1. To understand basics of PCB designing.
- 2. To apply advance techniques, skills and modern tools for designing and fabrication of PCBs.
- 3. To have the knowledge and techniques to fabricate Multilayer, SMT and HDI PCB.
- 4. To understand concepts of Packaging. To analyze the modern tools for designing and fabrication of PCBs

Text Books

1. Printed circuit board design ,fabrication assembly and testing By R. S.Khandpur, Tata McGraw Hill2006

Reference Books

1.	Printed circuit Board Design and technology, Walter C. Bosshart
2.	Printed Circuits Handbook, Sixth Edition, by Clyde F. Coombs, Jr, Happy T.
	Holden, Publisher:

3. McGraw-Hill Education Year: 2016Complete PCB Design Using OrCAD Capture and PCB Editor,Kraig Mitzner Bob

4. Doe Alexander Akulin Anton Suponin Dirk Müller, 2nd Edition 2009.

Web Resources

- 1. <u>https://youtu.be/x7gr0rctsrE</u>
- 2. <u>https://nptel.ac.in/courses/108105088</u>

CO Vs PO Mapping and CO Vs PSO Mapping

CO	PO	РО	PO	РО	РО	PO	PO	PO	РО	PO1	PO1	PO1	PSO	PSO
CO	1	2	3	4	5	6	7	8	9	0	1	2	1	2
1	3	2	3		3		2	2			2		2	2
2	3	3	3		3		3	2			3		2	2
3	3	3	3		3		3	2			3		2	2
4	3	2	3		3		3	2			3		2	2
5	3	3	3		3		3	2			3		2	2

1-Low , 2- Medium, 3- High

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	0	0	0	0	0
UNDETSTAND	30	30	10	10	30
APPLY	60	60	10	10	60
ANALYZE	10	10	5	5	10
EVALUATE	0	0	0	0	0
CREATE	0	0	0	0	0
	100	100	50	50	100

Open Elective II

		L	Τ	Р	С
21EE6801	ENERGY CONSERVATION & AUDITING	3	0	0	3
Preamble					
Energy con environmen greenhouse efficiency an designed to principles a participants energy wast	servation and auditing are critical components of today's tal preservation efforts. With growing concerns about energy gas emissions, individuals and organizations must take steps nd reduce their carbon footprint. The Energy Conservation & give participants a thorough understanding of energy conser- and practices. Through a blend of theoretical knowledge a will gain the ability to assess energy consumption pattern age, and recommend measures to reduce energy usage.	sust y cor to p Aud vatio and p s, ide	aina isum rome iting n an oract entif	bility optior ote er g cour d auc ical s y are	and and nergy rse is liting skills, as of
Prerequisite	es for course				
1. Laws	of Thermodynamics and Heat Transfer				
2. Know	ledge of electrical and mechanical systems				
3. HVAC	systems				
4. Renev	vable Energy Systems				
5. Basic	knowledge of environmental regulations and sustainability pra	ctices	5		
Objectives					
1. To prov	vide a thorough understanding of energy conservation and aud	iting	orin	ciples	
and p	ractices.				
2. Develo	p the skills required to conduct energy audits, identify areas of	energ	gy wa	aste,	
and re	commend energy-saving measures.				
3. To incr	ease understanding of energy-efficient technologies and best p	ractic	es ir	n ener	gy
conse	rvation.				
4. To prov	vide participants with the tools and techniques needed to analy	ze an	d int	terpre	et
energ	y usage data and develop energy-saving strategies.				

Francis Xavier Engineering College | Dept of EEE | R2021/Curriculum and Syllabi 5. To raise awareness of environmental sustainability and the environmental impact of energy use, as well as to encourage the adoption of energy-efficient practices in daily life and work. UNIT I **Introduction to Energy Conservation and Auditing** 9 Overview of energy conservation and auditing - The impact of energy consumption on the environment - The principles of energy efficiency and energy management - Overview of energy auditing and energy management programs - Key concepts in energy auditing and energy management. **UNIT II Energy Auditing Fundamentals** 9 Types of energy audits - Energy usage patterns and data analysis - Energy data collection and measurement - Energy consumption calculation - Energy modeling and simulation. **UNIT III Energy-Efficient Technologies and Best Practices** 9 Energy-efficient lighting systems - HVAC systems and their impact on energy consumption -Renewable energy systems and alternative energy sources - Energy-efficient appliances and building materials - Energy management systems and building automation. **UNIT IV Energy Conservation Strategies and Implementation** 9 Energy management plan development - Implementation of energy conservation measures -Monitoring and evaluation of energy consumption - Energy savings analysis and return on investment - Reporting and communication of energy conservation results. UNIT V **Regulatory Environment and Sustainability** 9 Energy conservation policies and regulations - Environmental sustainability and energy conservation - Corporate social responsibility and energy conservation - Energy labeling and certifications - Energy conservation case studies and best practices. **Total Periods** 45 Suggestive Assessment Methods **Continuous Assessment Formative Assessment End Semester** Test Test Exams (30 Marks) (10 Marks) (60 Marks) WRITTEN TEST **1. ASSIGNMENT** WRITTEN TEST **2. ONLINE QUIZZES 3. PROBLEM-SOLVING** ACTIVITIES Outcomes

1 Conduct thorough energy audits, analyze data on energy usage and identify areas o energy waste. 2 Create and put into action energy-saving strategies and best practices in energy conservation. 3 Evaluating the efficacy of energy-saving technologies and recommending appropriate solutions to reduce energy consumption. 4 Develop data analysis and interpretation skills, as well as the ability to monitor and analyze energy data using computer software and tools. 5 Effective communication with stakeholders is essential, as is raising awareness of environmental sustainability and energy conservation initiatives. 7 "Energy Management Handbook" by Wayne C. Turner 2. "The Principles and Practice of Energy Management" by Keith Eaton and David Bo Reference Books 1. 1. "Energy Management Handbook" by Wayne C. Turner, published by Fairmont Presz009. 2. "Building Energy Management Systems: Applications and Implementation" by Stuat Wenham, published by Springer, 2009. 3. "Energy Management Principles: Practices, Calculations, and Applications" by F. Mohammadzadeh, published by Routledge, 2013. 4. "Energy Auditing of Buildings: A Guide to Carbon Footprinting and Energy Conservation" by David M. Beitelman, published by Springer, 2011. 5. "Handbook of Energy Audits" by Albert Thumann, published by Fairmont Press, 2010. 7. "Energy Management: A Guide for Ener	opol	completion of the course, the students will be able to:
 Create and put into action energy-saving strategies and best practices in energy conservation. Evaluating the efficacy of energy-saving technologies and recommending appropriate solutions to reduce energy consumption. Develop data analysis and interpretation skills, as well as the ability to monitor and analyze energy data using computer software and tools. Effective communication with stakeholders is essential, as is raising awareness of environmental sustainability and energy conservation initiatives. Text Books "Energy Management Handbook" by Wayne C. Turner "The Principles and Practice of Energy Management" by Keith Eaton and David Bo Reference Books "Energy Management Handbook" by Wayne C. Turner, published by Fairmont Pres 2009. "Building Energy Management Systems: Applications and Implementation" by Stud Wenham, published by Springer, 2009. "Energy Management Principles: Practices, Calculations, and Applications" by F. Mohammadzadeh, published by Routledge, 2013. "Energy Auditing of Buildings: A Guide to Carbon Footprinting and Energy Conservation" by David M. Beitelman, published by Springer, 2011. "Handbook of Energy Audits" by Albert Thumann, published by Fairmont Press, 20 "Sustainable Energy Management: A Guide to Rest Practice in Energy Management" hereitigt and the rest of the	1	Conduct thorough energy audits, analyze data on energy usage and identify areas of energy waste.
 Evaluating the efficacy of energy-saving technologies and recommending appropriate solutions to reduce energy consumption. Develop data analysis and interpretation skills, as well as the ability to monitor and analyze energy data using computer software and tools. Effective communication with stakeholders is essential, as is raising awareness of environmental sustainability and energy conservation initiatives. Text Books "Energy Management Handbook" by Wayne C. Turner "The Principles and Practice of Energy Management" by Keith Eaton and David Bo. Reference Books I. "Energy Management Handbook" by Wayne C. Turner, published by Fairmont Pres 2009. "Building Energy Management Systems: Applications and Implementation" by Stua Wenham, published by Springer, 2009. "Energy Management Principles: Practices, Calculations, and Applications" by F. Mohammadzadeh, published by Routledge, 2013. "Energy Auditing of Buildings: A Guide to Carbon Footprinting and Energy Conservation" by David M. Beitelman, published by Springer, 2011. "Handbook of Energy Management: A Guide for Energy Managers, Building Owners, Facility Managers" by Michael D. Starr, published by Fractice in Energy Managerment" here the approximate the approximation of the press, 2010. 	2	Create and put into action energy-saving strategies and best practices in energy conservation.
 4 Develop data analysis and interpretation skills, as well as the ability to monitor and analyze energy data using computer software and tools. 5 Effective communication with stakeholders is essential, as is raising awareness of environmental sustainability and energy conservation initiatives. Text Books "Energy Management Handbook" by Wayne C. Turner "The Principles and Practice of Energy Management" by Keith Eaton and David Bo. Reference Books "Energy Management Handbook" by Wayne C. Turner, published by Fairmont Pres 2009. "Building Energy Management Systems: Applications and Implementation" by Stua Wenham, published by Springer, 2009. "Energy Management Principles: Practices, Calculations, and Applications" by F. Mohammadzadeh, published by Routledge, 2013. "Energy Auditing of Buildings: A Guide to Carbon Footprinting and Energy Conservation" by David M. Beitelman, published by Fairmont Press, 201. "Handbook of Energy Audits" by Albert Thumann, published by Fairmont Press, 2010. 	3	Evaluating the efficacy of energy-saving technologies and recommending appropriate solutions to reduce energy consumption.
 Effective communication with stakeholders is essential, as is raising awareness of environmental sustainability and energy conservation initiatives. Text Books "Energy Management Handbook" by Wayne C. Turner "The Principles and Practice of Energy Management" by Keith Eaton and David Bo. Reference Books "Energy Management Handbook" by Wayne C. Turner, published by Fairmont Pres 2009. "Building Energy Management Systems: Applications and Implementation" by Stua Wenham, published by Springer, 2009. "Energy Management Principles: Practices, Calculations, and Applications" by F. Mohammadzadeh, published by Routledge, 2013. "Energy Auditing of Buildings: A Guide to Carbon Footprinting and Energy Conservation" by David M. Beitelman, published by Springer, 2011. "Handbook of Energy Management: A Guide for Energy Managers, Building Owners, Facility Managers" by Michael D. Starr, published by Fairmont Press, 2010. 	4	Develop data analysis and interpretation skills, as well as the ability to monitor and analyze energy data using computer software and tools.
 Text Books "Energy Management Handbook" by Wayne C. Turner "The Principles and Practice of Energy Management" by Keith Eaton and David Bo Reference Books "Energy Management Handbook" by Wayne C. Turner, published by Fairmont Pres 2009. "Building Energy Management Systems: Applications and Implementation" by Stua Wenham, published by Springer, 2009. "Energy Management Principles: Practices, Calculations, and Applications" by F. Mohammadzadeh, published by Routledge, 2013. "Energy Auditing of Buildings: A Guide to Carbon Footprinting and Energy Conservation" by David M. Beitelman, published by Springer, 2011. "Handbook of Energy Management: A Guide for Energy Managers, Building Owners, Facility Managers" by Michael D. Starr, published by Fairmont Press, 2010. "Energy Efficiency in Buildings: A Guide to Best Practice in Energy Management" by 	5	Effective communication with stakeholders is essential, as is raising awareness of environmental sustainability and energy conservation initiatives.
 "Energy Management Handbook" by Wayne C. Turner "The Principles and Practice of Energy Management" by Keith Eaton and David Bo. Reference Books "Energy Management Handbook" by Wayne C. Turner, published by Fairmont Pres 2009. "Building Energy Management Systems: Applications and Implementation" by Stua Wenham, published by Springer, 2009. "Energy Management Principles: Practices, Calculations, and Applications" by F. Mohammadzadeh, published by Routledge, 2013. "Energy Auditing of Buildings: A Guide to Carbon Footprinting and Energy Conservation" by David M. Beitelman, published by Springer, 2011. "Handbook of Energy Audits" by Albert Thumann, published by Fairmont Press, 2009. "Sustainable Energy Management: A Guide for Energy Managers, Building Owners, Facility Managers" by Michael D. Starr, published by Fairmont Press, 2010. 	Text	Books
 "The Principles and Practice of Energy Management" by Keith Eaton and David Box Reference Books "Energy Management Handbook" by Wayne C. Turner, published by Fairmont Pres 2009. "Building Energy Management Systems: Applications and Implementation" by Stua Wenham, published by Springer, 2009. "Energy Management Principles: Practices, Calculations, and Applications" by F. Mohammadzadeh, published by Routledge, 2013. "Energy Auditing of Buildings: A Guide to Carbon Footprinting and Energy Conservation" by David M. Beitelman, published by Springer, 2011. "Handbook of Energy Audits" by Albert Thumann, published by Fairmont Press, 20 "Sustainable Energy Management: A Guide for Energy Managers, Building Owners, Facility Managers" by Michael D. Starr, published by Fairmont Press, 2010. 	1.	"Energy Management Handbook" by Wayne C. Turner
 Reference Books "Energy Management Handbook" by Wayne C. Turner, published by Fairmont Pres 2009. "Building Energy Management Systems: Applications and Implementation" by Stua Wenham, published by Springer, 2009. "Energy Management Principles: Practices, Calculations, and Applications" by F. Mohammadzadeh, published by Routledge, 2013. "Energy Auditing of Buildings: A Guide to Carbon Footprinting and Energy Conservation" by David M. Beitelman, published by Springer, 2011. "Handbook of Energy Audits" by Albert Thumann, published by Fairmont Press, 20 "Sustainable Energy Management: A Guide for Energy Managers, Building Owners, Facility Managers" by Michael D. Starr, published by Fairmont Press, 2010. 	2.	"The Principles and Practice of Energy Management" by Keith Eaton and David Boaz
 "Energy Management Handbook" by Wayne C. Turner, published by Fairmont Pres 2009. "Building Energy Management Systems: Applications and Implementation" by Stua Wenham, published by Springer, 2009. "Energy Management Principles: Practices, Calculations, and Applications" by F. Mohammadzadeh, published by Routledge, 2013. "Energy Auditing of Buildings: A Guide to Carbon Footprinting and Energy Conservation" by David M. Beitelman, published by Springer, 2011. "Handbook of Energy Audits" by Albert Thumann, published by Fairmont Press, 20 "Sustainable Energy Management: A Guide for Energy Managers, Building Owners, Facility Managers" by Michael D. Starr, published by Fairmont Press, 2010. 	Refe	rence Books
 "Building Energy Management Systems: Applications and Implementation" by Stua Wenham, published by Springer, 2009. "Energy Management Principles: Practices, Calculations, and Applications" by F. Mohammadzadeh, published by Routledge, 2013. "Energy Auditing of Buildings: A Guide to Carbon Footprinting and Energy Conservation" by David M. Beitelman, published by Springer, 2011. "Handbook of Energy Audits" by Albert Thumann, published by Fairmont Press, 2006. "Sustainable Energy Management: A Guide for Energy Managers, Building Owners, Facility Managers" by Michael D. Starr, published by Fairmont Press, 2010. "Energy Efficiency in Buildings: A Guide to Best Practice in Energy Management" by 	1	"Energy Management Handbook" by Wayne C. Turner, published by Fairmont Press,
 "Energy Management Principles: Practices, Calculations, and Applications" by F. Mohammadzadeh, published by Routledge, 2013. "Energy Auditing of Buildings: A Guide to Carbon Footprinting and Energy Conservation" by David M. Beitelman, published by Springer, 2011. "Handbook of Energy Audits" by Albert Thumann, published by Fairmont Press, 20 "Sustainable Energy Management: A Guide for Energy Managers, Building Owners, Facility Managers" by Michael D. Starr, published by Fairmont Press, 2010. "Energy Efficiency in Buildings: A Guide to Best Practice in Energy Management" h 	1.	2009.
 "Energy Auditing of Buildings: A Guide to Carbon Footprinting and Energy Conservation" by David M. Beitelman, published by Springer, 2011. "Handbook of Energy Audits" by Albert Thumann, published by Fairmont Press, 20 "Sustainable Energy Management: A Guide for Energy Managers, Building Owners, Facility Managers" by Michael D. Starr, published by Fairmont Press, 2010. "Energy Efficiency in Buildings: A Guide to Best Practice in Energy Management" h 	1. 2.	2009. "Building Energy Management Systems: Applications and Implementation" by Stuart R. Wenham, published by Springer, 2009.
 "Handbook of Energy Audits" by Albert Thumann, published by Fairmont Press, 20 "Sustainable Energy Management: A Guide for Energy Managers, Building Owners, Facility Managers" by Michael D. Starr, published by Fairmont Press, 2010. "Energy Efficiency in Buildings: A Guide to Best Practice in Energy Management" h 	1. 2. 3.	 2009. "Building Energy Management Systems: Applications and Implementation" by Stuart R. Wenham, published by Springer, 2009. "Energy Management Principles: Practices, Calculations, and Applications" by F. Mohammadzadeh, published by Routledge, 2013.
 "Sustainable Energy Management: A Guide for Energy Managers, Building Owners, Facility Managers" by Michael D. Starr, published by Fairmont Press, 2010. "Energy Efficiency in Buildings: A Guide to Best Practice in Energy Management" by 	1. 2. 3. 4.	 2009. "Building Energy Management Systems: Applications and Implementation" by Stuart R. Wenham, published by Springer, 2009. "Energy Management Principles: Practices, Calculations, and Applications" by F. Mohammadzadeh, published by Routledge, 2013. "Energy Auditing of Buildings: A Guide to Carbon Footprinting and Energy Conservation" by David M. Beitelman, published by Springer, 2011.
Facility Managers" by Michael D. Starr, published by Fairmont Press, 2010. 7 "Energy Efficiency in Buildings: A Guide to Best Practice in Energy Management" h	1. 2. 3. 4. 5.	 2009. "Building Energy Management Systems: Applications and Implementation" by Stuart R. Wenham, published by Springer, 2009. "Energy Management Principles: Practices, Calculations, and Applications" by F. Mohammadzadeh, published by Routledge, 2013. "Energy Auditing of Buildings: A Guide to Carbon Footprinting and Energy Conservation" by David M. Beitelman, published by Springer, 2011. "Handbook of Energy Audits" by Albert Thumann, published by Fairmont Press, 2012.
/ "Energy Ethciency in Ruildings' A Guide to Rest Practice in Energy Management" h	1. 2. 3. 4. 5. 6.	 2009. "Building Energy Management Systems: Applications and Implementation" by Stuart R. Wenham, published by Springer, 2009. "Energy Management Principles: Practices, Calculations, and Applications" by F. Mohammadzadeh, published by Routledge, 2013. "Energy Auditing of Buildings: A Guide to Carbon Footprinting and Energy Conservation" by David M. Beitelman, published by Springer, 2011. "Handbook of Energy Audits" by Albert Thumann, published by Fairmont Press, 2012. "Sustainable Energy Management: A Guide for Energy Managers, Building Owners, and
7. Energy Enterency in Bundings. A duide to best i factice in Energy Management B	1. 2. 3. 4. 5. 6.	 2009. "Building Energy Management Systems: Applications and Implementation" by Stuart R. Wenham, published by Springer, 2009. "Energy Management Principles: Practices, Calculations, and Applications" by F. Mohammadzadeh, published by Routledge, 2013. "Energy Auditing of Buildings: A Guide to Carbon Footprinting and Energy Conservation" by David M. Beitelman, published by Springer, 2011. "Handbook of Energy Audits" by Albert Thumann, published by Fairmont Press, 2012. "Sustainable Energy Management: A Guide for Energy Managers, Building Owners, and Facility Managers" by Michael D. Starr, published by Fairmont Press, 2010.

Web Resources

- 1. <u>https://sustainabilityeducationacademy.com/learn/introduction-to-</u> <u>energy- auditing/</u>
- 2. <u>https://alison.com/careers/stem/energy-conservation-specialist</u>

CO Vs PO Mapping and CO Vs PSO Mapping

C O	P 0 1	P0 2	Р О З	Р О 4	Р О 5	Р О 6	P 0 7	P 0 8	Р О 9	P 0 1	P 0 1	P 0 1	PS O 1	PS O 2
										0	1	2		
1	3	2			2			2		1				2
2	3	2			2			2		1				2
3	3	2	1		2			2		1				2
4	3	2	1		2			2		1				2
5	3	2			2			2		1				2

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	20	20	10	10	20
UNDERSTAND	30	30	10	10	30
APPLY	20	20	10	10	20
ANALYZE	15	15	10	10	15
EVALUATE	15	15	10	10	15
CREATE	0	0	0	0	0
	100	100	50	50	100

1-Low, 2- Medium, 3- High

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1:

1. What are energy auditing and conservation, and what effects do they have on the environment? What are the foundational tenets of energy management

and efficiency?

2. What is energy conservation, why is it vital, and how does energy auditing fit into the scheme of things?

COURSE OUTCOME 2:

- What types of energy audits are there? How are energy consumption measurements and analyses conducted? What best practices and technology are there for saving energy?
- 2. What effect do HVAC units have on energy use? How may renewable energy systems and other energy sources be incorporated into energy conservation efforts? What part do energy management systems and building automation play in energy conservation?

COURSE OUTCOME 3:

- What function can energy management systems and building automation play in energy conservation, and how may energy conservation measures be put in place and tracked?
- 2. How do going green and sustainable energy interfere? What are energy conservation rules and regulations, and how do they affect energy conservation efforts?

COURSE OUTCOME 4:

- 1. Exactly what function does corporate social responsibility play in energy conservation? What are the benefits of energy certification and labelling, and how does it affect energy efficiency? Can you give an example of a successful energy conservation initiative?
- 2. How does green technology affect a building's or a firm's return on investment?

COURSE OUTCOME 5:

- 1. What function do energy analysis and design play in energy conservation efforts? How else can energy consumption patterns be examined and deciphered? What function do energy management strategies play in attempts to save energy?
- 2. Can you talk about the future prospects for energy conservation and energy auditing? What part do energy reporting and communication play in supporting energy conservation efforts?

21EE6802	Fundamentals and Modelling of Solar PV Systems	L	Τ	Р	C
		3	0	0	3
Preamble			I		
Prerequisite	es for the course				
1. Power	Electronics				
2. Electr	onic Devices				
Objectives					
3. To acqu	ire the basic principles of solar PV system				
4. To Dea	with grid connected PV system				
5. To incu	lcate the knowledge on Grid tied PV system				
6. To Disc	uss about different energy storage systems				
7. To ap	ply the concept of Solar PV in real life situations				
UNIT I	INTRODUCTION			9	
Introduction,	Sun movement over the day, shadowing effects, Photovoltai	c Cell	.Adv	vantag	ges &
disadvantage	s of photo-voltaic conversion.Use of solar cell in va	rious	in	strun	nents
Characteristi	cs of sunlight – semiconductors and P-N junctions –behaviou	r of s	olar	cells	– cel
properties –	PV cell interconnection				
UNIT II	STAND ALONE PV SYSTEM			9	
Solar module stand-alone I	s – storage systems – power conditioning and regulation - MPF V systems design – sizing.	PT- pr	otec	tion -	_
UNIT III	GRID CONNECTED PV SYSTEMS			9	
PV systems i	n buildings – design issues for central power stations – safety d performance - International PV programs, , Hybrid Syste	– Eco ems, I	nom Phot	iic asj ovolta	pect aic i
Efficiency an Energy Suppl	y				
Efficiency an Energy Suppl	ENERGY STORAGE AND CONVERSION SYSTEM			9	
Efficiency an Energy Suppl UNIT IV Impact of int Photovoltaic converters, C	ENERGY STORAGE AND CONVERSION SYSTEM ermittent generation – Battery energy storage – Battery techn systems, Battery technology, Batteries for Photovoltaic harge Controllers, DC – AC inverters	nolog syste	y, Ba ms,	9 atteri DC	es fo – D

Nat	ter pumping –battery cl	hargers – solar car-direct-d	rive app	olications –Space					
Te	elecommunications.								
		Total I	Periods	45					
		1	crious	15					
ug	gestive Assessment Metho	15							
Con	tinuous Assessment Test	Formative Assessment Test	End Se	emester Exams					
	(30 Marks)	(10 Marks)	(60 M	arks)					
	WRITTEN TEST	1.ASSIGNMENT		WRITTEN TEST					
		3.PROBLEM-SOLVING ACTIVITIES							
Out	comes								
Upo	on completion of the course	e, the students will be able to:							
1	Develop more understandi	ng on solar energy storage systen	ıs						
2	Calculate the Power regulation for the given PV System.								
3	Analyse the performance of	of Grid tied PV System							
4	Model the different energy	storage systems and their perform	mances						
5	Apply the concept of PV Sy	stem in real time applications							
Tex	t Books								
	1. Solanki C.S., "Solar Pho	otovoltaics: Fundamentals, Techno	ologies an	d Applications",					
	PHI Learning Pvt. Ltd.	,2015.							
	2. Stuart R.Wenham,	Martin A.Green, Muriel E.	Watt an	d Richard					
	Corkish, "AppliedPhot	ovoltaics", 2007,Earthscan, UK.							
Ref	erence Books								
	1. Eduardo Lorenzo G. Arau	o. "Solar electricity engineering o	f photovo	ltaic systems".					
	Progensa,1994.		r	, , , , , , , , , , , , , , , , , , ,					
	 Frank S. Barnes & Jonah C Pross 2011 	a. Levine, "Large Energy storage Sy	ystems Ha	ndbook", CRC					
	3. McNeils, Frenkel, Desai, "S	Solar & Wind Energy Technologies	s", Wiley E	Eastern, 1990 S.P.					
	Sukhatme , "Solar Energy	', Tata McGraw Hill,1987		·					
We	b Recourses								
	1.https://nptel.ac.in/cour 2.https://archive.nptel.ac	rses/115107116 in/courses/113/104/11310408/	4 /						

Francis Xavier Engineering College| Dept of EEE | R2021/Curriculum and Syllabi CO Vs PO Mapping and CO Vs PSO Mapping

C O	P 0 1	P 0 2	P 0 3	P 0 4	Р О 5	Р О 6	P 0 7	P 0 8	P 0 9	P 0 1 0	P 0 1	P 0 1 2	PS 0 1	PS 0 2
1	3	1	1			2	2			3				3
2	3	1	1			2	2			3				3
3	3	1	1			2	2			3				3
4	3	1	1			2	2			3				3
5	3	1	1			2	2			3				3

1-Low , 2- Medium, 3- High

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	30	30	20	20	30
UNDETSTAND	40	30	20	20	30
APPLY	30	30	10	10	30
ANALYZE		10			10
EVALUATE					
CREATE					
	100	100	50	50	100

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1:

1. could you explain theterm effect**of solarlight**, temperature and parasitic resistance on a solar cell?

2. Consider a photovoltaic string consisting of 'm' PV cells in series. 'n' such series photovoltaicstrings are connected in parallel, resulting in series parallel configuration. Assume that all theindividual PV cells are identical. The open circuit voltage and short circuit current of each PV cellare 2.1 V and 1.4 A respectively. If the short circuit current and open circuit voltage of the overallconfiguration are 4.2 A and 8.4 V respectively, what will be the value of (m+n)?

COURSE OUTCOME 2:

- 1. List and elaborate protection methods employed for PV system? Explain in detail.
- 2. Explain about the regulators used in PV system

COURSE OUTCOME 3:

- 1. Enumerate the design issues for central power stations tied with Solar PVC system.
- 2. With the suitable example the explain the international solar PVC program.

COURSE OUTCOME 4:

- 1. Discuss in detail with a neat diagram the charge and discharge cycles of typical Li- ion battery.
- 2. Explain briefly thermal runway, capacity fading and loss of high-rate discharge capacity in Li-ion battery

COURSE OUTCOME 5:

- 1. Explain in details with necessary diagram, the principle of operation of SPVC based direct drive application and Battery charger.
- 2. Design of a PVC system for pumping 25000 litres of water every day from a depth of about 10 m is considered. The following data is to be assumed for: total vertical lift 12 m. water density =1000 kg/m². G= 9.8 m/s². SPVC module = 75 Wp. Operating factor =0.75, Pump efficiency =30% and mismatch factor =0.85.

21EE6803	GENERATION OF ELECTRICAL ENERGY	L	Т	Р	0
		3	0	0	3
Preamble			1		
Providing a	n overview of generation of electrical Energy and importance of	electr	ical	energ	зу
conservation.					
To introduce	students to different aspects of power plant engineering. To f	amili	arize	e the	
students to t	he working of power plants based on different fuels and to exp	oose t	he s	tuder	nts t
the principle	s of safety and environmental issues				
Prerequisite	s for the course				
NIL					
Objectives					
1. Underst power	and the layout, construction and working of the components in plant.	nside	a th	erma	1
2. Unders hydro	and the layout, construction and working of the components in electric power plants.	nside			
3. Unders	and the layout, construction and working of the components in	nside	nuc	lear p	ow
plants					
4. Unders	and the construction and working of the components of solar	energ	gy so	urces	5
5. Unders	and the construction and working of the components of Wind	ener	gy so	ource	S
UNIT I	THERMAL POWER PLANT			9	
Layout of mo handling, Dra	dern thermal power plant, Subsystems of thermal power plaught system. Binary Cycles and Cogeneration systems -Fee ethod, Advantages and disadvantages-limitations of Thermal p	ants ed wa powe	– Fu iter r pla	el an treat nt.	d a: mer
Mechanical II	HYDRO ELECTRIC POWER PLANT			9	
UNIT II		· .	sifica	ition,	
UNIT II Hydrology, H Layout, auxili	/drographs, Flow duration curve, Hydroelectric power plants - aries and working of a hydro station	- class			
UNIT II Hydrology, H Layout, auxili UNIT III	vdrographs, Flow duration curve, Hydroelectric power plants - aries and working of a hydro station NUCLEAR POWER PLANTS	- class		9	
UNIT II Hydrology, H Layout, auxili UNIT III Nuclear pow	Adrographs, Flow duration curve, Hydroelectric power plants - aries and working of a hydro station NUCLEAR POWER PLANTS er plant-introduction-nuclear fuels, nuclear fission and fu	- class	WO	9 cking	of

UNIT IV	SOLAR RADIA COLLECTORS	TION AND SOLAR ENERGY		9							
Introduction	- solar constant - so	olar radiation at the Earth's surface	e - solar r	adiation geometry							
estimation o	f average solar radi	ation - physical principles of the c	conversio	on of solar radiation							
into heat – i	flat-plate collectors	- concentrating collector - advar	ntages ar	nd disadvantages							
concentratin	g collectors										
UNIT V		WIND ENERGY		9							
Introduction	- basic principles o	f wind energy conversion - site sel	ection co	onsiderations - bas							
components	of a WECS (Wind I	Energy Conversion System) - Class	sification	of WECS - types							
wind Turbin	es - analysis of aero	dynamic forces acting on the blade	- perform	nances of wind.							
Total Periods 45											
Suggestive Assessment Methods											
Continuous Assessment Test Formative Assessment Test End Semester Fyams											
Continuous Assessment rest rormative Assessment rest Enu semester Exams											
(30 Marks) (10 Marks) (60 Marks)											
WRITTEN TEST 1.ASSIGNMENT WRITTEN TEST											
2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES											
Outcomes											
Upon compl	etion of the course	e, the students will be able to:									
1 Analyz	e economics of pow	er plants and list factors affecting t	he powe	r plants and							
interpr	et the performance	of power plants based on load vari	ations.	1							
2 Identify	y elements and their	functions of, hydro power plants.									
3 Identify	y elements and their	functions and operations of nucle	ar power	plant.							
4 Identify	y elements and their	functions and operations of Solar	power p	lants.							
5 Identify	y elements and their	functions and operations of wind	and pow	er plants.							
Text Books											
1. Nag	. P.K., "Power Plant	Engineering", Third Edition, Tata M	AcGraw -	- Hill Publishing							
Comm	anv Ltd 2008			0							
Comp	ally 11(a., 2000.										

1.El-Wakil. M.M., "Power Plant Technology", Tata McGraw – Hill Publishing Company Ltd., 2010.

2. Godfrey Boyle, "Renewable energy", Open University, Oxford University Press in association with the Open University, 2004.

3. Thomas C. Elliott, Kao Chen and Robert C. Swanekamp, "Power Plant Engineering", Second Edition, Standard Handbook of McGraw – Hill, 1998.

Web Recourses

- 1. https://archive.nptel.ac.in/content/storage2/112/107/112107291/MP4/mod03l ec15.mp4
- 2.https://archive.nptel.ac.in/content/storage2/112/107/112107291/MP4/mod05lec 21.mp4

CO Vs PO Mapping and CO Vs PSO Mapping

C O	P 0 1	P 0 2	Р О З	P 0 4	Р О 5	Р О 6	P 0 7	P 0 8	P 0 9	P 0 1 0	P 0 1	P 0 1 2	PS 0 1	PS 0 2
1	3		2		1									3
2	3		2		1									3
3	3		2		1									3
4	3		2		2									3
5	3		2		1									3

1-Low , 2- Medium, 3- High

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	25	25	20	20	30
UNDETSTAND	30	30	10	10	25
APPLY	20	20	10	10	25
ANALYZE	25	25	10	10	20
EVALUATE					
CREATE					
	100	100	50	50	100

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Students will be able to Predict the suitable method for....(Apply)

- 1. Define power plant
- 2. Explain briefly the working of thermal power plant

COURSE OUTCOME 2:

- 1. List the essential components of hydro electric power plant.
- 2. List the different factors to be considered while selecting the site for hydroelectric power plant

COURSE OUTCOME 3:

- 1. Define nuclear fusion and nuclear fission
- 2. Name the different nuclear fuels used for nuclear power plant **COURSE OUTCOME 4:**
 - 1. Define solar period
 - 2. Explain briefly about solar cells.

COURSE OUTCOME 5:

- 1. List the advantages of wind power plant
- 2. Explain in brief about WECS

Image: Preamble 3 0 0 It is an introductory course which emphasize the fundamental concepts and overview of and SCADA. The concepts discussed herein are intended to provide clarification on basic electrical engineering for automation purpose. Image: Prerequisites for the course Prerequisites for the course 1. Power system operation and control Objectives 1. To impart knowledge on automations and their types for the control of AC and DC drives in industry process. 2. To acquire the basic concept of PLC and their Interfaces. 3. To develop an Industrial Automation applications using PLC 4. To analyse the concept involved in SCADA. 5. To provide an overview of Industrial Automation applications using SCADA and DCS UNIT I INTRODUCTION 9 Definition of Automation, Types & Application of Automation to Industry proces architecture of Industrial Automation system, Sensors for temperature, pressure, displacement, speed, flow, level, humidity and pH measurement. Actuators, process covalves, Introduction of DC and AC servo drives for motion control 9 The I/O Section, Discrete I/O Modules, Analog I/O Modules, Special I/O Modules 9 The I/O Section, Discrete I/O Modules, Analog I/O Modules, Special I/O Modules 9 The I/O Section, Discrete I/O Modules, Analog I/O Modules, Special I/O Modules 9 The I/O Section, Discrete I/O Modules, Analog I/O Modules, Special I/O Modules 9 The		PLC and SCADA	L	Т	Р	(
Preamble It is an introductory course which emphasize the fundamental concepts and overview of and SCADA. The concepts discussed herein are intended to provide clarification on basic electrical engineering for automation purpose. Prerequisites for the course 1. Power system operation and control Objectives 1. To impart knowledge on automations and their types for the control of AC and DC drives in industry process. 2. To acquire the basic concept of PLC and their Interfaces. 3. To develop an Industrial Automation applications using PLC 4. To analyse the concept involved in SCADA. 5. To provide an overview of Industrial Automation applications using SCADA and DCS UNIT I INTRODUCTION 9 Definition of Automation, Types & Application of Automation to Industry proces covalves, Introduction of DC and AC servo drives for motion control UNIT I PLC HARDWARE COMPONENTS 9 The I/O Section, Discrete I/O Modules, Analog I/O Modules, Special I/O Modules Specifications, The Central Processing Unit (CPU), Memory Design, Memory T Programming Terminal Devices, Recording and Retrieving Data, Human Machine Inter (HMIs).			3	0	0	3
It is an introductory course which emphasize the fundamental concepts and overview of and SCADA. The concepts discussed herein are intended to provide clarification on basic electrical engineering for automation purpose. Prerequisites for the course 1. Power system operation and control Objectives 1. To impart knowledge on automations and their types for the control of AC and DC drives in industry process. 2. To acquire the basic concept of PLC and their Interfaces. 3. To develop an Industrial Automation applications using PLC 4. To analyse the concept involved in SCADA. 5. To provide an overview of Industrial Automation applications using SCADA and DCS UNIT I INTRODUCTION 9 Definition of Automation, Types & Application of Automation to Industry proce Architecture of Industrial Automation system, Sensors for temperature, pressure, displacement, speed, flow, level, humidity and pH measurement. Actuators, process covalves, Introduction of DC and AC servo drives for motion control UNIT I PLC HARDWARE COMPONENTS 9 The I/O Section, Discrete I/O Modules, Analog I/O Modules, Special I/O Modules Specifications, The Central Processing Unit (CPU), Memory Design, Memory 7 Programming Terminal Devices, Recording and Retrieving Data, Human Machine Inter (HMIs).	Preamble				<u> </u>	
Prerequisites for the course 1. Power system operation and control Objectives 1. To impart knowledge on automations and their types for the control of AC and DC drives in industry process. 2. To acquire the basic concept of PLC and their Interfaces. 3. To develop an Industrial Automation applications using PLC 4. To analyse the concept involved in SCADA. 5. To provide an overview of Industrial Automation applications using SCADA and DCS UNIT I INTRODUCTION 9 Definition of Automation, Types & Application of Automation to Industry proces Architecture of Industrial Automation system, Sensors for temperature, pressure, displacement, speed, flow, level, humidity and pH measurement. Actuators, process covalves, Introduction of DC and AC servo drives for motion control UNIT II PLC HARDWARE COMPONENTS 9 The 1/0 Section, Discrete 1/0 Modules, Analog 1/0 Modules, Special 1/0 Modules Specifications, The Central Processing Unit (CPU), Memory Design, Memory T Programming Terminal Devices, Recording and Retrieving Data, Human Machine Inter	It is an intro and SCADA. electrical en	luctory course which emphasize the fundamental concepts an The concepts discussed herein are intended to provide clarific gineering for automation purpose.	d ove ation	rvie on t	w of l basic	PLC
1. Power system operation and control Objectives 1. To impart knowledge on automations and their types for the control of AC and DC drives in industry process. 2. To acquire the basic concept of PLC and their Interfaces. 3. To develop an Industrial Automation applications using PLC 4. To analyse the concept involved in SCADA. 5. To provide an overview of Industrial Automation applications using SCADA and DCS UNIT I INTRODUCTION 9 Definition of Automation, Types & Application of Automation to Industry proce Architecture of Industrial Automation system, Sensors for temperature, pressure, displacement, speed, flow, level, humidity and pH measurement. Actuators, process co valves, Introduction of DC and AC servo drives for motion control UNIT II PLC HARDWARE COMPONENTS 9 The I/O Section, Discrete I/O Modules, Analog I/O Modules, Special I/O Modules Specifications, The Central Processing Unit (CPU), Memory Design, Memory T Programming Terminal Devices, Recording and Retrieving Data, Human Machine Inter	Prerequisite	s for the course				
Objectives 1. To impart knowledge on automations and their types for the control of AC and DC drives in industry process. 2. To acquire the basic concept of PLC and their Interfaces. 3. To develop an Industrial Automation applications using PLC 4. To analyse the concept involved in SCADA. 5. To provide an overview of Industrial Automation applications using SCADA and DCS UNIT I INTRODUCTION 9 Definition of Automation, Types & Application of Automation to Industry proce Architecture of Industrial Automation system, Sensors for temperature, pressure, displacement, speed, flow, level, humidity and pH measurement. Actuators, process co valves, Introduction of DC and AC servo drives for motion control UNIT II PLC HARDWARE COMPONENTS 9 The I/O Section, Discrete I/O Modules, Analog I/O Modules, Special I/O Modules Specifications, The Central Processing Unit (CPU), Memory Design, Memory T Programming Terminal Devices, Recording and Retrieving Data, Human Machine Inter (HMIs).	1. Power s	ystem operation and control				
1. To impart knowledge on automations and their types for the control of AC and DC drives in industry process. 2. To acquire the basic concept of PLC and their Interfaces. 3. To develop an Industrial Automation applications using PLC 4. To analyse the concept involved in SCADA. 5. To provide an overview of Industrial Automation applications using SCADA and DCS UNIT I INTRODUCTION 9 Definition of Automation, Types & Application of Automation to Industry proce Architecture of Industrial Automation system, Sensors for temperature, pressure, displacement, speed, flow, level, humidity and pH measurement. Actuators, process covalves, Introduction of DC and AC servo drives for motion control UNIT II PLC HARDWARE COMPONENTS 9 The I/O Section, Discrete I/O Modules, Analog I/O Modules, Special I/O Modules Specifications, The Central Processing Unit (CPU), Memory Design, Memory T Programming Terminal Devices, Recording and Retrieving Data, Human Machine Inter (HMIs).	Objectives					
2. To acquire the basic concept of PLC and their Interfaces. 3. To develop an Industrial Automation applications using PLC 4. To analyse the concept involved in SCADA. 5. To provide an overview of Industrial Automation applications using SCADA and DCS UNIT I INTRODUCTION 9 Definition of Automation, Types & Application of Automation to Industry proce Architecture of Industrial Automation system, Sensors for temperature, pressure, displacement, speed, flow, level, humidity and pH measurement. Actuators, process covalves, Introduction of DC and AC servo drives for motion control UNIT II PLC HARDWARE COMPONENTS 9 The I/O Section, Discrete I/O Modules, Analog I/O Modules, Special I/O Modules Specifications, The Central Processing Unit (CPU), Memory Design, Memory T Programming Terminal Devices, Recording and Retrieving Data, Human Machine Interfaces	1. To impa drives	rt knowledge on automations and their types for the control o in industry process.	of AC a	and	DC	
3. To develop an Industrial Automation applications using PLC 4. To analyse the concept involved in SCADA. 5. To provide an overview of Industrial Automation applications using SCADA and DCS UNIT I INTRODUCTION 9 Definition of Automation, Types & Application of Automation to Industry proce Architecture of Industrial Automation system, Sensors for temperature, pressure, displacement, speed, flow, level, humidity and pH measurement. Actuators, process covalves, Introduction of DC and AC servo drives for motion control UNIT II PLC HARDWARE COMPONENTS 9 The I/O Section, Discrete I/O Modules, Analog I/O Modules, Special I/O Modules Specifications, The Central Processing Unit (CPU), Memory Design, Memory T Programming Terminal Devices, Recording and Retrieving Data, Human Machine Inter (HMIs).	2. To acqu	ire the basic concept of PLC and their Interfaces.				
4. To analyse the concept involved in SCADA. 5. To provide an overview of Industrial Automation applications using SCADA and DCS UNIT I INTRODUCTION 9 Definition of Automation, Types & Application of Automation to Industry proce Architecture of Industrial Automation system, Sensors for temperature, pressure, displacement, speed, flow, level, humidity and pH measurement. Actuators, process covalves, Introduction of DC and AC servo drives for motion control UNIT II PLC HARDWARE COMPONENTS 9 The I/O Section, Discrete I/O Modules, Analog I/O Modules, Special I/O Modules Specifications, The Central Processing Unit (CPU), Memory Design, Memory T Programming Terminal Devices, Recording and Retrieving Data, Human Machine Inter (HMIs). 1	3. To deve	op an Industrial Automation applications using PLC				
5. To provide an overview of Industrial Automation applications using SCADA and DCS UNIT I INTRODUCTION 9 Definition of Automation, Types & Application of Automation to Industry proce Architecture of Industrial Automation system, Sensors for temperature, pressure, displacement, speed, flow, level, humidity and pH measurement. Actuators, process convalves, Introduction of DC and AC servo drives for motion control UNIT II PLC HARDWARE COMPONENTS 9 The I/O Section, Discrete I/O Modules, Analog I/O Modules, Special I/O Modules Specifications, The Central Processing Unit (CPU), Memory Design, Memory Theorem Terminal Devices, Recording and Retrieving Data, Human Machine Inter (HMIs).	4. To anal	rse the concept involved in SCADA.				
UNIT IINTRODUCTION9Definition of Automation, Types & Application of Automation to Industry proce Architecture of Industrial Automation system, Sensors for temperature, pressure, displacement, speed, flow, level, humidity and pH measurement. Actuators, process convalves, Introduction of DC and AC servo drives for motion controlUNIT IIPLC HARDWARE COMPONENTS9The I/O Section, Discrete I/O Modules, Analog I/O Modules, Special I/O Modules Specifications, The Central Processing Unit (CPU), Memory Design, Memory Theorem Programming Terminal Devices, Recording and Retrieving Data, Human Machine Inter (HMIs).	5. To prov	de an overview of Industrial Automation applications using S	CADA	and	I DCS	
Definition of Automation, Types & Application of Automation to Industry proce Architecture of Industrial Automation system, Sensors for temperature, pressure, displacement, speed, flow, level, humidity and pH measurement. Actuators, process convalves, Introduction of DC and AC servo drives for motion control UNIT II PLC HARDWARE COMPONENTS 9 The I/O Section, Discrete I/O Modules, Analog I/O Modules, Special I/O Modules Specifications, The Central Processing Unit (CPU), Memory Design, Memory Theorem Programming Terminal Devices, Recording and Retrieving Data, Human Machine Inter (HMIs).	UNIT I	INTRODUCTION			9	
Architecture of Industrial Automation system, Sensors for temperature, pressure, displacement, speed, flow, level, humidity and pH measurement. Actuators, process convalves, Introduction of DC and AC servo drives for motion control UNIT II PLC HARDWARE COMPONENTS 9 The I/O Section, Discrete I/O Modules, Analog I/O Modules, Special I/O Modules Specifications, The Central Processing Unit (CPU), Memory Design, Memory Theorem Programming Terminal Devices, Recording and Retrieving Data, Human Machine Inter (HMIs).	Definition of	Automation, Types & Application of Automation to Ir	ndusti	ry p	oroce	SSO
displacement, speed, flow, level, humidity and pH measurement. Actuators, process of valves, Introduction of DC and AC servo drives for motion control UNIT II PLC HARDWARE COMPONENTS 9 The I/O Section, Discrete I/O Modules, Analog I/O Modules, Special I/O Modules Specifications, The Central Processing Unit (CPU), Memory Design, Memory T Programming Terminal Devices, Recording and Retrieving Data, Human Machine Inter (HMIs). Output	Architecture	of Industrial Automation system, Sensors for temperatu	re, p	ress	ure,	for
valves, Introduction of DC and AC servo drives for motion control UNIT II PLC HARDWARE COMPONENTS 9 The I/O Section, Discrete I/O Modules, Analog I/O Modules, Special I/O Modules Specifications, The Central Processing Unit (CPU), Memory Design, Memory T Programming Terminal Devices, Recording and Retrieving Data, Human Machine Inter (HMIs). Output	displacement	speed, flow, level, humidity and pH measurement. Actuate	ors, p	roce	ess co	ontr
UNIT IIPLC HARDWARE COMPONENTS9The I/O Section, Discrete I/O Modules, Analog I/O Modules, Special I/O ModulesSpecifications, The Central Processing Unit (CPU), Memory Design, Memory TProgramming Terminal Devices, Recording and Retrieving Data, Human Machine Inter(HMIs).	valves, Introd	uction of DC and AC servo drives for motion control				
The I/O Section, Discrete I/O Modules, Analog I/O Modules, Special I/O Modules Specifications, The Central Processing Unit (CPU), Memory Design, Memory 7 Programming Terminal Devices, Recording and Retrieving Data, Human Machine Inter (HMIs).	UNIT II	PLC HARDWARE COMPONENTS			9	
Specifications, The Central Processing Unit (CPU), Memory Design, Memory 7 Programming Terminal Devices, Recording and Retrieving Data, Human Machine Inter (HMIs).		tion, Discrete I/O Modules, Analog I/O Modules, Special	I/0	Мо	dules	5, I,
Programming Terminal Devices, Recording and Retrieving Data, Human Machine Inter (HMIs).	The I/O Sec	. The Central Processing Unit (CPU). Memory Design	n, M	emo	ry T	Гуре
(HMIs).	The I/O Sec Specifications	,,,,,,,,	N / 1	nine	Inte	rfac
().	The I/O Sec Specifications Programming	Terminal Devices, Recording and Retrieving Data, Human	маст			
UNIT III BASICS OF PLC PROGRAMMING 9	The I/O Sec Specifications Programming (HMIs).	Terminal Devices, Recording and Retrieving Data, Human	Macr			
Processor Memory Organization, Program Scan, PLC Programming Languages, Relay	The I/O Sec Specifications Programming (HMIs). UNIT III	Terminal Devices, Recording and Retrieving Data, Human BASICS OF PLC PROGRAMMING	Macr		9	
Instructions, Instruction Addressing, Branch Instructions, Internal Relay Instruction	The I/O Sec Specifications Programming (HMIs). UNIT III Processor M	Terminal Devices, Recording and Retrieving Data, Human BASICS OF PLC PROGRAMMING mory Organization, Program Scan, PLC Programming Lan	Macr	es, l	9 Relay	-Ty
Programming Examine If Closed and Examine If Open Instructions, Entering the L	The I/O Sec Specifications Programming (HMIs). UNIT III Processor Ma Instructions,	Terminal Devices, Recording and Retrieving Data, Human BASICS OF PLC PROGRAMMING mory Organization, Program Scan, PLC Programming Lan Instruction Addressing, Branch Instructions, Internal	nguago Relay	es, l 7 In	9 Relay Istruc	-Ty

UN	IT IV	SUPERVISOR	Y CONTROL AND DATA ACQUISI	TION	9						
Intr Fun Con Pro	oduction f octions and nections - tocol.	to SCADA – SCADA l Applications, Ben - SCADA Communi	Functional requirements and Cor efits – Configurations of SCADA, R ication requirements – Structure of	nponents TU (Rem of a SCAI	s – General featur ote Terminal Unit DA Communicatio						
UN	IT V	APPLICATIO	ONS OF SCADA & DCS IN INDUST	RIES	9						
App Ind	olications o ustries, pa	of SCADA & DCS in ' per manufacturing	Thermal power plant, Cement man Industries and Water Treatment p	ufacturir lant	ng Industries, Suga						
			Total P	eriods	4						
Suggestive Assessment Methods											
Con	itinuous A	Assessment Test	Formative Assessment Test	End So	emester Exams						
(30 Marks) (10 Marks) (60 Marks)											
	WRITTEN TEST 1.ASSIGNMENT WRITTEN TEST 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES										
Out	comes										
Upo	on comple	etion of the course	e, the students will be able to:								
1	Design a	automation and cor	ntrol methods of AC and DC drives								
2	Underst	and the basic conc	ept of PLC and their Interfaces								
3	Discuss	history of PLC and	describe the hardware component	s of PLC							
4	Describe Control	e field devices Rela Devices, Seal-In Cii	ys, Contactors, Motor Starters, Swi rcuits, and Latching Relays commo	tches, Se nly used	nsors, Output with I/O module.						
5 Develop Industrial Automation applications using SCADA and DCS											
Тех	t Books										
	 Garry I 3rd ed Frank 2 2010. 	Dunning, "Introduc ition, 2006. D.Petruzella, "Prog	tion to Programmable Logic Controgrammable logic controgrammable logic controllers", McG	ollers", C	ENGAGE Learning Inc.,US; 4th editio						
Ref	erence Bo	ooks									

Web Resources

1. Industrial Automation and Control - Course (nptel.ac.in)

CO Vs PO Mapping and CO Vs PSO Mapping

C O	P 0 1	P 0 2	Р О З	Р О 4	Р О 5	Р О 6	P 0 7	P 0 8	P 0 9	P 0 1 0	P 0 1	P 0 1 2	PS 0 1	PS 0 2
1	3	3	2	1	2									3
2	3	2	3	2	2							2		3
3	3	3	3	3	3	3					2			3
4	3	3	2	2	2	2			2		2			3
5	3	2	3	3	3	3	3				3	2		3

1-Low 2- Medium, 3- High

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	10	10	5	5	10
UNDERSTAND	30	30	10	10	30
APPLY	60	60	10	10	60
ANALYZE	0	0	0	0	0
EVALUATE	0	0	0	0	0
CREATE	0	0	0	0	0
	100	100	50	50	100

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Students will be able to Predict the suitable method for....(Apply)

- 1. Describe the Sensors used for measuring temperature(Understand)
- 2. Draw and explain the general rules in automation.(Analyse)

COURSE OUTCOME 2:

1. Analyze the analog I/O modules (Analyse)
 2. Describe the Human Machine Interfaces in automation (Understand)

COURSE OUTCOME 3:

- 1. What is meant by Processor Memory Organization.(Remember)
- 2. Summarize the Safety measures in the use of automation(Understand)

COURSE OUTCOME 4:

- 1. Explain the Need for SCADA. (Understand)
- 2. Analyze how the Classification of equipments was made (Analyse)

COURSE OUTCOME 5:

- 1. Explain briefly the applications of SCADA? (Understand)
- 2. Describe the operation of Cement manufacturing Industries. (Understand)

21EE6805	POWER ELECTRONICS FOR RENEWABLE ENERGY SYSTEMS	L	Т	Р	С
		3	0	0	3
Preamble				1	
Renewable are clean an in the powe concepts di renewable e	energy systems are becoming more popular for electricity ge d can fulfill the power requirement at the local level. They red r grid and also reduce the burden in hydro and thermal base scussed herein are intended to provide clarification on po nergy systems for Electrical Engineering graduates.	enerat luce tl d pow wer e	ion ne co ver p elect	since onges olants ronic	they tions . The s for
Prerequisite	es for the course				
1. Powe	r Electronics				
2. Power	Generation Systems				
Objectives					
1. To knov	w the importance of energy conversion in the present energy s	cenar	io		

- 2. To discuss the environmental and the availability of renewable energy sources for Solar energy conversion.
- 3. To Outline the concepts related to conventional and non-conventional energy.

4. To Understand the hybrid renewable energy resources for grid integration and facilitate

developing renewable systems for domestic and industrial applications

5. To use of Biomass energy and to perform desired generation strategy.

UNIT IINTRODUCTION9Recent trends in energy consumption - World energy scenario - Energy sources and availability - Qualitative study of different renewable energy resources: Solar, wind, of Biomass, Fuel cell, Hydrogen energy systems and hybrid renewable energy systems - no develop new energy technologies.Solar, wind, of 9UNIT IISOLAR ENERGY CONVERSION9Photovoltaic Energy Conversion: Working principle - Energy conversion - Maximum p tracker - Photovoltaic system components - Factor influencing output - System design -1 electronics for photovoltaic power systems - DC Power conditioning converters - AC p conditioners - Line commutated inverters - synchronized operation with grid supplyUNIT IIIWIND ENERGY CONVERSION9Wind Energy Conversion Systems: Basic principle of wind energy conversion - nature of the Wind survey in India - Power in the wind - Components of a wind energy conversion system Performance of Induction Generators for WECS -IG-SCIGPMSG - Classification of WECS -I electronics converter for variable speed wind turbines -Matrix - Multilevel converters for high power wind turbines - Future trends9UNIT IVFUEL CELL POWER ELECTRONICS FOR DISTRIBUTED GENERATION (DG)9Fuel Cell - Working Principle - Distributed generation - Fuel cell based energy system for Power electronic topologies for residential stationary fuel cell energy systems - Issues i cell power conditioning system -Energy management system issues -Auxiliary storage	l their ocean, eed to power Power power										
Recent trends in energy consumption - World energy scenario - Energy sources and availability - Qualitative study of different renewable energy resources: Solar, wind, of Biomass, Fuel cell, Hydrogen energy systems and hybrid renewable energy systems - no develop new energy technologies.UNIT IISOLAR ENERGY CONVERSION9Photovoltaic Energy Conversion: Working principle - Energy conversion - Maximum p tracker - Photovoltaic system components - Factor influencing output - System design -1 electronics for photovoltaic power systems - DC Power conditioning converters - AC p conditioners - Line commutated inverters - synchronized operation with grid supplyUNIT IIIWIND ENERGY CONVERSION9Wind Energy Conversion Systems: Basic principle of wind energy conversion - nature of W Wind survey in India - Power in the wind - Components of a wind energy conversion system Performance of Induction Generators for WECS -IG-SCIGPMSG - Classification of WECS - I electronics converter for variable speed wind turbines -Matrix - Multilevel converters for high power wind turbines - Future trends9UNIT IVFUEL CELL POWER ELECTRONICS FOR DISTRIBUTED GENERATION (DG)9Fuel Cell - Working Principle - Distributed generation - Fuel cell based energy system for Power electronic topologies for residential stationary fuel cell energy systems - Issues i cell power conditioning system -Energy management system issues -Auxiliary storage	l their ocean, eed to power Power power										
availability - Qualitative study of different renewable energy resources: Solar, wind, of Biomass, Fuel cell, Hydrogen energy systems and hybrid renewable energy systems - no develop new energy technologies.UNIT IISOLAR ENERGY CONVERSION9Photovoltaic Energy Conversion: Working principle – Energy conversion – Maximum p tracker – Photovoltaic system components – Factor influencing output – System design –1 electronics for photovoltaic power systems - DC Power conditioning converters - AC p conditioners - Line commutated inverters - synchronized operation with grid supplyUNIT IIIWIND ENERGY CONVERSION9Wind Energy Conversion Systems: Basic principle of wind energy conversion – nature of W Wind survey in India - Power in the wind - Components of a wind energy conversion system Performance of Induction Generators for WECS –IG-SCIGPMSG - Classification of WECS – I electronics converter for variable speed wind turbines –Matrix - Multilevel converters for high power wind turbines – Future trends9UNIT IVFUEL CELL POWER ELECTRONICS FOR DISTRIBUTED GENERATION (DG)9Fuel Cell - Working Principle – Distributed generation – Fuel cell based energy system for Power electronic topologies for residential stationary fuel cell energy systems –Issues i cell power conditioning system –Energy management system issues –Auxiliary storage	ocean, eed to power Power power										
Biomass, Fuel cell, Hydrogen energy systems and hybrid renewable energy systems - nergy develop new energy technologies.UNIT IISOLAR ENERGY CONVERSION9Photovoltaic Energy Conversion: Working principle - Energy conversion - Maximum pracker - Photovoltaic system components - Factor influencing output - System design -1 electronics for photovoltaic power systems - DC Power conditioning converters - AC proditioners - Line commutated inverters - synchronized operation with grid supplyUNIT IIIWIND ENERGY CONVERSION9Wind Energy Conversion Systems: Basic principle of wind energy conversion - nature of Wind survey in India - Power in the wind - Components of a wind energy conversion system for Nerces - Induction Generators for WECS -IG-SCIGPMSG - Classification of WECS - I electronics converter for variable speed wind turbines -Matrix - Multilevel converters for high power wind turbines - Future trends9UNIT IVFUEL CELL POWER ELECTRONICS FOR DISTRIBUTED GENERATION (DG)9Fuel Cell - Working Principle - Distributed generation - Fuel cell based energy system for Power electronic topologies for residential stationary fuel cell energy systems -Issues i cell power conditioning system -Energy management system issues -Auxiliary storage	eed to power Power power										
develop new energy technologies.9UNIT IISOLAR ENERGY CONVERSION9Photovoltaic Energy Conversion: Working principle – Energy conversion – Maximum pracker – Photovoltaic system components – Factor influencing output – System design – electronics for photovoltaic power systems - DC Power conditioning converters - AC productioners - Line commutated inverters - synchronized operation with grid supplyUNIT IIIWIND ENERGY CONVERSION9Wind Energy Conversion Systems: Basic principle of wind energy conversion – nature of twind survey in India - Power in the wind - Components of a wind energy conversion system for variable speed wind turbines – Matrix - Multilevel converters for high power wind turbines – Future trends9UNIT IVFUEL CELL POWER ELECTRONICS FOR DISTRIBUTED GENERATION (DG)9Fuel Cell - Working Principle – Distributed generation – Fuel cell based energy systems – Issues i cell power conditioning system –Energy management system issues –Auxiliary storage	power Power power										
UNIT IISOLAR ENERGY CONVERSION9Photovoltaic Energy Conversion: Working principle – Energy conversion – Maximum pracker – Photovoltaic system components – Factor influencing output – System design – electronics for photovoltaic power systems - DC Power conditioning converters - AC proditioners - Line commutated inverters - synchronized operation with grid supplyUNIT IIIWIND ENERGY CONVERSION9Wind Energy Conversion Systems: Basic principle of wind energy conversion – nature of Wind survey in India - Power in the wind - Components of a wind energy conversion systems for WECS – IG-SCIGPMSG - Classification of WECS – I electronics converter for variable speed wind turbines –Matrix - Multilevel converters for high power wind turbines – Future trends9UNIT IVFUEL CELL POWER ELECTRONICS FOR DISTRIBUTED GENERATION (DG)9Fuel Cell - Working Principle – Distributed generation – Fuel cell based energy system for Power electronic topologies for residential stationary fuel cell energy systems –Issues i cell power conditioning system –Energy management system issues –Auxiliary storage	power Power power										
Photovoltaic Energy Conversion: Working principle – Energy conversion – Maximum p tracker – Photovoltaic system components – Factor influencing output – System design – electronics for photovoltaic power systems - DC Power conditioning converters - AC p conditioners - Line commutated inverters - synchronized operation with grid supplyUNIT IIIWIND ENERGY CONVERSION9Wind Energy Conversion Systems: Basic principle of wind energy conversion – nature of W Wind survey in India - Power in the wind - Components of a wind energy conversion systems electronics converter for variable speed wind turbines –Matrix - Multilevel converters fo high power wind turbines – Future trends9UNIT IVFUEL CELL POWER ELECTRONICS FOR DISTRIBUTED GENERATION (DG)9Fuel Cell - Working Principle – Distributed generation – Fuel cell based energy system for Power electronic topologies for residential stationary fuel cell energy systems –Issues i cell power conditioning system –Energy management system issues –Auxiliary storage	power Power power										
tracker – Photovoltaic system components – Factor influencing output – System design –electronics for photovoltaic power systems - DC Power conditioning converters - AC pconditioners - Line commutated inverters - synchronized operation with grid supplyUNIT IIIWIND ENERGY CONVERSION9Wind Energy Conversion Systems: Basic principle of wind energy conversion – nature of WWind survey in India - Power in the wind - Components of a wind energy conversion systems: Performance of Induction Generators for WECS –IG-SCIGPMSG - Classification of WECS – Ielectronics converter for variable speed wind turbines –Matrix - Multilevel converters forhigh power wind turbines – Future trendsUNIT IVFUEL CELL POWER ELECTRONICS FOR DISTRIBUTED GENERATION (DG)9Fuel Cell - Working Principle – Distributed generation – Fuel cell based energy system for Power electronic topologies for residential stationary fuel cell energy systems –Issues i cell power conditioning system –Energy management system issues –Auxiliary storage	Power power										
electronics for photovoltaic power systems - DC Power conditioning converters - AC power conditioners - Line commutated inverters - synchronized operation with grid supplyUNIT IIIWIND ENERGY CONVERSION9Wind Energy Conversion Systems: Basic principle of wind energy conversion - nature of Wind survey in India - Power in the wind - Components of a wind energy conversion systems: Performance of Induction Generators for WECS -IG-SCIGPMSG - Classification of WECS - I electronics converter for variable speed wind turbines - Matrix - Multilevel converters for high power wind turbines - Future trends9UNIT IVFUEL CELL POWER ELECTRONICS FOR DISTRIBUTED GENERATION (DG)9Fuel Cell - Working Principle - Distributed generation - Fuel cell based energy system for 	power										
conditioners - Line commutated inverters - synchronized operation with grid supplyUNIT IIIWIND ENERGY CONVERSION9Wind Energy Conversion Systems: Basic principle of wind energy conversion – nature of Wind survey in India - Power in the wind - Components of a wind energy conversion systems of Induction Generators for WECS –IG-SCIGPMSG - Classification of WECS – I electronics converter for variable speed wind turbines –Matrix - Multilevel converters for high power wind turbines – Future trends9UNIT IVFUEL CELL POWER ELECTRONICS FOR DISTRIBUTED GENERATION (DG)9Fuel Cell - Working Principle – Distributed generation – Fuel cell based energy system for Power electronic topologies for residential stationary fuel cell energy systems –Issues i cell power conditioning system –Energy management system issues –Auxiliary storage											
UNIT IIIWIND ENERGY CONVERSION9Wind Energy Conversion Systems: Basic principle of wind energy conversion – nature of wind survey in India - Power in the wind - Components of a wind energy conversion systems: Performance of Induction Generators for WECS –IG-SCIGPMSG - Classification of WECS – I electronics converter for variable speed wind turbines –Matrix - Multilevel converters for high power wind turbines – Future trends9UNIT IVFUEL CELL POWER ELECTRONICS FOR DISTRIBUTED GENERATION (DG)9Fuel Cell - Working Principle – Distributed generation – Fuel cell based energy system for Power electronic topologies for residential stationary fuel cell energy systems –Issues i cell power conditioning system –Energy management system issues –Auxiliary storage											
Wind Energy Conversion Systems: Basic principle of wind energy conversion – nature of vWind survey in India - Power in the wind - Components of a wind energy conversion systemsPerformance of Induction Generators for WECS –IG-SCIGPMSG - Classification of WECS – Ielectronics converter for variable speed wind turbines –Matrix - Multilevel converters forhigh power wind turbines – Future trendsUNIT IVFUEL CELL POWER ELECTRONICS FOR DISTRIBUTED GENERATION (DG)Fuel Cell - Working Principle – Distributed generation – Fuel cell based energy system for Power electronic topologies for residential stationary fuel cell energy systems –Issues i cell power conditioning system –Energy management system issues –Auxiliary storage											
Wind survey in India - Power in the wind - Components of a wind energy conversion systemPerformance of Induction Generators for WECS –IG-SCIGPMSG - Classification of WECS – Ielectronics converter for variable speed wind turbines –Matrix - Multilevel converters forhigh power wind turbines – Future trendsUNIT IVFUEL CELL POWER ELECTRONICS FOR DISTRIBUTED GENERATION (DG)Fuel Cell - Working Principle – Distributed generation – Fuel cell based energy system for Power electronic topologies for residential stationary fuel cell energy systems –Issues i cell power conditioning system –Energy management system issues –Auxiliary storage	wind -										
Performance of Induction Generators for WECS –IG-SCIGPMSG - Classification of WECS – I electronics converter for variable speed wind turbines –Matrix - Multilevel converters for high power wind turbines – Future trends UNIT IV FUEL CELL POWER ELECTRONICS FOR DISTRIBUTED GENERATION (DG) Fuel Cell - Working Principle – Distributed generation – Fuel cell based energy system for Power electronic topologies for residential stationary fuel cell energy systems –Issues i cell power conditioning system –Energy management system issues –Auxiliary storage	Wind survey in India - Power in the wind - Components of a wind energy conversion system -										
electronics converter for variable speed wind turbines – Matrix - Multilevel converters for high power wind turbines – Future trends UNIT IV FUEL CELL POWER ELECTRONICS FOR DISTRIBUTED GENERATION (DG) 9 Fuel Cell - Working Principle – Distributed generation – Fuel cell based energy system for Power electronic topologies for residential stationary fuel cell energy systems –Issues is cell power conditioning system –Energy management system issues –Auxiliary storage	Performance of Induction Generators for WECS –IG-SCIGPMSG - Classification of WECS – Power										
Wigh power wind turbines – Future trends UNIT IV FUEL CELL POWER ELECTRONICS FOR DISTRIBUTED GENERATION (DG) 9 Fuel Cell - Working Principle – Distributed generation – Fuel cell based energy system for Power electronic topologies for residential stationary fuel cell energy systems –Issues in cell power conditioning system –Energy management system issues –Auxiliary storage	electronics converter for variable speed wind turbines –Matrix - Multilevel converters for very										
UNIT IVFUEL CELL POWER ELECTRONICS FOR DISTRIBUTED GENERATION (DG)9Fuel Cell - Working Principle - Distributed generation - Fuel cell based energy system for Power electronic topologies for residential stationary fuel cell energy systems -Issues i cell power conditioning system -Energy management system issues -Auxiliary storage	high power wind turbines – Future trends										
GENERATION (DG) Fuel Cell - Working Principle – Distributed generation – Fuel cell based energy system for Power electronic topologies for residential stationary fuel cell energy systems –Issues i cell power conditioning system –Energy management system issues –Auxiliary storage											
Fuel Cell - Working Principle – Distributed generation – Fuel cell based energy system for Power electronic topologies for residential stationary fuel cell energy systems –Issues i cell power conditioning system –Energy management system issues –Auxiliary storage											
Power electronic topologies for residential stationary fuel cell energy systems –Issues i cell power conditioning system –Energy management system issues –Auxiliary storage	r DG –										
cell power conditioning system –Energy management system issues –Auxiliary storage	in fuel										
UNIT V BIOMASS ENERGY 9											
Introduction-Bio mass resources -Energy from Bio mass: conversion processes-Bio	omass										
Cogeneration-Environmental Benefits. Geothermal Energy: Basics, Direct Use, Geoth	Cogeneration-Environmental Benefits. Geothermal Energy: Basics. Direct Use. Geothermal										
Electricity. Mini/micro hydro power: Classification of hydropower schemes, Classificat	Electricity, Mini/micro hydro power: Classification of hydropower schemes. Classification of										
water turbine, Turbine theory, Essential components of hydroelectric system.	ion of										
Total Periods45	tion of										
Suggestive Assessment Methods	tion of										

Con	tinuous Assessment Test	Formative Assessment Test	End Semester Exams								
	(30 Marks)	(10 Marks)	(60 Marks)								
	WRITTEN TEST	1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES	WRITTEN TEST								
Out	comes										
Upo	n completion of the course	, the students will be able to:									
1	Analyze the environmental	aspects and impacts of renewable	e energy and								
	describe various types of renewable energy sources										
2	Apply suitable power converters for solar power generation and able to describe them in detail.										
3	Apply suitable power converters for wind power generation and able to describe them in detail.										
4	Apply suitable technique fo	or Fuel cell design and selection									
5	Analyze the need of biomas	ss energy and case studies of differ	ent hydropower schemes.								
Text	t Books										
1.	Rashid .M. H, "Power Electr	onics Hand book", Academic press	s, Second edition, 2006.								
2.	Rai. G.D, "Solar energy utili	zation", Khanna publishes, 1993.									
3.	Gray, L. Johnson, "Wind ene	ergy system", prentice hall linc, 19	95.								
4.	Rai,G.D., "Non- conventiona 2010.	ll resources of energy", Khanna pu	blishers, Fourth edition,								

Fr	ancis X	avier Engineering College Dept of EEE R2021/Curriculum and Syllabi
	1.	Rao. S. & Parulekar, "Energy Technology", Khanna publishers, Fourth edition, 2005.
	2.	Pai, B. R. and Ram Prasad, "Power Generation through Renewable Sources of Energy",
		Tata McGraw Hill, New Delhi, 1991.
	3.	Bansal, Kleeman and Meliss, "Renewable Energy Sources and Conversion Techniques",
		Tata Mc Graw Hill, 1990.
	4.	Godfrey Boyl, "Renewable Energy: Power sustainable future", Oxford University
		Press, Third edition, 2012.

- 5. Khan B.H., "Non-Conventional Energy Resources", The McGraw Hills, Second edition, 2009.
- 6. John W Twidell and Anthony D Weir, "Renewable Energy Resources", Taylor and Francis, 2006.
- 7. Freris L.L., "Wind Energy Conversion systems", Prentice Hall, UK, 1990.

Web Recourses

- 1. https://nptel.ac.in/courses/108/108/108108078/
- 2. https://nptel.ac.in/courses/108/108/108108034/

CO Vs PO Mapping and CO Vs PSO Mapping

C O	P 0 1	P 0 2	P 0 3	Р О 4	P 0 5	Р О 6	P 0 7	P 0 8	P 0 9	P 0 1 0	P 0 1	P 0 1 2	PS O 1	PS 0 2
1	3	2						3					2	
2	3	3	3		3						3		2	
3	2	3	3		3						3		2	
4	2	3	2										2	
5	2	3	3										2	

1-Low, 2-Medium, 3-High

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM	
REMEMBER	20	20	5	5	20	
UNDETSTAND	40	40	10	10	40	
APPLY	40	40	10	10	40	
ANALYZE						
EVALUATE						
CREATE						
	100	100	50	50	100	

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Students will be able to Predict the suitable method for....(Apply)

- 1. What are the contributions of GHG Emissions in renewable energy generation?
- 2. List out the salient features of renewable energy resources.

COURSE OUTCOME 2:

- 1. What are the factors to be considered for the selection of batteries for solar energy conversion system?
- 2. What will happen if no load is connected to a solar PV system?

COURSE OUTCOME 3:

- 1. Why are induction generators preferred over DC generators in WECS?
- 2. What are the constructional differences between SCIG and DFIG?

COURSE OUTCOME 4:

- 1. Mention the use of a fuel cell.
- 2. Justify how fuel cell becomes renewable energy source.

COURSE OUTCOME 5

- 1. What is the meaning of biomass? Further, discuss its multipurpose utilization:
- 2. Explain with a neat sketch explain the operation flashed steam geothermal power plant.

21FF6806	FIRDE ODTICS AND I ASED INSTRUMENTATION	T	т	D	C
ZIEE0000	FIDRE OF FICS AND LASER INSTROMENTATION	L	I	I	L
		0	0	0	0
		3	0	0	3
Preamble					

The course is designed to give students the required knowledge for the Fiber optics and LASER have been used in the industry for years. The physical characteristics of fiber make it as a natural choice for many different applications. Traditional fiber optic applications include light therapy, x-ray imaging,. In this course students will learn optical properties of the tissues and the applications of laser in diagnosis and therapy. They get knowledge about instrumentation in photonics and understand the safety usage of laser.

Prerequisites for the course

1. Physics For Engineers

Objectives

1. To expose the students to the basic concepts of optical fibres and their properties.

2. To provide adequate knowledge about the Industrial applications of optical fibres.

3. To expose the students to the Laser fundamentals.

4. To provide adequate knowledge about Industrial application of lasers.

5. To provide adequate knowledge about holography and Medical applications of Lasers.

UNIT I	OPTICAL FIBRES AND THEIR PROPERTIES	9

Construction of optical fiber cable: Guiding mechanism in optical fiber and Basic component of optical fiber communication, –Principles of light propagation through a fibre: Total internal reflection, Acceptance angle (θ a), Numerical aperture and Skew mode, – Different types of fibres and their properties: Single and multimode fibers and Step index and graded index fibers,– fiber characteristics: Mechanical characteristics and Transmission characteristics, – Absorption losses – Scattering losses – Dispersion – Connectors and splicers

UNIT II	INDUSTRIAL APPLICATION OF OPTICAL	9
	FIBRES	
Fibre optic	sensors: Types of fiber optics sensor, Intrinsic sensor- Tempe	erature/ Pressur
sensor, Ext	rinsic sensors, Phase Modulated Fibre Optic Sensor and Disp	olacement senso
(Extrinsic S	Sensor) – Fibre optic instrumentation system: Measurement o	f attenuation (b
cut back m	ethod), Optical domain reflect meters, Fiber Scattering loss Me	asurement, Fibe
Near field	scanning techniques – Different types of modulators: Electro	ontic modulate
(EOM) –Int	erferometric method of measurement of length	optic modulate
UNIT III	LASER FUNDAMENTALS	9
Funda	mental characteristics of lasers – Level Lasers: Two-Level La	aser, Three Leve
Laser, Quas	i Three and four level lasers – Properties of laser: Mon chroma	ticity, Coherence
Divergence	and Directionality and Brightness –Laser modes – Resonator c	configuration – Q
switching a	ind mode locking – Cavity damping – Types of lasers; – Gas la	sers, solid laser
liquid laser		
UNIT IV	INDUSTRIAL APPLICATION OF LASERS	9
Laser for	measurement of distance, Laser for measurement of le	ength, Laser fo
measureme	ent of velocity, Laser for measurement of acceleration, Laser for	· measurement o
current, vo	ltage and Laser for measurement of Atmospheric Effect: '	Types of LIDAF
Constructio	on And Working, and LIDAR Applications – Material p	rocessing: Lase
instrument	ation for material processing, Powder Feeder, Laser Heating	g, Laser Welding
Laser Melt	ing, Conduction Limited Melting and Key Hole Melting –La	iser trimming o
material		
UNIT V	HOLOGRAM AND MEDICAL APPLICATIONS	9
Holography	r: Basic Principle, Holography vs. photography, Principl	e Of Holograr
Recording,	Condition For Recording A Hologram, Reconstructing a	nd viewing th
holographi	c image- Holography for non- destructive testing - Holograph	nic components
Medical a	pplications of lasers, laser-Tissue Interactions Photoche	mical reaction
Thermalisa	tion, collisional relaxation, Types of Interactions and Selectin	ng an Interactio
Mechanism	- Laser instruments for surgery, removal of tumors of vo	ocal cards, brai
	astic surgery gynaecology and oncology	
surgery, pla	stie surgery, gynaecology and oneology.	

Sugge	stive Assessment Method	ls				
Conti	nuous Assessment Test (30 Marks)	Formative Assessment Test (10 Marks)	End Semester Exams (60 Marks)			
	WRITTEN TEST	1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES	WRITTEN TEST			
Outco	omes					
1	Ability to Understand the p characteristics of optical fi	orinciple, transmission, dispersion bers.	and attenuation			
 Apply the gained knowledge on optical fibers for its use as communication medium and as sensor as well which have important applications in production, manufacturing industrial and biomedical applications. 						
3	Ability to Understand lase	theory and laser generation syste	em.			
4 9	Students will gain ability to Industrial and medical app	apply laser theory for the selection	on of lasers for a specific			
5	To provide adequate know	ledge about holography and Medi	cal applications of Lasers			
Text I	Books					
1.	J.M. Senior, 'Optical Fibre of India,1985. J. Wilson and J.F.B. Hawke 2001.	Communication – Principles and P s, 'Introduction to Opto Electronic	ractice', Prentice Hall s', Prentice Hall of India,			
Refer	ence Books					
1. 2. 3. 4. 5. 6.	Eric Udd, William B., and S Engineers and Scientists J G. Keiser, 'Optical Fibre Co John F. Ready, "Industrial Monte Ross, 'Laser Applic John and Harry, "Industria Keiser, G., "Optical Fiber Co	Spillman, Jr., "Fiber Optic Sensors: ohn Wiley & Sons, 2011 ommunication', McGraw Hill, 1995 Applications of Lasers", Academic ations', McGraw Hill, 1968. Il lasers and their application", Mc ommunication", McGraw-Hill, 3rd	An Introduction for Press, Digitized in 2008. Graw-Hill, 2002. Edition, 2000			

Web Recourses

- https://nptel.ac.in/courses/115107095
 <u>http://nptel.ac.in/courses/117101002/</u>

CO Vs PO Mapping and CO Vs PSO Mapping

C O	P 0 1	P 0 2	P 0 3	P 0 4	Р О 5	Р О 6	P 0 7	P 0 8	P 0 9	P0 10	P0 1 1	P 0 1 2	PS O 1	PS 02
1	3	3										2	3	
2	3	3										2	3	
3	3	3										2	3	
4	3	3										2	3	
5	3	3										2	3	

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM	
REMEMBER	10	10	10	10	10	
UNDETSTAND	30	30	10	10	30	
APPLY	30	30	10	10	30	
ANALYZE	20	20	10	10	15	
EVALUATE	10	10	10	10	15	
CREATE	0	0	0	0	0	
	100	100	50	50	100	

1-Low , 2- Medium, 3- High

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Students will be able to predict the suitable method for Apply and Analyse

COURSE OUTCOME 1

- 1. Elaborate about the various attenuation losses possible in optical fibres. Also discuss how intra modal and inter modal dispersion can be minimized. (Apply)
- What are the general requirements considered while selecting a light source for fibre optic link? Explain about the construction and working of photomultiplier Tubes used as optical source in fibre communication. (Analyze)

COURSE OUTCOME 2:

- 1. Point out the working principle of Electro optic modulator with a neat sketch. (Analyze)
- 2. Explain the significance of fibre optic sensor with other commercial sensor and describe in detail. (Analyze)

COURSE OUTCOME 3:

- 1. With the help of an energy diagram, analyze how four level laser system is advantageous to three level laser system .Also explain the construction and working of a four level laser. (Analyze)
- 2. Compare a homo junction laser with hetero junction laser based on the electron beam principle. (Apply)

COURSE OUTCOME 4:

- 1. Analyze the role of laser for industrial measurements and explain anyone in detail. (Analyze)
- 2. Explain the principle of laser for the measurement of cold atom interferometry.(Analyze)

COURSE OUTCOME 5:

- 1. Analyze the principles of holographic inferometry and its application in Nondestructive Testing of materials (Analyze)
- 2. Explain how laser is used for Brain surgery and Plastic surgery. (Analyze)
OPEN ELECTIVE III

21EE7801	ELECTRICAL EQUIPMENT SAFETY	L	Т	Р	С
		3	0	0	3
Preamble					
It is an profes	sional elective course which emphasizes the advanced conc	epts a	and	overv	riew of
Operation And	Maintenance Of Electrical Equipment in Electrical Engin	eering	g. T	he co	ncepts
discussed herei	n are intended to provide clarification on Operation And Mai	ntena	nce	Of Ele	ectrical
Equipment in fo	or Electrical Engineering graduates.				
Prerequisites	for the course				
Nil					
Objectives					
1. To intro	duce the various causes for accident and also explain the role o	of safe	ty ei	nginee	er
2. To educa	ate on use of Earthing techniques				
3. To educa	ate on the Maintenance of Electrical equipments				
4. To intro	duce the Maintenance Generator and Substation				
5. To educa	ate on the Maintenance of Switchgears				
UNIT I	ELECTRICAL ACCIDENTS AND SAFETY			9	
Causes of elect when a person supply act 194 Annual Inspect	rical accidents – Factors affecting severity of electrical shock gets attached to live part - Safety regulations and safety measu 8-1956; Factory Act -1948; Fire extinguishers- Building Ele ion, Safe working of Electrical Equipments.	- Act ares- l ectrica	ions India Il In	to be an eleo stallat	e taken ctricity tions –
UNIT II	EARTHING			9	
Necessity of ea station; Equipm earthing, pipe of Earthing resist earthing system	arthing - System earthing: advantage of neutral earthing of nent earthing: Objective - Types of earth electrodes – Meth- earthing and coil earthing - Earthing in extra high voltage an ance- factors affecting, Determination of maximum permiss n - Comparison between equipment earthing and system groun	f geno ods o d uno ible r iding	erato f ea lerg esist	or in rthing round tance	power :plate cable, of the
UNIT III	TRANSFORMER, MOTORS (DC AND AC) AND STARTERS			9	
Maintenance so Impulse voltag and Testing. Ma Maintenance. C	chedule of transformer (Below and above 1000kVA): -Insulat e testing, Lightning arrestor. Maintenance and Trouble shoo aintenance of DC, AC Motors and their Starters: – Operation, Rc auses of failure, Precautions and Trouble shooting.	ion co ting - outine	o-oro Oil and	dinatio Purif I Brea	on and ication kdown
UNIT IV	GENERATOR AND SUBSTATION			9	
Maintenance of Precautions. Ma Failure and Pre certificate of P working on a jo	Generator: Operation, Routine and breakdown Maintenance, aintenance of Substation: Operation, Routine & breakdown M cautions. Sub-station shut down procedure -certificate of requ ermit to work and certificate of Line clear - Instruction for b with a permit to work.	Cause ainte iisitio the s	es of nanc n foi afety	f Failu ce, Cau r shut y of p	re and uses of down; ersons

UNIT V

SWITCHGEARS, TRANSMISSION AND DISTRIBUTION SYSTEM

45

Total Periods

Maintenance of Switchgear: – Operation, Routine and breakdown Maintenance, Causes of Failure and Precautions. Maintenance of Transmission and Distribution system: – Rules for Low, Medium and High voltages, Factor of safety, precautions - Minimum Clearance,Conductors, System protection.

Suggestive Assessment Methods

Continuous Assessment Test	Formative Assessment Test	End Semester Exams		
(20 Marks)	(20 Marks)	(60 Marks)		
WRITTEN TEST	1.ASSIGNMENT	WRITTEN TEST		
	2. ONLINE QUIZZES			
	3.PROBLEM-SOLVING ACTIVITIES			

Outcomes

Upon completion of the course, the students will be able to:

- **1** Describe the causes of electrical accidents, safety measures and regulations.
- 2 Describe earthing concept, different methods of earthing, earth resistance and its measurement
- **3** Discuss the fundamentals of different types of maintenance and its procedures and records.
- Explain the operation and maintenance practices for various electrical equipment and systems.
- 5 Apply suitable troubleshooting practices for various electrical equipment and systems.

Text Books

1. B.V.S.Rao, "Operation and Maintenance of Electrical Equipment", Volume I & II, 2008 Edition, Media Promoters & Publishers Pvt. Ltd., Mumbai..

Reference Books

1.S. Rao, "Testing Commissioning Operation and Maintenance of Electrical Equipments", Sixth Edition, Khanna Publishers, New Delhi, 2010.

2. Tarlok Singh, "Installation Commissioning and Maintenance of Electrical Equipments", First Edition, S. K. Kataria & Sons, 2013. L. Umanand, "Power Electronics Essentials and Applications", Wiley, 2010.

3. Paul Gill, "Electrical Power Equipment Maintenance and Testing", Second Edition, CRC Press, 2013.

Web Recourses

1. https://onlinecourses.nptel.ac.in/noc22_ee35/preview

CO Vs PO Mapping and CO Vs PSO Mapping

<u> </u>	PO	PO	PO	РО	РО	PO	РО	PO	PO	P01	P01	P01	PSO	PSO
LU	1	2	3	4	5	6	7	8	9	0	1	2	1	2
1	3	1	2		2									3
2	3	1	2		2									3
3	3	1	2		2									3
4	3	1	2		2									3
5	3	1	2		2									3

1-Low, 2- Medium, 3- High

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	10	10	5	5	10
UNDETSTAND	30	30	10	10	30
APPLY	60	60	10	10	60
ANALYZE	0	0	0	0	0
EVALUATE	0	0	0	0	0
CREATE	0	0	0	0	0
	100	100	25	25	100

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1:

- **1.** If a blackout occurs, what are your methods for troubleshooting?
- 2. Differentiate between a generator and an alternator

COURSE OUTCOME 2:

- 1. Are you familiar with the different varieties of wires used in transmission?
- 2. Name some self-protection equipment you use at work.

COURSE OUTCOME 3:

- 1. Tell us about proximity sensors and various principles of using them
- 2. How is a servo motor different from a stepper motor?

COURSE OUTCOME 4:

- 1. Causes of electrical accident? Factor on which severity of shock depends
- 2. Parallel operation of transformer & preventive maintenance of transformer. **COURSE OUTCOME 5:**
 - 1. State and explain the factors affecting the life of insulating material.
 - 2. Differentiate between installation earthing and system earthing.

Compiled By : Mrs.R.Aandal, AP/EEE

21FF7802	21EE7802 Measurement and Instrumentation System										
2122/002	Medgur ement and matrumentation system	3	0	0	3						
Preamble											
This course is characteristics	s designed to impart fundamental knowledge of analog mea s. This course exposes the knowledge about the construct f analog and digital managements instruments. Students will a	asurin ction,	ig in prir	strun nciple	ients and						
knowledge of applications.	DC and AC null measurement methods along with its beha	viors	on i	ts va	rious						
Prerequisites	for the course										
1. Physics	for Engineers										
2. Electric	2. Electric Circuits and Network Analysis										
3. Analog a	nd Integrated Circuits										
Objectives											
To impart kno	wledge on the following Topics										
1. To impart knowledge on Basic functional elements of instrumentation											
2. To learn	about the Fundamentals of electrical and electronic instrumer	nts									
3. To study	the Measurement of Capacitance, Inductance and resistance										
4. To discu	ss about storage and display devices										
5. To intro	duce Various transducers and the data acquisition systems										
UNIT I	CHARACTERISTICS, ERRORS & STANDARDS OF INSTRUMENTS			9							
Functional ele	ments of generalized instrumentation systems- Static and dyn	namic	cha	racter	istics						
of measuring	instruments- Absolute- Statistical estimation of measureme	nts da	ata (Arith	metic						
mean, Average measurement	e deviation, Standard deviation, Variance and Probable error – Standards and calibration.	r of n	iean) Erro	ors in						
UNIT II	ELECTRICAL MEASURING INSTRUMENTS			9							
Classification	of measuring instruments, working principle and Torque eq	uatior	ı of	Perm	anent						
Magnet Movin	g Coil instruments - Attraction type and Repulsion type Movi	ng irc	on in	strum	ents-						
Electro-dynam	nometer type Wattmeter, Extension of voltmeter and	amn	neter	ran	ge -						
Construction,	working principle of Instrument transformers -1 ϕ and 3 ϕ In	ducti	on ty	pe E	nergy						
meter.											

UNIT III	MEASUREME	NT OF RESISTANCE, INDUCTAN CAPACITANCE	ICE &	9		
D.C Bridges: W	/heatstone Bridge,	Kelvin's bridge, Kelvin's double	bridge - A.C	bridges: Maxwe		
bridge, Anders	on bridge, Hays br	idge, Schering bridge, Wein's brid	lge.			
UNIT IV	STOF	RAGE AND DISPLAY DEVICES		9		
Magnetic disk	and tape – Record	lers, digital plotters and printers	, CRT display,	digital CRO, LE		
LCD & Dot mat	rix display – Data I	Loggers.				
UNIT V	TRANSDUCER	RS AND DATA ACQUISITION SYS	TEMS	9		
Classification	of transducers –	Selection of transducers -Res	sistive, capac	itive & inducti		
Transducers -	- Piezoelectric, Ha	all effect, optical and digital tra	ansducers –	Elements of da		
acquisition sys	tem – Smart senso	rs- Thermal Imagers.				
		Tota	al Periods	45		
Suggestive Ass	essment Methods	5				
Continuous As	sessment Test	Formative Assessment Test	End Semes	ter Exams		
(20 Marks)		(20 Marks)	(60 Marks))		
WRIT	FEN TEST	1.ASSIGNMENT	WRI	VRITTEN TEST		
		2. ONLINE QUIZZES				
		3.PROBLEM-SOLVING ACTIVITIES				
Outcomes						
Upon completi	on of the course,	the students will be able to:				
1 Apply the	e basic laws gover	rning the operation of the instr	uments			
2 Compare	the operation of va	rious types of measuring instrum	ents.			
3 Determine	e the unknown valu	ues of R, L, C using bridges				
4 Analyze tł	ne operations of st	orage and display devices				
5 Apply the	suitable transduce	rs and the data acquisition system	ns			
Fext Books						
1. Sawhney	A K, "A Course in	Electrical and Electronic Measure	ement and Ins	trumentation",		

Reference Books

- Prithwiraj Purkait, Budhaditya Biswas, Chiranjib Koley "Electrical and Electronics Measurements and Instrumentation", McGraw Hill Education India, First Edition, 2013.
- 2. Golding E W, and Widdis F C, "Electrical Measurements and Measuring Instruments", A H Wheeler & Company, Calcutta, Fifth Edition, 2011.
- 3. Doeblin E., "Measurement Systems: Application and Design", Mc-Graw Hill Book Co., Fifth Edition, New Delhi, 2004.
- 4. Moorthy D.V.S, "Transducers and Instrumentation", Prentice Hall of India Pvt. Ltd, 2007.
- 5. Patranabi.D, "Sensors and Transducers", PHI Learning Pvt. Ltd., 2003. 6. Kalsi H.S, "Electronic Instrumentation", McGraw Hill Education India, 3rd Edition, 2010.

Web Recourses

- 1. https://archive.nptel.ac.in/courses/108/105/108105153/
- 2. https://archive.nptel.ac.in/courses/108/105/108105153/
- 3. https://archive.nptel.ac.in/courses/108/105/108105153/

60	PO	P01	P01	P01	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	2	1	2
1	1		1				1				1			3
2	1		2				1				1			3
3	2		2				2				2			3
4	2	2	2				2				2			3
5	3	3	2				3							3

CO Vs PO Mapping and CO Vs PSO Mapping

1-Low, 2-Medium, 3-High

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	10	10	10	10	10
UNDETSTAND	30	30	10	10	30
APPLY	30	30	10	10	30
ANALYZE	20	20	10	10	15
EVALUATE	10	10	10	10	15
CREATE	0	0	0	0	0
	100	100	50	50	100

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1:

- 3. What are the different inputs for studying the Dynamic response of a system? Compose and Sketch them.
- 4. Classify and explain the different types of error and also mention its compensation methods (Understand)

COURSE OUTCOME 2:

- 1. Discuss with Circuit and Phase diagram, describe the working of Three phase AC Energy Meter.(Analyze)
- 1. Describe the Construction and Working of Permanent Magnet Moving coil Instrument. Also Derive the expression for deflection.(Understand)

COURSE OUTCOME 3:

3. A Maxwell's Capacitance Bridge Shown below figure, is used to measure an unknown inductance in comparison with capacitance. The various values at balance: R2= 400ohm; R3= 600ohm; R4=1000ohm; C4=0.5µF.Calculate the value of R1 and L1.Calculate also the value of storage Q Factor of the coil if frequency is 1000Hz. (Analyze)

1. Draw a neat diagram of Kelvin double bridge and explain how to measure low resistance. (Analyze)

COURSE OUTCOME 4:

- 1. Develop a neat block diagram of X-Y recorder and describe it's working.
- 2. Explain the Dot matrix printer working and sketch the construction layout.

COURSE OUTCOME 5:

- 3. Describe the measurement of resistance using strain gauge.(Analyze)
- 4. Explain in detail about Hall Effect transducer and mention some applications of Hall Effect transducer.

Compiled By : S.Selvakumar, AP/EEE

Verified By

21EE7803	Control Engineering	L	Т	Р	C
			-	-	-
		3	0	0	3
		0	•	Ū	J
Preamble					

Control Systems plays vital role in the advance of engineering and science. Automatic control has become an important and integral part of modern manufacturing and industrial processes. In recent years there has a rapid increase in the use of digital controller in control systems. Digital controls are used for achieving optimal performance in the form of maximum productivity, maximum profit and minimum cost. Decision making capability and flexibility in the control programs are major advantages of digital control systems. The study of analog and discrete time control system prepares the student for early productivity upon entering industrial practice.

Prerequisites for the course

1. Engineering Mathematics

Objectives

1. To introduce the use of transfer function models for analysis physical systems and the

2. To provid 3. To discus 4. To study	ystem components le adequate know	5.		
 To provid To discust To study 	le adequate know	-		
 To discus To study 		ledge in the time domain analys	is of the syst	ems.
4. To study	s the frequency do	main analysis of the systems		
	the stability analys	sis.		
5. To learn	the design of comp	pensators and state variable rep	resentation	of physical systems
UNIT I	В	asics of Control Systems		9
Dpen loop LTI s review, transfer in time domain.	ystems, Closed loo function, electric	op LTI systems, Modelling in La al network transfer function, E	aplace Domai lectric circui	in, Laplace transfoi ts analogs, Modelli
UNIT II		Time response		9
Poles, zeros and systems, under additional poles	system response, damped second , system response	First order systems, second ord order systems, Higher order with zeros, Effects of non linear	ler Systems, systems, Sy rities upon tir	General second ord stem response w ne response
UNIT III	Reduction of m	ultiple subsystems and Stabi	lity	9
UNIT IV Bode plot, Nyqu Lag compensatio	Freq uist diagram, Gain on, Lead compensa	uency response techniques margin, phase margin, transiention, Lag-Lead compensation.	ent response	9 via gain adjustme
UNIT V]	Digital Control systems		9
Modeling the dia transient respo compensator.	gital computer, z-t onse on the z-pl	ransforms, transfer functions, ane, gain design on the z-	block diagrar plane, Imple	n reduction, stabili ementing the digi
		Тс	otal Periods	45
Suggestive Asse	essment Methods			
	sessment Test	Formative Assessment Test	End Sem	ester Exams
Continuous Ass		(20 Marks)	(60 Mar	ks)
Continuous Ass (20 Marks)				
Continuous Ass (20 Marks) WRITT	'EN TEST	1.ASSIGNMENT	W	RITTEN TEST
Continuous Ass (20 Marks) WRITT	EN TEST	1.ASSIGNMENT 2. ONLINE QUIZZES	W	RITTEN TEST

Upon completion of the course, the students will be able to:

1	Develop a mathematical model for a given system in Laplace domain and time domain

- 2 Compute and describe the output response and steady state error of first, second and higher order control systems for standard input signals
- **3** Compute transfer function of multiple subsystems modelled as block diagram/ signal flow graph/ state space representation
- **4** Find the closed loop frequency response and time response parameter given the open the loop frequency response.
- **5** Design stable analog/digital system to meet given steady state/transient response specifications

Text Books

- 1. Norman Nise, " Control System Engineering" John Wiley & Sons, 6th Edition, 2011
- 2. Katsuhiko Ogata, "Modern Control Engineering", 4th Edition, Prentice Hall, 2002

Reference Books

- 1. Katsuhiko Ogata, "Discrete time control systems", 2nd Edition, Prentice Hall, 1995
- 2. M Gopal, "Control Systems Principles and Design", Tata McGraw Hill,2002,
- 3. Kuo, B.C., "Automatic Control System", Prentice Hall, sixth edition, 1993.
- 4. B. C. Kuo, Digital Control Systems, Oxford University Press, 2/e, Indian Edition, 2007

Web Recourses

1. https://archive.nptel.ac.in/courses/107/106/107106081/

CO Vs PO Mapping and CO Vs PSO Mapping

<u> </u>	PO	P01	P01	P01	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	2	1	2
1	2	3	2										3	
2	2	3	2										3	
3	2	3	2										3	
4	2	3	2										3	
5	2	3	2										3	

1-Low , 2- Medium, 3- High

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	10	10			0
UNDETSTAND	50	50	25	25	50
APPLY	10	10			20
ANALYZE	30	30	25	25	30
EVALUATE					
CREATE					
	100	100	50	50	100

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1:

1. Write the differential equations for the system shown below. Obtain the electric circuit based on force-current and force-voltage analogy.

2. The open loop transfer function of servo system with unity feedback is $G(S) = \frac{10}{S(0.1S+1)}$. Evaluate the static error constants (K_p, K_v, K_a) for the system. Obtain the steady state error of the system when subjected to an input given by the polynomial $r(t) = a_0 + a_1t + \frac{a_2t^2}{2}$.

COURSE OUTCOME 2:

- 1. A unity feedback control system has an open loop transfer function $G(S) = \frac{10}{S(S+2)}$. Find the rise time, peak time, percentage overshoot and settling time for step input of 12 units.
 - 2. Derive the expression for Peak time and Settling time for the underdamped second order system with unit step input.

COURSE OUTCOME 3:

1. Using Block diagram reduction technique finds the transfer function for the system shown in fig.

 Evaluate the location of roots on S- Plane and stability for the polynomial S⁷+9S⁶+24S⁵+24S⁴+24S³+24S²+23S+15=0

COURSE OUTCOME 4:

- 1. Plot the Bode diagram for the following transfer function and obtain the gain and phase cross over frequencies $G(S) = KS^2 / (1+0.2S) (1+0.02S)$. Determine the value of K for a gain cross over frequency of 5 rad/sec.
- 2. Write down the procedure for designing lag compensator using bode plot.

COURSE OUTCOME 5:

1. Elaborate whether the system is completely (i) Controllable (ii) Observable.

2. The State model of the system is given by,

$$\begin{bmatrix} \dot{\mathbf{x}}_1 \\ \dot{\mathbf{x}}_2 \\ \dot{\mathbf{x}}_3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ -2 & -3 & 0 \\ 0 & 2 & -3 \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix} \mathbf{u} \ ; \ \mathbf{y} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \end{bmatrix}$$

Determine whether the system is completely controllable or not.

Compiled By : Dr.J.Kohila,AP/EEE

21EE7804	ELECTRICAL MACHINES	L	Τ	Р	С
		3	0	0	3

Preamble

The course aims in imparting fundamental knowledge of construction, types, Operation of Transformers, DC machines and AC Machines required for electrical engineers. DC machine is a highly versatile energy converting device. They can be designed to give a wide variety of voltagecurrent or speed- torque characteristics for both dynamic and steady state operation. AC machines are becoming more and more attractive in many applications such as those requiring variable speed and flexible control. Alternating Current (AC) machines are the most preferred for generation of electric power.

Prerequisites for the course

1. Engineering Physics

Objectives

To impart knowledge on the following topics

1. To explain the basic principles and construction of single phase and three phase transformer

2. To introduce the construction, principle of operation and various types of DC machines.

3. To develop the Construction and performance of three phase induction motors

4. To understand the operation, characteristics and speed control of synchronous motor.5. To understand the Steady state operation and transient dynamics of a motor load system

IINIT I	TRANSFORMERS	C
5. 10 unae	erstand the Steady state operation and transient dynamics of a	motor load

Operating principle, classification, construction, emf equation, phasor diagrams, equivalent circuit model, losses & efficiency, voltage regulation, frequency response, polarity test, autotransformers, three-phase transformer connections, impedance matching, isolation & instrument transformers.

UNIT II	D.C. MACHINES	9		
Operating prin	ciple, generator & motor action, construction, types of exci	tation, emf & torque		
equations, pov	ver stages & efficiency. Commutation & Armature Reaction	on, characteristics &		
application of o	l.c generators, starting & speed control of d.c motors, characte	eristics & applications		
of d.c motors, e	lectric braking			

UNIT III	INDUCTION AC MACHINES	9
TT1 1		

Three-phase induction motors. Principle of operation, construction, types. Rotating magnetic field, emf equation of an AC Machine, torque developed in an induction motor, equivalent circuit model, torque-speed characteristics, starting & speed control. Single phase induction motors, starting, application.

		•p• • = === === = = = , • • • • • • • • • • • •	ia by nabi	
UNIT IV	S	YNCHRONOUS MACHINES		9
Construction, equivalent circ Angle charact hunting, damp Motor.	types & operating cuit, phasor diagran eristics, effect of f per windings. Specia	g principle of synchronous gene ns, voltage regulation, parallel ope field excitation change. Synchron al Purpose Motors: Stepper Motor	rator, A.C eration, sy ous Moto r, Universa	armature winding nchronization, Powe r, principle, startin al Motor, shaded-po
UNIT V	Intro	oduction of Electrical Drives		9
Electric drive quadrant Dyr characteristics	— Equations goven namics: aceleration s — Selection of mot	erning motor load dynamics — n, deceleration, starting & sto tor. Tota	steady st ping —	ate stabilty — mu typical load torqu 45
Suggestive As	sessment Method	5 I Uta	ii i ci iuus	75
Continuous A	ssessment Test	Formative Assessment Test	End Sem	nester Exams
(20 Marks)		(20 Marks)	(60 Mar	ks)
WRIT	FTEN TEST	1.ASSIGNMENT	W	RITTEN TEST
		2. ONLINE QUIZZES		
		3.PROBLEM-SOLVING ACTIVITIES		
Outcomes				
Outcomes Upon comple	tion of the course,	the students will be able to:		
Outcomes Upon comple 1 Explain t	tion of the course, the basic principles	the students will be able to: and construction of single phase a	nd three p	hase transformer
Outcomes Upon complet 1 Explain t 2 Explain t	tion of the course, the basic principles the construction, pri	the students will be able to: and construction of single phase a inciple of operation and various ty	nd three p	hase transformer machines.
Outcomes Upon complet 1 Explain t 2 Explain t 3 Discuss t	tion of the course, the basic principles the construction, pri the starting and spe	the students will be able to: and construction of single phase a inciple of operation and various ty ed control methods for three phas	nd three p pes of DC e induction	hase transformer machines. n motor.
OutcomesUpon complet1Explain t2Explain t3Discuss t4Discuss t	tion of the course, the basic principles the construction, pri the starting and spe the operation, chara	the students will be able to: and construction of single phase a inciple of operation and various ty ed control methods for three phas cteristics and speed control of syn	nd three p pes of DC r e induction chronous	hase transformer machines. n motor. motor.
OutcomesUpon complet1Explain t2Explain t3Discuss t4Discuss t5Study ab	tion of the course, the basic principles the construction, pri the starting and spe the operation, chara out the steady state	the students will be able to: and construction of single phase a inciple of operation and various ty ed control methods for three phas cteristics and speed control of syn	nd three p pes of DC e induction chronous s of a moto	hase transformer machines. n motor. motor. or load system.
OutcomesUpon complet1Explain t2Explain t3Discuss t4Discuss t5Study abText Books	tion of the course, the basic principles the construction, principles the starting and spe the operation, chara out the steady state	the students will be able to: and construction of single phase a inciple of operation and various ty ed control methods for three phas cteristics and speed control of syn	nd three p pes of DC r e induction chronous s of a moto	hase transformer machines. n motor. motor. or load system.
OutcomesUpon complet1Explain t2Explain t3Discuss t4Discuss t5Study abText Books1.Kothari 2010.2.Mehta.	tion of the course, the basic principles the construction, principles the starting and spe the operation, chara out the steady state i. D.P and Nagrath. I V.K and Rohit Mehta	the students will be able to: and construction of single phase a inciple of operation and various ty ed control methods for three phas cteristics and speed control of syn coperation and transient dynamics 	nd three p pes of DC i e induction ichronous s of a moto aw Hill Pri	hase transformer machines. n motor. motor. or load system. ivate Limited, Repri i Publishers, 2009.
OutcomesUpon complet1Explain t2Explain t3Discuss t4Discuss t5Study abText Books1.Kothari 2010.2.Mehta.	tion of the course, the basic principles the construction, principles the starting and spe the operation, chara out the steady state i. D.P and Nagrath. I V.K and Rohit Mehta	the students will be able to: and construction of single phase a inciple of operation and various ty ed control methods for three phas cteristics and speed control of syn e operation and transient dynamics I.J, "Electric Machines", Tata McGra a, "Principle of Electrical Machines	nd three p pes of DC i e induction chronous s of a moto aw Hill Pri	hase transformer machines. n motor. motor. or load system. ivate Limited, Repri
OutcomesUpon complet1Explain t2Explain t3Discuss t4Discuss t5Study abText Books1.Kothari 2010.2.Mehta.Reference Boo1.Fitzgera Private	tion of the course, the basic principles the construction, pri- the starting and spe the operation, chara out the steady state i. D.P and Nagrath. I V.K and Rohit Mehta oks ald. A.E, Charles Kin Limited, 2013.	the students will be able to: and construction of single phase a inciple of operation and various ty ed control methods for three phas cteristics and speed control of syn e operation and transient dynamics I.J, "Electric Machines", Tata McGra a, "Principle of Electrical Machines gsley, Stephen D. Umans, "Electric	nd three p pes of DC e induction chronous s of a moto aw Hill Pri s", S. Chanc Machiner	hase transformer machines. n motor. motor. or load system. ivate Limited, Repri I Publishers, 2009. y", Tata McGraw Hil

Company and Ltd, 2009.

- 3. Gupta. J.B, "Theory and Performance of Electrical Machines", S. K. Kataria and Sons, 2009.
- 4. Murugesh Kumar. K, "Electric Machines", Vikas Publishing House Private Ltd, 2010.

5. Rajput. R.K, "A Text Book of Electrical Machines", Firewall Media, 2008.

Web Recourses

- 1. <u>https://www.youtube.com/watch?v=qmcriUdYBW0</u>
- 2. https://www.youtube.com/watch?v=AECBgmkWvo0

CO Vs PO Mapping and CO Vs PSO Mapping

со	PO	P01	P01	P01	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	2	1	2
1	3	2											3	
2	3	2											3	
3	3	2											3	
4	3	2											3	
5	3	2											3	

1-Low, 2-Medium, 3-High

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	20	20	10	10	20
UNDETSTAND	30	30	10	10	30
APPLY	20	20	10	10	20
ANALYZE	15	15	10	10	15
EVALUATE	15	15	10	10	15
CREATE	0	0	0	0	0
	100	100	50	50	100

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1:

- 1. Derive the EMF equation of single phase transformer.
- 2. Define the term transformation ratio in Transformer. (Evaluate)

COURSE OUTCOME 2:

1. Derive the EMF equation of a DC generator.

2. A DC series motor drives a load, the torque of which varies as the square of the speed. The motor takes a current of 20 A when the speed is 800 rpm. Calculate the speed and current when the motor field winding is shunted by a diverter of the same resistance as that of the field winding. (Evaluate)

COURSE OUTCOME 3:

1. What does skewing means in squirrel cage Induction motor? (Understand)

2. Specify the purpose of connecting a capacitor in the auxiliary winding of a single- phase induction motor? (Evaluate)

COURSE OUTCOME 4:

1. Explain phasor diagram of one phase of a synchronous generator and describe the features of synchronous impedance. (Evaluate)

2. Calculate the leakage reactance of the machine assuming the resistance to be negligible. (Evaluate)

COURSE OUTCOME 5:

- 1. Explain in detail the multi quadrant dynamics in the speed-torque plane. (Understand)
- 2. List the Various types of load torque. (Understand)

Compiled By : Mr.J.Antony Robinson, AP/EEE

21EE/806	ELECTRIC VEHICLES AND CONTROL	L	T	Р	C
		3	0	0	3
Preamble				L	
Vehicle is an	unavoidable machine for the industry, individual and g	overi	nmei	nt. Tł	ne fu
consumptions h	nave led the nations to be dependent on electric vehicles and	need	s a n	najor	chan
in the operation	on in context to energy saving. The electric vehicle has dr	awn	atte	ntion	of t
designers, rese	archers and manufacturers for the skilled persons needed in	n this	era	The	ener
saving concept	has led to hybrid electric vehicle in all the concepts for the tra	inspo	rtati	on.	
Prerequisites fo	or the course				
1. Basic Ele	ctrical and Electronics Engineering				
Objectives					
1. To interpr	ret the fundamental concepts of hybrid electric vehicles.				
2. To develo	p the need of batteries in Electric and hybrid vehicles.				
3. To impar	t knowledge on power electronics converters.				
4. To analyze	e the use of AC and DC electrical machines used for hybrid electri	c veh	icles.	1	
5. To design	the energy storage components of hybrid electric vehicles.				
UNIT I	INTRODUCTION TO HYBRID ELECTRIC VEHICLE			9	
Review of Conv Electric Drive-tra	entional Vehicle: Introduction to Hybrid Electric Vehicles: ain, Tractive effort in normal driving	Туре	s of	EVs,	Hyb
UNIT II	ELECTRIC DRIVES			9	
Energy consump Frains, Series Hy unit, Configurati Motor drives, sw	otion Concept of Hybrid Electric Drive Trains, Architecture of ybrid Electric Drive Trains, Parallel hybrid electric drive train ion and control of DC Motor drives, Induction Motor drive yitched reluctance motor	Hyb ns, El s, Pe	rid E ectri rmai	lectri c Prop nent 1	c Dri oulsi Magi
UNIT III	ENERGY STORAGE			9	
ntroduction to energy storage a different energy Plug-in Electric V	Energy Storage Requirements in Hybrid and Electric Veh and its analysis, Fuel Cell based energy storage and its analysis storage devices. Sizing the drive system, Design of Hybrid Vehicle	nicles lysis, 1 Eleo	:- Ba Hyb ctric	attery ridiza Vehio	bas tion cle a
UNIT IV	ENERGY MANAGEMENT SYSTEM			9	
Energy Manage	ement Strategies, Automotive networking and commun G2V. V2B. V2H. Business: E-mobility business. electrification	icatio chal	n, E lenge	EV ch es, Bu	argi sine

UN	TV	MC	BILITY AND CONNECTORS		9
Connec	ted Mobility and	Autonom	ous Mobility- case study E mobil	ity Indian R	loadmap Perspecti
Policy:	EVs in infrastru	cture sys	tem, integration of EVs in smart	grid, socia	l dimensions of E
Connec	tors- Types of EV	charging	connector, DC Fast Charge EV Plu	ig Stan, CCS	(Combined Charg
Svstem).	0 0		0 ,	
y .			Tot	al Periods	45
Sugges	tive Assessment	Method	5		
Continu		t Tost	Formative Assessment Test	Fnd Sem	ester Fyams
		it Test			
(20 Ma	rksj		(20 Marks)	(60 Mari	KS)
	WRITTEN TES	Т	1.ASSIGNMENT	W	RITTEN TEST
			2. ONLINE QUIZZES		
			3.PROBLEM-SOLVING ACTIVITIES		
Outcon	nes				
Upon c	ompletion of the	e course,	the students will be able to:		
1 II	nderstand the ar	, chitecture	and vehicle dynamics of electric	and hybrid	vehicles
2				rie and herbr	id uchicles
	halyze and mode	i the pow	er management systems for electi	ric and hybr	id venicles
3 D	evise power elect	tronics ba	sed control strategies for electric	and hybrid	vehicles
4 A	nalyze and design oncern.	n various	components of electric and hybrid	d vehicles w	rith environment
5 In el	vestigate and mo ectric and hybrid	odel the is l vehicle.	sues in mathematical domain rela	ated to grid	interconnections of
Text Bo	ooks				
1.	Emadi, A. , M	iller, J., E	hsani, M., "Vehicular Electric Po	wer Systen	ns" Boca Raton, C
2	Press, 2003 Husain I "Flee	rtric and H	Jyhrid Vehicles" Boca Raton CRC	Press 2010	1
	frusuin, i. Liev			11035, 2010	
Poforo	nco Books				
1	aminia I	and Isla	Loume "Electric Volticle Techer	log Erel	nod" John Miles
1. 1	Larminie, James,	and John	Lowry, Electric Vehicle Techno	nogy Explai	ned John Wiley a
	JUIIJ, 2012				

Web Resources:

- 1. https://nptel.ac.in/courses/108/103/108103009/
- 2. Video Course on "Electric Vehicles" by Prof. Amitkumar Ja.

CO Vs PO Mapping and CO Vs PSO Mapping

<u> </u>	PO	P01	P01	P01	PSO	PSO								
ιυ	1	2	3	4	5	6	7	8	9	0	1	2	1	2
1	2	3	2	2	1	1	3	-	-	-	-	-	-	-
2	3	3	2	2	3	-	3	-	-	-	-	-	-	-
3	2	3	2	2	2	2	3	-	-	-	-	-	-	-
4	3	3	3	3	3	1	3	-	-	-	-	-	-	-
5	2	3	3	3	3	1	3	-	-	-	-	-	-	-

1-Low , 2- Medium, 3- High

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	10	10	5	5	10
UNDETSTAND	30	30	10	10	30
APPLY	60	60	10	10	60
ANALYZE	0	0	0	0	0
EVALUATE	0	0	0	0	0
CREATE	0	0	0	0	0
	100	100	50	50	100

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1:

1. Explain the use of Propulsion System Design

2. Describe the Dynamics of vehicle motion.

COURSE OUTCOME 2:

- 1. Describe the Technical characteristics of Batteries in detail.
- 2. Elaborate the Battery pack Design.
- 3. Outline the Properties of Batteries in detail.

COURSE OUTCOME 3:

- 1. Write a brief note on Induction machines.
- 2. Describe the use of permanent magnet machines.
- 3. Explain switched reluctance machines.

COURSE OUTCOME 4:

- 1. Summarize the implementation issues of energy strategies in EV,
- 2. Organize the design of a Hybrid Electric Vehicle (HEV)
- 3. Derive the design of a Battery Electric Vehicle (BEV).

COURSE OUTCOME 5:

- 1. Summarize Battery based energy storage and its analysis.
- 2. Describe the fuel cell based and super capacitor based energy storage and its analysis.
- 3. Explain Hybridization of different energy storage devices.

Compiled By : Mr.N.Subramanian,AP/EEE

OPEN ELECTIVE -IV

21EE8801	WIND ENERGY CONVERSION SYSTEMS	L	Τ	Р	С
		3	0	0	3
Preamble					
This cou	urse introduces about different new and renewable sources of ener	gy. D	esigr	n of so	me of
the systems are	also discussed				
Prerequisites	for the course				
	Introduction to Power Engineering/ Energy Systems				
Objectives					
1. To learn	the basic concept of sabinin's theory				
2. To learn	the design and control principles of Wind turbine				
3. To und	erstand the concepts of DFIG- PMSG -Variable speed gener	ator	s, w	ind e	nergy
convers	ion systems.	1			<u> </u>
4. To unde	rstand the concepts of fixed speed and variable speed, wind	ene	rgy	conve	rsion
5 To analy	zzo the grid integration issues				
J. TO allaly				0	
UNITI	INTRODUCTION			9	
Compon	ents of WECS-WECS schemes-Power obtained from wind	l-sim	ple	mom	entum
theory- Power	coefficient-Sabinin"s theory-Aerodynamics of Wind turbine.		1		
UNIT II	WIND TURBINES			9	
HAWT-	VAWT -Power developed-Thrust-Efficiency- Rotor sel	ectio	n-Rc	otor	desigr
considerations	- Tip speed ratio-No. of Blades-Blade profile-Power Regulati	on-y	aw c	contro	l-Pitch
angle control- s	stall control-Schemes for maximum power extraction.				
UNIT III	FIXED SPEED SYSTEMS			9	
Generat	ing Systems- Constant speed constant frequency systems -(Choic	e of	Gene	erators
Deciding factor	s-Synchronous Generator-Squirrel Cage Induction Generator- N	Mode	lof	Wind	Speed
Model wind tu	rbine rotor - Drive Train model- Generator model for Steady	v stat	te ar	nd Tra	insient
	is.				
stability analys					
stability analys UNIT IV	VARIABLE SPEED SYSTEMS			9	
stability analys UNIT IV Need of	VARIABLE SPEED SYSTEMS variable speed systems-Power-wind speed characteristics-Var	riable	e spe	9 eed co	onstant
stability analys UNIT IV Need of frequency syst	VARIABLE SPEED SYSTEMS variable speed systems-Power-wind speed characteristics-Var ems synchronous generator- DFIG- PMSG -Variable speed g	riable ener	e spe ators	9 eed co s mod	onstant
stability analys UNIT IV Need of frequency syst Variable speed	VARIABLE SPEED SYSTEMS variable speed systems-Power-wind speed characteristics-Var ems synchronous generator- DFIG- PMSG -Variable speed g variable frequency schemes.	riable ener	e spe ators	9 eed co s mod	onstant

Wind interconnection requirements, low-voltage ride through (LVRT), ramp rate limitations, and supply of ancillary services for frequency and voltage control, current practices and industry trends wind interconnection impact on steady-state and dynamic performance of the power system including modeling issue.

	Total Periods45										
Sugg	estive Assessment Methods										
Соі	ntinuous Assessment Test	Formative Assessment Test	End Sem	ester Exams							
	(30 Marks)	(20 Marks)		(60 Marks)							
	WRITTEN TEST	1.ASSIGNMENT	W	RITTEN TEST							
		2. ONLINE QUIZZES									
		3.PROBLEM-SOLVING									
		ACTIVITIES									
Outc	omes										
Upor	completion of the course, t	he students will be able to:									
1	Acquire knowledge on the ba	sic concepts of Wind energy conv	ersion syst	em							
2	Understand the mathematica	l modelling and control of the Win	nd turbine								
3	Develop more understandin	g on the design of fixed speed syst	em								
4	Study about the need of Vari	able speed system and its modelli	ng								
5	Able to learn about Grid inte with power system	gration issues and current practic	es of wind	interconnections							
Text	Books										
1.	L.L.Freris "Wind Energy conv	version Systems", Prentice Hall, 199	0								
2.	S.N.Bhadra, D.Kastha,S.Baner	jee,"Wind Electrical Systems",Oxfo	rd Universi	tyPress,2010.							
3.	Ion Boldea, "Variable speed g	generators", Taylor & Francis group	, 2006.								
Refe	rence Books										
1.	E.W.Golding "The generation	of Electricity by wind power", Red	wood urnLt	d.,Trowbridge,1976.							

- E.W.Golding The generation of Electricity by white power , Redwood difficult,
 N. Jenkins," Wind Energy Technology" John Wiley & Sons,1997
- **3.** S.Heir "Grid Integration of WECS", Wiley 1998

Web Resources

- 1. <u>https://www.ee.iitb.ac.in/~npsc2008/NPSC_CD/Data/Tutorial%202/Wind%20Energy%20Con</u> version%20Systems%20-%20Prof.%20S.B.%20Kedare.pdf
- 2. https://www.lathamathavan.edu.in/lmgi/antiragging/WECS-%20EEE%20new.pdf
- 3. https://nptel.ac.in/courses/108/105/108105058/

CO Vs PO Mapping and CO Vs PSO Mapping

<u> </u>	PO	P01	P01	P01	PSO	PSO								
U	1	2	3	4	5	6	7	8	9	0	1	2	1	2
1	3	3												
2	3	3												
3	3				3									
4		3			3									
5		3			3									

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	20	20	15	10	20
UNDERSTAND	30	30	15	15	30
APPLY	20	20	10	15	20
ANALYZE	15	15	10	10	15
EVALUATE	15	15	0	0	15
CREATE	0	0	0	0	0
	100	100	50	50	100

1-Low, 2- Medium, 3- High

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1:

- 1. Summarize the importance of components of wind energy conversion system with a neat diagram.(Understand)
- 2. Explain clearly about the sabinin's theory.(Understand)

COURSE OUTCOME 2:

- 1. Difference between HAWT and VAWT. (Understand)
- 2. Explain the Yaw and Pitch angle control in WECS (Understand)

COURSE OUTCOME 3:

1. Describe the constant speed and constant frequency systems. Give its advantages and

disadvantages. (Understand)

2. Explain the different types of generators used in WECS with suitable diagrams.(Understand) **COURSE OUTCOME 4:**

- 1. Explain with a neat diagram the operation of variable speed constant frequency system and list the advantages and disadvantages.(Understand)
- 2. Describe the power wind characteristics and explain its types briefly (Understand)

COURSE OUTCOME 5:

- 1. Explain the briefly about LVRT (Understand)
- 2. Describe the power dynamic performance and its impacts (Understand)

Compiled By : Dr.R.Rajagopal,AP/EEE

21FF8802	FLECTRICAL SAFETY	L	Τ	Р	С
21110002		3	0	0	3
Preamble		l			
Electrical safe	ty is a system of organizational measures and technical mea	ns to	prev	vent h	armful
and dangerou	s effects on workers from electric current, electric arc, elec	troma	agne	tic fie	ld and
static electric	ty. Safety hazards encompass any type of substance, conditi	on oi	r obj	ect th	at can
injure worker	s. It is mandatory for a product to conform to safety stand	lards	proi	nulga	ted by
safety and sta	ndard agencies. To conform to such standards, the product	nust	pass	safet	y tests
such as the, l	nsulation Resistance Test, Ground Bond & Ground Continu	ity T	est a	and L	eakage
Current Test.	Analyzing the electrical standards we will apply the electr	ical s	afety	v conc	ept in
health care.					
Prerequisites	for the course				
NIL					
Objectives					
1. To Unde	rstand the basic concepts of Electrical hazards				
2. To Crea	ting knowledge how to handle proper guidelines while using E	ST			
3. To Analy	zing various Electrical Safety in Hazardous Areas, Equipment	Earth	ing a	ind Sy	stem
Neutral	Earthing.				
4. To Eval	uating quality control and assurance activities as well as safety	meas	sures	s to be)
followed	l in hospitals.				
5. To Appl	ying the electrical safety concept in health care.				
UNIT I	ELECTRICAL HAZARDS			9	
Review of Ele	ctrical concept, Electrostatic – Electro magnetism – Electr	ical I	lazai	rds –l	Energy
leakage – Clea	rance and insulation– Current surges – Electrical causes of	fire	and	explo	sion –
Human interfac	e with electricity – Human resistance to electricity				

U	NIT II	STANI	DARDS AND REQUIREMENTS		9
Natio	nal electri	cal Safety code - St	andards and statutory requiremen	ts – India	an electricity acts a
rules	– statuto	ry requirements fr	om Electrical inspectorate. Hazar	dous are	ea classification a
classi	fication of	electrical equipme	nts for hazardous areas (IS, NFPA, A	API and C	SHA standards)
UI	NIT III	ELECTRICAL PR	COTECTION AND MAINTENANCE		9
Select	tion of En	vironment, Protecti	on and Interlock – Discharge rods	and earth	ning device –Safety
the u	se of porta	able tools - Prevent	ive maintenance. First aid-cardio p	ulmonar	y resuscitation(CP
Electi	rical Safet	/ Analyser (ESA).			
Ul	NIT IV	STANDARDIZA	TION OF QUALITY MEDICAL CAR HOSPITALS	E IN	9
Defin	e Quality-	Need for Standard	lization& Quality Management, QM	1 in Heal	th CareOrganizati
Quali	ty assurai	nce methods, QA in	n (Medical Imaging & Nuclear me	dicine) l	Diagnostic service
Classi	fication o	f equipment.			
U	NIT V	REGULATORY	REQUIREMENT FOR HEALTH CA	RE	9
FDA r	egulation	s, Accreditation for	hospitals - JCI, NABH and NABL, Re	gulatory	Codes
	0	·	Total	Periods	45
C ~~~	ative Acc	a a ann a mt Matha da			
Sugge	estive Ass	essment methods			
Con	tinuous A	Assessment Test	Formative Assessment Test	End	Semester Exams
	(20	Marks)	(20 Marks)		(60 Marks)
	WRIT	ΓEN TEST	1.ASSIGNMENT	W	RITTEN TEST
			2. QUIZZES		
Outco	omes				
Upon	complet	ion of the course, t	he students will be able to:		
1	Understa	nd the basic concep	ts of Electrical hazards		
2	Creating l	knowledge how to h	andle proper guidelines while usin	g EST	
3	Analyzing Neutral E	various Electrical S	Safety in Hazardous Areas, Equipmo	ent Earth	ing and System
4	Evaluatin	g quality control an	d assurance activities as well as saf	ety meas	ures to be followe
-	in hospita	llS.			
5	Applying	the electrical safety	concept in health care.		
Text	Books				
1.	B.M.Sak	narkar, Principles	of Hospital administration and	Plannin	g, JAYPEE Brothe
2.	K.Shridh	ara Bhat, Quality M	24 Ianagement, Himalaya Publishing F	Iouse Ce	sar A. Cacere& Alb

- 1. Webster J.G and Albert M.Cook, Clinical Engg, Principles & Practices, Prentice Hall Inc., Engle wood Cliffs, New Jersy, 1979.
- 2. Karen Parsley, Karen Parsley Philomena Corrigan" Quality improvement in Healthcare, 2nd edition, Nelson Thrones Pub, 2002.
- 3. Sharon Myers "Patient Safety & Hospital Accreditation A Model for Ensuring Success" Springer Publishers 2012
- 4. Joseph F Dyro "Clinical Engineering Handbook" Elsevier Publishers, 2004.

Web Recourses

- 1. https://ehs.princeton.edu/book/export/html/75
- 2. https://en.wikipedia.org/wiki/Electrical_safety_standards

CO Vs PO Mapping and CO Vs PSO Mapping

<u> </u>	PO	P01	P01	P01	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	2	1	2
1	2	1	2								3	3		1
2	2		2								3	3		1
3	2		2								3	3		1
4	2	1	2								3	3		1
5	2		2								3	3		1

1-Low , 2- Medium, 3- High

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	10	10	5	5	10
UNDETSTAND	30	30	10	10	30
APPLY	60	60	10	10	60
ANALYZE	0	0	0	0	0
EVALUATE	0	0	0	0	0
CREATE	0	0	0	0	0
	100	100	25	25	100

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1:

- 1. Explain the effects of electric and electromagnetic fields on men working at substations.
- 2. What are all the safety measures to be followed while the electromagnetic fields on men working at energized HV lines and substations

COURSE OUTCOME 2:

- 1. Write briefly about sources, hazardous conditions, controland electrical causes of fire
- 2. Explain the use of Unsafe conditions like Civil, Mechanical and electrical hazards likely to occur during installation of electric plant

COURSE OUTCOME 3:

- 1. Summarize the safety aspects in operation and maintenance of electrical plant and equipment.
- 2. Differentiate between system grounding and equipment grounding.

COURSE OUTCOME 4:

- 1. Bring out the interface protocols betweenGeneral safety, Industrial safety and TQM
- 2. Enumerate Standardization in patient safety. Explain the WHO High 5s project.

COURSE OUTCOME 5:

- 1. Explain the safety codes and IS codes for national electrical Energy
- 2. What would be the best way to introduce QI approaches in rural setting with low cadre providers?
- 3. Explain the Electrical safety codes of practice

Compiled By :Mrs.A.Amala Manulea

Verified By

21EE8803	ENERGY STORAGE SYSTEMS	L	Т	Р	С
		3	0	0	3

Preamble

Electrical safety is a system of organizational measures and technical means to prevent harmful and dangerous effects on workers from electric current, electric arc, electromagnetic field and static electricity. Safety hazards encompass any type of substance, condition or object that can injure workers. It is mandatory for a product to conform to safety standards promulgated by safety and standard agencies. To conform to such standards, the product must pass safety tests such as the, Insulation Resistance Test, Ground Bond & Ground Continuity Test and Leakage Current Test. Analyzing the electrical standards we will apply the electrical safety concept in health care.

Prerequisites for the course

- **1.** Power Generation Systems
- **2.** Solar photovoltaic system

Objectives

1. To understand the various types of energy storage Technologies.

Francis Xavier Engineering College | Dept of EEE | R2021/Curriculum and Syllabi 2. To analyze thermal storage system. 3. To analyze different battery storage technologies To analyze the thermodynamics of Fuel Cell 4. 5. To study the various applications of energy storage systems. **UNIT I INTRODUCTION** 9 Necessity of energy storage – types of energy storage – comparison of energy storage technologies - Applications. **UNIT II** THERMAL STORAGE SYSTEM 9 Thermal storage – Types – Modeling of thermal storage units – Simple water and rock bed storage system – pressurized water storage system – Modelling of phase change storage system – Simple units, packed bed storage units - Modelling using porous medium approach, Use of TRNSYS. UNIT III **ENERGY STORAGE DEVICES** 9 Fundamental concept of batteries – measuring of battery performance, charging and discharging, power density, energy density, and safety issues. Types of batteries – Lead Acid, Nickel – Cadmium, Zinc Manganese dioxide, Li-ion batteries - Mathematical Modelling for Lead Acid Batteries – Flow Batteries. **UNIT IV** FUEL CELL 9 Fuel Cell – History of Fuel cell, Principles of Electrochemical storage – Types – Hydrogen oxygen cells, Hydrogen air cell, Hydrocarbon air cell, alkaline fuel cell, detailed analysis – advantages and disadvantages. **UNIT V** ALTERNATE ENERGY STORAGE TECHNOLOGIES 9 Flywheel, Super capacitors, Principles & Methods – Applications, Compressed air Energy storage, Concept of Hybrid Storage – Applications, Pumped Hydro Storage – Applications. **Total Periods** 45 Suggestive Assessment Methods **Continuous Assessment Test Formative Assessment Test End Semester Exams** (30 Marks) (20 Marks) (60 Marks) WRITTEN TEST **1.ASSIGNMENT** WRITTEN TEST **2. ONLINE QUIZZES** Outcomes Upon completion of the course, the students will be able to: 1 Understand different types storage technologies CO2: Design a thermal storage system 2 Model battery storage system Analyze the thermodynamics of fuel cell 3

- 4 Analyze the appropriate storage technologies for different applications
- **5** Explore the alternate energy storage technologies.

Text Books

- I. Ibrahim Dincer and Mark A. Rosen, 'Thermal Energy Storage Systems and Applications', John Wiley & Sons, 3rd Edition, 2021.
- 2. Ru-shi Liu, Lei Zhang and Xueliang sun, 'Electrochemical technologies for energy storage and conversion', Wiley publications, 2nd Volume set, 2012.
- 3. James Larminie and Andrew Dicks, 'Fuel cell systems Explained', Wiley publications, 3rd Edition, 2018.

Reference Books

- 1. Lunardini.V.J, 'Heat Transfer in Cold Climates', John Wiley and Sons 1981, 1st Edition.
- 2. Schmidt.F.W. and Willmott.A.J., 'Thermal Energy Storage and Regeneration', Hemisphere Publishing Corporation, 1981, 1st Edition.

Web Recourses

- 1. https://onlinecourses.nptel.ac.in/noc21_mm34/preview
- 2. http://www.nitttrc.edu.in/nptel/courses/video/112107283/L17.html
- 3. https://www.sciencedirect.com/topics/engineering/energy-storage-system

60	PO	P01	P01	P01	PSO	PSO								
ιυ	1	2	3	4	5	6	7	8	9	0	1	2	1	2
1	2	1	2								3	3	3	
2	2		2								3	3	3	
3	2		2								3	3	3	
4	2	1	2								3	3	3	
5	2		2								3	3	3	

CO Vs PO Mapping and CO Vs PSO Mapping

1-Low , 2- Medium, 3- High

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	10	10	5	5	10
UNDETSTAND	30	30	10	10	30
APPLY	60	60	10	10	60
ANALYZE	0	0	0	0	0
EVALUATE	0	0	0	0	0
CREATE	0	0	0	0	0
	100	100	25	25	100

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1:

- 1. List the steps required to achieve effective management for load and generation.
- 2. Describe the benefits of Energy storage.

COURSE OUTCOME 2:

- 1. Describe the need, types and constructional detail of thermal energy system.
- 2. Demonstrate impact of intermittent generation.

COURSE OUTCOME 3:

- 1. Explain the roles of electrical energy storage technologies in viewpoint of consumers.
- 2. Express in detail about the battery energy storage
- 3. Explain with a neat sketch the operation of Sodium Sulfur (NaS) Batteries

COURSE OUTCOME 4:

- 1. Compare the different EES technologies in technical sense and highlight the superior technologies.
- 2. Explain the new trends in applications of EES in view of following: a) Smart grid
 - b) Smart house

c) Electrical vehicles

COURSE OUTCOME 5:

- 1. Explain in detail about latent heat storage.
- Explain the following mechanical storage systems

 a) Compressed air energy storage
 - b) Pumped hydro storage.

Compiled By :Mrs.A.Amala Manulea

21EE8804	Industrial Drives and control	L	Τ	Р	C
		3	0	0	3

Preamble

The electrical engineering applications in many industries use small and large AC and DC motors in some crucial application systems. Further electrical speed control in almost all industrial applications is incomplete without the use of the specific electric drive. This course will empower the students with the necessary skills to identify operate and maintain the AC and DC drives. The aim of this course is to help the student to attain the following industry identified competency through various teaching learning experiences.

Prerequisites for the course

- 1. Power Electronics and Drives
- **2.** Microcontrollers and its Applications

Objectives

1. To identify the relevant electric drive for the required speed torque characteristics.

2. To maintain the functioning of DC Drives using converters.

3. To maintain the functioning of DC Drives using choppers.

4. To maintain the functioning of AC Drives.

5. To Use microcontroller-based systems for motor control.

UNIT I	BASICS OF ELECTRIC DRIVES

9

Electric drive, types and choice of electric drives, Parts of electrical drive. Motor duty classification. Motor power rating for continuous, short time and intermittent duty, equivalent torque current, and power methods for fluctuating and intermittent loads. Speed-torque characteristics of DC motors. Speed-torque characteristics of three phase induction motor.

UNIT IIDC DRIVES USING CONVERTERS9

Single phase SCR Drives- Half wave converter - Full wave converter - Semi converter- Dual converter. Three Phase SCR Drives -Half wave converter - Full wave converter - Semi converter -Dual converter. Three Phase SCR Drives- Half wave converters - Full wave converter - Semi converter - Dual converter. Power factor in SCR motor drives. Reversible SCR Drives.

UNIT III	DC DRIVES USING CHOPPERS	9
Basic chopper o	circuit using SCR. Classification based on output voltage and c	juadrant of operation.
Chopper Contro	olled DC Drives. Application of chopper control drive in Solar	and battery powered
vehicles.		

Francis Xavier Engineering College | Dept of EEE | R2021/Curriculum and Syllabi UNIT IV AC DRIVES 9 Stator voltage control method using thyristor circuit. Variable frequency control method using square wave inverter. Constant V/F control method. Rotor resistance control using Chopper. Slip power recovery system. Solar powered pump drives. Drives required at each stage for following applications: Textile mills, Seel rolling mills. Paper mills Sugar mills. UNIT V ADVANCED DRIVES FOR MOTOR CONTROL 9 Microcontroller/ Microprocessor based control for drives. Phase locked loop control of DC motor. AC/DC drive using microprocessor control. AC/DC drive using microcontroller control. Synchronous motor drives. Ratings and specifications of stepper motor. Stepper motor drives employing microcontroller (No programming) **Total Periods** 45 Suggestive Assessment Methods **Continuous Assessment Test** Formative Assessment Test **End Semester Exams** (20 Marks) (20 Marks) (60 Marks) WRITTEN TEST **1.ASSIGNMENT** WRITTEN TEST **2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES** Outcomes Upon completion of the course, the students will be able to: Identify the relevant electric drive for the required speed torque characteristics. 1 2 Maintain the functioning of DC Drives using converters. 3 Maintain the functioning of DC Drives using choppers. Maintain the functioning of AC Drives. 4 Use microcontroller-based systems for motor control 5 Text Books 1. Dubey, Gopal K, Fundamentals of Electrical Drives, Narosa Publishing House, New Delhi, 2016. 2. Subrahmanyam, Vedam, Electrical Drives Concepts and Applications, Mcgraw-Hill Publishing New Delhi, 2016 **Reference Books** 1. Agrawal, Jai P, Power Electronic Systems Theory and Design, Pearson Education Inc. New Delhi, 2016 2. Pillai, S.K., A first course on Electrical Drives, Wiley Eastern Ltd. New Delhi, 2016.

Web Recourses

- 1. www.cesim.com/simulations
- 2. www.scilab.org/scilab
- 3. www.ni.com/multisim

CO Vs PO Mapping and CO Vs PSO Mapping

60	PO	P01	P01	P01	PSO	PSO								
ιυ	1	2	3	4	5	6	7	8	9	0	1	2	1	2
1	3		2	3								3	3	
2	3	3	2	3								3	3	
3	3	3	2	3								3	3	
4	3	3	2	3								3	3	
5	3	3	2	3								3	3	

1-Low, 2- Medium, 3- High

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	10	10	5	5	10
UNDETSTAND	30	30	10	10	30
APPLY	60	60	10	10	60
ANALYZE	0	0	0	0	0
EVALUATE	0	0	0	0	0
CREATE	0	0	0	0	0
	100	100	25	25	100

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1

1. Describe the block diagram of the given type of electric drive

- 2. State the selection criteria for the given type of electric drive
- 3. Determine the power rating for the given load curve by equivalent current, torque and power methods.
- 4. Select the relevant motor on the basis of given duty cycles with justification.

COURSE OUTCOME 2:

- 1. Explain with sketches the operation of the given type of single phase SCR converter.
- 2. Explain with sketches the operation of the given type of three phase SCR converter.
- 3. Give the effect of power factor variation in the given type of SCR motor drive.

4. Describe the procedure to maintain the given type of DC drive using converter **COURSE OUTCOME 3**:

- 1. Explain with sketches the operation of the given type of two quadrant chopper drive with quadrant diagram
- 2. Explain with sketches the operation of chopper controlled DC Drive in Solar and battery's powered vehicles
- 3. Describe the procedure to maintain the given type of DC drive using chopper

COURSE OUTCOME 4:

- 1. Explain with sketches the operation of three phase induction motor using the given type of control method
- 2. Explain with sketches the operation if three phase induction motor using the given type of slip power recovery system
- 3. Describe with sketches the working of the given type of solar powered pump drives.
- 4. Describe the procedure to maintain the given type of AC

COURSE OUTCOME 5:

- 1. Explain with sketches the working of PLL control for the given type of DC motor
- 2. Explain with sketches the working of microcontroller control of the given type of electric drive.

Compiled By :Mrs.A.Amala Manulea

Verified By

24550007	ELECTRICAL WIRING ESTIMATION	L	Τ	Р	C
21EE0000	AND COSTING	3	0	0	3

Preamble

This advanced course embraces the concepts of electrical wiring, cost estimation, modern tools usage in electrical wiring, testing and commissioning. This course is significant for the electrical energy auditors.

Prerequisites for the course

• Engineering Practices

Objectives

1. To impart knowledge on general principle of electrical estimation

2. To analyze the interaction of residential building interaction and installation

3. To emphasis the need for planning of electrical installation.

4. To impart knowledge on service connection, inspection and testing of installation

5. To perform electrical installation for power circuits

Syllabus

UNIT - 1

GENERAL PRINCIPLES OF ESTIMATION

Introduction to estimation & costing - Electrical schedule & estimation: commercial & residential -Market Survey and source selection - Recording of estimates – Required Material for electrical survey - Labour conditions - Determination of cost material and labour contingencies – Overhead Charges - General idea about IE rule - Indian Electricity Act and major applicable IE rules

UNIT - 2 RESIDENTIAL BUILDING ELECTRIFICATION

9

9

General rules guidelines for wiring of residential installation - Principles of circuit design in lighting and power circuits - Method of drawing single line diagram - Wiring and load calculations - Selection of size of conductor - Selection of rating of main switch Distribution board - Protective switchgear: ELCB and MCB - Earthing of residential Installation

UNIT - 3	ELECTRIFICATION OF COMMERCIAL INSTALLATION	9

Concept of commercial installation - Differentiate between electrification of residential and commercial installation - Fundamental considerations for planning of an electrical installation system for commercial building - Design considerations of electrical installation - system for commercial building – Load calculation and selection of size of service connection and nature of supply - Deciding the size of the cables, and bus bar - Mounting arrangements and positioning of switchboards, distribution boards main switch etc. - Earthing of the electrical installation - Selection of type wire - Wiring system and layout.

UNIT - 4 SERVICE CONNECTION, INSPECTION AND TESTING OF INSTALLATION 9

Concept of service connection - Types of service connection and their features - Method of installation of service connection - Estimates of underground and overhead service - connections, Inspection of internal wiring installations, Inspection of new installations, testing of installations, testing of wiring installations, Reason for excess recording of energy consumption by energy meter

UNIT - 5 ELECTRICAL INSTALLATION FOR POWER CIRCUITS		9	
Introduction of	f power sector - Important considerations regarding motor	installation wiring -	
Determination of input power to motor, rating of cables, rating of fuse, type of conduit -			
Distribution Bo	ard main switch and starter installation		

Suggestive Assessment Method	ls	
Continuous Assessment Test (30 Marks)	Formative Assessment Test (20 Marks)	End Semester Exams (60 Marks)
Written Examination	1.Assignment 2. Online Quizzes 3.Problem-Solving Activities	Written Examination
Outcomes		
Upon completion of the course,	the students will be:	
CO1 : Able to understand basic pri	nciple of electrical estimation and	their applications

CO2: Able to analyze the building installation. and selection of wire

CO3: Able to know the commercial installation calculations and importance of planning

CO4: Able to understand types of service connection, inspection and testing of installation

CO5: Able to apply electrical installation for major power circuits.

Text Books

1. J.B.Gupta, "Electrical Installation Estimating & Costing", VIII Edition S.K. Katria & Sons New Delhi, 2020.

Reference Books

- 1. K.R Gangadhara Rao "Electrical Estimating And Energy Management" Sapna Publications, Banglore, Vth Edition, 2020.
- 2. S.K.Bhattacharya Electrical Design Estimating and Costing ", New Age International (P) Ltd., Publishers, New Delhi, 2019.

Web Recourses

- https://esticom.com/wp-content/uploads/Real%20World%20Electrical%20Estimating.pdf
- https://www.electricaltechnology.org/2013/09/electrical-wiring.html
| CO (VS) PO Mapping and CO (VS) PSO Mapping | CO (vs) PO Mapping and CO (vs) PS | O Mapping |
|--|-----------------------------------|-----------|
|--|-----------------------------------|-----------|

•	,		U					0						
<u> </u>	PO	P01	P01	P01	PSO	PSO								
LU	1	2	3	4	5	6	7	8	9	0	1	2	1	2
1	3	2		3										2
2	3	2		3										2
3	3	3	2	3	3				3		2			2
4	3	3	3	3	3				3		2			2
5	3	3	3	3	3				3		2			2

1-Low, 2- Medium, 3- High

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT-1	CAT-2	FAT-1	FAT-2	END SEMESTER EXAMINATION
REMEMBER	0	0	0	0	0
UNDERSTAND	20	20	20	20	20
APPLY	40	40	40	40	40
ANALYZE	40	40	40	40	40
EVALUATE	0	0	0	0	0
CREATE	0	0	0	0	0

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1 (CO1) :

(1) Prepare energy auditing chart for commercial & residential connection.

(2) Discuss about new Indian Electricity Act and major applicable IE rules

COURSE OUTCOME 2 (CO2) :

(1) Prepare the 1 year model audit for home which consist of

- 8 Ceiling fans
- 2 LCD TV
- 2 LED TV

- 3 Washing Machine
- 2 Double door Refrigerator
- 2 Washing Machine
- 1 3HP Submersible pump
- 1 Vacuum Cleaner
- 1 Electric Dishwasher
- 3 Water Heater
- 3 Inverting AC
- 10 Tube lights
- 8 LED bulbs
- 3 Table Fans

COURSE OUTCOME 3 (CO3) :

(1) Obtain the Zbus matrix using bus building algorithm for the figure given below. Consider each impedance (z) value is j1.0

COURSE OUTCOME 4 (CO 4) :

(1) **Scenario-1**: If you are having the one month project to establish the transmission line of 100km.

Which one of the below option you will choose for transmission purpose, and Why?

- 1) ACSR Transmission Line
- 2) PVC underground cabling
- 3) XPLE underground cabling

Provide a comparative statement of above three options and validate your choice. **<u>Consider</u>**

- Cost of 33KVA transformer
- Cost of Erection of transformer
- Cost of Pin type insulator and Post type insulator
- Man power estimation

- Cost of Cable
- Cost of Cable cladding etc.

COURSE OUTCOME 5 (CO 5) :

- (1) It is necessary to obtain a tower footing resistance of 20 ohms in a soil of resistivity = 100 ohm-m using the three different types of electrodes. Take a=1.25cm for rods and counterpoise and a depth y=0.5m for the counterpoise wires. Calculate the required dimensions.
- (2) An underground cable of inductance 0.150 mH/km and of capacitance 0.2 μ F/km is connected to an overhead line having an inductance of 1.2 mH/km and capacitance of 0.006 μ F/km. Calculate the transmitted and reflected voltage and current waves at the junction, if a surge of 200 kV travels to the junction, (1) along the cable and (2) along the overhead line.

Compiled By : Mr.A.SHEIK SIDTHIK, AP/EEE

Verified By

21EE4S01	INDUSTRY 4.0	L	Т	Р	С
		3	0	3	
Preamble					
The co manufacturing, integrating nev and AI and mac	purse Industry 4.0 is all about revolutionizing of indus Product development, Improvement in product distribution v technologies, including Internet of Things (IoT), cloud com hine learning into their production facilities and throughout th	stries on. N nput heir	s in Ianu ing a opera	the factur nd ar ations	way ers a nalyti
Prerequisites	for the course				
□No prior te	chnical background is required				
Objectives					
• To under	stand the functional knowledge of industry				
• To analyz	e the new technologies in industries				
• To measu	re and analyze outcome of smart factories				
• To under	stand and apply the norms of industrial safety				
• To analyz	e the Real-Time applications of Internet of Things				
Syllabus					
UNIT - 1	Introduction to Industry 4.0			9	
Definition of Developments and today's F between conv paradigm - ' Transformation	Industry 4.0 - Automotive Industry (VW, Audi, Mercedes) in USA, Europe, China and other countries - Comparison o factory - Most important things that will change with Ind entional automation and Industry 4.0 - Challenges and chance Frends of Industrial Big Data and Predictive Analytics on	Pro f Inc ustry ces o for	ducti lustr 7 4.0 of a n Sm	on pr y 4.0 - Dif ew in art E	rocess Facto fferen dustr Susine
UNIT - 2	Basic principles and technologies of Smart			9	
	Factory				
Internet of Tl Factories - Sm Smart and Con 4.0 networks	nings (IoT) & Industrial Internet of Things (IIoT) - Interne nart Manufacturing- Customization & LEAN Production Syste nnected Business Perspective - Predictive Analytics - Security	et of ms - issu	Serv Sma es wi	vices art Lo thin I	- Sma gistic ndust
UNIT - 3	Concept of Cyber-Physical Systems (CPS)			9	
Introduction of Physical Prod	of cyber-physical systems - Core elements of Cyber-Physica uction Systems - Next Generation Sensors - Robotic Automa montod Reality and Virtual Reality Artificial Intelligence	l Sy tion	stem and Big	s and Collat	Cybo oorati

organization principles ("Self-X", autonomy, negotiations)

UNIT - 4	Safety	y and Security in Industry 4.0		9
Safety with In cooperation - Security and p Industry 4.0 -	dustry 4.0 - Safe Safety optimizat orivacy risks in A Practical Securi	ety for connected Machines and Sy tion in Industry 4.0 - Security & Se Artificial Intelligence - Approach to ty Aspects with Industry 4.0	vstems - Safe ecurity Risks o Cyber-Phys	ty in Human Robot with Industry 4.0 - sical Security in
UNIT - 5	Real-Tin	ne Applications of Industrial Io	Г	9
Case study - 1	: Milk Processin	ng and Packaging Industries		
Case study - 2	: Auto-mobile In	dustries		
Case study - 3	: Manufacturing	g Industries		
Case study - 4	: Oil Refinery In	dustry		
Case study - 5	: Virtual Reality	Lab		
Case study - 6	: Health Care In	dustry		
Suggestive Ass	essment Metho	ods		
Continuous A Test	lssessment (30 Marks)	Formative Assessment Test (10 Marks)	End Sem (60 Ma	ester Exams urks)
Writte	n Test	Google Form based Online Test	W	/ritten Test
Outcomes				
Upon completio	on of the course	e, the students will:		
CO1 : Able to un	derstand the inc	lustrial operations, developments	s, challenges	and future analysis
CO2 : Able to an	alyze the emerg	ing technologies that makes the ir	ndustries as s	smart industries
CO3 : Able to m	easure and analy	yze the outcomes of smart factorio	es using next	generation sensors
CO4 : Able to un factors in	derstand and ap the industries	ply the industrial safety norms ar	nd standards	to avoid the risk
	alyze the Real-T	ime applications of Internet of Th	ings in Indus	tries to increase the
CO5 : Able to an				

- 1. <u>Klaus Schwab</u>, "The Fourth Industrial Revolution", Crown Business, 2017.
- 2. <u>Alasdair Gilchrist</u>, "Industry 4.0: The Industrial Internet of Things", Apress, 2016.
- 3. <u>Cevikcan</u>, <u>Emre</u>, <u>Ustundag</u>, <u>Alp</u>, "Industry 4.0: Managing the digital transformation", Springer series in advanced manufacturing, 2018.

Reference Books

- 1. <u>Mark Skilton, Felix Hovsepian (auth.</u>), "The 4th Industrial Revolution: Responding to the Impact of Artificial Intelligence on business, Palgrave Macmillan, 2018.
- 2. <u>Srikanta Patnaik</u>, "New Paradigm of Industry 4.0: Internet of Things, Big Data & Cyber Physical Systems", Springer-Studies In Big Data Vol. 64, 2020.
- 3. <u>Krzysztof Iniewski</u>, " Smart sensors for Industrial Applications", CRC Press Taylor & Francis, 2021

Web Recourses

- 1. https://onlinecourses.nptel.ac.in/noc20_cs69/preview
- 2. https://1lib.in/book/3420536/8b3291
- 3. https://1lib.in/book/5298482/e88aa6
- 4. https://1lib.in/book/2197010/35d9e5
- 5. https://1lib.in/book/2950947/b284cd
- 6. https://1lib.in/book/2741192/da810f
- 7. https://1lib.in/book/3375898/dc1758

CO (vs) PO Mapping and CO (vs) PSO Mapping

<u> </u>	PO	P01	P01	P01	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	2	1	2
1	3	2												3
2	3	2			3	2					2			3
3	3	2	2	2	3	2	2							3
4	3	2		2	3		2	2	2		2	3		3
5	3	3	3	3	3	3	3	3	2		2	2		3

1-Low, 2- Medium, 3- High

Francis Xavier Engineering College| Dept of EEE | R2021/Curriculum and Syllabi BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT-1	CAT-2	FAT-1	FAT-2	END SEMESTER EXAMINATION
REMEMBER	10	10	5	5	1 0
UNDERSTAND	30	30	5	5	3 0
APPLY	40	40	5	5	4 0
ANALYZE	20	20	10	10	2 0
EVALUATE	0	0	0	0	0
CREATE	0	0	0	0	0

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1 (CO 1) :

(1) Comparison between Industry 4.0 Factory and today's Factory

(2) Explain the Trends of Industrial Big Data and Predictive Analytics for Smart Business Transformation

COURSE OUTCOME 2 (CO 2) :

(1) Explain the concept of Internet of Things (IoT) & Industrial Internet of Things (IIoT)

(2) Explain the following

(i) Smart Factories

(ii) Smart Manufacturing

(iii) Customization & LEAN Production Systems

- (iv) Smart Logistics
- (v) Smart and Connected Business

COURSE OUTCOME 3 (CO 3) :

- (1) Elaborate the concept of Cyber-Physical Production Systems
- (2) Explain in details about Self-organization principles

COURSE OUTCOME 4 (CO 4) :

(1) Mention the details about Safety in Human Robot cooperation

(2) Explain in details about Practical Security Aspects with Industry 4.0

COURSE OUTCOME 5 (CO 5) :

(1) Case study about Milk Processing and Packaging Industries 4.0

(2) Case study about Auto-mobile Industry 4.0

21EE5S01	SENSORS AND ACTUATORS	L	Τ	Р	С				
		3	0	0	3				
Preamble									
To study th	e various instruments displays and panels in the aircraft and t	o diso	cuss	the co	ock pit				
layout. The	objective of the study of aircraft instrumentation is to know th	ne fur	nctio	ns of	all the				
flight, gyros	copic and power plant instruments in the aircraft and enable the	learn	ers t	o rect	ify the				
problems occurring in the aircraft.									
Prerequisite	s for the course								
1. Basic	electronics								
2. Measu	rements and Instruments								
Objectives									
1. To im	oart knowledge on sensors.								
2. To un	derstand the basic concepts of inductive transducers.								
3. Under	stand the concepts of actuators.								
4. Realiz	e the appropriate types of micro sensors.								
5. To im	oart knowledge on bulk silicon micro machining								

UNIT ISENSORS9Difference between sensor, transmitter and transducer - Primary measuring elements - selection
and characteristics: Range; resolution, Sensitivity, error, repeatability, linearity and accuracy,
impedance, backlash, Response time, Dead band. Signal transmission - Types of signal: Pneumatic
signal; Hydraulic signal; Electronic Signal. Principle of operation, construction details,
characteristics and applications of potentiometer, Proving Rings, Strain Gauges, Resistance
thermometer, Thermistor, Hot-wire anemometer, Resistance Hygrometer, Photo-resistive sensor.

UNIT II	INDUCTIVE & CAPACITIVE TRANSDUCER	9

Inductive transducers: - Principle of operation, construction details, characteristics and applications of LVDT, Induction potentiometer, variable reluctance transducer, synchros, microsyn. Capacitive transducers: - Principle of operation, construction details, characteristics of Capacitive transducers – different types & signal conditioning- Applications:- capacitor microphone, capacitive pressure sensor, proximity sensor.

UNIT III	ACTUATORS	9
Definition true	a and coloction of Actuators, linear, retary, Logical and (Sandina and Astrophysics

Definition, types and selection of Actuators; linear; rotary; Logical and Continuous Actuators, Pneumatic actuator- Electro-Pneumatic actuator; cylinder, rotary actuators, Mechanical actuating system: Hydraulic actuator - Control valves; Construction, Characteristics and Types, Selection criteria. Electrical actuating systems: Solid-state switches, Solenoids, Electric Motors- Principle of operation and its application: D.C motors - AC motors - Single phase & 3 Phase Induction Motor; Synchronous Motor; Stepper motors - Piezoelectric Actuator.

UNIT IV MICRO SENSORS AND MICRO ACTUATORS	9
---	---

Micro Sensors: Principles and examples, Force and pressure micro sensors, position and speed micro sensors, acceleration micro sensors, chemical sensors, biosensors, temperature micro sensors and flow micro sensors. Micro Actuators: Actuation principle, shape memory effects-one way, two way and pseudo elasticity. Types of micro actuators- Electrostatic, Magnetic, Fluidic, Inverse piezo effect, other principles.

UNIT V SENSOR PROCESSING TECHNIQUES	9
-------------------------------------	---

Materials for sensors: Silicon, Plastics, metals, ceramics, glasses, nano materials Processing techniques: Vacuum deposition, sputtering, chemical vapour deposition, electro plating, photolithography, silicon micro machining, Bulk silicon micro machining, Surface silicon micro machining, LIGA process. Francis Xavier Engineering College | Dept of EEE | R2021/Curriculum and Syllabi **Total Periods** 45 Suggestive Assessment Methods **Continuous Assessment Test** Formative Assessment Test End Semester Exams (20 Marks) (20 Marks) (60 Marks) WRITTEN TEST **1.ASSIGNMENT** WRITTEN TEST **2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES** Outcomes Upon completion of the course, the students will be able to: Understand the main aspects of sensors 1 2 Identify the appropriate theory of inductive and capacitive sensors Handle mechanical actuating system 3

- 4 Construct bio sensors, chemical sensors
- **5** Understand the concept of sensor processing techniques

Text Books

- 1. Patranabis.D, "Sensors and Transducers", Wheeler publisher, 1994.
- 2. Sergej Fatikow and Ulrich Rembold, " Microsystem Technology and Microbotics", First edition,

Springer –Verlag NEwyork, Inc, 1997

Reference Books

1.Robert H Bishop, "The Mechatronics Hand Book", CRC Press, 2002.

2. Thomas. G. Bekwith and Lewis Buck.N, Mechanical Measurements, Oxford and IBH publishing Co. Pvt. Ltd.,

3. Massood Tabib and Azar, "Microactuators Electrical, Magnetic, thermal, optical, mechanical, chemical and smart structures", First edition, Kluwer academic publishers, Springer, 1997.

4. Manfred Kohl, "Shape Memory Actuators", first edition, Springer.

Web Recourses

- 1. https://youtu.be/nE1C4ghfvac
- https://www.youtube.com/watch?v=r_Pqc9boyIU&list=PLgMDNELGJ1CbufZjqWa8uoSlQWK qVwPN7&index=2&pp=iAQB
- 3. https://www.youtube.com/watch?v=BOUwimpns4U&list=PLgMDNELGJ1CbufZjqWa8uoSlQ WKqVwPN7&index=4&pp=iAQB

CO Vs PO Mapping and CO Vs PSO Mapping

<u> </u>	PO	P01	P01	P01	PSO	PSO								
ιυ	1	2	3	4	5	6	7	8	9	0	1	2	1	2
1	3	2	1			1			1	2				1
2	3	2	1											2
3	3		1											1
4	3		1			1								1
5	3	2	1											3

1-Low, 2-Medium, 3-High

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	10	10	5	5	10
UNDETSTAND	20	20	10	10	20
APPLY	10	10	10	10	10
ANALYZE	20	20	10	10	20
EVALUATE	10	10	5	5	10
CREATE	30	30	10	10	30
	100	100	50	50	100

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1:

- 1. Give the factors responsible in selection of a sensor or actuator.(E)
- 2. Give the advantages and disadvantages of LVDT(E)

COURSE OUTCOME 2:

- 1. State the need of sensors in robotics(E)
- 2. Explain the principle of inductive transducers(E)

COURSE OUTCOME 3:

- 1. Explain the principle of Induction motor(E)
- 2. How a transistor can be operated as a solid state switch.(E)

COURSE OUTCOME 4:

1. Define Microrobots(E)

2. Define Shape memory effect.(E)

COURSE OUTCOME 5:

1. Define sputtering.(E)

2. Give the application of vacuum deposition.(E)

Compiled By: Mrs.S.Subashini, AP/EEE

Verified By

21EE6S01	ARTIFICIAL INTELLIGENCE FOR ROBOTICS	L	Т	Р	С
	(Practical cum Theory)	2	0	4	4
D 11					

Preamble

This course will serve as an introductory robotics course for the design of control of complex robotic systems .The new study program initiated by the Center for Intelligent Cyber-Physical Systems (CICPS) is designed to address these future topics and help to meet the growing need for engineers. Graduates will be able to use scientific methods and analyses for solving complex problems in both practice and research. The program offers several optional modules in the field of Robotics and Artificial Intelligence

Prerequisites for the course

Basic C,C++,

Objectives

1. To learn fundamental image processing and algorithms in vision

2. To learn vison based image Classification, object recognition and object detection

3. To be familiar about the applications regarding vision

4. To analyze the use of image classification Algorithms

5. To design the object recognition.

UNIT I	FUNDAMENTALS OF ROBOTICS	6

Historical Perspective, Specifications of Robots, Classifications of robots, Work envelope, Flexible automation versus Robotic technology, Applications of robotics in active perception, medical robotics, autonomous vehicles, and other areas.

UNIT II	ROBOT SENSING & VISION	6
Use of Sensors	and Sensor Based System in Robotics, Machine Vision System,	, Description, Sensing,
Digitizing, Ima	ge Processing and Analysis, segmentation- Thresholding- ec	lge detection- binary
morphology –	grey morphology and Application of Machine Vision Syster	m, Robotic Assembly

		1 1 /	iu Syllabi					
Sensors and I	ntelligent Sensors, vi	sual servo-control.						
UNIT III		VISION ALGORITHMS		6				
Fundamental	Data Structures: Ima	ages, Regions, Sub-pixel Precise Co	ontours –	Image Enhancemer				
Grav value tra	ansformations. imag	e smoothing. Fourier Transform	– Geomet	ric Transformation				
Image segmer	ntation – Segmentati	on of contours, lines, circles and	ellipses –	Camera calibration				
Stereo Recons	struction.		empoor					
UNIT IV	IMAGE	CLASSIFICATION ALGORITHMS		6				
Regression, lo	jejistic regression, de	cision tree, support vector machi	ne, randoi	n forest, naive Bay				
and knearest	neighbor. Overvie	w of SLAM, Different Approac	hes to SI	AM: Kalman Filt				
ParticleFilters	; / Monte Carlo meth	ods.						
UNIT V	1	OBIECT RECOGNITION		6				
	h	- hingtion of signa						
	ntion, Approaches t			ibination of views				
objects with s	harp edges, using tw	vo views only, using a single view,	use of de	oth values. Histogra				
of oriented gr	adients (HOG)							
		Tota	l Periods	30				
S.No.		List of Experiments		CO				
1	Image Enhanceme operations.	ent, Noise removal, Simple morpho	ological	1				
2	Contouring of obje	ects in an image		1				
3	Edge Detection – F	Roberts and Sobel		2				
4	Rasic Transformat	Pagie Transformations						
	Dasie Transformat	tions		2				
5	Color Image Segm	tions entation algorithm development		2 3				
5 6	Color Image Segm Assuming a set of the naïve Bavesiz	tions entation algorithm development documents that need to be classifi an Classifier model to perform this	ied, use s task.	2 3 4				
5 6 7	Color Image Segm Assuming a set of the naïve Bayesia Built-in Java classe Calculate the acc set	tions entation algorithm development documents that need to be classifi an Classifier model to perform this es/API can be used to write the pr uracy, precision, and recall for you	ied, use s task. ogram. ur data	2 3 4 5				
5 6 7 Suggestive As	Color Image Segm Assuming a set of the naïve Bayesia Built-in Java classe Calculate the acc set Sessment Methods	tions entation algorithm development documents that need to be classifi an Classifier model to perform this es/API can be used to write the pr uracy, precision, and recall for you	ied, use s task. ogram. ur data	2 3 4 5				
5 6 7 Suggestive As Continuous A	Color Image Segm Assuming a set of the naïve Bayesia Built-in Java classe Calculate the acc set ssessment Methods	tions entation algorithm development documents that need to be classifi an Classifier model to perform this es/API can be used to write the pr uracy, precision, and recall for you Formative Assessment Test	ied, use s task. ogram. ur data End Sem	2 3 4 5 ester Exams				
5 6 7 Suggestive As Continuous A (20 Marks)	Color Image Segm Assuming a set of the naïve Bayesia Built-in Java classe Calculate the acc set set setssessment Methods	tions entation algorithm development documents that need to be classifi an Classifier model to perform this es/API can be used to write the pr uracy, precision, and recall for you Formative Assessment Test (20 Marks)	ied, use s task. ogram. ur data End Sem (60 Mar	2 3 4 5 sester Exams ks)				
5 6 7 Suggestive As Continuous A (20 Marks) WRI	Color Image Segm Assuming a set of the naïve Bayesia Built-in Java classe Calculate the acc set ssessment Methods ssessment Test	tions entation algorithm development documents that need to be classifi an Classifier model to perform this es/API can be used to write the pr uracy, precision, and recall for you Formative Assessment Test (20 Marks) 1.ASSIGNMENT	ied, use s task. ogram. ur data End Sem (60 Mar W	2 3 4 5 sester Exams ks) RITTEN TEST				

3.PROBLEM-SOLVING ACTIVITIES

Outcomes

Upon completion of the course, the students will be able to:

- **1** Understand the fundamentals of robotics and its applications.
- 2 Give an understanding of image processing for computer vision
- **3** Focus on early processing of images and the determination of structure: edges, lines, shapes
- **4** Apply computer vision to recognize objects , its trajectory and the basics of visual learning for the purpose of classification
- **5** Learn the applications of vision system in modern manufacturing environment

Text Books

- 1. Richard Szeliski, Computer Vision: Algorithms and Applications, Springer-Verlag London Limited 2018.
- 2. Peter Corke, Robotics, Vision and Control: Fundamental Algorithms, Springer Tracts in Advanced Robotics, Volume 118, Second Edition, 2016

Reference Books

- 1. Robert J. Schilling, "Fundamentals of Robotics Analysis and Control", PHI Learning, 2009.
- 2. Deb S R and Deb S, "Robotics Technology and Flexible Automation", Tata McGraw Hill Education Pvt. Ltd, 2010.

Web Resources:

Lecture 34: Robot Vision https://youtu.be/rYaTu3Y2DMY

CO Vs PO Mapping and CO Vs PSO Mapping

<u> </u>	PO	P01	P01	P01	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	2	1	2
1	2	3	2	2	1	1	3	-	-	-	-	-	-	-
2	3	3	2	2	3	-	3	-	-	-	-	-	-	-
3	2	3	2	2	2	2	3	-	-	-	-	-	-	-
4	3	3	3	3	3	1	3	-	-	-	-	-	-	-
5	2	3	3	3	3	1	3	-	-	-	-	-	-	-

1-Low , 2- Medium, 3- High

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	10	10	5	5	10
UNDETSTAND	30	30	10	10	30
APPLY	60	60	10	10	60
ANALYZE	0	0	0	0	0
EVALUATE	0	0	0	0	0
CREATE	0	0	0	0	0
	100	100	50	50	100

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1:

- 1. Describe any four work envelop of a robot with suitable diagram and mention its applications.
- 2. Illustrate with neat sketch about the basic robot motions.

COURSE OUTCOME 2:

- 1. Explain mono and stereo vision in the context of robot vision digital convolution
- 2. Outline how image segmentation helps to improve quality of images in vision system.

COURSE OUTCOME 3:

- 1. Write a brief note on fundamental Data Structures
- 2. Describe the use of Geometric Transformation

COURSE OUTCOME 4:

- 1. Derive the forward and reverse kinematics with two degree of freedom.
- 2. Organize the teach pendant for Robot system

COURSE OUTCOME 5:

1. Summarize the economic analysis of the robot using EUAC method

2. Explain with an example procedure of applying payback method in the economic analysis of robots.

Compiled By : Mr.N.Subramanian, AP/EEE

Verified By

21667601	DIGITAL IMAGE PROCESSING AND	L	Т	Р	С
21EE/501	MACHINE VISION (Practical cum Theory)	2	0	4	4

Preamble

This advanced course embraces two different contents that are digital image processing and machine vision. The first content imbeds the knowledge on digital image sampling, sharpening, filtering, smoothening and cutting edge technology. The second content of this subject imbeds the knowledge on machine vision, robotic vision control and real time applications.

Prerequisites for the course

- 21EE3604 Signals and System
- 21EE5703 Digital Signal Processing and its applications

Objectives

- 1. To provide knowledge on the basics of digital image processing system
- 2. To apply the filters and enhancing the quality of the image
- 3. To enrich the knowledge on image compression and image recognition
- 4. To imbed the technical knowledge on machine vision in image processing
- 5. To analyze the real time machine vision applications

Syllabus

UNIT - 1	DIGITAL IMAGE FUNDAMENTALS	9

Steps in Digital Image Processing – Components used for DIP – Elements of Visual Perception – Image Sensing and Acquisition – Image Sampling and Quantization - Color image fundamentals - RGB, HSI models, Two-dimensional mathematical preliminaries, 2D transforms.

Francis Xavie	r Engineering College Dept of EEE R2021/Curriculum and Syllabi	i							
UNIT - 2	IMAGE ENHANCEMENT	9							
Spatial Domain: Gray level transformations – Histogram processing – Basics of S Filtering– Smoothing - Sharpening – Edge Detection - Binary Morphology – Butterworth usage in image enhancement - Color image enhancement.									
UNIT - 3	IMAGE COMPRESSION AND RECOGNITION	9							
Need for data compression - Run Length Encoding - Shift codes - Arithmetic coding - Vec Quantization - Transform coding - JPEG standard – MPEG - Boundary representation Topological feature, Texture - Patterns and Pattern classes									
UNIT - 4	UNIT - 4 MACHINE VISION IN IMAGE PROCESSING								
Machine vision and Computer Vision – Benefits of Machine Vision – Block Diagram Function of Machine Vision System - Industrial Machine Vision System - Machine Vi Software.									
UNIT - 5	MACHINE VISION APPLICATIONS	9							
Machine V Technology Vision Gui Augmented	ision Applications in: Manufacturing Industry; Electronics ; Pharmaceutical and Textile Industry - Applications of Non-V ded Robots - Surveillance Robot Vision – Field and Servi Reality.	Industry; Printing Visible Spectrum - ce Applications –							
S.No.	List of Experiment	СО							
1	Simulation and Display of an Image, Negative of an Image (Binary Scale)	& Gray CO1							
2	Contrast stretching of a low contrast image, Histogram, and Histog Equalization	gram CO1							
3	Averaging filter in spatial domain	C02							
4	Canny Algorithm: edge detection, line detection and corner detec	tion CO2							
5	Implementation of image restoring techniques	C03							
6	Robotic Camera Calibration	C04							
7	Project based on Computer Vision Applications	C05							

Francis Xavier Engineering College | Dept of EEE | R2021/Curriculum and Syllabi **Suggestive Assessment Methods Continuous Assessment Test** Lab Components **End Semester Exams** (30 Marks) Assessments (50 Marks) (20 Marks) Written Examination 1. Lab Experiments Written Examination 2. Model Examination **Outcomes** Upon completion of the course, the students will: **CO1**: Able to know the basics of digital image processing system **CO2**: Able to apply the filters to enhance the quality of digital image CO3: Able to understand the concept of image compression and image recognition **CO4**: Able to know the technical operation of machine vision in image processing **CO5**: Able to analyze the real time machine vision applications Text Books 1. B. Venkataramani and M.Bhaskar, "Digital Signal Processors - Architecture, Programming and Applications" - Tata McGraw - Hill Publishing Company Limited. NewDelhi, 2020. **Reference Books** 1. John G. Proakis, Dimitris G. Manolakis, "Digital Signal Processing", Prentice Hall of a. India, New Delhi, 2015. 2. Davies E.R., "Machine Vision Theory, Algorithms and Practicalities", Elsevier, 2016. Web Recourses 1. https://nptel.ac.in/courses/108103174 2. https://onlinecourses.nptel.ac.in/noc19_ee55/preview

CO Vs PO Mapping and CO Vs PSO Mapping

			0			-								
<u> </u>	PO	P01	P01	P01	PSO	PSO								
U	1	2	3	4	5	6	7	8	9	0	1	2	1	2
1	3	2											2	
2	3	2	3	2	3								2	
3	3	2	3	2	3								2	
4	3				2								2	
5	3		3	3	3				2				2	

1-Low, 2- Medium, 3- High

Francis Xavier Engineering College| Dept of EEE | R2021/Curriculum and Syllabi BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	Theory		Lab		END CEMECTED
	CAT-1	CAT-2	Lab Experiments	Model Practical	EXD SEMESTER EXAMINATION
REMEMBER	10	0	0	0	0
UNDERSTAND	40	40	0	0	40
APPLY	40	40	100	100	40
ANALYZE	10	20	0	0	20
EVALUATE	0	0	0	0	0
CREATE	0	0	0	0	0

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1 (CO 1) :

(1) Differentiate sampling and quantization process in image improving technique.

COURSE OUTCOME 2 (CO 2) :

(1) How can we improve the 1st image like 2nd image? Explain about the different techniques.

COURSE OUTCOME 3 (CO 3) :

(1) Explain in details about the canny algorithm in image processing technique.

COURSE OUTCOME 4 (CO 4) :

(1) Differentiate Machine vision and Computer vision.

(2) Draw and explain the block diagram of real time machine vision.

COURSE OUTCOME 5 (CO 5) :

(1) Case Study: Analyze any one of the real time usage of machine vision technology.

Compiled By : Mr.A.Sheik Sidthick, AP/EEE

Verified By