ADDITIVE MANUFACTURING SYLLABI

19MEAM01	ADDITIVE MANUFACTURING TECHNOLOGIES AND	L	T	Р	C
	APPLICATIONS	3	0	0	3
Prerequisites	for the course		1		. <u> </u>
Nil					
Objectives					
Students under	going this course are expected to				
	the principles, methods, areas of usage, possibilities and limita	ations	of	the ac	lditive
2. Be fam	iliar with the characteristics of various materials that are used in ad	ditive	e mar	nufacti	uring.
UNIT I	ADDITIVE MANUFACTURING FUNDAMENTALS			9	
development, H of AM, Classif	compression in product development, Need for Additive Manufact Fundamentals of Additive Manufacturing, AM Process Chain, Adva fication of AM process, Comparison of AM with CNC and other te	ntage	s and	Limit	
UNIT II	LIQUID-BASED AM SYSTEMS			9	
Applications, A	lications, Advantages and Limitations, Case studies. Polyjet: Proce Advantages and Limitations, Case studies. Introduction to microfab				iciple,
UNIT III	SOLID-BASED AM SYSTEMS			9	
Applications, A and specification Multi-Jet Mod Advantages and	ject Manufacturing (LOM): Models and specifications, Process Advantages and Limitations, Case studies. Fused Deposition Mod ons, Process, working principle, Applications, Advantages and Lin lelling (MJM): Models and specifications, Process, working pr ad Limitations, Case studies. Introduction to Direct Metal Deposition letal Deposition and Directed Energy Deposition Processes.	elling nitatic rincip	(FD ons, C le, A	M): M Case st Applica	Aodels tudies. ations,
UNIT IV	POWDER-BASED AM SYSTEMS			9	
Advantages and Process, worki Net Shaping (I and Limitation	sintering (SLS): Models and specifications, Process, working prid Limitations, Case studies. Three-dimensional Printing (3DP): Mod ng principle, Applications, Advantages and Limitations, Case studies. LENS): Models and specifications, Process, working principle, Applies, Case studies. Electron Beam Melting (EBM): Models and specifications, Process, Case studies.	dels an lies. I plicati	nd sp Laser ions,	ecifica Engii Adva	ations, neered ntages
UNIT V	AM APPLICATIONS			9	
Maintenance a	AM- Prototyping- Tooling- Production- Customization and Person nd Repair- Art, Design, and Architecture- Evaluating the Adoption Industry, Automotive Industry, Jewellery Industryapplication.	n of A	M- 4	Applic	ations

Bioengineering Applications: Plan	ning and simulation of complex su	raary Customised Implants &							
Prosthesis, Design and Production of	•	rgery, Custonniscu implants &							
	Total	Periods 45							
Suggestive Assessment Methods									
Continuous Assessment Test	Formative Assessment Test	End Semester Exams							
(30 Marks)	(10 Marks)	(60 Marks)							
2 Test EACH 15marks	2 test EACH 5 marks	Descriptive Questions							
MCQ/Descriptive Questions									
Outcomes									
Upon completion of the course, th	e students will be able to:								
CO.1 Explain the fundamentals of v	arious Additive Manufacturing (AM)techniques.							
CO.2 Describe the working principl based additive manufacturing	e, capability, limitation and applicati techniques.	ons of liquid, solid and powder							
CO.3 Choose a suitable AM technique for the specified application.									
CO.4Compare different AM process and materials based on application.									
CO.5 Explore the range of 3D print design, and creative field.	ing and Prototyping technologies and	their application for industrial,							
CO.6 Explain current and emerging	3D printing applications for various	industrial environment.							
Text Books									
 Olaf Diegel, "A Practical G Martin Leary, "Design for A 	uide to Design for Additive Manufac Additive Manufacturing", Elsevier, 20	turing", Springer, 2019 019.							
Reference Books									
	nting Handbook: Technologies, Desi	gn and Applications",3D Hubs,							
2017.2. Rapid prototyping: Principl Scientific publications, Thir	es and Applications - Chua C.K., Le d Edition, 2010.	cong K.F. and LIM C.S, World							
	Pham and S.S. Dimov, Springer, 20								
1	y Wohlers, Wohlers Associates, 200 eering Applications – Frank W.Liou								
 Group, 2011. 6. Ian Gibson, David W Rosen, Brent Stucker., "Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing", 2nd Edition, Springer, 2015 									
Web Recourses		na Baruon, Springer, 2015							
Nil									

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
1	3	1	1	1									2		3
2	3	1	1	2	1								2		3
3	3	2	3	2	2								2		3
4	3	2	2	2	2								2		3
5	3	2	2	2	2								2		3
6	3	3	3	2	2	2						3	2		3

parament of meen	anical Engineering, Francis Auvier Engineering College Regulation 2017			231						
19MEAM02	CAD FOR ADDITIVE MANUFACTURING	L 3	T 0	P 2	C 4					
Prerequisites	for the course									
Nil										
Objectives										
-	• • . •	11 0	<u>c</u> 1		1 /					
The course is aimed at giving exposure to and enhancing the knowledge and skills of fresh graduate engineers and engineers involved in the operation use of 3D Scanners and 3D printing / additive manufacturing with the aid of CAD packages and for those who want to provide training to others in this area. It gives exposure and on hand experience in the field of CAD packages, 3D Scanner and AM format.										
UNIT-I	DESIGN OF SOLIDS		6							
Introduction to modelling, Types of modelling, 3D modelling: Solid entities, Boolean operations, Types of solid model – Boundary representation (B-rep) technique and Construction Solid Modelling (CSG) approach, Advanced modelling methods-CAD Data exchange formats. AMF files, 3MF, XML, Meta Data, PLY, STEP for AM Application Protocols (AP).										
UNIT-II	3D DATA CAPTURE AND SCANNING TECHNOLOGIES		6)						
Tomography (se shift (long range) scanners-X-Ray technology, -3D CT (X-Ray) sc CT), Basic Components of CT, Different Types of CT Scanners, Ma), Ultrasound imaging, 3-D laser scanners, Industrial CT Scanners. REVERSE ENGINEERING AND OBJECT DIGITIZATION			onano						
reverse engine development,	eering Methodology – Reverse Engineering Steps - The generic pro- eering-Phase I: Scanning, Phase II: Point processing, Phase III Case studies. Applications and selection of reverse engineering sys ved. Point clouds, meshes (.stl), NURBS surface models and parame	: Geo tems.	ometri Hard	ic m ware	odel and					
UNIT-IV	3D RECONSTRUCTION		6)						
3D reconstruction, Image Reconstruction Procedure, Digital Communication Post processing the Captured Data - Handling Data Points - Curve and Surface and solid Creation. Layer-based Model Generation – Adaptive Slicing Approach for Cloud Data Modelling – Planar Polygon Curve Construction – Determination of Adaptive Layer Thickness – Application Examples.CAD Model Construction from Point Clouds, Data handling & Reduction Methods, AM Software (Magics, Mimics, 3Matic, Rhino)										
UNIT-V	AM DATA FORMATS AND MESHING		6)						
Tessellated M	odels, STL Format, STL File Problems, Consequence of Buildin Iodels, STL file Repairs: Generic Solution, Other Translators, an File Manipulation and Repair Algorithms - Mesh Refining by Sub di	nd Ne	ewly	Prop	osed					

259

Reference Books

Nil

Web Recourses

Nil

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
1	3	2	3	1	3								2		2
2	3	1	1	1	3								2		2
3	3	1	1	1	3								2		2
4	3	2	1	1	3								2		2
5	3	3	3	3	3								2		2
6	3	3	3	3	3								2		2

Image: Second	19MEAM03	3D PRINTING AND PROTOTYPING	L	T	P	C						
Additive Manufacturing Technologies and Applications CAD for Additive manufacturing Objectives Students undergoing this course are expected to To explain pre-processing and model preparation in AM To Understand and operate on tessellated/meshed model To import knowledge on slicing process and software To explain AM data process like support generation To explain post processing techniques of AM UNIT-I PREPROCESSING IN ADDITIVE MANUFACTURING Preparation of 3D-CAD model, Reverse engineering and Reconstruction of 3D-CAD model, Part orientation and support generation, STL Conversion, STL error diagnostics, Slicing and Generation of codes for tool path, Surface preparation of materials. Introduction, Process, CAD Data formats Data translation, Data loss, STL format. Pre-Processing -Preparation of 3D-CAD model, Part orientation and support generation, STL Conversion, STL error diagnostics, Slicing and Generation of codes for tool path, Surface preparation of materials - post processing. UNIT II AM SOFTWARE 6 Need for AM software, Build Preparation-Features of various AM software's like Magics, Mimics Solid View, View Expert, 3 D View, Velocity 2, Rhino, STL View 3 Data Expert and 3 D doctor SurgiGuide, 3-matic, Simplant, MeshLab. UNIT II AM Data Processing 6 AM Data Processing: Part Orientation and Support Structure Generation, Model Slicing and Contour Data Organization, Direct and Adaptive Slicing, Hatching Strategies and Tool Path Generation.Modelling of AM Process: Surface Roughness due to Staircase Effect, Part Build-time Fabrication Cost, Optimal Orientation, Quantification of Building Inaccuracy and Part Stability. UNIT IV POST PROCESSING OF AM PARTS 6 Support Material Removal, Surface Texture Improvement- Polymer Surface Treatments - Accuracy Improvement, Aesthetic Improvement, Preparation for use as a Pattern, Property Enhancement using Non-thermal and Thermal Techniques- Gluing and Welding AM Parts - Heat Treatment and Aging. Product Quality - sanding, Acetone treatment,			3	0	2	4						
CAD for Additive manufacturing Objectives Students undergoing this course are expected to To explain pre-processing and model preparation in AM To Understand and operate on tessellated/meshed model To import knowledge on slicing process and software To explain AM data process like support generation To explain AM data process like support generation To explain post processing techniques of AM UNIT-I PREPROCESSING IN ADDITIVE MANUFACTURING 6 Preparation of 3D-CAD model, Reverse engineering and Reconstruction of 3D-CAD model, Part orientation and support generation, STL conversion, STL error diagnostics, Slicing and Generation of codes for tool path, Surface preparation of materials. Introduction, Process, CAD Data formats Data translation, Data loss, STL format. Pre-Processing -Preparation of 3D-CAD model, Part orientation and support generation, STL Conversion, STL error diagnostics, Slicing and Generation of codes for tool path, Surface preparation of materials - post processing. UNIT II AM SOFTWARE 6 Need for AM software, Build Preparation-Features of various AM software's like Magics, Mimics Solid View, View Expert, 3 D View, Velocity 2, Rhino, STL View 3 Data Expert and 3 D doctor SurgiGuide, 3-matic, Simplant, MeshLab. UNIT II AM Data Processing AM Data Processing: Part Orientation and Support Structure Generation, Model Slicing and Contouu Data Organization, Direct and Adaptive Slicing, Hatching Strategies and Tool Path Generation.Modelling of AM Process: Surface Roughnees due to Staircase Effect, Part Build-time Fabrication Cost, Optimal Orientation, Quantification for use as a Pattern, Property Enhancement and Aging. Product Quality - sanding, Acetone treatment, polishing - Inspection and testing - Defects and their causes. UNIT V PROCESS SELECTION AND MATERIAL SCIENCE 6 Guidelines for Process Selection: Introduction, Selection Methods for a Part, Challenges of	Prerequisites	for the course	1	1								
Objectives Students undergoing this course are expected to • To explain pre-processing and model preparation in AM • To Understand and operate on tessellated/meshed model • To import knowledge on slicing process and software • To explain post processing techniques of AM UNIT-I PREPROCESSING IN ADDITIVE MANUFACTURING 6 Preparation of 3D-CAD model, Reverse engineering and Reconstruction of 3D-CAD model, Part orientation and support generation, STL conversion, STL error diagnostics, Slicing and Generation of codes for tool path, Surface preparation of materials. Introduction, Process, CAD Data formats Data translation, Data loss, STL format. Pre-Processing -Preparation of 3D-CAD model, Part orientation and support generation, STL Conversion, STL error diagnostics, Slicing and Generation of codes for tool path, Surface preparation of materials - post processing. 6 UNIT II AM SOFTWARE 6 Need for AM software, Build Preparation-Features of various AM software's like Magics, Mimics Solid View, View Expert, 3 D View, Velocity 2, Rhino, STL View 3 Data Expert and 3 D doctor, SurgiGuide, 3-matic, Simplant, MeshLab. UNIT II AM Data Processing Part Orientation and Support Structure Generation, Model Slicing and Contour Data Organization, Direct and Adaptive Slicing, Hatching Strategies and Tool Path Generation.Modelling of AM Process: Surface Roughness due to Staircase Effect, Part Build-time Fabrication Cost, Optimal Orientation, Quantification of Building Inaccuracy and Part Stability. UNIT IV												
Students undergoing this course are expected to • To explain pre-processing and model preparation in AM • To Understand and operate on tessellated/meshed model • To import knowledge on slicing process and software • To explain post processing techniques of AM UNIT-I PREPROCESSING IN ADDITIVE MANUFACTURING 6 Preparation of 3D-CAD model, Reverse engineering and Reconstruction of 3D-CAD model, Part orientation and support generation, STL Conversion, STL error diagnostics, Slicing and Generation of codes for tool path, Surface preparation of materials. Introduction, Process, CAD Data formats Data translation, Data loss, STL format. Pre-Processing -Preparation of 3D-CAD model, Part orientation and support generation, STL Conversion, STL error diagnostics, Slicing and Generation of codes for tool path, Surface preparation of materials - post processing. UNIT II AM SOFTWARE 6 Need for AM software, Build Preparation-Features of various AM software's like Magics, Mimics Solid View, View Expert, 3 D View, Velocity 2, Rhino, STL View 3 Data Expert and 3 D doctor SurgiGuide, 3-matic, Simplant, MeshLab. 6 UNIT III AM Data Processing 6 AM Data Processing: Part Orientation and Support Structure Generation, Model Slicing and Contour Data Organization, Direct and Adaptive Slicing, Hatching Strategies and Tool Path Generation.Modelling of AM Process: Surface Roughness due to Staircase Effect, Part Build-time Fabrication Cost, Optimal Orientation, Quantification of Building Inaccuracy and Part Stability. UNIT IV PO	• CAD fo	or Additive manufacturing										
 To explain pre-processing and model preparation in AM To Understand and operate on tessellated/meshed model To import knowledge on slicing process and software To explain AM data process like support generation To explain post processing techniques of AM UNIT-I PREPROCESSING IN ADDITIVE MANUFACTURING Preparation of 3D-CAD model, Reverse engineering and Reconstruction of 3D-CAD model, Part orientation and support generation, STL Conversion, STL error diagnostics, Slicing and Generation of codes for tool path, Surface preparation of materials. Introduction, Process, CAD Data formats Data translation, Data loss, STL format. Pre-Processing -Preparation of 3D-CAD model, Part orientation and support generation, STL Conversion, STL error diagnostics, Slicing and Generation of actes for tool path, Surface preparation of materials - post processing. UNIT II AM SOFTWARE Need for AM software, Build Preparation-Features of various AM software's like Magics, Mimics Solid View, View Expert, 3 D View, Velocity 2, Rhino, STL View 3 Data Expert and 3 D doctor SurgiGuide, 3-matic, Simplant, MeshLab. UNIT III AM Data Processing G AM Data Processing: Part Orientation and Support Structure Generation, Model Slicing and Contour Data Organization, Direct and Adaptive Slicing, Hatching Strategies and Tool Path Generation.Modelling of AM Process: Surface Roughness due to Staircase Effect, Part Build-time Fabrication Cost, Optimal Orientation, Quantification of Building Inaccuracy and Part Stability. UNIT IV POST PROCESSING OF AM PARTS G Support Material Removal, Surface Texture Improvement- Polymer Surface Treatments - Accuracy Improvement, Aesthetic Improvement, Preparation for use as a Pattern, Property Enhancement using Non-thermal and Thermal Techniques- Gluing and Welding AM Parts - Heat	Objectives											
To Understand and operate on tessellated/meshed model To import knowledge on slicing process and software To explain AM data process like support generation To explain AM data process like support generation To explain post processing techniques of AM UNIT-I PREPROCESSING IN ADDITIVE MANUFACTURING 6 Preparation of 3D-CAD model, Reverse engineering and Reconstruction of 3D-CAD model, Part orientation and support generation, STL Conversion, STL error diagnostics, Slicing and Generation of codes for tool path, Surface preparation of materials. Introduction, Process, CAD Data formats Data translation, Data loss, STL format. Pre-Processing -Preparation of 3D-CAD model, Part orientation and support generation, STL Conversion, STL error diagnostics, Slicing and Generation of codes for tool path, Surface preparation of materials - post processing. UNIT II AM SOFTWARE 6 Need for AM software, Build Preparation-Features of various AM software's like Magics, Mimics, Solid View, View Expert, 3 D View, Velocity 2, Rhino, STL View 3 Data Expert and 3 D doctor, SurgiGuide, 3-matic, Simplant, MeshLab. UNIT III AM Data Processing 6 AM Data Processing: Part Orientation and Support Structure Generation, Model Slicing and Contour Data Organization, Direct and Adaptive Slicing, Hatching Strategies and Tool Path Generation.Modelling of AM Process: Surface Roughness due to Staircase Effect, Part Build-time Fabrication Cost, Optimal Orientation, Quantification of Building Inaccuracy and Part Stability. UNIT IV POST PROCESSING OF AM PARTS 6 Support Material Removal, Surface Texture Improvement-Polymer Surface Treatments - Accuracy Improvement, Aesthetic Improvement, Preparation for use as a Pattern, Property Enhancement using Non-thermal and Thermal Techniques- Gluing and Welding AM Parts – Heat Treatment and Aging. Product Quality - sanding, Acetone treatment, polishing - Inspection and testing - Defects and their causes. UNIT V PROCESS SELECTI	Students unde	rgoing this course are expected to										
 To import knowledge on slicing process and software To explain AM data process like support generation To explain post processing techniques of AM UNIT-I PREPROCESSING IN ADDITIVE MANUFACTURING G Preparation of 3D-CAD model, Reverse engineering and Reconstruction of 3D-CAD model, Part orientation and support generation, STL Conversion, STL error diagnostics, Slicing and Generation of codes for tool path, Surface preparation of materials. Introduction, Process, CAD Data formats Data translation, Data loss, STL format. Pre-Processing -Preparation of 3D-CAD model, Part orientation and support generation, STL Conversion, STL error diagnostics, Slicing and Generation of codes for tool path, Surface preparation of materials - post processing. UNIT II AM SOFTWARE G Need for AM software, Build Preparation-Features of various AM software's like Magics, Mimics, Solid View, View Expert, 3 D View, Velocity 2, Rhino, STL View 3 Data Expert and 3 D doctor, SurgiGuide, 3-matic, Simplant, MeshLab. UNIT III AM Data Processing: Part Orientation and Support Structure Generation, Model Slicing and Contour Data Organization, Direct and Adaptive Slicing, Hatching Strategies and Tool Path Generation.Modelling of AM Process: Surface Roughness due to Staircase Effect, Part Build-time Fabrication Cost, Optimal Orientation, Quantification of Building Inaccuracy and Part Stability. UNIT IV POST PROCESSING OF AM PARTS G Support Material Removal, Surface Texture Improvement- Polymer Surface Treatments - Accuracy, Improvement, Aesthetic Improvement, Preparation for use as a Pattern, Property Enhancements using Non-thermal and Thermal Techniques- Gluing and Welding AM Parts - Heat Treatment and Aging. Product Quality - sanding, Acetone treatment, polishingInspection and testing - Defects and their causes. UNIT V PROCESS SE	· ·											
To explain AM data process like support generation To explain post processing techniques of AM UNIT-I PREPROCESSING IN ADDITIVE MANUFACTURING G Preparation of 3D-CAD model, Reverse engineering and Reconstruction of 3D-CAD model, Part orientation and support generation, STL conversion, STL error diagnostics, Slicing and Generation of codes for tool path, Surface preparation of materials. Introduction, Process, CAD Data formats Data translation, Data loss, STL format. Pre-Processing -Preparation of 3D-CAD model, Part orientation and support generation, STL conversion, STL error diagnostics, Slicing and Generation of codes for tool path, Surface preparation of materials - post processing. UNIT II MM SOFTWARE G Need for AM software, Build Preparation-Features of various AM software's like Magics, Mimics Solid View, View Expert, 3 D View, Velocity 2, Rhino, STL View 3 Data Expert and 3 D doctor SurgiGuide, 3-matic, Simplant, MeshLab. UNIT III AM Data Processing G AM Data Processing: Part Orientation and Support Structure Generation, Model Slicing and Contour Data Organization, Direct and Adaptive Slicing, Hatching Strategies and Tool Path Generation Cost, Optimal Orientation, Quantification of Building Inaccuracy and Part Stability. UNIT IV POST PROCESSING OF AM PARTS G Support Material Removal, Surface Texture Improvement- Polymer Surface Treatments - Accuracy Improvement, Aesthetic Improvement, Preparation for use as a Pattern, Property Enhancements using Non-thermal and Thermal Techniques- Gluing and Welding AM Parts - Heat Treatment and Aging. Product Quality - sanding, Acetone treatment, polishingInspection and testing - Defects and their causes. UNIT V PROCESS SELECTION AND MATERIAL SCIENCE G	 To Und 	erstand and operate on tessellated/meshed model										
To explain post processing techniques of AM INIT-I PREPROCESSING IN ADDITIVE MANUFACTURING 6 Preparation of 3D-CAD model, Reverse engineering and Reconstruction of 3D-CAD model, Part orientation and support generation, STL Conversion, STL error diagnostics, Slicing and Generation of codes for tool path, Surface preparation of materials. Introduction, Process, CAD Data formats Data translation, Data loss, STL format. Pre-Processing -Preparation of 3D-CAD model, Part orientation and support generation, STL Conversion, STL error diagnostics, Slicing and Generation of codes for tool path, Surface preparation of materials - post processing. UNIT II AM SOFTWARE 6 Need for AM software, Build Preparation-Features of various AM software's like Magics, Mimics, Solid View, View Expert, 3 D View, Velocity 2, Rhino, STL View 3 Data Expert and 3 D doctor, SurgiGuide, 3-matic, Simplant, MeshLab. UNIT III AM Data Processing 6 AM Data Processing: Part Orientation and Support Structure Generation, Model Slicing and Contour Data Organization, Direct and Adaptive Slicing, Hatching Strategies and Tool Path Generation.Modelling of AM Process: Surface Roughness due to Staircase Effect, Part Build-time Fabrication Cost, Optimal Orientation, Quantification of Building Inaccuracy and Part Stability. UNIT IV POST PROCESSING OF AM PARTS 6 Support Material Removal, Surface Texture Improvement- Polymer Surface Treatments - Accuracy Improvement, Aesthetic Improvement, Preparation for use as a Pattern, Property Enhancements using Non-thermal and Thermal Techniques-Gluing and Welding AM Parts - Heat Treatment and Aging. Product Quality - sanding, Acetone treatment, polishingInspection and testing - Defects and their causes. UNIT V PROCESS SELECTION AND MATERIAL SCIENCE 6	 To imp 	ort knowledge on slicing process and software										
UNIT-IPREPROCESSING IN ADDITIVE MANUFACTURING6Preparation of 3D-CAD model, Reverse engineering and Reconstruction of 3D-CAD model, Part orientation and support generation, STL Conversion, STL error diagnostics, Slicing and Generation of codes for tool path, Surface preparation of materials. Introduction, Process, CAD Data formats Data translation, Data loss, STL format. Pre-Processing -Preparation of 3D-CAD model, Part orientation and support generation, STL Conversion, STL error diagnostics, Slicing and Generation of codes for tool path, Surface preparation of materials - post processing.UNIT IIAM SOFTWARE6Need for AM software, Build Preparation-Features of various AM software's like Magics, Mimics, Solid View, View Expert, 3 D View, Velocity 2, Rhino, STL View 3 Data Expert and 3 D doctor, SurgiGuide, 3-matic, Simplant, MeshLab.6UNIT IIIAM Data Processing6AM Data Processing: Part Orientation and Support Structure Generation, Model Slicing and Contour Data Organization, Direct and Adaptive Slicing, Hatching Strategies and Tool Path Generation Cost, Optimal Orientation, Quantification of Building Inaccuracy and Part Stability.UNIT IVPOST PROCESSING OF AM PARTS6Support Material Removal, Surface Texture Improvement- Polymer Surface Treatments - Accuracy Improvement, Aesthetic Improvement, Preparation for use as a Pattern, Property Enhancements using Non-thermal and Thermal Techniques- Gluing and Welding AM Parts - Heat Treatment and Aging. Product Quality - sanding, Acetone treatment, polishingInspection and testing - Defects and their causes.6UNIT IVPROCESS SELECTION AND MATERIAL SCIENCE6Guidelines for Process Selection: Introduction, Selection Methods for a Part, Challenges of												
Preparation of 3D-CAD model, Reverse engineering and Reconstruction of 3D-CAD model, Part orientation and support generation, STL Conversion, STL error diagnostics, Slicing and Generation of codes for tool path, Surface preparation of materials. Introduction, Process, CAD Data formats Data translation, Data loss, STL format. Pre-Processing -Preparation of 3D-CAD model, Part orientation and support generation, STL Conversion, STL error diagnostics, Slicing and Generation of codes for tool path, Surface preparation of materials - post processing.UNIT IIAM SOFTWARE6Need for AM software, Build Preparation-Features of various AM software's like Magics, Mimics Solid View, View Expert, 3 D View, Velocity 2, Rhino, STL View 3 Data Expert and 3 D doctor, SurgiGuide, 3-matic, Simplant, MeshLab.6UNIT IIIAM Data Processing6AM Data Processing: Part Orientation and Support Structure Generation, Model Slicing and Contour Data Organization, Direct and Adaptive Slicing, Hatching Strategies and Tool Path Generation Cost, Optimal Orientation, Quantification of Building Inaccuracy and Part Stability.UNIT IVPOST PROCESSING OF AM PARTS6Support Material Removal, Surface Texture Improvement- Polymer Surface Treatments - Accuracy Improvement, Aesthetic Improvement, Preparation for use as a Pattern, Property Enhancements using Non-thermal and Thermal Techniques- Gluing and Welding AM Parts - Heat Treatment and Aging. Product Quality - sanding, Acetone treatment, polishingInspection and testing - Defects and their causes.UNIT VPROCESS SELECTION AND MATERIAL SCIENCE6Guidelines for Process Selection: Introduction, Selection Methods for a Part, Challenges of	To expl											
orientation and support generation, STL Conversion, STL error diagnostics, Slicing and Generation of codes for tool path, Surface preparation of materials. Introduction, Process, CAD Data formats Data translation, Data loss, STL format. Pre-Processing -Preparation of 3D-CAD model, Part orientation and support generation, STL Conversion, STL error diagnostics, Slicing and Generation of codes for tool path, Surface preparation of materials - post processing. UNIT II AM SOFTWARE 6 Need for AM software, Build Preparation-Features of various AM software's like Magics, Mimics Solid View, View Expert, 3 D View, Velocity 2, Rhino, STL View 3 Data Expert and 3 D doctor SurgiGuide, 3-matic, Simplant, MeshLab. UNIT III AM Data Processing 6 AM Data Processing: Part Orientation and Support Structure Generation, Model Slicing and Contour Data Organization, Direct and Adaptive Slicing, Hatching Strategies and Tool Path Generation Cost, Optimal Orientation, Quantification of Building Inaccuracy and Part Stability. UNIT IV POST PROCESSING OF AM PARTS 6 Support Material Removal, Surface Texture Improvement- Polymer Surface Treatments - Accuracy Improvement, Aesthetic Improvement, Preparation for use as a Pattern, Property Enhancements using Non-thermal and Thermal Techniques- Gluing and Welding AM Parts – Heat Treatment and Aging. Product Quality - sanding, Acetone treatment, polishingInspection and testing - Defects and their causes. UNIT V PROCESS SELECTION AND MATERIAL SCIENCE 6	UNIT-I	PREPROCESSING IN ADDITIVE MANUFACTURING	6									
orientation and support generation, STL Conversion, STL error diagnostics, Slicing and Generation of codes for tool path, Surface preparation of materials. Introduction, Process, CAD Data formats Data translation, Data loss, STL format. Pre-Processing -Preparation of 3D-CAD model, Part orientation and support generation, STL Conversion, STL error diagnostics, Slicing and Generation of codes for tool path, Surface preparation of materials - post processing. UNIT II AM SOFTWARE 6 Need for AM software, Build Preparation-Features of various AM software's like Magics, Mimics Solid View, View Expert, 3 D View, Velocity 2, Rhino, STL View 3 Data Expert and 3 D doctor, SurgiGuide, 3-matic, Simplant, MeshLab. 6 UNIT III AM Data Processing 6 AM Data Processing: Part Orientation and Support Structure Generation, Model Slicing and Contour Data Organization, Direct and Adaptive Slicing, Hatching Strategies and Tool Path Generation Cost, Optimal Orientation, Quantification of Building Inaccuracy and Part Stability. UNIT IV POST PROCESSING OF AM PARTS 6 Support Material Removal, Surface Texture Improvement- Polymer Surface Treatments - Accuracy Improvement, Aesthetic Improvement, Preparation for use as a Pattern, Property Enhancements using Non-thermal and Thermal Techniques- Gluing and Welding AM Parts – Heat Treatment and Aging. Product Quality - sanding, Acetone treatment, polishingInspection and testing - Defects and their causes. 6 UNIT V PROCESS SELECTION AND MATERIAL SCIENCE 6 Guidelines for Process Selection: Introduction, Selection Methods for a Part, Challenges of 1 <td>Preparation o</td> <td>f 3D-CAD model, Reverse engineering and Reconstruction of</td> <td>3D-</td> <td>CAD 1</td> <td>nod</td> <td>el, Part</td>	Preparation o	f 3D-CAD model, Reverse engineering and Reconstruction of	3D-	CAD 1	nod	el, Part						
of codes for tool path, Surface preparation of materials. Introduction, Process, CAD Data formats Data translation, Data loss, STL format. Pre-Processing -Preparation of 3D-CAD model, Part orientation and support generation, STL Conversion, STL error diagnostics, Slicing and Generation of codes for tool path, Surface preparation of materials - post processing. UNIT II AM SOFTWARE 6 Need for AM software, Build Preparation-Features of various AM software's like Magics, Mimics Solid View, View Expert, 3 D View, Velocity 2, Rhino, STL View 3 Data Expert and 3 D doctor, SurgiGuide, 3-matic, Simplant, MeshLab. UNIT III AM Data Processing 6 AM Data Processing: Part Orientation and Support Structure Generation, Model Slicing and Contour Data Organization, Direct and Adaptive Slicing, Hatching Strategies and Tool Path Generation.Modelling of AM Process: Surface Roughness due to Staircase Effect, Part Build-time Fabrication Cost, Optimal Orientation, Quantification of Building Inaccuracy and Part Stability. UNIT IV POST PROCESSING OF AM PARTS 6 Support Material Removal, Surface Texture Improvement- Polymer Surface Treatments - Accuracy Improvement, Aesthetic Improvement, Preparation for use as a Pattern, Property Enhancements using Non-thermal and Thermal Techniques- Gluing and Welding AM Parts – Heat Treatment and Aging. Product Quality - sanding, Acetone treatment, polishing - Inspection and testing - Defects and their causes. UNIT V PROCESS SELECTION AND MATERIAL SCIENCE 6 Guidelines for Process Selection: Introduction, Selection Methods for a Part, Challenges of	-											
Data translation, Data loss, STL format. Pre-Processing -Preparation of 3D-CAD model, Part orientation and support generation, STL Conversion, STL error diagnostics, Slicing and Generation of codes for tool path, Surface preparation of materials - post processing.UNIT IIAM SOFTWARE6Need for AM software, Build Preparation-Features of various AM software's like Magics, Mimics Solid View, View Expert, 3 D View, Velocity 2, Rhino, STL View 3 Data Expert and 3 D doctor, SurgiGuide, 3-matic, Simplant, MeshLab.6UNIT IIIAM Data Processing6AM Data Processing: Part Orientation and Support Structure Generation, Model Slicing and Contour Data Organization, Direct and Adaptive Slicing, Hatching Strategies and Tool Path Generation Cost, Optimal Orientation, Quantification of Building Inaccuracy and Part Stability.UNIT IVPOST PROCESSING OF AM PARTS6Support Material Removal, Surface Texture Improvement- Polymer Surface Treatments - Accuracy Improvement, Aesthetic Improvement, Preparation for use as a Pattern, Property Enhancements using Non-thermal and Thermal Techniques- Gluing and Welding AM Parts - Heat Treatment and Aging. Product Quality - sanding, Acetone treatment, polishing - Inspection and testing - Defects and their causes.6UNIT VPROCESS SELECTION AND MATERIAL SCIENCE6Guidelines for Process Selection: Introduction, Selection Methods for a Part, Challenges of				-								
orientation and support generation, STL Conversion, STL error diagnostics, Slicing and Generation of codes for tool path, Surface preparation of materials - post processing. UNIT II AM SOFTWARE 6 Need for AM software, Build Preparation-Features of various AM software's like Magics, Mimics, Solid View, View Expert, 3 D View, Velocity 2, Rhino, STL View 3 Data Expert and 3 D doctor, SurgiGuide, 3-matic, Simplant, MeshLab. UNIT III AM Data Processing 6 AM Data Processing: Part Orientation and Support Structure Generation, Model Slicing and Contour Data Organization, Direct and Adaptive Slicing, Hatching Strategies and Tool Path Generation.Modelling of AM Process: Surface Roughness due to Staircase Effect, Part Build-time Fabrication Cost, Optimal Orientation, Quantification of Building Inaccuracy and Part Stability. UNIT IV POST PROCESSING OF AM PARTS 6 Support Material Removal, Surface Texture Improvement- Polymer Surface Treatments - Accuracy Improvement, Aesthetic Improvement, Preparation for use as a Pattern, Property Enhancements using Non-thermal and Thermal Techniques- Gluing and Welding AM Parts – Heat Treatment and Aging. Product Quality - sanding, Acetone treatment, polishingInspection and testing - Defects and their causes. UNIT V PROCESS SELECTION AND MATERIAL SCIENCE 6 Guidelines for Process Selection: Introduction, Selection Methods for a Part, Challenges of												
of codes for tool path, Surface preparation of materials - post processing.UNIT IIAM SOFTWARE6Need for AM software, Build Preparation-Features of various AM software's like Magics, Mimics Solid View, View Expert, 3 D View, Velocity 2, Rhino, STL View 3 Data Expert and 3 D doctor, SurgiGuide, 3-matic, Simplant, MeshLab.UNIT IIIAM Data Processing6AM Data Processing: Part Orientation and Support Structure Generation, Model Slicing and Contour Data Organization, Direct and Adaptive Slicing, Hatching Strategies and Tool Path Generation.Modelling of AM Process: Surface Roughness due to Staircase Effect, Part Build-time Fabrication Cost, Optimal Orientation, Quantification of Building Inaccuracy and Part Stability.UNIT IVPOST PROCESSING OF AM PARTS6Support Material Removal, Surface Texture Improvement- Polymer Surface Treatments - Accuracy Improvement, Aesthetic Improvement, Preparation for use as a Pattern, Property Enhancements using Non-thermal and Thermal Techniques- Gluing and Welding AM Parts – Heat Treatment and Aging. Product Quality - sanding, Acetone treatment, polishingInspection and testing - Defects and their causes.6UNIT VPROCESS SELECTION AND MATERIAL SCIENCE6Guidelines for Process Selection: Introduction, Selection Methods for a Part, Challenges of						-						
UNIT IIAM SOFTWARE6Need for AM software, Build Preparation-Features of various AM software's like Magics, Mimics Solid View, View Expert, 3 D View, Velocity 2, Rhino, STL View 3 Data Expert and 3 D doctor, SurgiGuide, 3-matic, Simplant, MeshLab.6UNIT IIIAM Data Processing6AM Data Processing: Part Orientation and Support Structure Generation, Model Slicing and Contour Data Organization, Direct and Adaptive Slicing, Hatching Strategies and Tool Path Generation.Modelling of AM Process: Surface Roughness due to Staircase Effect, Part Build-time Fabrication Cost, Optimal Orientation, Quantification of Building Inaccuracy and Part Stability.UNIT IVPOST PROCESSING OF AM PARTS6Support Material Removal, Surface Texture Improvement- Polymer Surface Treatments - Accuracy Improvement, Aesthetic Improvement, Preparation for use as a Pattern, Property Enhancements using Non-thermal and Thermal Techniques- Gluing and Welding AM Parts – Heat Treatment and Aging. Product Quality - sanding, Acetone treatment, polishingInspection and testing - Defects and their causes.6UNIT VPROCESS SELECTION AND MATERIAL SCIENCE6Guidelines for Process Selection: Introduction, Selection Methods for a Part, Challenges of			incing	Sanu	ucin	cration						
Need for AM software, Build Preparation-Features of various AM software's like Magics, Mimics, Solid View, View Expert, 3 D View, Velocity 2, Rhino, STL View 3 Data Expert and 3 D doctor, SurgiGuide, 3-matic, Simplant, MeshLab. UNIT III AM Data Processing 6 AM Data Processing: Part Orientation and Support Structure Generation, Model Slicing and Contour Data Organization, Direct and Adaptive Slicing, Hatching Strategies and Tool Path Generation.Modelling of AM Process: Surface Roughness due to Staircase Effect, Part Build-time Fabrication Cost, Optimal Orientation, Quantification of Building Inaccuracy and Part Stability. UNIT IV POST PROCESSING OF AM PARTS 6 Support Material Removal, Surface Texture Improvement- Polymer Surface Treatments - Accuracy Improvement, Aesthetic Improvement, Preparation for use as a Pattern, Property Enhancements using Non-thermal and Thermal Techniques- Gluing and Welding AM Parts – Heat Treatment and Aging. Product Quality - sanding, Acetone treatment, polishingInspection and testing - Defects and their causes.			1									
Solid View, View Expert, 3 D View, Velocity 2, Rhino, STL View 3 Data Expert and 3 D doctor, SurgiGuide, 3-matic, Simplant, MeshLab.UNIT IIIAM Data Processing6AM Data Processing: Part Orientation and Support Structure Generation, Model Slicing and Contour Data Organization, Direct and Adaptive Slicing, Hatching Strategies and Tool Path Generation.Modelling of AM Process: Surface Roughness due to Staircase Effect, Part Build-time Fabrication Cost, Optimal Orientation, Quantification of Building Inaccuracy and Part Stability.UNIT IVPOST PROCESSING OF AM PARTS6Support Material Removal, Surface Texture Improvement- Polymer Surface Treatments - Accuracy Improvement, Aesthetic Improvement, Preparation for use as a Pattern, Property Enhancements using Non-thermal and Thermal Techniques- Gluing and Welding AM Parts – Heat Treatment and Aging. Product Quality - sanding, Acetone treatment, polishingInspection and testing - Defects and their causes.6UNIT VPROCESS SELECTION AND MATERIAL SCIENCE6Guidelines for Process Selection: Introduction, Selection Methods for a Part, Challenges of	UNIT II	AM SOFTWARE	6									
SurgiGuide, 3-matic, Simplant, MeshLab.AM Data Processing6UNIT IIIAM Data Processing6AM Data Processing: Part Orientation and Support Structure Generation, Model Slicing and Contour Data Organization, Direct and Adaptive Slicing, Hatching Strategies and Tool Path Generation.Modelling of AM Process: Surface Roughness due to Staircase Effect, Part Build-time Fabrication Cost, Optimal Orientation, Quantification of Building Inaccuracy and Part Stability.UNIT IVPOST PROCESSING OF AM PARTS6Support Material Removal, Surface Texture Improvement- Polymer Surface Treatments - Accuracy Improvement, Aesthetic Improvement, Preparation for use as a Pattern, Property Enhancements using Non-thermal and Thermal Techniques- Gluing and Welding AM Parts – Heat Treatment and Aging. Product Quality - sanding, Acetone treatment, polishingInspection and testing - Defects and their causes.6UNIT VPROCESS SELECTION AND MATERIAL SCIENCE6Guidelines for Process Selection: Introduction, Selection Methods for a Part, Challenges of	Need for AM s	software, Build Preparation-Features of various AM software'	s like	Mag	ics, I	Mimics,						
UNIT IIIAM Data Processing6AM Data Processing: Part Orientation and Support Structure Generation, Model Slicing and Contour Data Organization, Direct and Adaptive Slicing, Hatching Strategies and Tool Path Generation.Modelling of AM Process: Surface Roughness due to Staircase Effect, Part Build-time Fabrication Cost, Optimal Orientation, Quantification of Building Inaccuracy and Part Stability.UNIT IVPOST PROCESSING OF AM PARTS6Support Material Removal, Surface Texture Improvement- Polymer Surface Treatments - Accuracy Improvement, Aesthetic Improvement, Preparation for use as a Pattern, Property Enhancements using Non-thermal and Thermal Techniques- Gluing and Welding AM Parts – Heat Treatment and Aging. Product Quality - sanding, Acetone treatment, polishingInspection and testing - Defects and their causes.6UNIT VPROCESS SELECTION AND MATERIAL SCIENCE6Guidelines for Process Selection: Introduction, Selection Methods for a Part, Challenges of	Solid View, Vi	ew Expert, 3 D View, Velocity 2, Rhino, STL View 3 Data Ex	pert	and 3	3 D	doctor,						
AM Data Processing: Part Orientation and Support Structure Generation, Model Slicing and Contour Data Organization, Direct and Adaptive Slicing, Hatching Strategies and Tool Path Generation.Modelling of AM Process: Surface Roughness due to Staircase Effect, Part Build-time Fabrication Cost, Optimal Orientation, Quantification of Building Inaccuracy and Part Stability.UNIT IVPOST PROCESSING OF AM PARTS6Support Material Removal, Surface Texture Improvement- Polymer Surface Treatments - Accuracy Improvement, Aesthetic Improvement, Preparation for use as a Pattern, Property Enhancements using Non-thermal and Thermal Techniques- Gluing and Welding AM Parts - Heat Treatment and Aging. Product Quality - sanding, Acetone treatment, polishingInspection and testing - Defects and their causes.6UNIT VPROCESS SELECTION AND MATERIAL SCIENCE6Guidelines for Process Selection: Introduction, Selection Methods for a Part, Challenges of	SurgiGuide, 3-	matic, Simplant, MeshLab.										
DataOrganization, Direct and Adaptive Slicing, Hatching Strategies and Tool Path Generation.Modelling of AM Process: Surface Roughness due to Staircase Effect, Part Build-time Fabrication Cost, Optimal Orientation, Quantification of Building Inaccuracy and Part Stability.UNIT IVPOST PROCESSING OF AM PARTS6Support Material Removal, Surface Texture Improvement- Polymer Surface Treatments - Accuracy Improvement, Aesthetic Improvement, Preparation for use as a Pattern, Property Enhancements using Non-thermal and Thermal Techniques- Gluing and Welding AM Parts – Heat Treatment and Aging. Product Quality - sanding, Acetone treatment, polishingInspection and testing - Defects and their causes.6UNIT VPROCESS SELECTION AND MATERIAL SCIENCE6Guidelines for Process Selection:Introduction, Selection Methods for a Part, Challenges of	UNIT III	AM Data Processing	6									
DataOrganization, Direct and Adaptive Slicing, Hatching Strategies and Tool Path Generation.Modelling of AM Process: Surface Roughness due to Staircase Effect, Part Build-time Fabrication Cost, Optimal Orientation, Quantification of Building Inaccuracy and Part Stability.UNIT IVPOST PROCESSING OF AM PARTS6Support Material Removal, Surface Texture Improvement- Polymer Surface Treatments - Accuracy Improvement, Aesthetic Improvement, Preparation for use as a Pattern, Property Enhancements using Non-thermal and Thermal Techniques- Gluing and Welding AM Parts – Heat Treatment and Aging. Product Quality - sanding, Acetone treatment, polishingInspection and testing - Defects and their causes.6UNIT VPROCESS SELECTION AND MATERIAL SCIENCE6Guidelines for Process Selection:Introduction, Selection Methods for a Part, Challenges of			-1.01		. 10							
Generation.Modelling of AM Process:Surface Roughness due to Staircase Effect, Part Build-time Fabrication Cost, Optimal Orientation, Quantification of Building Inaccuracy and Part Stability.UNIT IVPOST PROCESSING OF AM PARTS6Support Material Removal, Surface Texture Improvement- Polymer Surface Treatments - Accuracy Improvement, Aesthetic Improvement, Preparation for use as a Pattern, Property Enhancements using Non-thermal and Thermal Techniques- Gluing and Welding AM Parts – Heat Treatment and Aging. Product Quality - sanding, Acetone treatment, polishingInspection and testing - Defects and their causes.6UNIT VPROCESS SELECTION AND MATERIAL SCIENCE6Guidelines for Process Selection:Introduction, Selection Methods for a Part, Challenges of		-		-								
Fabrication Cost, Optimal Orientation, Quantification of Building Inaccuracy and Part Stability.UNIT IVPOST PROCESSING OF AM PARTS6Support Material Removal, Surface Texture Improvement- Polymer Surface Treatments - Accuracy Improvement, Aesthetic Improvement, Preparation for use as a Pattern, Property Enhancements using Non-thermal and Thermal Techniques- Gluing and Welding AM Parts – Heat Treatment and Aging. Product Quality - sanding, Acetone treatment, polishingInspection and testing - Defects and their causes.UNIT VPROCESS SELECTION AND MATERIAL SCIENCE6Guidelines for Process Selection: Introduction, Selection Methods for a Part, Challenges of	-											
UNIT IVPOST PROCESSING OF AM PARTS6Support Material Removal, Surface Texture Improvement- Polymer Surface Treatments - Accuracy Improvement, Aesthetic Improvement, Preparation for use as a Pattern, Property Enhancements using Non-thermal and Thermal Techniques- Gluing and Welding AM Parts – Heat Treatment and Aging. Product Quality - sanding, Acetone treatment, polishingInspection and testing - Defects and their causes.6UNIT VPROCESS SELECTION AND MATERIAL SCIENCE6Guidelines for Process Selection: Introduction, Selection Methods for a Part, Challenges of												
Support Material Removal, Surface Texture Improvement- Polymer Surface Treatments - Accuracy Improvement, Aesthetic Improvement, Preparation for use as a Pattern, Property Enhancements using Non-thermal and Thermal Techniques- Gluing and Welding AM Parts – Heat Treatment and Aging. Product Quality - sanding, Acetone treatment, polishingInspection and testing - Defects and their causes.Material Removal, Surface Texture Improvement- Polymer Surface Treatments - Accuracy Enhancements and their causes.UNIT VPROCESS SELECTION AND MATERIAL SCIENCE6Guidelines for Process Selection: Introduction, Selection Methods for a Part, Challenges of	Fabrication Co	ost, Optimal Orientation, Quantification of Building Inaccuracy a	and P	art St	abili	ity.						
Improvement, Aesthetic Improvement, Preparation for use as a Pattern, Property Enhancements using Non-thermal and Thermal Techniques- Gluing and Welding AM Parts – Heat Treatment and Aging. Product Quality - sanding, Acetone treatment, polishingInspection and testing - Defects and their causes.UNIT VPROCESS SELECTION AND MATERIAL SCIENCE6Guidelines for Process Selection: Introduction, Selection Methods for a Part, Challenges of	UNIT IV	POST PROCESSING OF AM PARTS	6									
Improvement, Aesthetic Improvement, Preparation for use as a Pattern, Property Enhancements using Non-thermal and Thermal Techniques- Gluing and Welding AM Parts – Heat Treatment and Aging. Product Quality - sanding, Acetone treatment, polishingInspection and testing - Defects and their causes.UNIT VPROCESS SELECTION AND MATERIAL SCIENCE6Guidelines for Process Selection: Introduction, Selection Methods for a Part, Challenges of	Support Mater	ial Removal, Surface Texture Improvement- Polvmer Surface T	'reat	ments	s - Ac	curacy						
using Non-thermal and Thermal Techniques- Gluing and Welding AM Parts – Heat Treatment and Aging. Product Quality - sanding, Acetone treatment, polishingInspection and testing - Defects and their causes. UNIT V PROCESS SELECTION AND MATERIAL SCIENCE 6 Guidelines for Process Selection: Introduction, Selection Methods for a Part, Challenges of						-						
Aging. Product Quality - sanding, Acetone treatment, polishingInspection and testing - Defects and their causes.UNIT VPROCESS SELECTION AND MATERIAL SCIENCE6Guidelines for Process Selection: Introduction, Selection Methods for a Part, Challenges of												
and their causes.PROCESS SELECTION AND MATERIAL SCIENCE6Guidelines for Process Selection: Introduction, Selection Methods for a Part, Challenges of	0											
UNIT VPROCESS SELECTION AND MATERIAL SCIENCE6Guidelines for Process Selection: Introduction, Selection Methods for a Part, Challenges of			unu		-0 ·							
Guidelines for Process Selection: Introduction, Selection Methods for a Part, Challenges of	and then caus											
	UNIT V	PROCESS SELECTION AND MATERIAL SCIENCE	6									
	Guidelines for	r Process Selection: Introduction, Selection Methods for a	Par	t, Cha	llen	ges of						

S.No	Lis	t of Experiments	СО				
1	Slicing of an engineering	component	CO1				
2	Fabrication of the compo dimensional analysis	onent through 3D printer and	CO2				
3	Use of FDM, SLA, DLP and models.	d SLS machines to produce 3D physica	al CO2				
4	Simulation of additive m	anufacturing	C02				
Total	Periods		30 Theory +30 Lab				
Labor	ratory Requirements:						
Sugge	estive Assessment Metho	ds					
Conti	nuous Assessment Test	Lab Components Assessments	End Semester Exams				
(30Ma	arks)	(20 Marks)	(50 Marks)				
	t EACH 15marks Descriptive Questions	Experiments and record of work (10) & Model practical (10)	Descriptive Questions				
Outco	omes		<u> </u>				
Upon	completion of the course	e, the students will be able to:					
CO2: CO3: CO4: CO5: CO6:	Compare the different feature Explain the data processing Discuss the different post pro Select a process parameter f	techniques for additive manufacturing occessing methods					
Text I	Books						
1.		and Stucker, B., Additive Manufactu gital Manufacturing, Springer, 2015	iring Methodologies: Rapic				
Refer	ence Books						
1	Chee Kai Chua, Kah Fai	Leong, 3D Printing and Additive M	anufacturing: Principles and				

- 3. Gebhardt A., "Rapid prototyping", Hanser Gardener Publications, 2003.
- 4. Liou L.W. and Liou F.W., "Rapid Prototyping and Engineering applications: A tool box for prototype development", CRC Press, 2007.
- Kamrani A.K. and Nasr E.A., "Rapid Prototyping: Theory and practice", Springer, 2006 6. Mahamood R.M., Laser Metal Deposition Process of Metals, Alloys, and Composite Materials, Engineering Materials and Processes, Springer International Publishing AG 2018.
- Ehsan Toyserkani, Amir Khajepour, Stephen F. Corbin, "Laser Cladding", CRC Press, 2004.
 V. Raja and K. Fernandes, Reverse Engineering: An Industrial Perspective, Springer- Verlag, 2008.

Web Recourses

Nil

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
1	3	2	2	1	3								2		2
2	3	2	2	1	3								2		2
3	3	2	3	1	3								2		2
4	3	2	3	1	3								2		2
5	3	3	3	1	3								2		2
6	3	3	3	3	3					2			2		2

19MEAM04	DESIGN FOR ADDITIVE MANUFACTURING	L	T	Р	С
1710112/410104		3	0	0	3
Prerequisites for	the course				
	anufacturing Technologies and Applications				
	ditive manufacturing g and Prototyping				
Objectives					
Students undergo	ing this course are expected to				
• To impart	knowledge on				
•	ce the basics of design for additive manufacturing.				
	trate comprehensive knowledge of part consolidation and t	oolin	g de	sign	
	ne design requirements for Metal AM and Polymer AM techn	•			
	e the implication of part design on build time and material s	streng	gth		
To realize	the concept of the post processing treatments in AM				
UNIT I	STRATEGIC DESIGN IN ADDITVE MANUFACTURING			9	
Analysis of AM P	becessing – Topology Optimisation. Design Analysis for AM Parts – role of mesh, topology and size optimization – Build as and Material Performance.				
UNIT II	PART CONSOLIDATION AND TOOLING DESIGN			9	
Conventional DFM Tooling Design –	n – Design for Function – Material Considerations – Nur /DFA principles to DfAM – Assembly Considerations – Design Mounting Fixtures and Guides – Conformal Cooling – Coola hape and Spacing – Steps to minimise Print Time in Tooling.	of Mo	oving	g Parts	s, AM
UNIT III	DESIGN CONSIDERATIONS FOR METAL AM			9	
Size Distribution - Optimisation – Latt and Stress Concent	al Powder Bed Fusion – Metal Powder Production – Powder M - Other Powder Considerations – Potential Defects in AM M tice Structures – Overhangs and Support Material Designing to R rations – General Part Positioning Guidelines - Design for Lase Iting and Metal Binder Jetting.	/ateri	als - e Res	– Top sidual	ology stress
UNIT IV	DESIGN FOR POLYMER AM PROCESS AND OTHER AM			9	
	CONSIDERATIONS				
-	ons due to Anisotropy, Wall Thickness, Overhangs and Support				
	details – Design guidelines for Material Extrusion, Vat Pho ed Fusion. Designer Machine Operator Cooperation – Health an Part Certification				

264

UNIT V **COST &VALUE OF AMAND FUTURE OF AM** 9 A Cost Model of Conventional Manufacturing- Modelling the Cost of AM- Assessing the Value of AM-Cost and Value Scenarios. Future of AM: Functionally Graded Materials – Bio printing - Printed Electronics - Nano Printing - Food Printers. **Total Periods** 45 **Suggestive Assessment Methods End Semester Exams Continuous Assessment Test** Formative Assessment Test (30 Marks) (10 Marks) (60 Marks) 2 Test EACH 15marks 2 test EACH 5 marks **Descriptive Questions** MCQ/Descriptive Questions **Outcomes** Upon completion of the course, the students will be able to: **CO.1**Describe the design aspects for additive manufacturing. **CO.2** Convert the DFM/DFA into Design for Additive Manufacturing. **CO.3** Explain the design consideration of metal powder for AM process. **CO.4** Perform design of AM to reduce residual stresses. **CO.5** Describe the design aspects for polymer AM process. **CO.6** Compute the costing for AM products. **Text Books** 1. Olaf Diegel, "A Practical Guide to Design for Additive Manufacturing", Springer, 2019. 2. Martin Leary, "Design for Additive Manufacturing", Elsevier, 2019. **Reference Books** 1. Ben Redwood, "The 3D Printing Handbook: Technologies, Design and Applications", 3D Hubs, 2017. Web Recourses Nil

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	3
1	2	1	1	1									1		3
2	3	3	3	3	1								1	2	3
3	2	2	3	2	1								1	2	3
4	3	3	3	3	1								1	2	3
5	1	1	1	1	1								1	2	3
6	2	2	2	2	2						2		1	1	

19MEAM05		PROTOTYPING PROJECT	L	Т	Р	С
			0	0	8	4
Prerequisites	for the	course				
CAD for3D Print	or Addi nting ar	ufacturing Technologies and Applications itive manufacturing nd Prototyping litive Manufacturing				
Objectives						
and to a To mak designi To teac To give effective	develop ke the s ng, pro h use c e guida veness.	udents to work in teams to solve open-end designing an o the necessary skills for using modern AM technology. tudents work in small groups following the typical stages totyping and manufacturing - in one continuous project. of new tools and techniques required to carry out the project ince on the various procedures for validation of the pro- idelines to prepare technical report of the project. SUGGESTED PROBLEM APPROACH	s of pr ects.	oduc	t deve	lopment -
. 1			1 1		<u></u>	1
justify • For the to the f • Make	why it selecte ully din physica pe for o	tuation and come up with more than one possible technica is the best. ed design, produce complete technical documentation goin mensioned CAD files. al, fully functioning prototypes to verify form, fit, and design and functional flaws. Prepare the final model and the ation.	ng fro 1 funo	om the	e hand - Ar	l sketches alyze the
		PROJECT ASSUMPTIONS				
 commu Work-i manage Project are requ Each p: 	nicatio n-progreement s evalua uired to roject s plish th	ototyping and manufacturing facilities are at different in has to be used to set up the working links between thes ress should be accessible by all the participating team system has to be developed and used. tion is based on quality and completion of listed "things to o say what the involvement of each member of the group should begin with work scheduling; Microsoft Project so is. Meetings with faculty are scheduled bi-weekly (or b ess.	e loca mer o do". was. ftware	tions nbers Stude e is re	. A p ents' s ecomr	proper file statements nended to
		PROJECT ASSESSMENT				
		red to ensure that each team makes steady progress on ate time at the end of the semester to allow for a variety o	-	•		-
	1	Team Project Idea Submission	5			
	2	First Project Part file	5			

3	First Project Printed Part	10
	Final Project CAD files	15
4	Final Project Printed Parts	10
5	Final product assembly – functional test and quality	25
6	Final Printed Project & Presentation	30

The project is structured to ensure that each team makes steady progress on the project throughout the semester, with adequate time at the end of the semester to allow for a variety of printing methods,

SAMPLE PROJECT DETAILS

The team started the project with a hand sketch to show the idea of the mechanism and its location in the machinery. An Internet search of results for similar objects was required for this part of the project. Documentation - project documentation required use of a CAD package. The required documentation format was an assembly drawing as a solid model, and a detailed 3-D drawing file as the necessary technical documentation for prototyping, manufacturing, inspection, and production preparation.

Prototyping - the next step was prototyping, or making physical models. Using additive method plastic objects were built on the FDM. This machine builds precision objects layer by layer. This method is useful for shape and fit evaluation. There were two important issues in this stage of the project. AutoCAD (Mechanical Desktop) and Reverse engineering, AM software from the courses. A third file format, stereolithography (STL files), was created for use by the 3D printer. When conversions were done, the new formats were inspected for possible errors before proceeding with prototyping. Analysis at this stage of the project concentrated on two elements: design flaws: fitting parts together and possibilities of design improvements by reducing the weight and material selection, as well as developing a concept of manufacturing and adapting the design to the process requirements.

Outcomes

Upon completion of the course, the students will be able to:

CO.1 Apply tools and techniques acquired in AM courses for development of new product.

CO.2 Adapt an efficient problem-solving method in analysing industrial product needs.

CO.3 Formulate a real world problem, identify the requirement and develop the design solutions.

CO.4 Identify technical ideas, strategies and methodologies for prototyping

CO.5 Test and validate through conformance of the developed prototype and analysis the cost effectiveness.

CO.6 Prepare technical report and oral presentations.

CO Vs PO Mapping and CO Vs PSO Mapping

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
1			3	3	3						2	2	3		3
2			3	3	3						2	2	3		3
3			3	3	3						2	2	3		3
4			3	3	3						2	2	3		3
5			3	3	3						2	2	3		3
6									3	3		2			