

DST-FIST Supported Institution | ISO 9001:2015 Certified Recognized under Section 2(f) & 12(B) of the UGC Act, 1950 (f)/fxengg)/fxengg /fx_ec
 /fxengg /fxengg
 /francisxavierengineeringcollege

CURRICULUM AND SYLLABI

Choice Based Credit System

Regulations 2024

M.Tech – Information Technology

Department Vision

To attain global recognition in Information Technology education and training and to meet the growing needs of the industry and society.

Department Mission

Imparting quality education for the challenging needs of the IT industry with ethics and to reach the unreached through technological development. * Promote new uses of Information Technology within the institution through the support for exploratory and innovative applications

DEPARTMENT OF INFORMATION TECHNOLOGY

TABLE OF CONTENT

S.No	Content	Page No
1	Programme Educational Outcomes (PEOs)	3
2	Programme Outcomes(POs)	3
3	Programme Specific Objectives (PSOs)	4
4	Mapping with PO Vs PEO, PSO	4
5	Summary of Credit Distribution	5
6	I – IV Semester Curriculum	6
7	List of Foundation Courses, Employability Enhancement Course	8
8	List of Professional Electives Courses	8
9	First Semester Syllabus	
10	Second Semester Syllabus	

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

- 1. To enable graduates to excel professionally by adapting to the dynamic needs of the industry, academia and research in the field of Information Technology.
- 2. To enable graduates to practice and promote information technologies for societal needs.
- 3. To enable graduates to contribute to advancement of information technology by means of research and lifelong learning.

PROGRAM OUTCOMES (POs)

Engineering Graduates will be able to:

- a. **Engineering Knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- b. **Problem Analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- c. **Design/Development of Solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- d. **Conduct Investigations of Complex Problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- e. **Modern Tool Usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- f. **The Engineer and Society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice. Environment and Sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- g. Environment and Sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- h. **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- i. Individual and Team Work: Function effectively as an individual, and as a member or leader in

diverse teams, and in multidisciplinary settings.

j. Life-Long Learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs)

- 1. To analyze, design and develop applications relevant to the industrial needs.
- 2. To apply software engineering principles and practices for developing quality software for scientific and business applications.
- 3. To develop programs related to IT services based on open source technologies.

MAPPING OF PROGRAMME EDUCATIONAL OBJECTIVES WITH PROGRAMME OUTCOMES

A broad relation between the programme objective and the outcomes is given in the table

PROGRAMME		Р	ROG	RAM	ME C	OUTC	OME	CS (PC))	
EDUCATIONAL OBJECTIVES(PEO)	a	b	c	D	e	f	g	h	i	j
PEO 1	М	Н	М	Н				L	L	М
PEO 2	Н				Н		М		L	L
PEO 3		Н		М	М	М	М	Н	М	

Contribution L: Low / Reasonable M: Medium / Significant H:High / Strong

FRANCIS XAVIER ENGINEERING COLEGE

M.TECH INFORMATION TECHNOLOGY

REGULATION 2024

CHOICE BASED CREDIT SYSTEM AND OUTCOME BASED EDUCATION

C No	Catagory		•	Tatal Cuadita		
S.No	Category	Ι	II	III	IV	- Total Credits 4 34 15 19
1	FC	4				4
2	РС	20	14			34
3	РЕ		6	9		15
4	EEC		1	6	12	19
	Total		21	15	12	72

SUMMARY OF CREDIT DISTRIBUTION

Total No. of Credits: 72

- FC Foundation Course
- PC Professional Core
- PE Professional Elective
- EEC Employability Enhancement Course

FRANCIS XAVIER ENGINEERING COLLEGE M. TECH – INFORMATION TECHNOLOGY REGULATION 2024

CHOICE BASED CREDIT SYSTEM AND OUTCOME BASED EDUCATION I – IV SEMESTER CURRICULUM AND SYLLABI

S.No	Course Code	Course Name	Category	Contact Periods	L	Т	Р	С
Theo	ry Courses							
1	24MA1254	Statistical Estimation and Random Variables	FC	4	3	1	0	4
2	24IF1601	Advanced Data Structures and Algorithm Design Techniques	РС	3	3	1	0	4
3	24IF1602	Multicore Architecture	РС	3	3	0	0	3
4	24IF1603	Modern Operating System	РС	3	3	0	0	3
5	24IF1604	Advanced Network Security Systems	РС	3	3	0	0	3
6	24IF1605	Software Testing and Project Management	РС	3	3	0	0	3
Pract	ical Courses							
1	24IF1611	Advanced Data Structures Laboratory using Java	РС	4	0	0	4	2
2	24IF1612	Advanced Operating System Laboratory	РС	4	0	0	4	2
		Total		27	18	2	8	24

SEMESTER I

SEMESTER II

S.No	Course Code	Course Name	Category	Contact Periods	L	Т	Р	С
Theor	ry Courses							
1	24IF2601	Machine Learning Techniques	РС	3	3	0	0	3
2	24IF2602	Research Methodologies	РС	3	3	0	0	3
3	24IF2603	Database Technologies	РС	3	3	0	0	3
4	24IF2604	Digital Image Processing and Pattern Recognition	РС	3	3	0	0	3
5		Professional Elective - I	PE	3	3	0	0	3
6		Professional Elective - II	PE	3	3	0	0	3
Pract	ical Courses							
1	24IF2611	Database Technologies Laboratory	РС	4	0	0	4	2
2	24IF2612	Technical Paper Writing and Seminar	EEC	2	0	0	2	1
		Total		24	18	0	6	21

SEMESTER III

S.No	Course Code	Course Name	Category	Contact Periods	L	Т	Р	С
Theor	ry Courses							
1		Professional Elective – III	PE	3	3	0	0	3
2		Professional Elective – IV	PE	3	3	0	0	3
3		Professional Elective - V	PE	3	3	0	0	3
Pract	ical Courses							
1	24IF3611	Innovative Project Phase - I	EEC	12	0	0	12	6
		Total		21	9	0	12	15
		Total	I	21	9	0	12	

SEMESTER IV

S.No	Course Code	Course Name	Category	Contact Periods	L	Т	Р	С
Pract	ical Courses							
1	24IF4611	Innovative Project Phase - II	EEC	24	0	0	24	12
		Total		24	0	0	24	12

		PROFESSIONAL ELECTIVES							
S.No	Course Code	Course Name	L	Т	Р	C			
		PROFESSIONAL ELECTIVE I	I						
1	24IF2701	Statistical Method for Machine Learning	3	0	0	3			
2	24IF2702	Cloud Computing Technologies	3	0	0	3			
3	24IF2703	Software Defined Networks	3	0	0	3			
4	24IF2704	Soft Computing and Fuzzy Logic	3	0	0	3			
		PROFESSIONAL ELECTIVE II	I		1	I			
1	24IF2705	Data Visualization and Interpretation	3	0	0	3			
2	24IF2706	Big Data Acquisition	3	0	0	3			
3	24IF2707	Augmented Reality and Virtual Reality	3	0	0	3			
4	24IF2708	Genetic Algorithms	3	0	0	3			
PROFESSIONAL ELECTIVE III									
1	24IF3701	Artificial Neural Networks	3	0	0	3			
2	24IF3702	Big Data Mining and Analytics	3	0	0	3			
3	24IF3703	Network and Digital Forensics	3	0	0	3			
4	24IF3701	Artificial Neural Networks	3	0	0	3			
	I	PROFESSIONAL ELECTIVE IV	1		1				
1	24IF3704	Deep Learning Techniques	3	0	0	3			
2	24IF3705	Social Network Analysis for Big Data	3	0	0	3			
3	24IF3706	Block Chain Technology	3	0	0	3			
4	24IF3704	Deep Learning Techniques	3	0	0	3			
	I	PROFESSIONAL ELECTIVE V			I	1			
1	24IF3707	Natural Language Processing	3	0	0	3			
2	24IF3708	Big Data Security	3	0	0	3			
3	24IF3709	Quantum Computing	3	0	0	3			

4	24IF3710	Multi Objective Optimization	3	0	0	3	

FRANCIS XAVIER ENGINEERING COLLEGE

DEPARTMENT OF INFORMATION TECHNOLOGY

PG - REGULATION 2024

STREAM / DOMAIN WISE PROFESSIONAL ELECTIVE COURSES

Professio nal Elective	SEM	Data Science	Big Data Analytics	Advanced Computing	AI and ML
PE I	II	Statistical Method for Machine Learning	Technologies Networks a		Soft Computing and Fuzzy Logic
PE II	II	Data Visualization and Interpretation	ata Augmented ization Big Data Reality and nd Acquisition Virtual		Genetic Algorithms
PE III	III	Artificial Neural Networks	Big Data Mining and Analytics	Network and Digital Forensics	Artificial Neural Networks
PE IV	III	Deep Learning Techniques	0		Deep Learning Techniques
PE V	III	Natural Language Processing	Big Data Security	Quantum Computing	MultiObjective Optimization

24MA1254	STATISTIC	AL ESTIMATION AND RANDOM		L	Τ	Р	С
		VARIABLES		3	1	0	4
Preamble			1. 1	1.	· · ·		1
0	0	s to have some basic mathematica				-	
		neering. This emphasizes the de he student and appraises him the					
		t occur in engineering. Based on					
		y and estimation theory.	tins, tin	c cou	ise ai	ins at	511115
	for the course						
The students	should have the a	bility to use the appropriate and	d releva	nt, fu	ndam	ental	and
	ematical and statis						
Objectives							
To intro	oduce the basic cor	ncepts of random variables.					
To intro	oduce the basic cor	ncepts of two dimensional random	n variab	les.			
To have	e knowledge in prin	nciples of estimation theory.					
 To acqu 	uire the knowledge	e of testing hypotheses for small a	nd large	e sam	ples tl	his pla	iys an
import	ant role in real life	problems.					
To intro	oduce the basic cor	ncepts of multivariate analysis					
UNIT I	PROBABILITY A	AND RANDOM VARIABLES				9+3	
Probability – A	Axioms of probabil	ndom v	ariab	les - P	robab	ility	
function – Mo	ments – Moment g	generating functions and their pro-	operties	s – Bir	nomia	l, Pois	son,
		ns – Function of a random variab	le.				
UNIT II	TWO DIMENSIO	ONAL RANDOM VARIABLES				9+3	
		ariables – Marginal distributions					
Covariance – (Correlation coeffici	ents for two dimensional random	ı variabl	es foi	statis	tical c	lata.
UNIT III	ESTIMATION T	HEORY				9+3	
Unbiased estir	nators – Method o	of moments – Maximum likelihoo	d estim	ation	- Cur	ve fitt	ing by
		ession lines for two dimensional					
data.							
UNIT IV	TESTING OF HY	POTHESIS				9+3	
Sampling distr	ibutions and Stand	dard Error - Small samples and la	rge sam	ples ·	Test	of	
hypothesis - T	`уре I, Туре II Erro	rs - Large sample tests for mean -	-Small s	ampl	e tests	for m	ean
	^	ution -Test of independence of att	ributes.				
	MULTIVARIATE			14 1.		9+3	
		Mean vectors and covariance ma					mal
		incipal components - Population ndardized variables.	i princij	bal co	mpon	ients	
	iiponents nom star	Total P	eriods		45+	-15	
Suggestive As	ssessment Metho		crious		10.	10	
	ssessment Test	Formative Assessment Test	End	Seme	ster E	Exams	
(30 Ma)	rks)	(10 Marks)	(60 N	Jark	5)		

1. Descriptive Questions

Assignment
 Online quizzes

Out	come	5												
Upo	n con	pletio	on of t	he cou	ırse, t	he stu	dents	will b	oe able	e to:				
1	A	pply tl	he fun	damen	ital kn	owled	ge of n	nomer	its and	distrib	utions (Apply)		
2		Apply	the ba	isic coi	ncepto	of two	dimen	isiona	l rando	om varia	able in e	enginee	ring app	lication. (Apply)
3	A	pply C	onsist	ency a	nd effi	iciency	7 of est	imato	r (App	oly)				
4		lesting roblen			is for l	arge s	ample	s and s	small s	amples	in real l	life		
5	A	pply tl	he Mu	ltivari	ate sta	tistica	l analy	vsis. (A	pply)					
Refe	erence	e Booł	KS											
1.	Deve	ore, J. I	, —Pr	obabil	ity and	d Statis	stics fo	or Engi	neerir	ng and t	he Scier	icesII, 81	th Editio	on,
	Ceng	gage le	arning	g, 2014	ŀ									
2.	John	son, R	.A., Mi	ller, I a	nd Fre	eund J.	, "Mill	er and	Freun	d's Prol	bability	and Sta	itistics f	or
	Engi	neers	", Peai	rson Ec	ducatio	on, Asi	a, 8th	Editio	n, 201	5.	-			
Wel	-	urces							<u> </u>					
1.	Pro	babilit	vand	randor	n varia	ables -	https:	//vou	tu.be/	COIOBU	mNHT8	3		
2.			•				· ·				BvzYSO			
3.				y - <u>htt</u>										
3. 4.				nesis -			- C		-	G				
4. 5.				lysis - l										
				nd CO V	· ·	10	,							
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PS
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	02
1	3	1								3				
2	3	1								2				
3	1	1								2				
4	3	1								2				
5	3	1								3				

ADVANCED DATA STRUCTURES AND ALGORITHM DESIGN TECHNIQUES

Preamble

Building upon the fundamental principles learned in introductory courses, this course aims to deepen students' understanding of complex data structures and sophisticated algorithmic strategies, equipping them with the skills necessary to tackle challenging computational problems.

Prerequisites for the course

NIL

Objectives

- 1. To extend the students' knowledge of algorithms and data structures.
- 2. To enhance their expertise in algorithmic analysis and algorithm design techniques.
- 3. To understand various types of search and heap structures.
- 4. To study various types of geometric, randomized and approximation algorithms.
- 5. To extrapolate from them in order to apply those algorithms and techniques to solve problems.

UNIT I INTRODUCTION

12

Importance and need of good data structures and algorithms - Dictionaries: Definition, Dictionary, Abstract Data Type – Properties of Big-oh Notation –Conditional Asymptotic Notation – Algorithm Analysis – Amortized Analysis – Recurrence Equations - collision Resolution techniques in hashing

UNIT II	DIGITAL SEARCH STRUCTURES	12

Binary Search Trees – AVL Trees – Red-Black trees – Multi-way Search Trees –B-Trees – Splay Trees – Tries

UNIT III	GRAPH AND HEAP STRUCTURES	12
----------	----------------------------------	----

Single-Source Shortest Paths: The Bellman-Ford algorithm–All- Pairs Shortest Paths: Shortest Paths and Matrix Multiplication–The Floyd-Warshall Algorithm; HEAP: Min/Max heaps – Deaps – Leftist Heaps – Skew Heaps – Lazy Binomial Heaps

U	INIT IV		GEOM	ETRIC ALGO	ORITHMS		12	
-	-	4		a).				

Segment Trees – 1-Dimensional Range Searching – k-d Trees – Line Segment Intersection -Computing the Overlay of Two Subdivisions – Voronoi Diagram

UNIT VAPPROXIMATION ALGORITHMS12

Approximation Algorithms: Introduction to NP-Completeness/NP-Hard - Vertex Cover & Euclidean Travelling Salesperson Problem – Randomized Algorithms: Closest Pair Problem & Minimum Spanning Trees – Online Algorithm: Euclidean Spanning Tree

Total Periods	60

C	ontinu				est	Forma				Гest	End		ter Exa	ms	
1	DECCE	-	Marks)		IC	(10 Marks)(60 Marks)1. TUTORIAL PROBLEMS1. DESCRIPTIVE QUESTIONS									
	DESCR PROBI					1. TOTORIAL PROBLEMS1. DESCRIPTIVE QUESTIONS2. ASSIGNMENT2. PROBLEM SOLVING									
2.	FRUD		ULVIN	G		2. ASS 3. QUI				4	2. FKUD	LEM SC			
01	itcome	26													
	Upon completion of the course, the students will be able to:														
	CO1 – Design data structures and algorithms to solve computing problems														
CO	CO2 – Design algorithms using graph structure and various string-matching algorithms to solve real-life problems														
CO	93 – Ap	ply sui	itable o	design	strateg	gy for p	oroblei	n solv	ing						
CO	4 – Co	mpreh	end ar	nd sele	ct algo	rithm o	design	appro	aches	in a pro	blem sp	ecific n	nanner.		
CO	95 – Un	dersta	nd the	neces	sary m	athem	atical a	abstra	ction to	o solve	problen	15.			
Те	xt Boo	ok:													
1.	Maxv	vell Ri	vers "I	Data St	ructur	es and	Algori	thms i	n Java	: A com	prehen	sive Gui	de , 202	3	
Re	feren	ce Boo	ks												
1.	Narasi	mha ka	aruma	nchi, "I	Data St	ructur	es and	algori	thms n	nade ea	asy", Fift	h Editic	on, Care	er	
Мо	onk pu	blicati	ons, 20)21.											
2.				-			Ander	son-Fr	eed, "	Fundar	nentals	of Data	a Struct	ures in	
	Secon			-					Marila	0	"C				
3.	магк gorithr		0		0						ars, Co	mputati	ional Ge	ometry	
4.	-						_	_			ein,"Int	roductio	onto		
Alg	gorithr								·		·				
W	eb Res	ource	S												
1.	htt	ps://n	ptel.ad	c.in/co	urses/	106/1	02/10	61020	64/						
2.	htt	ps://n	ptel.ac	.in/co	urses/	106/1	03/10	61030	69/						
3.	htt	ps://n	ptel.a	c.in/co	urses/	106/1	06/10	61061	31/						
4.	htt	ps://n	ptel.a	c.in/co	urses/	106/1	05/10	61051	57/						
C(CO Vs PO Mapping and CO Vs PSO Mapping														
СО	PO	РО	РО	РО	PO	PO	РО	РО	PO	РО	РО	РО	PSO	PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1	3		3			3							3		
2		3			3				3				3		
3			3			3		3					3		
4				3			3			3			3		
5			3 3 3 3 3												

BLO	OMS LEVEL ASSESS	MENT PATTER	RN			
	BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
	REMEMBER					
	UNDERSTAND	40	40	10	10	40
	APPLY	60	60	15	15	60
	ANALYZE					
	EVALUATE					
	CREATE					

24IF1602	ΜΗ ΤΙCODE ΑΡΟΠΤΕΟΤΗΡΕ	L	Т	Р	С
	MULTICORE ARCHITECTURE	3	0	0	3
Preamble					
modern comp As we transiti	rovides a comprehensive exploration of parallel programmi- uting essential for leveraging the capabilities of multi-core and on from single-core to multi-core architectures, understandir arallel programming becomes paramount for optimizing perform plications.	distr ng the	ibute prin	ed sys nciple	stems. es and
Prerequisites	s for the course				
NIL					
Objectives					
 To und To lear To imp 	erstand the need for multi-core processors, and their architect erstand the challenges in parallel and multithreaded programm n about the various parallel programming paradigms lement and optimize MPI programs. elop multicore programs and design parallel solutions.				
UNIT I	MULTI-CORE PROCESSORS			9	
-	Multi-core architectures – SIMD and MIMD systems – Interco d Distributed Shared Memory Architectures – Cache coherence gram design.				
UNIT II	PARALLEL PROGRAM CHALLENGES			9	
primitives (m	 Scalability – Synchronization and data sharing – Data race utexes, locks, semaphores, barriers) – deadlocks and liveloc ids (condition variables, signals, message queues and pipes). 		-		
UNIT III	SHARED MEMORY PROGRAMMING WITH OPENMP			9	
-	ution Model – Memory Model – OpenMP Directives – Work- ons – Handling Data and Functional Parallelism – Handling I s.		-		
UNIT IV	DISTRIBUTED MEMORY PROGRAMMING WITH MPI			9	
	execution – MPI constructs – libraries – MPI send and receive munication – MPI derived datatypes – Performance evaluation		nt-to	o-poir	nt and

UNIT VPARALLEL PROGRAM DEVELOPMENT9Case studies - n-Body solvers - Tree Search - OpenMP and MPI implementations and comparison.Total Periods45

Suggestive Assessment MethodsContinuous Assessment Test
(30 Marks)Formative Assessment Test
(10 Marks)End Semester Exams
(60 Marks)

1. DESCRIPTIVE QUESTIONS

2. PROBLEM SOLVING

ASSIGNMENT
 QUIZZES

1. DESCRIPTIVE QUESTIONS 2. PROBLEM SOLVING

Outcomes

Upon completion of the course, the students will be able to:

CO1 – Describe multicore architectures and identify their characteristics and challenges

CO2 – Identify the issues in programming Parallel Processors.

CO3 – Write programs using OpenMP and MPI

CO4 – Design parallel programming solutions to common problems

CO5 – Compare and contrast programming for serial processors and programming for parallel processors.

Text Books

1. Peter S. Pacheco, "An Introduction to Parallel Programming, Morgan-Kauffman/Elsevier, 2021.

Reference Books

- 1. Darryl Gove, "Multicore Application Programming for Windows, Linux, and Oracle Solaris, Pearson, 2011
- 2. Michael J Quinn, "Parallel programming in C with MPI and OpenMP, Tata McGraw Hill, 2003.
- 3. Victor Alessandrini, Shared Memory Application Programming, 1st Edition, Concepts and Strategies in Multicore Application Programming, Morgan Kaufmann, 2015
- 4. Yan Solihin, Fundamentals of Parallel Multicore Architecture, CRC Press, 2015

Web Resources

https://onlinecourses.nptel.ac.in/noc23 cs113/preview

CO Vs PO Mapping and CO Vs PSO Mapping

со	РО 1	P0 2	РО 3	РО 4	РО 5	РО 6	РО 7	РО 8	РО 9	P0 10	P0 11	P0 12	PSO 1	PSO 2
1	3	3		3									3	
2		3	3	3									3	
3	3	3	3									3		
4	1	2	3	3	3									
5	2	1	2	2	3	1						1		

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	20	20	5	5	20
UNDERSTAND	50	50	10	10	50
APPLY	30	30	10	10	30
ANALYZE					
EVALUATE					
CREATE					

24IF1603	MOL	DERN OPERATING SYSTEMS	ERN OPERATING SYSTEMS								
Preamble											
	uld have the basic l	knowledge on Operating Systems	5								
Prerequisites fo											
NIL											
Objectives											
-	overtand the modern	an avating systems									
 Be able to understand the modern operating systems. Learn how the processes are implemented in operating system. 											
		f the distributed operating system.	ms								
	-	em and concurrency control algo									
-		on happens in mobile operating									
UNIT I		OCESS SYNCHRONIZATION	5			9					
		System Architectures – Struct	ures of OS		des		<u></u>				
-		cheduling and Allocation – mem				, igii i	55465				
UNIT II	DISTRI	BUTED OPERATING SYSTEMS				9					
Distributed Oper	ating Systems: Syst	em Architectures – Design issue:	s – Commu	nicatio	on m	odels	-Clock				
synchronization	 mutual exclusion 	– election algorithms – Distribut	ed Deadloc	k dete	ectio	n					
UNIT III	DI	STRIBUTED SCHEDULING				9					
	duling – Distribute acement – Catching	ed shared memory – Distribute	ed File sys	tem -	- Mu	ıltime	dia file				
						0					
UNIT IV		ABASE OPERATING SYSTEM				9					
*		quirements of Database OS – rrency control algorithms.	Transacti	on p	roce	ess m	odel –				
UNIT V	MO	BILE OPERATING SYSTEMS				9					
Architectures – U		and Intel architectures – Po ernel structure and native level		0							
		Tota	l Periods			45					
Suggestive Asse	ssment Methods			1							
	ssessment Test	Formative Assessment Test	End	Seme			ns				
(30 N	/larks)	(10 Marks)		(60 N	/lark	ks)					
1. DESCRIPTIVE	QUESTIONS	MCQ,SEMINAR,	1. DESCR	IPTIV	E QI	UEST	IONS				
2. MCQ		ASSIGNMENT	2. MCQ								
Outcomes		1									

Upon completion of the course, the students will be able to:

CO1 To study the characteristics of OS for Multiprocessor and Multicomputer.

CO2 To learn the issues related to designing OS.

CO3 To identify the functionality of distributed Operating Systems.

CO4 To explain the concepts of distributed scheduling.

CO5 To analyze the issues related to database Operating System

Reference Books

1.A S Tanenbaum, Distributed Operating Systems, Pearson Education Asia, 2002

2.Source Wikipedia, Mobile Operating Systems, General Books LLC, 2010

3.M Singhal and NG Shivaratri, Advanced Concepts in Operating Systems, Tata McGraw HillI nc, 2001.

CO Vs PO Mapping and CO Vs PSO Mapping

										r				
со	РО 1	РО 2	РО 3	РО 4	РО 5	РО 6	РО 7	РО 8	РО 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
1	2					1						1		
2		2	1	2										
3	1	2		3		1						2		
4	1		3		2	1						2		
5		2	3	2		2								
6			2	1	3		1							2

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER					
UNDERSTAND	40	40	10	10	40
APPLY	60	60	15	15	60
ANALYZE					
EVALUATE					

24IF1604	ADVANCE	D NETWORK SECURITY SYSTEMS			Т	Р	С
				3	0	0	3
Prerequisites	s for the course						
The students s	should have the fund	lamental knowledge on Computer I	Networks	5.			
Objectives							
1. To learn	n security mechanism	ns and techniques to provide secur	rity servi	ces.			
2. To be ex	xposed to symmetric	c & asymmetric key algorithms and	key mar	agen	nent	aspec	ts.
3. To learn	n the algorithms usir	ng encryption and authentication.					
4. To learn	n about the Network	Security Applications.					
5. To explo	ore the security at sy	rstem level					
UNIT I	SYMMETRIC	& ASYMMETRIC KEY ALGORITH	MS			9	
	Ciphers, Transposit of operation - AES C	tion Ciphers, Data Encryption Stand Sipher.	dard (DE	S) – 1	Гripl	e DES	, Block
UNIT II	PUI	BLIC KEY CRYPTOGRAPHY				9	
Introduction 1	to number Theory: N	/odular Arithmetic - Euclid's Algor	ithm - Fe	rmať	's an	d Eula	ar's
		er Theorem and Discrete Logarithm s – Needham Schroeder Protocol.	s. Public	Key C	rypt	ograp	hy and
UNIT III		AUTHENTICATION				9	
Hash Algorith	-	AUTHENTICATION igest Algorithm – Secure Hash Algo are Standard – User Authentication			MD-1	-	НМАС
Hash Algorith	-	igest Algorithm – Secure Hash Algo			MD-1	-	HMAC
Hash Algorith Digital Signatu UNIT IV Entity Authen	rres – Digital Signatu tication: Password	igest Algorithm – Secure Hash Algo are Standard – User Authentication	Protoco sswords	ls. (S/K	ey)	160 – 9 RFC 2	2289 -
Hash Algorith Digital Signatu UNIT IV Entity Authen	tication: Password ms, Zero Knowledge	igest Algorithm – Secure Hash Algo are Standard – User Authentication TRUSTED IDENTITY System- Fixed and One time Pas	Protoco sswords	ls. (S/K	ey)	160 – 9 RFC 2	2289 -
Hash Algorith Digital Signatu UNIT IV Entity Authen Callback Syste UNIT V	tication: Password ms, Zero Knowledge	igest Algorithm – Secure Hash Algo are Standard – User Authentication TRUSTED IDENTITY System- Fixed and One time Pase e, Challenge and Response Systems	Protoco sswords – RADIU	ls. (S/K [S]	ey) ITU-'	9 RFC 2 T X.50 9	2289 -
Hash Algorith Digital Signatu UNIT IV Entity Authen Callback Syste UNIT V Intrusion dete	ares – Digital Signatu atication: Password ms, Zero Knowledge St ection – password m	igest Algorithm – Secure Hash Algo are Standard – User Authentication TRUSTED IDENTITY System- Fixed and One time Pase e, Challenge and Response Systems	Protoco sswords – RADIU 'hreats –	ls. (S/K S] Virus	ey) ITU-' : Cou	9 RFC 2 T X.50 9 nter	2289 -)9.
Hash Algorith Digital Signatu UNIT IV Entity Authen Callback Syste UNIT V Intrusion dete Measures - Fir	ares – Digital Signatu atication: Password ms, Zero Knowledge St ection – password m	igest Algorithm – Secure Hash Algo are Standard – User Authentication TRUSTED IDENTITY System- Fixed and One time Pase c, Challenge and Response Systems YSTEM LEVEL SECURITY anagement – Viruses and related T oles – Trusted Systems - Firewall - O	Protoco sswords – RADIU 'hreats –	ls. (S/K S] Virus	ey) ITU-' : Cou	9 RFC 2 T X.50 9 nter	2289 -)9.
Hash Algorith Digital Signatu UNIT IV Entity Authen Callback Syste UNIT V Intrusion dete Measures - Fir	ares – Digital Signatu atication: Password ms, Zero Knowledge St ection – password m rewall Design Princip	igest Algorithm – Secure Hash Algo are Standard – User Authentication TRUSTED IDENTITY System- Fixed and One time Pase e, Challenge and Response Systems YSTEM LEVEL SECURITY anagement – Viruses and related T oles – Trusted Systems - Firewall - G on Hosts	Protoco sswords – RADIU 'hreats –	ls. (S/K S] Virus	ey) ITU-' : Cou nitec	9 RFC 2 T X.50 9 nter	2289 -)9.
Hash Algorith Digital Signatu UNIT IV Entity Authen Callback Syste UNIT V Intrusion dete Measures - Fir Filtering, Prox	ares – Digital Signatu atication: Password ms, Zero Knowledge St ection – password m rewall Design Princip	igest Algorithm – Secure Hash Algo are Standard – User Authentication TRUSTED IDENTITY System- Fixed and One time Pase e, Challenge and Response Systems YSTEM LEVEL SECURITY anagement – Viruses and related T oles – Trusted Systems - Firewall - O on Hosts Total	Protoco sswords – RADIU hreats – Concepts	ls. (S/K S] Virus	ey) ITU-' : Cou nitec	9 RFC 2 Γ X.50 9 nter ture, I	2289 -)9.
Hash Algorith Digital Signatu UNIT IV Entity Authen Callback Syste UNIT V Intrusion dete Measures - Fir Filtering, Prox	ares – Digital Signatu atication: Password ms, Zero Knowledge St ection – password m rewall Design Princip y Services and Basti	igest Algorithm – Secure Hash Algo are Standard – User Authentication TRUSTED IDENTITY System- Fixed and One time Pase e, Challenge and Response Systems YSTEM LEVEL SECURITY anagement – Viruses and related T oles – Trusted Systems - Firewall - O on Hosts Total	Protoco sswords – RADIU hreats – Concepts Periods	ls. (S/K S] Virus	ey) ITU-' : Cou nitec	9 RFC 2 Γ X.50 9 nter ture, I 45	2289 -)9.
Hash Algorith Digital Signatu UNIT IV Entity Authen Callback Syste UNIT V Intrusion dete Measures - Fir Filtering, Prox Suggestive As Continuo	ares – Digital Signatu atication: Password ms, Zero Knowledge Stection – password m rewall Design Princip y Services and Basti sessment Methods	igest Algorithm – Secure Hash Algo are Standard – User Authentication TRUSTED IDENTITY System- Fixed and One time Pase , Challenge and Response Systems YSTEM LEVEL SECURITY anagement – Viruses and related T oles – Trusted Systems - Firewall - O on Hosts Total	Protoco sswords – RADIU hreats – Concepts Periods	ls. (S/K S) Virus , Arch End S	ey) ITU- Cou nitec	9 RFC 2 Γ X.50 9 nter ture, I 45	2289 -)9. Packet
Hash Algorith Digital Signatu UNIT IV Entity Authen Callback Syste UNIT V Intrusion dete Measures - Fir Filtering, Prox Suggestive As Continuo Test (ares – Digital Signatu atication: Password ms, Zero Knowledge Stection – password m rewall Design Princip y Services and Basti sessment Methods us Assessment	igest Algorithm – Secure Hash Algo are Standard – User Authentication TRUSTED IDENTITY System- Fixed and One time Pase e, Challenge and Response Systems YSTEM LEVEL SECURITY anagement – Viruses and related T oles – Trusted Systems - Firewall - O on Hosts Total Formative Assessment	Protoco sswords – RADIU hreats – Concepts Periods	ls. (S/K S 1 Virus , Arch End S ams (ey) ITU- Cou nitec Seme (60 I	9 RFC 2 Γ X.50 9 nter ture, 1 45	2289 -)9. Packet
Hash Algorith Digital Signatu UNIT IV Entity Authen Callback Syste UNIT V Intrusion dete Measures - Fir Filtering, Prox Suggestive As Continuo Test (ares – Digital Signatu atication: Password ms, Zero Knowledge Stection – password m rewall Design Princip y Services and Basti sessment Methods us Assessment (30Marks)	igest Algorithm – Secure Hash Algo are Standard – User Authentication TRUSTED IDENTITY System- Fixed and One time Pase e, Challenge and Response Systems YSTEM LEVEL SECURITY anagement – Viruses and related T oles – Trusted Systems - Firewall - O on Hosts Total Formative Assessment Test (10Marks)	Protoco sswords – RADIU hreats – Concepts Periods	ls. (S/K S 1 Virus , Arch End S ams (ey) ITU- Cou nitec Seme (60 I	9 RFC 2 T X.50 9 nter ture, 1 45 45	2289 -)9. Packet

Outcomes

Upon completion of the course, the students will be able to :

CO1 Apply the mathematical foundations in security principles.

CO2 Identify the features of encryption and decryption.

CO3 Apply various Encryption, Authentication and Digital Signature Algorithms.

CO4 Deal with different general purpose and application specific Security Protocols and Techniques.

CO5 Understand the Network Security Applications at system level.

Reference Books

- 1. William Stallings, "Cryptography and Network Security Principles and Practices", 5th Edition, Pearson Education, 2015.
- Behrouz A. For uzan and Debdeep Mukhopadhyay, "Cryptography and Network Security", 2nd Edition, Tata Mc Graw - Hill, 2016.
- 3. Bruice Schneier, "Applied Cryptography: Protocols, Algorithms and Source Code in C", 2nd Edition, Wiley India (P) Ltd., 2008.
- Charles P. P fleeger and Shari Lawrence P fleeger, "Security in Computing", 4th edition, Pearson Education, 2011.

CO Vs PO Mapping and CO Vs PSO Mapping

СО	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P01 1	P01 2	PSO1	PSO2
C01	3		2	1										3
CO2	2	2	3											2
CO3			2	2	3									2
CO4	1			2				2	2					2
CO5	2		1					2	2					2

SOFTWARE TESTING AND PROJECT MANAGEMENT

L

3

Preamble

It is a part of project management in which software projects are planned, implemented, monitored, and controlled. This article focuses on discussing Software Project Management

Prerequisites for the course

NIL

Objectives

- 1. To understand the need of software engineering
- 2. To understand various Lifecycle models
- 3. To understand requirement analysis and specifications
- 4. To understand Design Concepts
- 5. To know Software Project Management

UNIT I	REQUIREMENTS ANALYSIS AND DESIGN	9

Requirement Analysis – Analysis process, Requirements specification, desirable characteristics of an SRS, structure of an SRS document, Data Flow Diagrams - Role of Software Architecture and Architecture Views - Planning for a Software Project Software Design - Software design concepts -Function Oriented Design and its Complexity Metrics - Object Oriented Design and its Complexity Metrics - Detailed Design.

UNIT II	SOFTWARE TESTING	9
Overview of te	sting- Need for software testing – Testing principles – STLC m	odels Testing in STLC
models: Unit T	esting, Integration Testing, System Testing, Acceptance Testing	g. Testing of software
attributes: Sm	oke test, functional testing, usability testing, security, complian	nce testing.

UNIT III	SOFTWARE IMPLEMENTATION AND TESTING	9
----------	-------------------------------------	---

Software Coding - Programming principles and coding guidelines - method of incrementally developing code - managing the evolving code Testing - Unit testing and Code Inspection - Testing concepts and testing process - Design of Test case and Test plan - Black-box testing - White box testing

UNIT IVSOFTWARE PROJECT MANAGEMENT9

Software Project Management Framework - methods to estimate project time and cost, Resource Management, Identification, Analysis, mitigation, and monitoring of Project Risks - Ensuring Project quality and quality management, Configuration Management, change management, CMMI, different levels and need of accreditation

UNIT V	SPM TOOLS	9
Software proje	ect management using Primavera & Redmine and case study or	n SPM tools like

Selenium, Test-sigma, Lambda Test, Apache J-Meter, Test Complete. **Total Periods** 45 **Suggestive Assessment Methods Continuous Assessment Test End Semester Exams Formative Assessment Test** (30 Marks) (10 Marks) (60 Marks) **1. DESCRIPTIVE QUESTIONS 1. TUTORIAL PROBLEMS 1. DESCRIPTIVE QUESTIONS** 2. PROBLEM SOLVING 2. ASSIGNMENT 2. PROBLEM SOLVING 3. QUIZZES **Outcomes** Upon completion of the course, the students will be able to: CO1 – Apply project management concepts and techniques to an IT project. CO2 – Identify issues that could lead to IT project success or failure. CO3 – Explain project management in terms of the software development process. CO4 – Describe the responsibilities of IT project managers. CO5 – Apply project management concepts through working in a group as team leader **Text Books** 1. Software Engineering, A Precise Approach: Pankaj Jalote, Wiley India-2010 2. Software Project Management : Saikat Dutt /S. Chandramouli, Pearson-Second Edition-2015 **Reference Books** 1. Software Engineering : Ian Sommerville, Pearson, Nineth Edition-2011 2. Software Engineering a practitioners approach – Roger S Pressman, Seventh Edition, 2009 3. Project Management Absolute Beginner's Guide : Greg Horine , Pearson, Second Edition, 2017 Web Resources https://onlinecourses.nptel.ac.in/noc22_cs61/preview

CO Vs PO Mapping and CO Vs PSO Mapping

СО	РО 1	РО 2	РО 3	РО 4	РО 5	РО 6	РО 7	РО 8	РО 9	P0 10	P0 11	P0 12	PSO 1	PSO 2
1	3	3											2	1
2	3	3	2	2	2									
3	2	3		2	2					3				
4		3	3	2	2				2					
5	3	3	3	3										

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER					
UNDERSTAND	30	5	5	30	30
APPLY	40	10	10	40	40
ANALYZE	30	10	10	30	30
EVALUATE					
CREATE					

24IF1611	ADVANCED DATA STRUCTURES LABORATORY	L	Т	Р	С
	USING JAVA	0	0	4	2
Pre requisites fo	r the course				
The students show	ald have the basic knowledge on Data structures.				
Objectives					
•To learn the im	plementation of sorting and searching.				
•To acquire the	knowledge of using advanced tree structures.				
•To analyze the	usage of heap structures.				
•To understand	the usage of graph structures and spanning trees.				

S.NO	LIST OF EXPERIMENTS		CO			
1	Implementation of Merge Sort and Quic Analysis	Implementation of Merge Sort and Quick Sort- Analysis				
2	Implementation of a Binary Search Tree	9	C01			
3	Red-Black Tree Implementation		C01			
4	Heap Implementation		CO2			
5	Leftist Heaps		CO2			
6	Graph Traversals		CO3			
7	Spanning Tree Implementation	CO3				
8	Shortest Path Algorithms (Dijkstra's alg Bellmann Ford Algorithm)	CO3				
9	n-Queen's problem using Back Tracking Trees	g, Segment	C04			
10	Line segment intersection		CO4, CO5			
			Total Periods			
ggestive As	sessment Methods					
Lab Co	nd Semester ms(50Marks)					
• Experin	eriments					
• Viva		• Viva	l			
comes:						

CO3 – Design algorithms using graph structures

CO4 – Design and develop efficient algorithms with minimum complexity using design techniques

CO5 – Be able to design and analyze the time and space efficiency of the data structure

Laboratory Requirements

Standalone desktop with java development kit Compiler

Text Book

1.Maxwell Rivers "Data Structures and Algorithms in Java : A comprehensive Guide , 2023

Reference Books

- 1. Anany Levitin "Introduction to the Design and Analysis of Algorithms" Pearson Education, 2015
- 2. Ellis Horowitz, Sartaj Sahni, Susan Anderson-Freed, "Fundamentals of Data Structures in C", Second Edition, University Press, 2008
- 3. Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars, "Computational Geometry Algorithms and Applications", Third Edition, Springer, 2008.

Web Resources

- 1. https://nptel.ac.in/courses/106/102/106102064/
- 2. https://nptel.ac.in/courses/106/103/106103069/
- 3. https://nptel.ac.in/courses/106/106/106106131/
- 4. https://nptel.ac.in/courses/106/105/106105157/

CO Vs PO Mapping and CO Vs PSO Mapping

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO	PO	PO	PSO	PSO
										10	11	12	1	2
1	3	3	3										3	
2		1		3		2					3		3	
3	3			3		3							3	
4		2	3						2		2		3	
5		3		3		3							3	

24IF1612	ADVANCED OPERATING SYSTEMS LABORATORY	L	Т	Р	С
24111012	ADVANCED OF ERATING STSTEMS LADORATORT	0	0	P 4	2

Preamble:

Operating systems are the fundamental part of every computing device to run any type of software. The Operating System Laboratory, OS Lab is a course that will teach students about principles of operating systems using a constructivist approach and problem-oriented learning.

Prerequisites for the course

• 21CS1501- C Programming

Objectives

- 1. Implement practical experience with designing and implementing concepts of operating systems
- 2. To implement various CPU Scheduling Algorithms
- 3. To implement Process Creation and Inter Process Communication.
- 4. To implement Deadlock Avoidance and Deadlock Detection Algorithms
- 5. To implement Page Replacement Algorithms
- 6. To implement File Organization and File Allocation Strategies

S.NO	LIST OF EXPERIMENTS	CO
1	Simulate the following CPU scheduling algorithms: a) FCFS b)SJF c)Round Robin d)Priority	C01
2	Simulate the file allocation strategies: a) Sequential b) Indexed c) Linked	C01
3	Simulate MVT and MFT	C01
4	Simulate all File Organization techniques a)Single level directory b)Two level c)Hierarchical d)DAG	CO2
5	Simulate Bankers Algorithm for Deadlock Avoidance	CO2
6	Simulate Bankers algorithm for Deadlock Prevention	CO3
7	Simulate all page replacement Algorithms a)FIFO b) LRU c) LFU	CO4
8	Simulate Paging Technique of memory management.	CO3
9	Write a C program to stimulate the following contiguous memory allocation techniques a) Worst-fit b) Best fit c) First fit	CO3
10	Write a C program to stimulate the disk scheduling algorithms. a) FCFS b) SCAN c) C-SCAN	CO3

1		Write a C program to simulate optimal page replacement algorithms	CO4
1	12	Write a C program to simulate the concept of Dining-Philosophers problem	CO5

aggestive Assessment Methods									
Lab Components Assessments (50 Marks)	End Semester Exams (50 Marks)								
50	50								

Ou	itcomes									
Up	Upon completion of the course, the students will be able to:									
CO1 Understand and implement basic services and functionalities of the operating system using system calls and able to Understand the benefits of thread over process and implement synchronized programs using multithreading concepts.										
	CO2	Use modern operating system calls and synchronization libraries in software/ hardware interfaces.								
	CO 3	Analyze and simulate CPU Scheduling Algorithms like FCFS, Round Robin, SJF, and Priori								
	CO4	implement memory management schemes and page replacement schemes								
	CO5	Simulate file allocation and organization techniques								
Lał	oorator	y Requirements								
	• C co	mpiler								
	• 30 F	PC System with windows								
Ref	ference	Books								
1.	Gary Nu	ıtt, —Operating Systems, Third Edition, Pearson Education, 2004.								
2.	Harvey	M. Deitel, —Operating Systems, Third Edition, Pearson Education, 2004.								

Web Resources

- 1. <u>www.systutorials.com</u>,<u>www.javatpoint.com/os-tutorial</u>
- 2. <u>www.tutorialspoint.com</u>

CO Vs PO Mapping and CO Vs PSO Mapping

СО	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2
1	3	3	3		3								3	
2	3	3	2	2	2								3	
3	3	3	3	3									3	
4	3	3	3	3									3	
5	3	3	3	3									3	

24IF2601	MACHINE LEARNING TECHNIQUES	L	Т	Р	C
		3	0	0	3
Preamble					

This course introduces you to the fundamental concepts and practical applications of machine learning, covering a range of algorithms including supervised, unsupervised, and reinforcement learning. You will gain hands-on experience in implementing models using popular tools and learn how to evaluate their performance. Emphasis will also be placed on understanding the ethical considerations of machine learning. By the end of the course, you'll be well-equipped to apply machine learning techniques to real-world problems and innovate in various fields.

Prerequisites for the course

probability and statistics

python

Objectives

Understand the Fundamentals: Gain a solid understanding of the core concepts, terminology, and methodologies used in machine learning.

Explore Various Algorithms: Study a range of machine learning algorithms, including supervised learning, unsupervised learning, and reinforcement learning.

Hands-on Experience: Implement machine learning models using popular programming languages and tools. Practical assignments and projects will help solidify your understanding.

Critical Evaluation: Learn to evaluate the performance of machine learning models using appropriate metrics and techniques.

Ethical Considerations: Understand the ethical implications and responsibilities associated with the deployment of machine learning models.

UNIT I	INTRODUCTION TO MACHINE LEARNING	9
--------	----------------------------------	---

Machine Learning–Types of Machine Learning : Supervised Learning, Unsupervised Learning – Machine Learning process- Testing machine learning algorithms - Parametric Vs non-parametric models - Mathematical Basics for Machine Learning : Probability and Statistics for Machine Learning – Probability Distributions – Decision Theory – Information theory – Bias Variance tradeoff.

UNIT II	SUPERVISED LEARNING METHODS	9
---------	-----------------------------	---

Regression: Introduction - Linear Regression - Least Squares - Under fitting and Overfitting -CrossValidation - Lasso Regression - Logistic Regression; Classification: Linear and Non-linear models - Support Vector Machines - Kernel Methods; K-Nearest Neighbours; Learning with Trees: constructing Decision Tree using ID3 - Classification and regression trees (CART); Decision by Committee : Ensemble Methods -- Bagging -- Boosting -- Random Forest; Evaluation of Classification Algorithms.

UNIT III	UNSUPERVISE	ED AND REINFORCEMENT LEAI	RNING	9
Map- Dimens Independent	ionality Reduction, Components Analy	of Gaussians – Vector Quantization Linear Discriminant Analysis, E sis - Reinforcement Learning : ctions Temporal Difference Lear	Principal C Q learnin	omponents Analysis g, Deterministic and
UNIT IV		LISTIC GRAPHICAL MODELS AN OLUTIONARY LEARNING	ND	9
Models : Baye Hidden Marko	esian Networks – C ov Models – Conditio enerating offspring	Graphical Models : Markov Rand Conditional Independence prope onal Random Fields(CRFs) - Evo - Map Colouring, Punctuated Eq	erties – Ma lutionary L	rkov Random Fields earning : The Geneti
UNIT V	NEURAL N	NETWORK AND DEEP LEARNIN	IG	9
Introduction -				
Suggestive A	ssessment Method	S		
Continuous	Assessment Test	Formative Assessment Test	End S	emester Exams
(30	Marks)	(10 Marks)		(60 Marks)
1. DESCRIPTIV	/E QUESTIONS	1. TUTORIAL PROBLEMS	1. DESCRI	PTIVE QUESTIONS
2. PROBLEM S	SOLVING	2. ASSIGNMENT 3. QUIZZES	2. PROBLE	EM SOLVING
Outcomes				
Upon comple	tion of the course,	the students will be able to:		
CO1:Explain t	he basic concepts of	f machine learning		
CO2:Analyse l	inear and non-linea	r techniques for classification pr	oblems	
	nsupervised and r the given problem	reinforcement algorithms, p ns	robabilistic	and evolutionar
approaches to	importance of nour	al networks in machine learning	-	earning.
CO4: Analyse	-	ole for different types of Machi	ne Learnin	g and to Implemen
CO4: Analyse CO5: Identify appropriate le	applications suitab	ble for different types of Machi for an application and to analyse		
CO4: Analyse CO5: Identify	applications suitab			

Press, Second Edition, 2014.

2. Christopher Bishop, "Pattern Recognition and Machine Learning" Springer, 2007.

3. Kevin P. Murphy, "Machine Learning: A Probabilistic Perspective", MIT Press, 2012.

Reference Books

1. EthemAlpaydin, "Introduction to Machine Learning", MIT Press, Third Edition, 2014.

2. Tom Mitchell, "Machine Learning", McGraw-Hill, 1997.

Web Resources

- 1. <u>https://www.kaggle.com/</u>
- 2. <u>https://www.coursera.org/</u>
- 3. https://towardsdatascience.com/?gi=8222889875ba

CO Vs PO Mapping and CO Vs PSO Mapping

со	РО 1	РО 2	РО 3	РО 4	РО 5	РО 6	РО 7	РО 8	РО 9	P0 10	P0 11	P0 12	PSO 1	PSO 2
1	3	1	2	1									2	
2	3	3	2										1	
3	3	3											3	
4	3	1	2	1	1								1	
5	2	3	3										1	

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	10	10			10
UNDERSTAND	10	10			10
APPLY	60	60			60
ANALYZE	20	20			20
EVALUATE					
CREATE					

24IF2602	DESEADOU METUODOLOOJES	L	Т	Р	С
24162002	RESEARCH METHODOLOGIES	3	0	0	3
Preamble		•			
The Objective protection.	e of this course is to understand and analyze research m	ethod	lolog	y and	i IPR
Prerequisites	s for the course				
NIL					
Objectives					
1.To Understa	nd the basic concepts of Research Methodologies,				
2. To Analyse	the data collected using various measurements.				
3. To Analyse	the various research problems.				
4. To Apply th	e hypothesis to collect data from samples.				
5. To Apply th	e research methodologies to real world problems.				
UNIT I	INTRODUCTION TO RESEARCH METHODOLOGIES			9	
	importance of knowing how research is done - research pro	CC55 C	inu i		eria -
-	research problem – Selecting the problem – necessity of der volved in defining the problem				
-	research problem - Selecting the problem - necessity of de				
Techniques in UNIT II Statistical Too – Probability	research problem – Selecting the problem – necessity of devolved in defining the problem	fining	the res of	prob 9 f dispe	lem –
Techniques in UNIT II Statistical Too – Probability	research problem – Selecting the problem – necessity of der volved in defining the problem DATA COLLECTION AND ANALYSIS ls – Scales of measurements – Measures of Central tendency – M - Scatter diagram – Coefficient – Correlation – Regression – Ne	fining	the res of	prob 9 f dispe	lem –
Techniques in UNIT II Statistical Too – Probability – Chi-square Te UNIT III Meaning and r design - Vario	research problem – Selecting the problem – necessity of der volved in defining the problem DATA COLLECTION AND ANALYSIS ls – Scales of measurements – Measures of Central tendency – M - Scatter diagram – Coefficient – Correlation – Regression – Ne st – t Test – analysis of Variance – one way analysis.	fining leasur on Pa ncept:	the res of rame	9 9 f dispe etric t 9 pes of	lem – ersion ests –
Techniques in UNIT II Statistical Too – Probability – Chi-square Te UNIT III Meaning and r design - Vario	research problem – Selecting the problem – necessity of der volved in defining the problem DATA COLLECTION AND ANALYSIS Is – Scales of measurements – Measures of Central tendency – M - Scatter diagram – Coefficient – Correlation – Regression – Ne st – t Test – analysis of Variance – one way analysis. RESEARCH DESIGN need for research design – Features of a Good design – Major Con- pus stages of sampling design and its characteristics - Research	fining leasur on Pa ncept:	the res of rame	9 9 f dispe etric t 9 pes of	lem – ersion ests –
Techniques in UNIT II Statistical Too – Probability – Chi-square Te UNIT III Meaning and r design - Vario research – Me UNIT IV Data Collectio the research p	research problem – Selecting the problem – necessity of dervolved in defining the problem DATA COLLECTION AND ANALYSIS ls – Scales of measurements – Measures of Central tendency – M - Scatter diagram – Coefficient – Correlation – Regression – Ne st – t Test – analysis of Variance – one way analysis. RESEARCH DESIGN need for research design – Features of a Good design – Major Correlation stages of sampling design and its characteristics - Research thods of Research – Research Problems.	fining leasur on Pa ncept: ch De	the res of rame s - ty sign	probl 9 Edispe etric to 9 pes of – Typ 9 metho	ersion ests – Good oes of
Techniques in UNIT II Statistical Too – Probability – Chi-square Te UNIT III Meaning and r design - Vario research – Me UNIT IV Data Collectio the research p	research problem – Selecting the problem – necessity of dervolved in defining the problem DATA COLLECTION AND ANALYSIS Is – Scales of measurements – Measures of Central tendency – M - Scatter diagram – Coefficient – Correlation – Regression – Ne st – t Test – analysis of Variance – one way analysis. RESEARCH DESIGN need for research design – Features of a Good design – Major Consus stages of sampling design and its characteristics - Research thods of Research – Research Problems. DATA FORMULATION METHODS n – Collection of data through various methods – selecting an approblem – Processing and analysis of Data - formulation of hyperiod	fining leasur on Pa ncept: ch De	the res of rame s - ty sign	probl 9 Edispe etric to 9 pes of – Typ 9 metho	ersion ests – Good oes of
Techniques in UNIT II Statistical Too – Probability – Chi-square Te UNIT III Meaning and r design - Vario research – Me UNIT IV Data Collectio the research p hypotheses -S UNIT V Role of Comp	research problem – Selecting the problem – necessity of dervolved in defining the problem DATA COLLECTION AND ANALYSIS ls – Scales of measurements – Measures of Central tendency – M - Scatter diagram – Coefficient – Correlation – Regression – Netst – t Test – analysis of Variance – one way analysis. RESEARCH DESIGN need for research design – Features of a Good design – Major Correlation stages of sampling design and its characteristics - Research thods of Research – Research Problems. DATA FORMULATION METHODS n – Collection of data through various methods – selecting an approblem – Processing and analysis of Data - formulation of hypampling methods – Sampling techniques	fining leasur on Pa ncepts ch De opropr pothe	the res of rame s - ty sign riate ses -	9 f dispe etric to 9 pes of - Typ 9 metho - Test 9 6 Com	ersion ests – Good bes of od for ing of puter

Outcomes

Upon completion of the course, the students will be able to:

CO1 – Understand research problem formulation

CO2 – Analyze research related information

CO3 – Understand the research ethics.

CO4 – Analyse the Data related to Research Methodologies

CO5 – Understand the importance of Report writing

Text Books

1.Research Methodology, methods and Techniques, Ed. 2, C.R. Kothari, Wishwa Prakasan, New Delhi.

2. Scientific Social Surveys and Research, Pauline V. Young

3. Applied Statistics for Library Science Research, vol. 2, R.L. Sehgal, Ess Ess Publications, New Delhi.

4. Quantitative Methods for Library and Information Science. I.K. Ravichand Rao, wiley eastern Ltd.

Reference Books

1. Statistical Techniques for Librarians, R.L. Sehgal, Ess Ess Publications, New Delhi.

CO Vs PO Mapping and CO Vs PSO Mapping

со	P0 1	РО 2	РО 3	РО 4	РО 5	РО 6	РО 7	РО 8	РО 9	P0 10	P0 11	P0 12	PSO 1	PSO 2
1	3	1	2	1									2	
2	3	3	1										2	
3	3	3	1										2	
4	3	1	2	1									2	
5	1	3	3										2	

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	10	10			10
UNDERSTAND	10	10			10
APPLY	60	60			60
ANALYZE	20	20			20
EVALUATE					
CREATE					

24IF2603	DATABASE TECHNOLOGIES	L	Τ	Р	С	
		3	0	0	3	
Preamble						
management, systems (DBM we'll explore	covers a range of topics, including the foundational c the architecture of different database systems, the role of d S), and the challenges associated with data security and sca the emergence of NoSQL and NewSQL databases, as wel lger technologies.	ataba alabili	ise m ity. A	anag dditio	emen onally	
Objectives						
1. To understa	nd the fundamentals of databases					
2. To have an i	nsight about SQL and NOSQL databases					
3. To have an i	nsight about XML and its usage in application developmen	t.				
4. To understa	nd and apply databases in realtime environment					
5. To know ab	out deductive databases					
UNIT I	UNIT I INTRODUCTION TO DATABASES					
	y processing – SQL query operations in a relational dat - Concurrency control – Replication Servers – Case study on mentation SQL AND NOSQL DATABASES					
Delete, Query, PHP / JAVA · Operations, C	Theorem – Sharding - Document based – MongoDB Oper Indexing, Application, Replication, Sharding, Deployment – - Advanced MongoDB Features – Cassandra: Data Mod CRUD Operations, CQL Types – HIVE: Data types, D HiveQL – OrientDB Graph database – OrientDB Features	Usin el, K	g Mo ey Sj	ngoD pace,	B witl Tabl	
UNIT III	XML DATABASES FOR APPLICATION DEVELOPMENT			9		
Structured Ty Structured, Se	bjectOriented Databases – Need for complex Datatype – pes – ODMG Model – Object Definition Language Object mi structured, and Unstructured Data – XML Hierarchica Oocument Type Definition – XML Schema – XML Documents ath – XQuery	ct Qu al Dat	ery ta M	Lang odel	uage - XMI	
UNIT IV	INTELLIGENT AND MOBILE DATABASES	9				
Active Databa	sesConcepts and Triggers –Syntax and Semantics – Tempo	ral Da	ataba	ses		

 Overview – Spatial Databases – Spatial Representation – Data types – Relationships – Query Processing in Spatial and temporal databaseMobile Databases: Location and Handoff Management – Effect of Mobility on Data Management – Location Dependent Data Distribution
 Mobile Transaction Models – Query Processing using mobile database

UNIT V	DEDUCTIVE DATABASES	9
--------	---------------------	---

Deductive Databases: Logic of Query Languages – Datalog Recursive Rules-Syntax and Semantics of Data log Languages- Implementation of Rules and Recursion- Recursive Queries in SQL

Total Periods 45					
Suggestive Assessment Methods					
Continuous Assessment Test (30 Marks)	Formative Assessment Test (10 Marks)	Enc	l Semester Exams (60 Marks)		
1. DESCRIPTIVE QUESTIONS 2. PROBLEM SOLVING	1. ASSIGNMENT 2. QUIZZES	QUES	SCRIPTIVE TIONS OBLEM SOLVING		

Outcomes

Upon completion of the course, the students will be able to:

CO1– Understand the functional blocks of distributed databases for effective implementation

CO2- Apply DDL/DML queries using different NoSQL databases

CO3–Analyze object-based and XML databases for application development

CO4–Analyze the various data handling mechanisms using intelligent and mobile databases

CO5–Learn queries for deductive databases

Text Books

1. Prof.Satish Jain, Shashi Singh, A Level Made Simple – Database Technologies ,Jan 2021.

2. Dr.Sanjeev Sharma, Dr.Jitendra Agrawal, Dr.Shika Agrawal, —Advanced Database Management System, Dreamtech press, New Delhi, 2017.

3. R. Elmasri, S.B. Navathe, –Fundamentals of Database Systems, Global Edition, Pearson Education, 2016.

Reference Books

1. Henry F Korth, Abraham Silberschatz and S. Sudharshan, —Database System Concepts, 6 th Edition, McGraw Hill, 2013.

2. Shashank Tiwari, "Professional NoSQL", O"Reilly Media, 1st Edition, 2011.

3. International Workshop on Intelligent Techniques in Distributed Systems (ITDS-2014) Distributed Database Design: A Case Study||, www.sciencedirect.com

4. http://www.ijcstjournal.org/volume-4/issue-5/IJCST-V4I5P28.pdf, || Spatial Data System: Architecture and Applications

Web Resources

https://nptel.ac.in/courses/106105175

CO Vs PO Mapping and CO Vs PSO Mapping

со	РО 1	РО 2	РО 3	РО 4	РО 5	РО 6	РО 7	РО 8	РО 9	P01 0	P01 1	P01 2	PSO 1	PSO 2
1	3	3											3	2
2	2	2	2	2	2								2	
3	2	2	2	2	2								2	
4	2	2	1	2	2								3	
5	3	2	2	2									3	

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER					
UNDERSTAND	30	30	5	5	30
APPLY	50	50	10	10	50
ANALYZE	20	20	10	10	20
EVALUATE					
CREATE					

24IF2604

DIGITAL IMAGE PROCESSING AND PATTERN RECOGNITION

L	Т	Р	С
3	0	0	3

Preamble

This course explores the fundamental principles and advanced techniques of digital image processing and pattern recognition. Students will gain practical experience in applying these concepts to real-world problems in fields such as computer vision, medical imaging, and remote sensing. Students will be equipped with the knowledge and skills to analyze, interpret, and extract meaningful information from digital images using state-of-the-art techniques.

Objectives

1. To understand the basic concepts and algorithms of digital processing.

2. To familiarize the student with the image processing environments and its equivalent open source Image processing environments.

3. To expose the students to a broad range of image processing techniques and issues and their applications, and to provide the student with practical experiences using them.

4. To expose the students about pattern recognition

5. To appreciate the use of image processing in current technologies and to expose the students to real-world applications of the image processing.

UNIT I	FUNDAMENTALS OF IMAGE PROCESSING	9
UNITI	rundamen i als ur image processing	9

Introduction – Elements of visual perception, Steps in Image Processing Systems – Digital Imaging System - Image Acquisition – Sampling and Quantization – Pixel Relationships – File Formats – colour images and models - Image Operations – Arithmetic, logical, statistical and spatial operations.

9

Image Transforms -Discrete and Fast Fourier Transform and Discrete Cosine Transform ,Spatial Domain - Gray level Transformations Histogram Processing Spatial Filtering – Smoothing and Sharpening. Frequency Domain: Filtering in Frequency Domain – Smoothing and Sharpening filters – Homomorphic Filtering., Noise models, Constrained and Unconstrained restoration models.

UNIT III	IMAGE SEGMENTATION AND MORPHOLOGY	9
----------	-----------------------------------	---

Detection of Discontinuities – Edge Operators – Edge Linking and Boundary Detection – Thresholding – Region Based Segmentation – Motion Segmentation, Image Morphology: Binary and Gray level morphology operations - Erosion, Dilation, Opening and Closing Operations-Distance Transforms Basic morphological Algorithms. Features – Textures - Boundary representations and Descriptions Component Labelling – Regional descriptors and Feature Selection Techniques.

UNIT IV	INTRODUCTION TO PATTERN RECOGNITION	9
Component La	belling - Image Features - Textures - Boundary representation	s and descriptions

UNIT V IMAGE PATTERN RECOGNITION CASE STUDIES				9
-	-	udies in Biometrics, Video Pro termarking - Stereo vision - Visu	-	
		Tota	al Periods	45
Suggestive A	Assessment Method	S		
Continuous	Assessment Test	Formative Assessment Test	End S	Semester Exams
(3	0 Marks)	(10 Marks)		(60 Marks)
1. DESCRIPT	TIVE QUESTIONS	1. ASSIGNMENT	1. DESCRI	PTIVE QUESTIONS
2. PROBLEM	I SOLVING	2. QUIZZES	2. PROBL	EM SOLVING
Outcomes		I		
Upon compl	etion of the course,	the students will be able to:		
CO1– The stu	idents should be able	e to implement basic image proc	essing algor	rithms
CO2– Design	an application that i	incorporates different concepts o	of Image pr	ocessing
CO4-criticall	segmentation, compr y analyze different a	techniques in the areas of im ression, wavelet processing and i pproaches to implements mini p ppling image processing concepts	mage morp rojects	hology
Text Books	the possibility of Ap	phing image processing concepts	s ili vai lous	uomanis
1. Rafael C. G 2.Alasdair M 2011, India.	cAndrew, "Introduct	Voods, Pearson Digital Image Pro ion to Digital Image Processing gital Image Processing", PHI, 201	with Matla	
Reference B	ooks			
	'Digital Image Proces	ssing", Oxford University Press, 2	2011, New I	Delhi.
1. S.Sridhar,		, " Digital Image Processing: An ion,2008.	algorithm	ic Introduction using
	er international Euro			
2. Wilhelm E				

со	РО 1	РО 2	РО 3	РО 4	РО 5	РО 6	РО 7	РО 8	РО 9	P01 0	P01 1	P01 2	PSO 1	PSO 2
1	3	3											3	2
2	2	2	2	2	2								2	
3	2	2	2	2	2								2	
4	2	2	1	2	2								3	
5	3	2	2	2									3	

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER					
UNDERSTAND	30	30	5	5	30
APPLY	50	50	10	10	50
ANALYZE	20	20	10	10	20
EVALUATE					
CREATE					

ELECTIVE

21IF2701 STATISTICAL METHOD FOR MACHINE LEARNING

Preamble

This course, "Statistical Models in Machine Learning," is designed to provide students with a solid foundation in the principles and practices of statistical modeling. Students will learn how to apply statistical techniques to analyze data, make predictions, and solve real-world problems. The course covers key topics such as probability, linear regression, generalized linear models, Bayesian statistics, and advanced modeling techniques. Through practical examples and hands-on projects, students will develop the skills needed to build and evaluate statistical models, preparing them for careers in data science, analytics, and related fields.

Prerequisites for the course

- Probability
- Statistics

Objectives

- 1. Understand Basic Concepts: Learn the fundamental principles of probability and statistics essential for statistical modelling.
- 2. Apply Regression Models: Develop skills to create and interpret linear regression models for predicting outcomes.
- 3. Use Generalised Linear Models: Gain the ability to build and analyse generalised linear models, such as logistic regression.
- 4. Implement Bayesian Methods: Understand and apply Bayesian statistical methods to real-world data.
- **5.** Explore Advanced Techniques: Learn advanced statistical modelling techniques, including time series analysis and hierarchical models.

UNIT I	FOUNDATIONS OF PROBABILITY AND STATISTICS	9				
Probability and Statistics Fundamentals - Probability Rules and Concepts - Random Variables and Distributions - Descriptive Statistics - Probability Distributions (Discrete and Continuous) - Central Limit Theorem						
UNIT II	LINEAR REGRESSION AND MODEL EVALUATION	9				
Linear Regression and Model Evaluation - Simple Linear Regression - Multiple Linear Regression - Model Evaluation Techniques - Residual Analysis - Multicollinearity and Model Selection						

UNIT III	
----------	--

GENERALIZED LINEAR MODELS (GLMS)

9

Generalized Linear Models (GLMs) - Logistic Regression - Poisson Regression - GLM

Interpretation and Diagnostics - Overdispersion and Zero-Inflation - Model Comparison Techniques

UNIT IV

BAYESIAN STATISTICS

9

Bayesian Statistics - Bayesian Inference - Prior and Posterior Distributions - Markov Chain Monte Carlo (MCMC) Methods - Hierarchical Bayesian Modeling - Bayesian Model Averaging

UNIT	v
	v

ADVANCED TOPICS IN STATISTICAL MODELING

9

Advanced Topics in Statistical Modeling - Non-linear Regression - Time Series Analysis -Hierarchical Modeling - Generalized Additive Models (GAMs) - Longitudinal Data Analysis

Total Periods 45							
Suggestive Assessment Methods							
Continuous Assessment Test (30 Marks)	Formative Assessment Test (10 Marks)	End Semester Exams (60 Marks)					
1. DESCRIPTIVE QUESTIONS 2. PROBLEM SOLVING	1. TUTORIAL PROBLEMS 2. ASSIGNMENT 3. QUIZZES	QUES	SCRIPTIVE TIONS OBLEM SOLVING				

Outcomes

Upon completion of the course, the students will be able to:

CO1: Understand fundamental concepts of probability and statistics, including probability rules, random variables, and distributions.

CO2: Apply linear regression models for prediction and inference, including simple and multiple linear regression techniques.

CO3: Analyze and interpret results from generalized linear models (GLMs) such as logistic regression and Poisson regression.

CO4: Apply Bayesian statistical methods for inference and model comparison, including Markov Chain Monte Carlo (MCMC) techniques.

CO5: Explore advanced topics in statistical modeling, including non-linear regression, time series analysis, and hierarchical modeling.

Text Books

1. Introduction to Probability - Joseph K. Blitzstein and Jessica Hwang - 2019 - CRC Press

2.An Introduction to Statistical Learning: with Applications in R - Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani - 2013 - Springer

3.Linear Models with R - Julian J. Faraway - 2014 - Chapman and Hall/CRC

Reference Books

1.Bayesian Data Analysis - Andrew Gelman, John B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari, and Donald B. Rubin - 2013 - CRC Press

2.Time Series Analysis and Its Applications: With R Examples - Robert H. Shumway and David S. Stoffer - 2017 – Springer

Web Resources

1.www.analyticsvidhya.com/blog/2015/08/comprehensive-guide-regression/

2.www.r-bloggers.com/2016/11/introduction-to-generalized-additive-models/

3.www.theanalysisfactor.com/generalized-linear-models/

	co vs i o Mapping and co vs i so Mapping													
со	РО 1	РО 2	РО 3	P0 4	РО 5	РО 6	P0 7	РО 8	РО 9	P0 10	P0 11	P0 12	PSO 1	PSO 2
1	3	1	1	1									3	
2	3	3	2										1	
3	3	3											3	
4	3	1	2										3	
5	1	3	3										2	

CO Vs PO Mapping and CO Vs PSO Ma	apping
-----------------------------------	--------

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	20	20	5	5	20
UNDERSTAND	50	50	10	10	50
APPLY	30	30	10	10	30
ANALYZE					
EVALUATE					
CREATE					

24IF2702		L	Т	Р	С	
241F2/02	CLOUD COMPUTING TECHNOLOGIES	3	0	0	3	
Preamble				LL		
technologies virtualization,	rovides an in-depth understanding of virtualization and cloud for modern IT infrastructure. It is designed to cover t the architecture and management of cloud platforms, the progr onments, and the critical aspects of cloud security.	he fu	unda	menta	ls of	
Prerequisite	s for the course					
Nil						
Objectives						
1.To understa	nd the concepts of virtualization and virtual machines					
2. To gain exp	ertise in server, network and storage virtualization.					
3. To understa	and and deploy practical virtualization solutions and enterprise	e solu	tions	5		
4. To Design H	ladoop File System.					
5. To understa	and the security issues in the grid and the cloud environment.					
UNIT I	VIRTUALIZATION	9				
Interpretatior Virtualization	ual Machines - Process Virtual Machines – System Virtual Ma – Binary Translation - Taxonomy of Virtual Machines. Virtual –– Hardware Maximization – Architectures – Virtualization M – Network Virtualization	izatio	n –M	lanage	emen	
UNIT II	VIRTUALIZATION INFRASTRUCTURE	9				
Comprehensis	ve Analysis – Resource Pool – Testing Environment –Server Vi Provision Virtual Machines – Desktop Virtualization – Applic			ualiza		
Workloads – Implementati	on levels of virtualization – virtualization structure – virtualization structure – virtualization = virtualiza ces – virtual clusters and Resource Management – Virtualiza					
Workloads – Implementation and I/O device	on levels of virtualization – virtualization structure – virtualiza					
Workloads – Implementation and I/O device automation. UNIT III Cloud deployn Everything as Layered cloud	on levels of virtualization – virtualization structure – virtualization ces – virtual clusters and Resource Management – Virtualization CLOUD PLATFORM ARCHITECTURE ment models: public, private, hybrid, community – Categories a service: Infrastructure, platform, software- A Generic Cloud Architectural Development – Cloud Environments - Case stud service model (eg. Amazon EC2, Google App Engine, Sales Fo	ation s of cl Archi dy: Oi	for oud tectu ne cl	data c 9 comp ire Des oud se	uting sign -	
Workloads – Implementation and I/O device automation. UNIT III Cloud deployn Everything as Layered cloud provider per	on levels of virtualization – virtualization structure – virtualization ces – virtual clusters and Resource Management – Virtualization CLOUD PLATFORM ARCHITECTURE ment models: public, private, hybrid, community – Categories a service: Infrastructure, platform, software- A Generic Cloud Architectural Development – Cloud Environments - Case stud service model (eg. Amazon EC2, Google App Engine, Sales Fo	ation s of cl Archi dy: Oi	for oud tectu ne cl	data c 9 comp ire Des oud se	uting sign -	

configuring and running a job –Developing Map Reduce Applications - Design of Hadoop file system -Setting up Hadoop Cluster - Cloud Software Environments -Eucalyptus, Open Nebula, Open Stack, Nimbus
UNIT V CLOUD SECURITY 9

Cloud Security Challenges and Risks – Security Monitoring – Security Architecture Design – Data Security – Application Security – Virtual Machine Security, Advances in Cloud- MQTT in Cloud, MQTT working example – Fog Computing basics

Total Periods

45

Suggestive Assessment Methods

Continuous Assessment Test	Formative Assessment Test	End Semester Exams
(30 Marks)	(10 Marks)	(60 Marks)
1. DESCRIPTIVE QUESTIONS	1. ASSIGNMENT	1. DESCRIPTIVE QUESTIONS
2. PROBLEM SOLVING	2. QUIZZES	2. PROBLEM SOLVING

Outcomes

Upon completion of the course, the students will be able to:

CO1 – Understand the concepts of storage virtualization, network virtualization and its management

CO2 – Apply the concept of virtualization in the cloud computing

CO3 – Identify the architecture, infrastructure and delivery models of cloud computing

CO4 – Develop services using Cloud computing

CO5 – Apply the security models in the cloud environment

Text Books

1.Kai Hwang, Geoffrey C Fox, Jack G Dongarra, "Distributed and Cloud Computing, From Parallel Processing to the Internet of Things", Morgan Kaufmann Publishers, 2021

Reference Books

1.Danielle Ruest, Nelson Ruest, —Virtualization: A Beginner"s Guide||, McGraw-Hill Osborne Media, 2009.

2.Jim Smith, Ravi Nair , "Virtual Machines: Versatile Platforms for Systems and Processes", Elsevier/Morgan Kaufmann, 2005

3.John W.Rittinghouse and James F.Ransome, "Cloud Computing: Implementation, Management, and Security", CRC Press, 2010

4.Tom White, "Hadoop: The Definitive Guide", Yahoo Press, 2012.

Web Resources

https://onlinecourses.nptel.ac.in/noc21 cs14/preview

СО	РО 1	РО 2	РО 3	РО 4	РО 5	РО 6	РО 7	РО 8	РО 9	P0 10	P0 11	P0 12	PSO 1	PSO 2
1	3	1	1	1									3	
2		3	1	1	1								3	
3	3	1	1	1								3		
4	1	2	3	1	2									
5	2	1	1	1	2	1						1		

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	20	20	5	5	20
UNDERSTAND	50	50	10	10	50
APPLY	30	30	10	10	30
ANALYZE					
EVALUATE					
CREATE					

24IF2703	SOFTWARE DEEINED NETWORKS	L	Τ	Р	С	
241F2703	SOFTWARE DEFINED NETWORKS	3	0	0	3	
Preamble	1					
	introduces software defined networking, an emerging par nat allows a logically centralized software program to control k	0			•	
Prerequisite	s for the course					
NIL						
Objectives						
1.Differentiate	e between traditional networks and software defined network					
2.Understand	advanced and emerging networking technologies					
3.0btain skills	s to do advanced networking research and programming					
4.Learn how t	o use software programs to perform varying and complex netw	vorkir	ng tas	sks		
5.Expand upo	n the knowledge learned and apply it to solve real world proble	ems				
UNIT I	INTRODUCING SDN			9		
-	nd Evolution – Centralized and Distributed - Control and Data Implications - SDN Operations - SDN Controllers	Plan	es - 7	The Ge	enesi	
UNIT II	SDN ABSTRACTIONS	SDN ABSTRACTIONS 9				
VMware - Nic	rks - The Openflow Protocol - SDN Controllers: Introduction ira - VMware/Nicira - OpenFlow-Related - Mininet - NOX/PO rks/Floodlight - Layer 3 Centric - Plexxi - Cisco OnePK				•	
UNIT III	PROGRAMMING SDN'S	9				
-	grammability - Network Function Virtualization – Players in 7 opment- Network Slicing - Emerging Protocol, Controller, and A			-		
UNIT IV	SDN APPLICATIONS AND USE CASES			9		
	ta Center - SDN in Other Environments - SDN Applications - SDN rating System 3	Use (Cases	- The	Oper	
UNIT V	SDN'S FUTURE AND PERSPECTIVES			9		
-	arce - SDN Futures - Open Stack, Cloud Stack - Business Rami SDN Startups - Career Disruptions - Potential Novel Applicatio			-	r SDI	
	Total Periods			45		
	I Utal I CHOUS			тJ		

Со	ntinuo	ous As (30 M		ent Te	est F	ormat		ssessm Marks]	ient Te	est		Semest (60 Ma	er Exan rks)	15
1. D		CRIPTIVE QUESTIONS 1. QUIZZES 1. DESCRIPTIVE QUEST						-	IONS					
Out	comes	5												
Upo	on com	pletio	on of t	he cou	rse, th	ie stud	lents v	vill be	able t	0:				
CO2 CO3 CO4	2 – Und 3 – Obta	lerstan ain ski rn how	d adva lls to d 7 to use	anced a lo adva	and em inced r	ierging ietwor	g netwo king re	orking esearcl	techno n and p	logies rogran	ed netw nming omplex			
		0		e know	ledge l	earneo	d and a	apply it	to solv	ve real	world p	roblem	S	
Тех	t Bool	٢S												
2.Sc by I Ref 1.Sc And 2.Sc Ana We	Deze Ze erence oftware lerson, oftware and Nay b Reso	e Defin eng , Li e Book e Defin Publis e Defir yyar ,I purces	n Gu , sed Ne shed Se ned Ne SBN: 9	Shengl etwork eptemb twork 78-1-1	i Pan , king D ber 30, s: Arcl 19-85	Song (esign 2020 hitectu 730-3,	Guo and D by CRO Ire and June 2	Deployn 2 Press 1 Appl 022	nent E	3y Patr s Preet		Morre	r 2019 ale, Jam awna S	
	CO Vs	PO M	appin	g and	CO Vs	PSO M	lappin	g			-	-		-
CO	P0 1	РО 2	РО 3	РО 4	РО 5	РО 6	P0 7	РО 8	РО 9	P0 10	PO 11	PO 12	PSO 1	PSO 2
1	3	2	3	3	3								3	
2	2	3	3	2	3								2	
3	1	3	2	2	1								1	
4	1	2	1	3	2								2	

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER					
UNDERSTAND	50	50	50	50	50
APPLY	50	50	50	50	50
ANALYZE					
EVALUATE					
CREATE					

Preamble

The objective of this course is to introduce basic concepts and applications of soft computing tools such as neural networks, fuzzy logic systems, and several optimization techniques like genetic algorithms, evolutionary computation, simulated annealing etc. Also it covers soft computing based solutions for real-world Electrical Engineering problems

Prerequisites for the course

NIL

Objectives

1. To introduce the ideas of fuzzy sets, fuzzy logic and use of heuristics based on human experience.

2.To provide the mathematical background for carrying out the optimization associated with neural network learning

3. To learn various evolutionary Algorithms.

4. To become familiar with neural networks that can learn from available examples and generalize to form appropriate rules for inference systems.

5.To introduce case studies utilizing the above and illustrate the Intelligent behaviour of programs based on soft computing

UNIT I	INTRODUCTION TO FUZZY LOGIC	9						
Introduction - Fuzzy Logic - Fuzzy Sets, Fuzzy Membership Functions, Operations on Fuzzy Sets, Fuzzy Relations, Operations on Fuzzy Relations, Fuzzy Rules and Fuzzy Reasoning, Fuzzy Inference Systems								
UNIT II	NEURAL NETWORKS 9							
Supervised Learning Neural Networks – Perceptrons - Backpropagation -Multilayer Perceptrons – Unsupervised Learning Neural Networks – Kohonen Self-Organizing Networks								
UNIT III	GENETIC ALGORITHMS	9						
Chromosome Encoding Schemes -Population initialization and selection methods – Evaluation function - Genetic operators- Cross over – Mutation - Fitness Function – Maximizing function								
UNIT IV	NEURO FUZZY MODELING	9						
ANFIS architecture – hybrid learning – ANFIS as universal approximator – Coactive Neuro fuzzy modeling – Framework – Neuron functions for adaptive networks – Neuro fuzzy spectrum – Analysis of Adaptive Learning Capability								
UNIT V	APPLICATIONS	9						
	Modeling a two input sine function - Printed Character Recognition – Fuzzy filtered neural							

networks– Plasma Spectrum Analysis – Hand written neural recognition - Soft Computing for Color Recipe Prediction.

Total Periods45									
Suggestive Assessment Methods									
Continuous Assessment Test (30 Marks)	End Semester Exams (60 Marks)								
1. DESCRIPTIVE QUESTIONS	1. QUIZZES	1. DESCR	IPTIVE QUESTIONS						

Outcomes

Upon completion of the course, the students will be able to:

CO1 - Understand the fundamentals of fuzzy logic operators and inference mechanisms

CO2 – Understand neural network architecture for AI applications such as classification and clustering

CO3 – Learn the functionality of Genetic Algorithms in Optimization problems

CO4 – Use hybrid techniques involving Neural networks and Fuzzy logic

CO5 – Apply soft computing techniques in real world applications

Text Books

1.Roj Kaushik and Sunita Tiwari, Soft Computing-Fundamentals Techniques and Applications, 1st Edition, McGraw Hill, 2018

2. S.N. Sivanandam, S.N. Deepa, Principles of Soft Computing, Third Edition, Wiley India Pvt Ltd, 2019.

Reference Books

1.Himanshu Singh, Yunis Ahmad Lone, Deep Neuro-Fuzzy Systems with Python With Case Studies and Applications from the Industry, Apress, 2020

2.Samir Roy, Udit Chakraborthy, Introduction to Soft Computing, Neuro Fuzzy and Genetic

Algorithms, Pearson Education, 2013

Web Resources

1.https://www.geeksforgeeks.org/fuzzy-logic-introduction/

СО	РО 1	РО 2	РО 3	РО 4	РО 5	РО 6	РО 7	РО 8	РО 9	P0 10	P0 11	P0 12	PSO 1	PSO 2
1	3	2	3	3	3								3	
2	2	3	3	2	3								2	
3	1	3	2	2	1								1	
4	1	2	1	3	2								2	
5	2	3	1	2	1								1	

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER					
UNDERSTAND	50	50	50	50	50
APPLY	50	50	50	50	50
ANALYZE					
EVALUATE					
CREATE					

24IF2705	DATA VISUALIZATION AND INTERPRETATION	L	Т	Р	С	
		3	0	0	3	
Preamble						
decisions. Thi	visualization is essential for interpreting complex data an s course equips students with the skills to transform data into ntations, enhancing understanding and decision-making.					
Prerequisites	for the course					
NIL						
Objectives						
1. Understand	fundamental principles and processes of data visualization.					
2. Explore var	ous data types and their relationships.					
3. Gain hands-	on experience with R programming for data visualization.					
4. Master a rai	nge of visualization formats.					
5. Apply princ	ples of effective visualization design.					
UNIT I	BASICS OF DATA VISUALIZATION 9					
representation	tion – visualization process – filtering and processing – tr n – perception and interpretation – importance of data visualiz xploring – analysing					
UNIT II	DATA TYPES AND RELATIONSHIPS			9		
data relations	of data – quantitative – discrete – continuous – qualitative – of hips – ranking – deviation – nominal comparisons – correlatio - series over time – distribution - variables - vectors - Data Fran	on – J		0		
UNIT III	R PROGRAMMING			9		
Operators - Lo	o R programming - Installing R and R Studio - Working in the gical Operations - Installing packages ggplot2 – Rcpp – RcolorF – matrices – data frames – dataset – creating dataset – impor	Brewe	er – c	lata ty	vpes –	
-	ns – if else statements – loops – saving plots - using multiple ge	om.				
-		om.		9		
data – function UNIT IV Bar chart – ve standard – dou charts – bubbl	ns – if else statements – loops – saving plots - using multiple ge	ogran m – ce	oloui	pie ch r map	– line	
data – function UNIT IV Bar chart – ve standard – don charts – bubb	ns – if else statements – loops – saving plots - using multiple ge VISUALIZING FORMATS rtical column – horizontal column – full stacked column – histo nut – scatterplots – plots with grid – heat maps – mosaic diagram e charts – bubble plot – bubble map – radar charts – waterfall	ogran m – ce	oloui	pie ch r map	– line	

elements – visual variables – semantics – colour schemes – monochromatic sequential palettes –
diverging palettes – qualitative palette – icons and symbols – pattern prioritiesTotal Periods45

Suggestive Assessment Methods

Continuous Assessment Test	Formative Assessment Test	End Semester Exams
(30 Marks)	(10 Marks)	(60 Marks)
1. DESCRIPTIVE QUESTIONS	1. TUTORIAL PROBLEMS	1. DESCRIPTIVE QUESTIONS
2. PROBLEM SOLVING	2. ASSIGNMENT	2. PROBLEM SOLVING
	3. QUIZZES	

Outcomes

Upon completion of the course, the students will be able to:

CO1 – Apply techniques for filtering, processing, and translating data into visual representations.

CO2 – Apply methods to explore, rank, and compare data effectively.

CO3 – Apply R programming functions to manage and manipulate datasets.

CO4 - Apply the appropriate visualization format based on data characteristics and communication goals.

CO5 – Analyze basic principles of visualization design.

Text Books

Claus O. Wilke, 'Fundamentals of Data Visualization – A primer on making informative and compelling figures', O'reilly Media, 2019.

Reference Books

1. Atmajitsinh Gohil, 'R Data Visualization Cookbook', PACKT Publishing, 2015

2. Julie Steele and Noah Iliinsky, 'Beautiful Visualization: Looking at Data Through the Eyes of Experts', O'Reilly Media, First Edition, 2020.

3. Andy Kirk, 'Data Visualisation: A Handbook for Data Driven Design', Sage Publications, Second Edition, 2019.

Web Resources

https://data.vk.edu.ee/PowerBI/Opikud/Fundamentals of Data Visualization.pdf

https://haralick.org/DV/Handbook of Data Visualization.pdf

https://cicerocq.wordpress.com/wp-content/uploads/2020/03/gohil-a.-r-data-visualizationcookbook-.pdf

https://www.netquest.com/hubfs/docs/ebook-data-visualization-EN.pdf

со	РО 1	РО 2	РО 3	РО 4	РО 5	РО 6	РО 7	РО 8	РО 9	P0 10	P0 11	P0 12	PSO 1	PSO 2
1	3		3	3	3								3	
2	3		3	3	3								3	
3	2	2	2	2	2								2	
4	2	2	2	2	2								2	
5	2	2	2	2	2								2	

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER					
UNDERSTAND	50	50	50	50	50
APPLY	50	50	50	50	50
ANALYZE					
EVALUATE					
CREATE					

24IF2706	DIC DATA ACOMISITION	L	Т	Р	С	
241F2700	BIG DATA ACQUISITION	3	0	0	3	
Preamble			•			
skills needed of big data, it: about system effective data	sition is a foundational course designed to equip students wit to handle and analyze large datasets. This course covers the or applications in data science, and the use of NoSQL database optimization techniques within the Hadoop ecosystem, er processing. The course also addresses security and privacy and includes practical case studies to apply the learned co	rigins s. Stu nsurin conce	and dent Ig ef erns	defin s will ficien in big	itions learn t and g data	
Prerequisite	s for the course					
NIL						
Objectives						
1. Understand	the origins and fundamental concepts of big data.					
2. Explore the various NoSQL database models and their applications.						
2. Explore the						
-	ization techniques for big data processing systems.					
3. Learn optin	ization techniques for big data processing systems. urity and privacy issues related to big data infrastructure.					
 Learn optin Address see 						

and machine learning - Google File System - HDFS - Map Reduce - NLP and its applications language detection – named entity recognition – text mining – sentiment analysis – recommender systems – anomaly detection.

9

NO SQL DATABASES Navigational Data Models – Relational Data Models – No SQL Data Models – Key value – Column based – Graph based – document based

UNIT II

UNIT III	SYSTEM OPTIMIZATION	9					
Hadoop Ecosystem – Parallel computation – improvements of Map Reduce – task scheduling – load							
balancing - job scheduling - job management - HBase framework - storage - application							
optimization – performance enhancement of hadoop system							
UNIT IV	SECURITY AND PRIVACY	9					

Spatial Aspects of Social Networks – spatial privacy – cloud based big data infrastructure - System
Model – Thread Model – Attack Model – secure query scheme in clouds – index based secure query
techniques – digital watermarking – access control.

UNIT V	CASE STUDIES	9

Tweets Sentiment Analysis – Weather and Emotion Correlation Analysis – Analysis with Hourly weather data – daily weather data – Traffic Congestion Ranking – Customer Behaviour Identification – Human Object Estimation – Finance Analytics.

	45							
Suggestive Assessment Methods								
Continuous Assessment Test (30 Marks)Formative Assessment Test (10 Marks)			End Semester Exams (60 Marks)					
1. DESCRIPTIVE QUESTIONS	1. ASSIGNMENT 2. QUIZZES	1. DESCR	IPTIVE QUESTIONS					

Outcomes

Upon completion of the course, the students will be able to:

CO1 – Apply big data analytics in conjunction with cloud computing and machine learning.

CO2 – Apply appropriate NoSQL data models to various data scenarios.

CO3 – Analyze the Hadoop ecosystem and improvements to Map Reduce.

CO4 – Apply secure query schemes and access control measures in cloud-based big data infrastructures.

CO5 – Create data-driven insights from practical scenarios

Text Books

Rajkumar Buyya, Rodrigo N. Calheiros, Amir Vahid Dastjerdi, 'BIG DATA – Principles and Paradigms' Morgan Kaufmann, Elsevier, 2016.

Reference Books

1. David Loshin "Big Data Analytics: From Strategic Planning to Enterprise Integration with Tools, Techniques, NoSQL, and Graph", Morgan Kaufmann, 2nd Edition, 2022

2. Tom White "Hadoop: The Definitive Guide: Storage and Analysis at Internet Scale" O'Reilly Media, 4th Edition, 2021

3. Dan Sullivan "NoSQL for Mere Mortals" Addison-Wesley Professional, 1st Edition, 2020

4. EMC Education Services, "Data Science and Big Data Analytics: Discovering, Analyzing, Visualizing and Presenting Data" Wiley, 1st Edition, 2021

Web Resources

https://dhoto.lecturer.pens.ac.id/lecture_notes/internet_of_things/Big%20Data%20Principles% 20and%20Paradigms.pdf

СО	РО 1	РО 2	РО 3	РО 4	РО 5	РО 6	РО 7	РО 8	РО 9	P0 10	P0 11	P0 12	PSO 1	PSO 2
1	3		3	3	3								3	
2	3		3	3	3								3	
3	2	2	2	2	2								2	
4	2	2	2	2	2								2	
5	2	2	2	2	2								2	

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER					
UNDERSTAND	50	50	50	50	50
APPLY	50	50	50	50	50
ANALYZE					
EVALUATE					
CREATE					

AUGMENTED REALITY AND VIRTUAL REALITY

L	Т	Р	С
3	0	0	3

Preamble

The program introduces the application of the Augmented Reality (AR) and Virtual Reality (VR) in the design process to efficiently incorporate user experience, identifying and resolving conflicts in real life like settings and saving on costs etc.

Prerequisites for the course

Engineering Graphics, Computer Aided Engineering

Objectives

- 1. Learn the fundamental Computer Vision, Computer Graphics and Human-Computer interaction Techniques related to VR/AR
- 2. Review the Geometric Modeling Techniques
- 3. Review the Virtual Environment
- 4. Discuss and Examine VR/AR Technologies
- 5. Use of various types of Hardware and Software in Virtual Reality systems
- 6. Simulate and Apply Virtual/Augmented Reality to varieties of Applications

UNIT I	INTRODUCTION TO VIRTUAL REALITY (VR)	9
--------	--------------------------------------	---

Augmented Reality Hardware – Displays – Audio Displays, Haptic Displays, Visual Displays, Other sensory displays, Visual Perception, Requirements and Characteristics, Spatial Display Model. Processors – Role of Processors, Processor System Architecture, Processor Specifications. Tracking & Sensors - Tracking, Calibration, and Registration, Characteristics of Tracking Technology, Stationary Tracking Systems, Mobile Sensors, Optical Tracking, Sensor Fusion.

UNIT II COMPUTER GRAPHICS AND GEOMETRIC MODELLING

9

The Virtual world space, positioning the virtual observer, the perspective projection, human vision, stereo perspective projection, Color theory, Conversion From 2D to 3D, 3D space curves, 3D boundary representation, Simple 3D modelling, 3D clipping, Illumination models, Reflection models, Shading algorithms, Geometrical Transformations: Introduction, Frames of reference, Modelling transformations, Instances, Picking, Flying, Scaling the VE, Collision detection

UNIT III	AUGMENTED REALITY HARDWARE	9
----------	----------------------------	---

Augmented Reality Hardware – Displays – Audio Displays, Haptic Displays, Visual Displays, Other sensory displays, Visual Perception, Requirements and Characteristics, Spatial Display Model. Processors – Role of Processors, Processor System Architecture, Processor Specifications. Tracking & Sensors - Tracking, Calibration, and Registration, Characteristics of Tracking Technology, Stationary Tracking Systems, Mobile Sensors, Optical Tracking, Sensor Fusion.

UNIT IV	COMPUTER VISION FOR AUGMENTED REALITY & A.R.	9
	SOFTWARE	

Computer Vision for Augmented Reality - Marker Tracking, Multiple-Camera Infrared Tracking, Natural Feature Tracking by Detection, Simultaneous Localization and Mapping, Outdoor Tracking Augmented Reality Software - Introduction, Major Software Components for Augmented Reality Systems, Software used to Create Content for the Augmented Reality Application.

UNIT V	V
--------	---

AR DEVICES & COMPONENTS

9

AR Components – Scene Generator, Tracking system, monitoring system, display, Game scene AR Devices – Optical See- Through HMD, Virtual retinal systems, Monitor bases systems, Projection displays, Video see-through systems

	Tota	al Periods	45	
Suggestive Assessment Method	S			
Continuous Assessment Test (30 Marks)	Formative Assessment Test (10 Marks)	t End Semester Exar (60 Marks)		
1. DESCRIPTIVE QUESTIONS 2. PROBLEM SOLVING	1. TUTORIAL PROBLEMS 2. ASSIGNMENT 3. QUIZZES		PTIVE QUESTIONS EM SOLVING	

Outcomes

Upon completion of the course, the students will be able to:

CO1: Describe how AR systems work and list the applications of AR.

CO2: Understand and analyse the hardware requirement of AR.

CO3: Use computer vision concepts for AR and describe AR techniques

CO4: Analyse and understand the working of various state of the art AR devices

CO5: Acquire knowledge of mixed reality

Text Books

- 1. Norman, K., Kirakowski, J., (2018), "Wiley Handbook of Human Computer Interaction," Wiley-Blackwell, ISBN: 9781118976135
- 2. Fowler, A., (2019), "Beginning iOS AR Game Development: Developing Augmented Reality Apps with Unity and C#," Apress, ISBN: 9781484246672
- Hassanien, A. E., Gupta, D., Khanna, A., Slowik, A., (2022), "Virtual and Augmented Reality for Automobile Industry: Innovation Vision and Applications," Springer, ISBN: 9783030941017

Reference Books

1. Craig, A. B., (2013), "Understanding Augmented Reality, Concepts and Applications," Morgan Kaufmann, ISBN: 9780240824086

- 2. Craig, A. B., Sherman, W. R., Will, J. D., (2009), "Developing Virtual Reality Applications, Foundations of Effective Design," Morgan Kaufmann, ISBN: 9780123749437
- 3. O'Connell, K., (2019), "Designing for Mixed Reality: Blending Data, AR, and the Physical World," O'Reilly, ISBN: 9789352138371
- 4. Sanni Siltanen, S., (2012), "Theory and applications of marker-based augmented reality," Julkaisija –Utgivare Publisher, ISBN: 9789513874490

Web Resources

1.Manivannan, M., (2018), "Virtual Reality Engineering," IIT Madras, <u>https://nptel.ac.in/courses/121106013</u>

2.Misra, S., (2019), "Industry 4.0: Augmented Reality and Virtual Reality," IIT Kharagpur, https://www.youtube.com/watch?v=zLMgdYI82IE

3.Dube, A., (2020), "Augmented Reality - Fundamentals and Development," NPTEL Special Lecture Series, <u>https://www.youtube.com/watch?v=MGuSTAqlZ90</u>

4.http://cambum.net/course-2.htm

CO Vs PO Mapping and CO Vs PSO Mapping

со	РО 1	РО 2	РО 3	РО 4	РО 5	РО 6	РО 7	РО 8	РО 9	P0 10	P0 11	P0 12	PSO 1	PSO 2
1	3	3											2	1
2	3	3	2	2	2									
3	2	3	3	2	2									
4	2	3	3	2	2									
5	3	3	3	3										

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER					
UNDERSTAND	30	5	5	30	30
APPLY	40	10	10	40	40
ANALYZE	30	10	10	30	30
EVALUATE					
CREATE					

24IF2708	GENETIC ALGORITHMS	L	Т	Р	С
		3	0	0	3
Preamble					
They operate crossover, and into the theor	thms are heuristic search algorithms that simulate the process on a population of potential solutions, applying operator d mutation to evolve solutions over successive generations. T retical foundations of GAs, covering key concepts such as ge ns, and the mechanics of genetic operators.	rs suc his co	ch as ourse	s sele e will	ction delv
Objectives					
1.To Learn bic	o-inspired theorem and algorithms				
2.To Understa	nd random walk and simulated annealing				
3.To Learn gei	netic algorithm and differential evolution				
4.To Learn sw	arm optimization and ant colony for feature selection				
5.To understa	nd bio-inspired application in image processing				
UNIT I	INTRODUCTION			9	
- Nature-Inspi	red Mata heuristics -Analysis of Algorithms -Nature Inspires A	lgorit	hme	-Dara	mete
-	rameter control. RANDOM WALK AND ANEALING			9	
tuning and par UNIT II Random varia sizes and sea randomization	rameter control. RANDOM WALK AND ANEALING bles - Isotropic random walks - Levy distribution and flights - arch efficiency - Modality and intermittent search strate n- Eagle strategy-Annealing and Boltzmann Distribution - para	Mark gy -	ov c imp	9 hains oortan	- ster ce o
tuning and par UNIT II Random varia sizes and sea	rameter control. RANDOM WALK AND ANEALING bles - Isotropic random walks - Levy distribution and flights - arch efficiency - Modality and intermittent search strate n- Eagle strategy-Annealing and Boltzmann Distribution - para	Mark gy -	ov c imp	9 hains oortan	- ster ce o
tuning and par UNIT II Random varia sizes and sea randomization - Stochastic Tu UNIT III Introduction to variants - sche	rameter control. RANDOM WALK AND ANEALING bles - Isotropic random walks - Levy distribution and flights - arch efficiency - Modality and intermittent search strate n- Eagle strategy-Annealing and Boltzmann Distribution - para annelling. GENETIC ALOGORITHMS AND DIFFERENTIAL	Mark gy - meter e of p	ov cl imp s -Sa	9 hains oortan A algo 9 neters	- step ce o rithm
tuning and par UNIT II Random varia sizes and sea randomization - Stochastic Tu UNIT III Introduction to variants - sche	rameter control. RANDOM WALK AND ANEALING bles - Isotropic random walks - Levy distribution and flights - arch efficiency - Modality and intermittent search strate n- Eagle strategy-Annealing and Boltzmann Distribution - para annelling. GENETIC ALOGORITHMS AND DIFFERENTIAL EVOLUTION co genetic algorithms and - role of genetic operators - choice analysis - introduction to differential	Mark gy - meter e of p	ov cl imp s -Sa	9 hains oortan A algo 9 neters	- step ce o rithn s - GA
tuning and par UNIT II Random varia sizes and sea randomization - Stochastic Tu UNIT III Introduction to variants - sche - choice of par UNIT IV Swarm intellig binary PSO -	rameter control. RANDOM WALK AND ANEALING bles - Isotropic random walks - Levy distribution and flights - arch efficiency - Modality and intermittent search strate n- Eagle strategy-Annealing and Boltzmann Distribution - para annelling. GENETIC ALOGORITHMS AND DIFFERENTIAL EVOLUTION to genetic algorithms and - role of genetic operators - choice ema theorem - convergence analysis - introduction to differentia ameters - convergence analysis - implementation.	Mark gy - meter e of p al evo	ov cl imp s -Sa aran lutio	9 hains oortan A algo 9 neters on - va 9 e ana	- step ce o rithm s - GA riants
tuning and par UNIT II Random varia sizes and sea randomization - Stochastic Tu UNIT III Introduction to variants - sche - choice of par UNIT IV Swarm intellig binary PSO -	RANDOM WALK AND ANEALING RANDOM WALK AND ANEALING bles - Isotropic random walks - Levy distribution and flights - arch efficiency - Modality and intermittent search strate n- Eagle strategy-Annealing and Boltzmann Distribution - para innelling. GENETIC ALOGORITHMS AND DIFFERENTIAL EVOLUTION co genetic algorithms and - role of genetic operators - choice ematheorem - convergence analysis - introduction to differentia ameters - convergence analysis - implementation. SWARM OPTIMIZATION AND FIREFLY ALGORITHM gence - PSO algorithm - accelerated PSO - implementation - col The Firefly algorithm - algorithm analysis - implementation	Mark gy - meter e of p al evo	ov cl imp s -Sa aran lutio	9 hains oortan A algo 9 neters on - va 9 e ana	- step ce o rithn s - GA riant

heuristic-driven Optimization - Fine-Tuning Deep Belief Networks using Cuckoo Search - Improved Weighted Threshold Histogram Equalization Algorithm for Digital Image Contrast Enhancement Using Bat Algorithm - Ground Glass Opacity Nodules Detection and Segmentation using Snake Model - Mobile Object Tracking Using Cuckoo Search

	8									
Total Periods45										
Suggestive Assessment Method	ls									
Continuous Assessment Test	Continuous Assessment TestFormative Assessment TestEnd Semester Exams									
(30 Marks)	(10 Marks)	(60 Marks)							
1. DESCRIPTIVE QUESTIONS	1. TUTORIAL PROBLEMS	1. DESCRI	PTIVE QUESTIONS							
2. PROBLEM SOLVING	2. ASSIGNMENT	2. PROBL	EM SOLVING							
	3. QUIZZES									
Outcomes										
Upon completion of the course	, the students will be able to:									
CO1– Implement and apply bio-in	nspired algorithms									
CO2– Explain random walk and s	imulated annealing									
CO3-Implement and apply genet	ic algorithms									
CO4Explain swarm intelligence a	nd ant colony for feature selection	on								
CO5-Apply bio-inspired techniqu	ies in image processing.									
Text Books										
Eiben,A.E.,Smith,James E, "Introd	uction to Evolutionary Computir	ng", Springer	c 2019.							
Reference Books										
1.Helio J.C. Barbosa, "Ant Colony	Optimization - Techniques and A	pplications	', Intech 2014.							
2. Xin-She Yang , Jaao Paulo papa, "Bio-Inspired Computing and Applications in Image Processing",Elsevier 2016										
3. Xin-She Yang, "Nature Ispired (Optimization Algorithm,Elsevier	First Edition	n 2014							

4. Yang ,Cui,XIao,Gandomi,Karamanoglu ,"Swarm Intelligence and Bio-Inspired Computing", Elsevier First Edition 2013

Web Resources

NPTEL : <u>https://nptel.ac.in/courses/112105235</u>

со	РО 1	РО 2	P0 3	P0 4	РО 5	РО 6	P0 7	РО 8	РО 9	P01 0	P01 1	P01 2	PSO 1	PSO 2
1	1	3	3	3	3	3							1	2
2	1	1	2	2	2								1	2
3	1	1						1			1		1	2
4	1	1						1					1	2
5	1	1						1					1	2

24IF1612	DATABASE TECHNOLOGIES LABORATORY	L	Т	Р	C			
24111012	DATADASE TECHNOLOGIES EADORATORI	0	0	4	2			
Pre- requisite	s for the course		L	I				
The students sl	nould have the basic knowledge on Database Managemen	t Syste	ms					
Objectives								
1. To unders	stand the concepts of Open-Source DBMS.							
2.To learn th	ne process of distributing tables across multiple systems							
3.To apply t	he process of storing, retrieving spatial and temporal data	a						
4.To analyze	e the process of storing, retrieving objects in a database							
5.To compre	ehend the process of storing and retrieving data from an X	KML Da	atabas	se				
S.NO	LIST OF EXPERIMENTS			C O				
1	Data Definition, Manipulation of Tables and Views, Database Querying–Simple queries, Nested queries, Subqueries And Joins.		C01					
2	NOSQL Exercises							
	a. MongoDB – CRUD operations, Indexing, Sharding, Deployment							
	b. Cassandra: Table Operations, CRUD Operations, CQL Types	^{2L} CO1						
	c. HIVE: Data types, Database Operations, Partitioning – HiveQL							
	d. OrientDB Graph database – OrientDB Features							

3	MySQL Database Creation, Table Creation, Query	CO2
4	MySQL Replication – Distributed Databases	CO2
5	Spatial data storage and retrieval in MySQL	CO3
6	Temporal data storage and retrieval in MySQL	CO3
7	Object storage and retrieval in MySQL	CO4
8	XML Data bases, XML table creation, XQuery FLWOR expression	CO4
9	Mobile Database Query Processing using open-source DB (MongoDB/MySQL etc)	CO5

Total Periods: 60

Suggestive Assessment Methods

Lab Components Assessments(50Marks)	End Semester Exams(50Marks)
• Experiments	Experiments
• Viva	• Viva

Outcomes:

Upon completion of the course, the students will be able to:

CO1 Formulate complex queries using SQL.

CO2 Design and Implement applications that have GUI and access databases for backend connectivity

CO3 Use PL/SQL procedures and functions

CO4 Implement the database concept using query processing

CO5 Design and Implement databases.

Laboratory Requirements

Standalone desktop, ORACLE, MSSQL Server,

Reference Books

- 1. HenryFKorth,AbrahamSilberschatzandS.Sudharshan,"DatabaseSystemConcepts",Sixth Edition, McGrawHill, 2011.
- 2. C.J.Date,A.KannanandS.Swamynathan,"AnIntroductiontoDatabaseSystems",Eighth Edition, Pearson Education, 2006.
- 3. R.Elmasri,S.B.Navathe, "Fundamentals of Database Systems", Fifth Edition, Pearson Education/AddisonWesley, 2007.
- 4. Thomas Cannolly and Carolyn Begg, "Database Systems, A Practical Approach to Design, Implementation and Management", Third Edition, Pearson Education, 2007.

Web Resources

www.coursera.org/specialization/databasesystemswww.gale.com/databases

CO Vs PO Mapping and COVs PSO Mapping

СО	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	PS01	PSO2
C01	3	3	3	3	2				3			
CO2	3	3	3	3	2			3	2		3	
CO3	3		3									
CO4	3	3	3	3	3						2	
CO5	3	3	3	3	3	3				3		

24IF2612	Technical Paper Writing and Seminar	L	Т	Р	С
		2	0	0	2
Preamble			•		

In this course, students will develop their scientific and technical reading and writing skills that they need to understand and construct research articles. A term paper requires a student to obtain information from a variety of sources (i.e., Journals, dictionaries, reference books) and then place it in logically developed ideas. The work involves the following steps:

Prerequisites for the course

NIL

Objectives

1.Selecting a subject, narrowing the subject into a topic

- 2.Stating an objective.
- 3. Collecting the relevant bibliography (atleast 15 journal papers)
- 4.Preparing a working outline.

5.Studying the papers and understanding the authors contributions and critically analysing each paper.

6.Linking the papers and preparing a draft of the paper.

7. Preparing conclusions based on the reading of all the papers.

8.Writing the Final Paper and giving final Presentation

Please keep a file where the work carried out by you is maintained. Activities to be carried out

Activity	Instructions	Submission	Evaluation
		week	
Selection of area	You are requested to select an area of	2 nd week	3 %
of interest and	interest, topic and state an objective		Based on
Topic			clarity of
Stating an			thought, current
Objective			relevance and
			clarity in writing

Collecting Information about your area& topic	List 2 journals 2. List 2 conferences, symposiaor workshops List 1 thesis title 4. List 3 authors who publish regularly in your area Attach a call for papers (CFP)	3 rd week	3% (the selected information must be area specific and of international and national
Collection of Journal papers in the topic in the context of the objective – collect 20 & thenfilter	from your area. • You have to provide a complete list of references you will be using- Based on your objective -Search various digital libraries and Google Scholar		standard) 6% (the list of standard papers andreason for selection)

Reading and note:	Reading Paper Process	5 th week	8%
for first 5papers	• For each paper form a Table answering the following questions:		(the table given should indicate
	• What is the main topic of the article?		your understanding of
	What was/were the main issue(s) the author said they want to discuss?		the paper and the evaluation is

• Why did the author claim it		based on your
		conclusions
-		about each
		paper)
• What simplifying assumptions does the author claim to be making?		
What did the author do?		
-		
• What did the author say were the limitations of their research?		
• What did the author say were the important directions for future research?		
Conclude with limitations/issues not		
addressed by the paper (from the perspective of your survey)		
Repeat Reading Paper Process	6 th week	8%
		(the table given should indicate your understanding of the paper and the evaluation is based on your conclusions about each
	 does the author claim to be making? What did the author do? How did the author claim they were going to evaluate their work and compare it to others? What did the author say were the limitations of their research? What did the author say were the important directions for future research? Conclude with limitations/issues not addressed by the paper (from the perspective of your survey) 	 was important? How does the work build on other's work, in the author's opinion? What simplifying assumptions does the author claim to be making? What did the author do? How did the author claim they were going to evaluate their work and compare it to others? What did the author say were the limitations of their research? What did the author say were the important directions for future research? Conclude with limitations/issues not addressed by the paper (from the perspective of your survey)

Reading and	Repeat Reading Paper Process	7 th week	8%
notes for final 5 papers			(the table given should indicate your understanding of
			the paper and the evaluation is based on your conclusions about each paper)
Draft outline 1 and Linking papers	Prepare a draft Outline, your survey goals, along with a classification / categorization diagram	8 th week	8% (this component willbe evaluated based on the linking and

			classification among the papers)
Abstract	Prepare a draft abstract and give a presentation	9 th week	6% (Clarity, purpose andconclusion) 6% Presentation & Viva Voce
Introduction	Write an introduction and background	10 th week	5%
Background	sections		(clarity)
Sections of the paper	Write the sections of your paper based on the classification / categorization diagram in keeping withthe goals of your survey	11 th week	10% (this component will be evaluated based on the linking and classification among the papers)
Your conclusions	Write your conclusions and future work	12 th week	5% (conclusions – clarity and your ideas)
Final Draft	Complete the final draft of your paper	13 th week	10% (formatting, English, Clarity and linking) 4% Plagiarism Check Report
Seminar	A brief 15 slides on your paper	14 th & 15 th week	10% (based on presentation and Viva-voce)