

Accredited BY NBA | AICTE Sponsored Margdarshan Mentor Institution DST-FIST Supported Institution | ISO 9001:2015 Certified Recognized under Section 2(f) & 12(B) of the UGC Act, 1950

(f)/fxengg ()/fxengg (/fx_ec)/fxengg
 ()/fxengg (/fx_ec)/fxengg
 ()/fxengg (/fxengg)/fxengg

CURRICULUM AND SYLLABI Choice Based Credit System Regulations 2021

M.Tech – Information Technology

Department Vision

To attain global recognition in Information Technology education and training and to meet the growing needs of the industry and society.

Department Mission

* Imparting quality education for the challenging needs of the IT industry with ethics and to reach the unreached through technological development. * Promote new uses of Information Technology within the institution through the support for exploratory and innovative applications

DEPARTMENT OF INFORMATION TECHNOLOGY

Table of Content

S.No	Content	Page No
1	Programme Educational Outcomes (PEOs)	3
2	Programme Outcomes(POs)	3
3	Programme Specific Objectives (PSOs)	4
4	Mapping with PO Vs PEO, PSO	4
5	Summary of Credit Distribution	5
6	I – IV Semester Curriculum	6
7	List of Foundation Courses, Employability Enhancement Course	8
8	List of Professional Electives Courses	8
9	First Semester Syllabus	
10	Second Semester Syllabus	
11	Third Semester Syllabus	
12	Fourth Semester Syllabus	

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

- 1. To enable graduates to excel professionally by adapting to the dynamic needs of the industry, academia and research in the field of Information Technology.
- 2. To enable graduates to practice and promote information technologies for societal needs.
- 3. To enable graduates to contribute to advancement of information technology by means of research and lifelong learning.

PROGRAM OUTCOMES (POs)

Engineering Graduates will be able to:

a. Engineering Knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

b. Problem Analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

c. Design/Development of Solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

d. Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

e. Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

f. The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

Department of IT, Francis Xavier Engineering College / Regulation 2021

g. Environment and Sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

h. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

i. Individual and Team Work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

j. Life-Long Learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs)

- 1. To analyze, design and develop applications relevant to the industrial needs.
- 2. To apply software engineering principles and practices for developing quality software for scientific and business applications.
- 3. To develop programs related to IT services based on open source technologies.

MAPPING OF PROGRAMME EDUCATIONAL OBJECTIVES WITH PROGRAMME OUTCOMES

A broad relation between the programme objective and the outcomes is given in the following table

PROGRAMME	PROGRAMME OUTCOMES (PO)													
EDUCATIONAL OBJECTIVES(PEO)	а	b	C	D	e	f	g	h	i	j				
PEO 1	М	Н	М	Н				L	L	М				
PEO 2	Н				Н		М		L	L				
PEO 3		Н		М	М	М	М	Н	М					

Contribution L: Low / Reasonable M: Medium / Significant H:High / Strong

M.TECH INFORMATION TECHNOLOGY REGULATIONS 2021 CHOICE BASED CREDIT SYSTEM I – IV SEMESTERS CURRICULUM

SUMMARY OF CREDIT DISTRIBUTION

S.	CATEGORY	(TS PEI STER	R	TOTAL	CREDITS IN
No	CATEGORI	Ι	Π	III	IV	CREDITS	%
1	FC	4				4	6%
2	РС	20	14			34	47%
3	PE		6	9		15	21%
4	EEC		1	6	12	19	26%
	TOTAL	24	21	15	12	72	

- FC Foundation Course
- PC Professional Core
- PE Professional Elective
- EEC Employability Enhancement Course

M.TECH INFORMATION TECHNOLOGY REGULATIONS 2021 CHOICE BASED CREDIT SYSTEM I – IV SEMESTERS CURRICULUM

FIRST SEMI	ESTER						
Code No.	Course	Category	L	Т	Р	C	Н
Theory Cour	ses						
21MA1254	Advanced Matrix Theory and Estimation for Engineers	FC	3	1	0	4	4
21IF1601	Advanced Data Structures and Algorithm Design Techniques	PC	3	1	0	4	4
21IF1602	Advanced Computer Architecture	PC	3	0	0	3	3
21IF1603	Modern Operating System	PC	3	0	0	3	3
21IF1604	Software Engineering and Project Management	PC	3	0	0	3	3
21IF1605	Advanced Database technology	PC	3	0	0	3	3
Practical Cou	rses						
21IF1611	Advanced Data Structures Laboratory	PC	0	0	2	2	4
21IF1612	Advanced Database Technology Laboratory	PC	0	0	2	2	4
		TOTAL	18	2	4	24	28

Code No.	Course	Category	L	Т	Р	С	Н
Theory Cou	irses		1				
21IF2601	Machine Learning Techniques	PC	3	0	0	3	3
21IF2602	Advanced Network Security	PC	3	0	0	3	3
21IF2603	Internet of Things	PC	3	0	0	3	3
21IF2604	Big Data Analytics	PC	3	0	0	3	3
	Professional Elective–I	PE	3	0	0	3	3
	Professional Elective –II	PE	3	0	0	3	3
Practical C	ourses						
21IF2911	Technical Paper Writing and Seminar	EEC	0	0	1	1	2
21IF2611	Data Analytics Laboratory	PC	0	0	4	2	4
		TOTAL	18	0	5	21	24

Department of IT, Francis Xavier Engineering College | Regulation 2021

Code No.	Course	Category	L	Т	Р	C	H
Theory Co	urses				1		
	Professional Elective – III	PE	3	0	0	3	3
	Professional Elective – IV	PE	3	0	0	3	(1)
	Professional Elective – V	PE	3	0	0	3	(*)
Practical C	ourses						
21IF3911	Project Work Phase I	EEC	0	0	6	6	12
	•	TOTAL	9	0	6	15	2

FOURTH SEMESTER										
Code No.	Course	Category	L	Т	Р	С	Н			
Practical C	ourses									
21IF4911	Project Work Phase II	EEC	0	0	12	12	24			
		•	0	0	12	12	24			

TOTAL NO. OF CREDITS: 72

- L Lecture
- T Tutorial
- P Practical
- H Hours

Code No	Course	L	Т	Р	С	Н
	FOUNDATION COURSES (FC)	1	I <u></u>		I	<u>.</u>
21MA1254	Advanced Matrix Theory and Estimation for Engineers	3	1	0	4	4
L	IST OF EMPLOYABILITY ENHANCEMENT COUR	SE	(EE	C)		
21IF2911	Technical Paper Writing and Seminar	0	0	1	1	2
21IF3911	Project Work Phase I	0	0	6	6	12
21IF4911	Project Work Phase II	0	0	12	12	24
	PROFESSIONAL ELECTIVES	-	-			1
PROFESSI	ONAL ELECTIVE I					
21IF2701	Data and Cloud Security	3	0	0	3	3
21IF2702	Network and Wireless Security	3	0	0	3	3
21IF2703	Energy Aware Computing	3	0	0	3	3
21IF2704	Bio–Inspired Computing and Image Processing Applications	3	0	0	3	3
PROFESSI	ONAL ELECTIVE II					
21IF2705	Digital Image Processing and Pattern Recognition	3	0	0	3	3
21IF2706	Green Computing	3	0	0	3	3
21IF2707	Agent Based Intelligent System	3	0	0	3	3
21IF2708	Information Retrieval Techniques	3	0	0	3	3
PROFESSI	ONAL ELECTIVE III					
21IF3701	Social Network Analysis	3	0	0	3	3
21IF3702	Mobile Application Development	3	0	0	3	3
21IF3703	Video Analytics	3	0	0	3	3
21IF3704	Deep Learning	3	0	0	3	3
PROFESSI	ONAL ELECTIVE IV					
21IF3705	Automata Theory and Formal Languages	3	0	0	3	3
21IF3706	GPU Architecture and Programming	3	0	0	3	3
21IF3707	Cyber Laws and Security Policies	3	0	0	3	3
21IF3708	Trust Networks	3	0	0	3	3
PROFESSI	ONAL ELECTIVE V					
21IF3709	Wireless Ad hoc and Sensor Networks	3	0	0	3	3
21IF3710	Software Testing and Quality Assurance	3	0	0	3	3
21IF3711	Design Thinking	3	0	0	3	3
21IF3712	Forecasting and Optimization	3	0	0	3	3

6

ancis Xavier En	igineering College	Dept. of IT–PG R2021 / Curriculi	um and Syll	abi	1		
21MA1254	ADVANCED M	ATRIX THEORY AND ESTIMATI ENGINEERS	ON FOR	L	T	P	C
Proroquisitos	s for the course			3	1	0	4
•		sic knowledge on probability and	random va	riahl	20		
	should have the ba	sic knowledge on probability and			25.		
Objectives This course is	s designed to pro	vide the solid foundation on to	pics in app	lied	prob	abilit	y and
various statis	tical methods, wh	ich form the basis for many oth	ner are as	in th	e m	athen	natical
sciences inclu	ding statistics, me	odern optimization methods and	risk mode	eling.	It is	s fran	ied to
address the is	sues and the princ	tiples of estimation theory, testing	g of hypoth	esis a	nd r	nultiv	ariate
analysis.							
UNIT I	PROBABILITY A	ND RANDOM VARIABLES				12	
Probability-A	xioms of probabi	lity – Random variables – Proł	oability fur	nction	1 –	Mome	ents -
Moment gene	erating functions	and their properties – Binomial	, Poisson,	Geon	netri	ic, Un	iform
Exponential, C	Gamma and Norma	l distributions.					
UNIT II	TWO DIMENSIO	NAL RANDOM VARIABLES				12	
Joint distribu	tions – Marginal	and conditional distributions -	Functions	of t	wo	dime	nsiona
Random varia	bles – Correlation.						
UNIT III	ESTIMATION TH	IEORY				12	
Unbiased esti	mators – Method	of moments – Maximum likeliho	od estimat	ion –	Cur	ve fit	ting b
principle of le	ast squares – Regr	ession lines.					
UNIT IV	TESTING OF HY	POTHESIS				12	
Sampling dist	ributions – Type I	and Type II errors – Small and	large samp	oles –	Tes	ts bas	ed on
Normal, t, Chi	square and F distr	ibutions for testing of mean, varia	ance and pr	opor	tions	s – Te	sts foi
independence	of attributes and §	goodness of fit.					
UNIT V	MULTIVARIATE	ANALYSIS				12	
Random vector	ors and matrices	- Mean vectors and covariance	matrices -	- Mul	tivaı	riate	norma
density and it	s properties – Prin	ncipal components – Population p	orincipal co	mpoi	nent	s – Pr	incipa
Components f	rom standardized	variables.					
		Tota	l Periods			60	
Suggestive As	ssessment Metho	ds					
	Assessment Test Iarks)	Formative Assessment Test (10Marks)	End Sem (60	neste Marl		ams	
• Descrip	otive Questions	 Assignment Online Quizzes Problem- Solving Activities 	• Descriptive Questions				

Francis Xavier Engineering College | Dept. of IT-PG | R2021 / Curriculum and Syllabi

Outcomes	
Upon completion	of the course, the students will be able to:
C101.1	Able to find the possibilities of happenings
C101.2	Analyze two dimensional random variables with the correlations
C101.3	Analyze and estimates the maximum likelihood
C101.4	Able to test the distributions for independence of attributes
C101.5	Analyze with the multivariate and principal components
Deference Poole	

Reference Books

- 1. Devore, J.L., "Probability and Statistics for Engineering and the Sciences", 8th Edition, Cengage Learning, 2014.
- 2. Dallas E. Johnson, "Applied Multivariate Methods for Data Analysis", Thomson and Duxbury press, 1998.
- 3. Gupta S. C. and Kapoor V. K., "Fundamentals of Mathematical Statistics", Sultan and Sons, New Delhi, 2001.
- 4. Johnson, R.A., Miller, I and Freund J., "Miller and Freund" Probability and Statistics for Engineers", Pearson Education, Asia, 8thEdition, 2015.
- Richard A. Johnson and Dean W. Wichern, "Applied Multivariate Statistical Analysis", 5th Edition, Pearson Education, Asia, 2002.

CO Vs. PO Mapping and CO vs. PSO Mapping

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
C101.1	3		3	3		3									
C101.2		2	1	1	2				2				3		
C101.3	1	1	2	2	1	1	1	3							
C101.4		2	1	2		1	3			1			2		
C101.5	1	2	2		1	2			3					1	

21IF1601	ADVANCED DATA STRUCTURES AND ALGORITHM DESIGN TECHIQUES	L 3	T 1	P 0	C 4
Prerequisites	s for the course				
The students	should have the basic knowledge on Data structures and algori	thms			
Objectives					
Unders	tand the graph algorithms.				
• Learn o	lifferent algorithms analysis techniques.				
• Apply of	data structures and algorithms in real time applications				
• Able to	analyze the efficiency of algorithm.				
• Unders	tand the NP Complete and NP Hard.	-			
UNIT I	ROLE OF ALGORITHMS IN COMPUTING		-	12	
Algorithms –	Algorithms as a Technology- Insertion Sort – Analyzing Alg	gorith	ms -	- Des	igning
Algorithms -	Growth of Functions: Asymptotic Notation-Standard Nota	ations	an	d Co	mmon
Functions - Re	currences: The Substitution Method–The Recursion-Tree Meth	10d.			
UNIT II	HIERARCHICAL DATA STRUCTURES		-	12	
Binary Search	Trees: Basics – Querying a Binary search tree – Insertion and	d Dele	tion	- Red	-Black
trees: Propert	ies of Red-Black Trees – Rotations – Insertion – Deletion -B-T	'rees:	Defi	nitior	ı of B-
trees – Basic (operations on B-Trees – Deleting a key from a B-Tree- Fibona	cci He	aps:	struc	ture –
Merge-able-he	eap operations-Decreasing a key and deleting a node-Bou	nding	the	max	imum
degree.					
UNIT III	GRAPHS		-	12	
Elementary G	raph Algorithms: Representations of Graphs – Breadth-First	Searc	:h –	Deptł	ı-First
Search – Topo	logical Sort – Strongly Connected Components- Minimum Spa	nning	Tree	es: Gr	owing
a Minimum S	oanning Tree – Kruskal and Prim- Single-Source Shortest Path	ıs: Th	e Be	llmar	ı-Ford
algorithm-Sin	gle-Source Shortest path sin Directed Acyclic Graphs – Dijk	stra's	Algo	orithn	n; All-
Pairs Shortest	Paths: Shortest Paths and Matrix Multiplication–The Floyd-Wa	arshal	l Alg	orith	m;
UNIT IV	ALGORITHM DESIGN TECHNIQUES		-	12	
Dynamic Prog	gramming: Matrix – Chain Multiplication – Elements of Dyna	amic	Prog	ramn	ning –
Longest Comr	non Subsequence- Greedy Algorithms: An Activity-Selection P	roblei	m – 1	Eleme	ents of
-	rategy - Huffman Codes.				
UNIT V	NP COMPLETE AND NP HARD		-	12	
NP-Completer	ness: Polynomial Time – Polynomial – Time Verification – NP –	Comp	lete	ness a	ind
Reducibility -	NP – Completeness Proofs – NP – Complete Problems				
Suggestive A	Total Periods ssessment Methods			60	
Juggestive A	sessment memous				3

rancis Xavier Engineering Col	<u>lege Dept. of IT–PG R2021 / Curriculu</u>	m and Syllabi					
Continuous Assessment							
(30Marks)	(10Marks)	(60Marks)					
 Descriptive Question MCQ 	MCQ,SEMINAR,ASSIGNMENT	 Descriptive Questions MCQ 					
Outcomes							
Upon completion of the co	ourse, the students will be able to:						
C102.1 Design data structures and algorithms to solve computing problems							
C102.2 Unders	stand the necessary mathematical abstr	action to solve problems.					
C102.3 Design algorithms using graph structure and various string mate algorithms to solve real-life problems							
		le design strategy for problem solving, Comprehend and hm design approaches in a problem specific manner.					
C102.5 Understalgorit	stand the awareness of NP comp hms.	pleteness and randomized					
Reference Books							
1. Alfred V. Aho, John E Pearson Education, I	. Hop croft, Jeffrey D. Ullman, "Data Stru Reprint 2006.	actures and Algorithms",					
2. Robert Sedge Wick a	nd Kevin Wayne, "ALGORITHMS", Four	th Edition, Pearson Education.					
3. S. Sridhar, "Design and	nd Analysis of Algorithms", First Edition	n, Oxford University Press. 2014					
4. Thomas H. Cormen,	Charles E. Leiserson, Ronald L. Rivest, C	lifford Stein, "Introduction to					
Algorithms", Third E	dition, Prentice-Hall, 2011.						

CO Vs PO Mapping and CO Vs PSO Mapping

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
C102.1		2	3	3	2							2			
C102.2	1	2	3	3	2									1	
C102.3	1	1	3	3	2	1								1	
C102.4		2	3	3	1		1					2			
C102.5	1	2	3	3	2	1									

21IF1602	ADVANCED COMPUTER ARCHITECTURE	L 3	T 0	P 0	<u>С</u> 3			
Prerequisite	s for the course							
The students	should have the basic knowledge on Computer Architecture							
Objectives								
	oduce the students to the recent trends in the field of Compute	r Arci	nitec	ture a	ind			
	y performance related parameters.							
2. To lear	n the different multiprocessor issues.							
3. To exp	ose the different types of multicore architectures.							
4. To und	erstand the design of the memory hierarchy.							
UNIT I	IT IFUNDAMENTALS OF COMPUTER DESIGN AND ILP12							
Fundamentals	s of Computer Design – Measuring and Reporting Performanc	e – Ir	nstru	ction	Level			
Parallelism a	nd its Exploitation - Concepts and Challenges -Exposing ILF	• - Ac	lvan	ced B	ranch			
Prediction-Dy	namic Scheduling-Hardware-Based Speculation-Exploiting	ILP	_	Instr	uction			
Delivery and Speculation-Limitations of ILP–Multithreading								
UNIT II	MEMORY HIERARCHY DESIGN		1	12				
Introduction-	Optimizations of Cache Performance – Memory Technology and	d Opt	imiza	ations	3 –			
Protection: Vi	rtual Memory and Virtual Machines –Design of Memory Hierar	chies	– Cas	se Stu	dies.			
UNIT III	MULTIPROCESSOR ISSUES		1	12				
Introduction	- Centralized, Symmetric and Distributed Shared Memory A	rchite	ectur	es –	Cache			
Coherence Iss	sues – Performance Issues – Synchronization – Models of M	emor	y Co	nsiste	ency –			
Case Study -	Interconnection Networks – Buses, Crossbar and Multi-s	tage	Inter	conn	ection			
Networks.								
UNIT IV	MULTICORE ARCHITECTURES		1	12				
Homogeneous	s and Heterogeneous Multi-core Architectures – Intel Multicore	e Arch	itect	tures	– SUN			
CMP archited	ture – IBM Cell Architecture. Introduction to Warehouse -	- sca	le co	ompu	ters –			
Architectures	- Physical Infrastructure and Costs - Cloud Computing -	Case	Stud	y - (Google			
Warehouse –	Scale Computer.							
UNIT V	VECTOR, SIMD AND GPU ARCHITECTURES		1	12				
Introduction -	- Vector Architecture – SIMD Extensions for Multimedia – Grap	hics P	roce	ssing	Units			
	- GPU Computing – Detecting and Enhancing Loop Level Paral			-				
	Total Periods			60				
Suggestive A	ssessment Methods							

Francis Xavier Engineering College	Dept. of IT–PG R2021	/ Curriculum and Syllabi

		Asses Marks	sment 5)	: Test		Form		Asses 0Mar		nt Test	:]			est End Semester Exan (60 Marks)					
	 Descriptive Questions MCQ 						MCQ,SEMINAR,ASSIGNMENT1. Descriptive Questions2. MCQ												
Outcom	ies																		
Upon co	-									e to:									
	C103						cions c						_						
	C103	8.2	Di	scuss	the is	ssues	relate	d to n	nultit	hreadi	ng and	sugges	st solut	ions					
	C103			U			memo												
	C103	8.4	Di	scuss	the v	ariou	s tech	nique	s use	d for oj	otimizi	ng the	cache						
	C103	8.5			ut the re arc			ures	of diff	erent									
	C103	8.6						-		n is exp paralle		in arch	itectu	res.					
Referen																			
1. E	Darry l	Gove,	, "Mult	icore	Appli	catior	1 Prog	ramn	ning: l	For Wi	ndows,	Linux,	and O	racle					
S	olaris	", Pear	rson, 2	011															
2. E	David I	3. Kirk	, Wen	- mei	W. Hv	vu, "P	rogra	mmin	g Mas	sively	Paralle	el Proce	essors"	, Morg	an				
k	Kauffm	an, 20	010																
3. I	David	Е.	Culler,	Jas	winde	er Pa	al Si	ngh,	"Para	allel	compu	ting a	archite	cture	: /				
												hers,1	999						
							-					e – A Q		tive					
-			lorgan						-		cootar		uunnenee						
			•			•					Pata M	Crosse	11:11 N	ام ۲۰۰۰					
	лаг п w		na zm	. weiz	iu, su	alabi	e Para	iner C	ompu	ung,		c Graw	ПШ, N	ew Dei	h;				
5. K		ang a													hi,				
5. K 2	2003.														hi,				
5. K	2003.				PSO	Марр	oing								hi,				
5. K 2	2003.						oing PO7	P08	P09	P010	P011	P012	PS01	PSO2					
5. K 2 CO Vs. F	2003. PO Ma	pping	; and (CO vs.				P08	P09	P010	P011	P012	PS01	PSO2					
5. k 2 CO Vs. F CO	2003. PO Ma PO1	pping PO2	; and (20 vs. P04				P08	P09	P010	P011	P012	PS01	PSO2					
5. K 2 CO Vs. F CO C103.1	2003. PO Ma PO1	pping PO2 3	and C PO3	CO vs. PO4 1				P08	P09	P010	P011	P012	PSO1	PSO2					
5. K 2 CO Vs. F CO C103.1 C103.2	2003. PO Ma PO1 2	pping PO2 3 1	PO3 3	CO vs. PO4 1				P08	P09	P010	P011		PSO1	PSO2	hi, PSO				

C103.6

21IF1603		MODERN OPERATING SYSTEM		L	Т	Р	C	
Prereguisites	s for the course			3	0	0	3	
		ic knowledge on Operating Systems						
		ie knowledge on operating systems						
Objectives								
		modern operating systems.						
	-	re implemented in operating systen tation of the distributed operating s						
	_		-					
		ng system and concurrency control execution happens in mobile operat	_					
			ung sys			9		
UNIT I	PROCESS SYNCH	RONIZATION				9		
Multiprocesso	r Operating System	s: System Architectures – Structure	s of OS -	- OS d	esig	n iss	ues –	
Process synch	ronization – Proces	s Scheduling and Allocation – memo	ory man	agem	ent.			
UNIT II	DISTRIBUTED OF		9					
Distributed Op	perating Systems: Sy	/stem Architectures – Design issues	– Comr	nunic	atio	n mo	dels –	
Clock synchro	nization – mutual ex	xclusion – election algorithms – Dist	tributed	Dead	llock	dete	ection	
UNIT III	DISTRIBUTED SC	HEDULING		9				
	heduling – Distribu placement – Catchii	ted shared memory – Distributed Fi	le syste	m – M	lulti	medi	a file	
UNIT IV	DATABASE OPER				9			
Datahara Ora						1.1		
-		uirements of Database OS – Transac currency control algorithms.	ction pr	ocess	moc	161 –		
UNIT V	MOBILE OPERAT	, ,				9		
Mobile Opera		1 and Intel architectures – Powe	er Mana	geme	nt -	- Mo	bile O	
_		Cernel structure and native level pro		-				
	power managemei	-	-	0				
		Total P	eriods			45		
Suggestive As	ssessment Method					_		
Continuous A Test(30	ssessment)Marks)	Formative Assessment Test(10Marks)		emester ams(60 Marks)				
	otive Questions	MCQ,SEMINAR,ASSIGNMENT	1.	Descriptive Questions MCQ				

Outcomes	
Upon completion	of the course, the students will be able to:
C104.1	To study the characteristics of OS for Multiprocessor and
	Multicomputer.
C104.2	To learn the issues related to designing OS.
C104.3	To identify the functionality of distributed Operating Systems.
C104.4	To explain the concepts of distributed scheduling.
C104.5	To analyze the issues related to database Operating System.
C104.6	To learn the latest trends in building Mobile OS.
Reference Books	
1. A S Tanenba	um, Distributed Operating Systems, Pearson Education Asia, 2001
2. Source Wiki	pedia, Mobile Operating Systems, General Books LLC, 2010
3 M Singhal ar	nd NC Shivaratri Advanced Concents in Operating Systems Tata McGraw

3. M Singhal and NG Shivaratri, Advanced Concepts in Operating Systems, Tata McGraw HillI nc, 2001.

CO Vs. PO Mapping and CO vs. PSO Mapping

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
C104.1	2					1						1			
C104.2		2	1	2											
C104.3	1	2		3		1						2			
C104.4	1		3		2	1						2			
C104.5		2	3	2		2									
C104.6			2	1	3		1								2

21IF1604	SOFTWARE ENGINEERING AND PROJECT MANAGEMENT	L	Т	Р	C					
		3	0	0	3					
Prerequisites	Prerequisites for the course									
The students s	The students should have the basic knowledge on Software Engineering									
Objectives										
1. To und	erstand the process of Software Engineering									
2. To con	ceptualize the Software Development Life Cycle (SDLC) models	•								
3. To fam	iliarize Project Management framework and Tools									
UNIT I	INTRODUCTION AND SOFTWARE PROCESS MODELS			9						
management Stakeholder m Process Mode	g and Retooling, An Overview of IT Project Management: De framework, The role of project Manager, Systems View of I nanagement, Project phases and the project life cycle. Waterfall I: Prototype and Spiral Model, Incremental Process model: Itera ncurrent Development Model, Agile Development: Extreme pro	Projec Mod ative a	t M el, E [.] appr	anag volut oach	ement, tionary , RAD,					
UNIT II	SOFTWARE REQUIREMENT ANALYSIS AND SPECIFICATION			9						
Types of Requ	irement, Feasibility Study, Requirement Analysis and Design: I	OFD, I	Data	Dicti	onary,					
HIPO Chart,	Warnier Or Diagram, Requirement Elicitation: Intervi	ews,	Que	estio	nnaire,					
Brainstorming	g, Facilitated Application Specification Technique (FAST), Use	Case	Арр	oroac	h. SRS					
Case study, So	ftware Estimation: Size Estimation: Function Point (Numerical	s). Co	st Es	stima	tion:					
COCOMO (Nur	nericals), COCOMO-II (Numericals). Earned Value Management	t.								
UNIT III	SOFTWARE PROJECT PLANNING AND SCHEDULING			9						
definition and	, Project selection and Approval, Project charter, Project Scope I Project Scope management, Creating the Work Breakdow	vn Sti	uctu	ıres,	Scope					

Verification, Scope Control, Relationship between people and Effort: Staffing Level Estimation, Effect of schedule Change on Cost, Degree of Rigor & Task set selector, Project Schedule, Schedule Control, CPM (Numericals)

UNIT IVSOFTWARE QUALITY MANAGEMENT9

Software and System Quality Management: Overview of ISO 9001, SEI Capability Maturity Model, Mc Calls Quality Model, Six Sigma, Formal Technical Reviews, Tools and Techniques for Quality Control, Pareto Analysis, Statistical Sampling, Quality Control Charts and the seven Run Rule. Modern Quality Management, Juran and the importance of Top management, Commitment to Quality, Crosby and Striving for Zero defects, Ishikawa and the Fish bone Diagram.

UNIT V	HUMAN RESOURCE MANAGEMENT AND RISK	0
UNIIV	MANAGEMENT	9

Human Resource Planning, Acquiring the Project Team: Resource Assignment, Loading, Leveling, Developing the Project Team: Team Structures, Managing the Project Team, Change management: Dealing with Conflict & Resistance Leadership & Ethics. Risk Management: Identify IT Project Risk, Risk Analysis and Assessment, Risk Strategies, Risk Monitoring and Control, Risk Response and Evaluation. Software Reliability: Reliability Metrics, Reliability Growth Modeling.

		Total	Periods	45		
Suggestive Asses	sment Method	S				
Continuous Asse (30Mar		Formative Assessment Test (10Marks)		mester Exams 60 Marks)		
1. Descrip 2. MCQ	otive Questions	MCQ,SEMINAR,ASSIGNMENT	 Descriptive Questions MCQ 			
Outcomes						
Upon completion	n of the course,	the students will be able to:				
C105.1	Apply use of	knowledge of Software Life Cycle.				
C105.2	Identify the I	nputs, Tools and techniques to get	t the requ	ired Project		
	deliverables					
C105.3	To identify the	e scope of the project management	t and sche	edule control		
C105.4	Able to know	the quality aspects of the real-time	e industry	y projects.		
C105.5 Able to manage the risks and builds the teamwork leadership.						

Fr

ancis X	avier Engineering College Dept. of IT–PG R2021 / Curriculum and Syllabi
Refer	ence Books
1.	Software Engineering, 5th and 7th edition, by Roger S Pressman, McGraw Hill publication,
	2019.
2.	Managing Information Technology Project, 6 th edition, by Kathy Schwalbe, Cengage
	Learning publication, 2018.
3.	Information Technology Project Management by Jack T Marchewka Wiley
	India publication, 2015.
4.	Software Engineering 3 rd edition by KK Agrawal, Yogesh Singh, New Age International
	publication, 2017.
5.	Software Engineering Project Management by Richard H. Thayer Wiley India Publication,
	2015.

6. Software Engineering for students: A Programming Approach by Douglas Bell, Pearson publication, 2018.

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
C105.1	2		1			3	1							2	
C105.2		1	2	1	3	2					3				
C105.3	2	3	3			1					2	1			
C105.4		2	3	2	2						2				1
C105.5		1	2	1	2				2		2				2

CO Vs. PO Mapping and CO vs. PSO Mapping

21IF1605	ADVANCED DATABASE TECHNOLOGY	L	Т	Р	C
		3	0	0	3
Prerequisite	s for the course				
The students	should have the basic knowledge on Database Management Sys	stems			
Objectives					
1. To und	erstand the design of databases.				
2. To acq	uire knowledge on parallel and distributed databases and its a	oplica	tion	S.	
3. To stud	ly the usage and applications of Object Oriented and Intelligent	t data	base	s.	
4. To und	erstand the emerging databases like Mobile, XML, Cloud and B	ig Dat	a.		
UNIT I	PARALLEL AND DISTRIBUTED DATABASES				9
Database Syst	tem Architectures: Centralized and Client – Server Architectu	ires -	- Ser	ver S	ystem
Architectures	– Parallel Systems – Distributed Systems – Parallel Databases:	I/O P	arall	elism	-Inter
and Intra Que	ry Parallelism – Inter and Intra operation Parallelism – Desig	n of l	Paral	lel Sy	stems
Distributed D	atabase Concepts – Distributed Data Storage – Distributed Tr	ansad	ction	s – Co	ommit
Protocols – Co	oncurrency Control – Distributed Query Processing – Case Stud	ies			
UNIT II	INTELLIGENT DATABASES				9
Active Databa	ises: Syntax and Semantics (Starburst, Oracle, DB2) – Taxon	omy -	- Ap	plicati	ions –
Design Princi	ples for Active Rules - Temporal Databases: Overview of	Temj	ooral	Data	bases
TSQL2 - Dedu	ctive Databases - Recursive Queries in SQL - Spatial Databases	- Spat	ial D	ata Ty	/pes –
Spatial Relat	ionships – Spatial Data Structures – Spatial Access Me	thods	-	Spatia	al DB
Implementati	on.				
UNIT III	XML DATABASES				9
XML Database	es: XML Data Model – DTD – XML Schema – XML Querying – We	b Dat	abas	es – 0	pen
Database Con	nectivity.				
UNIT IV	MOBILE DATABASES				9
Mobile Databa	ases: Location and Handoff Management - Effect of Mobility or	n Data	a Ma	nagen	nent –
Location Dep	endent Data Distribution – Mobile Transaction Models – Co	oncur	rency	y Con	trol –
Transaction C	ommit Protocols.				
UNIT V	MULTIMEDIA DATABASES				9
Multidimensio	onal Data Structures – Image Databases – Text / Document Dat	abase	s – V	ïdeo	
Databases – A	udio Databases – Multimedia Database Design.				
	Total Periods			45	

Conti	nuous Ass Test(30M		Formative Assessment Test(10Marks)	End Semester Exams(60 Marks)					
	Descriptiv MCQ	ve Questions	MCQ,SEMINAR,ASSIGNMENT	 Descriptive Questions MCQ 					
Outco									
Upon	completio C106.1		, the students will be able to:	and to dovelon skills on					
	C100.1		rallel databases and its necessity a	and to develop skins on					
	6106 2	them.							
	C106.2	•	stributed databases and its necess	ity and to develop skills					
		on them.							
	C106.3	2	telligent databases and its necessit						
		databases to optimize their performance in practice.							
	C106.4	Understand X	ML databases and its need.						
	C106.5	Understand n	nobile databases and their effective	e role in mobility					
		management.							
	C106.6	Understand t	he use of Multimedia databases an	d to design faster					
		Algorithms in	solving practical database problem	m.					
	ence Book								
1.	Henry F K	orth, Abraham S	ilberschatz and S.Sudharshan, "Da	tabase System Concepts",					
	Sixth Edit	ion, Mc Graw Hil	l, 2011.						
2.	C.J.Date, A	.Kannan and S.S	wamynathan, "An Introduction to I	Database Systems", Eighth					
	Edition, P	earson Educatio	n, 2006.						
3.	R.Elmasri	, S.B.Navathe, "Fi	undamentals of Database Systems'	', Fifth Edition, Pearson					
	Education	i / Addison Wesl	еу, 2007.						
4.	Thomas C	annolly and Care	olyn Begg, "Database Systems, A Pr	ractical Approach to Design,					
	Implemen	itation and Mana	agement", Third Edition, Pearson E	ducation, 2007.					
			a Databases", Morgan Kauffman Pu base Systems" Wiley Interscience,						
	Publicatio	on, 2006.							
7.	Carlo Zan	iolo, Stefano Cer	i, Christos Faloutsos, Richard T.Sno	odgrass, V.S.Subrahmanian,					
	Roberto Z	icari.,"Advanced	Database Systems " (The Morgan	Kaufmann Series in Data					

Francis Xavier Engineering College | Dept. of IT–PG | R2021 / Curriculum and Syllabi CO Vs PO Mapping and CO Vs PSO Mapping

СО	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2	PSO3
C106.1	1		2												1
C106.2	1		2			1						1			
C106.3	1	1	3			3									1
C106.4		1	2			2	1					1			2
C106.5	3	1	2	1		1						1			
C106.6	1	1	3			2									2

04154744		L	Т	Р	С
21IF1611	ADVANCED DATA STRUCTURES LABORATORY	0	0	4	2
Prerequis	ites for the course				
• Th	e students should have the basic knowledge on Data structures.				
Objectives					
	learn the implementation of sorting and searching. acquire the knowledge of using advanced tree structures.				
	learn the usage of heap structures.				
4. To	understand the usage of graph structures and spanning trees.				
S.No	List of Experiments		CO		
1	Implementation of Merge Sort and Quick Sort - Analysis		CO 1	L	
2	Implementation of a Binary Search Tree		CO 1	L	
3	Red-Black Tree Implementation		CO 1	L	
4	Heap Implementation		CO 2	2	
5	Fibonacci Heap Implementation		CO 2	2	
6	Graph Traversals		CO 3	8	
7	Spanning Tree Implementation		CO 3	8	
8	Shortest Path Algorithms (Dijkstra's algorithm, Bell-mann Ford Algorithm)		CO 3	3	
9	Implementation of Matrix Chain Multiplication		CO 4	ŀ	

10	Activity Selection and Huffman Coding Imp	lementation.	CO4,C	205		
S.No.	List of Projects		Related Experiment	СО		
1.	OPTIMAL TREAPS		4	CO2		
2.	KNIGHT'S TRAVAILS		6	CO3		
3.	SEARCH ENGINE		3 (
4.	OBSCURE BINARY SEARCH TREES		2	C01		
5.	TRAVELLING SALESMAN		6	CO3		
6.	MUSIC PLAYER USING LINKED LIST		2	C01		
7.	ONLINE VOTING SYSTEM		1	C01		
8.	SUDOKU – BACKTRACKING	8	CO4			
9.	TRAVEL PLAN – GRAPH	6	CO3			
10.	SPIN AND WIN – ARRAYS AND MATH	1	C01			
11.	PHOTO EDITOR		9	C05		
12.	FILE ZIPPER – GREEDY HUFFMAN ENCODI	NG	10	CO4,CO		
13.	TEXT EDITOR – STACK		2	C01		
14.	SNAKES GAME – ARRAYS		4	CO3		
15.	CASH FLOW MINIMIZER – HEAPS		4	CO2		
uggestiv	e Assessment Methods					
ab Comp	oonents Assessments	End Semester	r Exams			
(50 Mark	s)	(50 Marks)				
	50		50			
Jutcomes	5					
Upon con	npletion of the course, the students will be	able to:				
CO107.1	Design and implement basic and advanced	data structures	extensively.	_		

Francis Xavier Engineering College | Dept. of IT-PG | R2021 / Curriculum and Syllabi

CO107.2	Develop and design programs for sorting and searching.
CO107.3	Design algorithms using graph structures
CO107.4	Design and develop efficient algorithms with minimum complexity using design techniques
CO107.5	Be able to design and analyze the time and space efficiency of the data structure.

Laboratory Requirements

Stand-alone desktop with java development kit Compiler

Reference Books

- 1. Alfred V. Aho, John E. Hop croft, Jeffrey D. Ullman, "Data Structures and Algorithms", Pearson Education, Reprint 2006.
- 2. Robert Sedgewick and Kevin Wayne, "ALGORITHMS", Fourth Edition, Pearson Education.
- 3. S.Sridhar, "Design and Analysis of Algorithms", First Edition, Oxford University Press. 2014
- 4. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, "Introduction to Algorithms", Third Edition, Prentice-Hall, 2011.
- 5. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, "Introduction to Algorithms", Third Edition, Prentice-Hall, 2011.

Web Resources

- 1. http://www.coursera.org/specialization/data-structures-algorithms
- 2. http://cse.iitm.ac.in/coursedetails

CO Vs PO Mapping and CO Vs PSO Mapping

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
1			2	1	3						3			2	
2		1	3		3						2			3	
3	1	2	3	3	3	1	1				3			3	
4			3	2	2						2				
5			2	1	3									1	1

S.NO	TOPIC	NO OF WEEKS REQUIRED
1	Implementation of Merge Sort and Quick Sort - Analysis	3
2	Implementation of a Binary Search Tree	4
3	Red-Black Tree Implementation	4
4	Heap Implementation	6
5	Fibonacci Heap Implementation	6
6	Graph Traversals	5
7	Spanning Tree Implementation	6
8	Shortest Path Algorithms (Dijkstra's algorithm, Bell-mann Ford Algorithm)	9
9	Implementation of Matrix Chain Multiplication	7
10	Activity Selection and Huffman Coding Implementation.	10

			L	Т	Р	С
21IF 1	1612	ADVANCED DATABASE TECHNOLOGY LABORATORY	0	0	4	2
Prere	quisit	tes for the course				
٠	The s	students should have the basic knowledge on Database Manageme	nt Sys	tems		
)bjec	tives					
5.	To u	nderstand the concepts of DBMS.				
6.	To fa	miliarize with SQL queries.				
7.	To w	rite stored procedures in DBMS.				
8.	To le	arn front end tools to integrate with databases				
S.N	No	List of Experiments		(20	
1		Data Definition, Manipulation of Tables and Views, Database Querying – Simple queries		C02	108.1	
2	2 Nested queries, Sub queries And Joins.		C0108.1			

Francis Xavier Engineering College | Dept. of IT-PG | R2021 / Curriculum and Syllabi

3	Triggers, Transaction Control	C010	8.1	
4	Embedded SQL, Database Connectivity with Front End Tools High level language extensions	C010	8.2	
5	PL/SQL Basics, Procedures And Functions.	C010	8.3	
6	Active Databases	C010	8.4	
7	Deductive Databases.	C010	8.4	
8	Distributed and Parallel Transactions and Query Processing	C010	8.4	
9	Mobile Database Query Processing	C040	8.3	
10	Object Oriented Database Design	C010	8.4	
11	Multimedia Database for Image and Video Processing.	C0108.4		
12	Spatial and Temporal Databases.	C010	8.4	
13	XML Databases and No SQL Database Storage and Retrieval	C010	8.5	
S.No.	List of Projects	Related Experiment	CO	
16.	Inventory control management Database Project	1-13	C0108	
17.	Student Record Keeping System Database Project	1-13	C0108	
18.	Online Retail Application Database Project	1-13	C0108	
19.	College Database Project	1-13	C0108	
20.	Railway System Database Project	1-13	C0108	
21.	Hospital Management System Database Project	1-13	C0108	
22.	Wholesale Management System	1-13	C0108	
23.	Hotel Management System Database Project	1-13	C0108	
24.	Blood Donation System	1-13	C0108	
25.	Restaurant Management System	1-13	C0108	
26.	Token Booking Management System	1-13	C0408	
27.	Electric Bill System Database	1-13	C0108	
27.				
28.	Voice-Based Transport Enquiry System	1-13	C0108	
	Voice-Based Transport Enquiry System SMS – based Remote Server Monitoring System	1-13 1-13	C0108	

Suggestive	Assessment Methods								
Lab Compo	onents Assessments	End Semester Exams							
(50 Marks	5)	(50 Marks)							
	50	50							
Outcomes									
Upon com	pletion of the course, the students will be a	ble to:							
CO108.1	Formulate complex queries using SQL.								
CO108.2	Design and Implement applications that have GU connectivity	JI and access databases for backend							
CO108.3	Use PL / SQL procedures and functions								
CO108.4	Implement the database concepts using query pro-	ocessing							
CO108.5	Design and Implement databases and Use No SQ	L database storage and retrieval							
Laboratory	y Requirements								
Standalone	tandalone desktop, ORACLE, MS SQL Server								

Reference Books

- 1. Henry F Korth, Abraham Silberschatz and S.Sudharshan, "Database System Concepts", Sixth Edition, Mc Graw Hill, 2011.
- 2. C. J. Date, A. Kannan and S. Swamynathan, "An Introduction to Database Systems", Eighth Edition, Pearson Education, 2006.
- 3. R. Elmasri, S.B.Navathe, "Fundamentals of Database Systems", Fifth Edition, Pearson Education / Addison Wesley, 2007.
- 4. Thomas Cannolly and Carolyn Begg, "Database Systems, A Practical Approach to Design, Implementation and Management", Third Edition, Pearson Education, 2007.

Web Recourses

- 1. http://www.coursera.org/specialization/databasesystems
- 2. http://www.gale.com/databases

CO Vs PO Mapping and CO Vs PSO Mapping

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2	PSO3
1			2	1	3						3			2	
2		1	3		3						2			3	
3	1	2	3	3	3	1	1				3			3	
4			3	2	2						2				
5			2	1	3									1	1

S.NO	ΤΟΡΙϹ	NO OF HOURS REQUIRED
1	Data Definition, Manipulation of Tables and Views, Database Querying – Simple queries	3
2	Nested queries, Sub queries And Joins.	3
3	Triggers, Transaction Control	3
4	Embedded SQL, Database Connectivity with Front End Tools High level language extensions	4
5	PL/SQL Basics, Procedures And Functions.	4
6	Active Databases	3
7	Deductive Databases.	3
8	Distributed and Parallel Transactions and Query Processing	4
9	Mobile Database Query Processing	3
10	Object Oriented Database Design	3
11	Multimedia Database for Image and Video Processing.	4
12	Spatial and Temporal Databases.	4
13	XML Databases and No SQL Database Storage and Retrieval	4

21IF2601	gineering College Dept. of 11–PG R2021 / Curriculum and Syll Machine Learning Techniques	L	Т	Р	С
2111 2001	Machine Learning rechniques	3	0	0	3
-	s for the course				
The students s	should have the basic knowledge on Artificial Intelligence				
	oduce students to the basic concepts and techniques of Machin	e Lea	rnin	σ	
2. To una functio	erstand the concept behind artificial neural networks for learn ns.	ing n	011 - 1	illeai	
3. To bec	ome familiar with algorithms for learning Bayesian networks				
4. To lear	n, conceptualize and apply genetic algorithms				
5. To lear	n, understand and practice machine learning techniques focusi	ing on	n moo	dern	
industi	rial applications.				
UNIT I	INTRODUCTION				9
Designing a L	earning system – Perspectives and issues in machine learning	- Coi	ncep	t learr	ing –
General to sp	ecific ordering - Finding a maximally specific hypothesis - C	andic	late	elimir	ation
algorithm – Li	st – then - eliminate algorithm				
UNIT II	UNSUPERVISED LEARNING				9
Clustering – P	rinciple - Partition Based Clustering – K-means Clustering Algo	rithm	- Ni	umeri	cal
Example – K-r	nedoid clustering Algorithm – Hierarchical Clustering – Agglom	nerati	ve Cl	usteri	ing
And Divisive (Clustering – Application of k-means clustering on Crime dataset	-			
UNIT III	SUPERVISED LEARNING				9
Bayesian Lea	rning: Bayes Theorem and concept learning – Maximum l	likelih	nood	and	Least
squared error	r hypothesis – Naïve Bayes classifier – Bayesian Belief Net	work	s –	Condi	tional
independence	– Representation – Inference – Learning Bayesian Belief Netwo	orks -	- Apr	olicati	on of
Naïve Bayes c	assifier on Iris dataset.				
UNIT IV	DECISION TREE LEARNING				9
Introduction	– Decision Tree Representation – Appropriate problems for a	decisi	on tr	ee lea	rning
-Attribute sel	ection - Basic decision tree learning algorithm – Issues in de	cision	ı tree	e learr	ing –
over fitting – r	nissing attributes – Application of decision tree on health care	datas	et.		C
UNIT V	ENGINEERING APPLICATIONS AND CASE STUDIES				9
Introduction t	o ML applications in Engineering – Civil Engineering : Natura	ıl disa	ster	predi	ction,
Transport da	ta analysis - Mechanical Engineering: IoT and on-site po	erforr	nanc	e ana	alysis,
Electrical Eng	ineering : Load balancing, power distribution, control and	feed	back	syste	ems –
Electronics I	Engineering: Pattern recognition – Information Technol	logy:	Dat	a sc	ience,
Recommenda					
	Total Periods			45	

Continuou: Test(s Asse (30Ma		nt	I	Forma		Asses (10M			I	End Sei Exa		Marks)	
1. Desc 2. MCQ	•	e Ques	tions		MCQ,	SEMI	NAR,A	ASSIG	NMEN	ΙT	(-	scriptive estions Q		
Outcomes	-1-4-		L		J		·	11	1.1						
Upon com C201.1				•						o : chine L	earnin	g			_
C201.2			erstan	0				•				0			
C201.3 C201.4		Und	erstan	d sup	ervise	ed lea	rning	techn	iques		ns				
C201.5		Solv	e the	probl	ems	using	vario	us m	achin	e learn	ing teo	hnique	es in th	ie	
		field	of me	chani	cal ar	nd civi	il engi	neeri	ng						
C201.6		Solv	e the p	oroble	ems u	sing v	ariou	s mac	hine l	earning	g techn	iques in	n the		
		Field	d of ele	ectrica	al and	elect	ronic	s engi	neerii	ng.					
Reference	Book	S													
1. Mitc	hell 1	ſomm,	Mach	ine I	learni	ng. T	ata N	Ac Gr	aw F	Iill Edu	ucation	Pvt I	imited	,	
Revi	sed In	dian R	e prin	t, 201	3.										
2. Moh	senn	Moha	mmed	, Mu	hamn	nad	Badru	dding	g Kha	an, Mo	hamm	ed Ba	sheir 🛛	E.B,	
Mac	hine L	earnin	g algo	rithm	s and	appli	catior	is, Tay	vlor&	Francis	s, 2016				
3. Chris	stoph	er M. B	ishop.	Patte	ern Re	cogni	tion a	nd Ma	achine	e Learn	ing, Sp	ringer 2	2007.		
4. S.Ha	ykin. I	Neural	netwo	orks a	nd lea	arning	g macl	nines.	Pears	son 200)8.				
5. T.Ha	stie, F	.Tibsh	irani a	and J.F	riedn	nan. T	he El	ement	ts of S	tatistic	al Lear	ning. Sj	pringer	2011.	
CO Vs PO M	lappi	ng and	CO V	s PSO	Мар	ping									
CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO
C201.1		2	3	3	2							2			
C201.2	1	2	3	3	2									1	
C201.3	3	3	3									3			<u> </u>
C201.4	1	2	3	3	3										
C201.5	1	2	1	1								1			
C201.6	1	2		1								2			
	1	4		T								2			

21IF2602		ANCED NETWORK SECURITY		L	Т	Р	С
211F20U2	ADVA	ANCED NE I WORK SECURI I Y		3	0	0	3
Prerequisite	s for the course						
The students	should have the fun	damental knowledge on Computer	Network	S.			
Objectives							
1. To leas	rn security mechanis	sms and techniques to provide sec	urity serv	vices.			
2. To be	exposed to symmetr	ic & asymmetric key algorithms ar	id key ma	inage	emen	t aspe	cts.
3. To lear	rn the algorithms us	ing encryption and authentication.					
4. To lear	rn about the Networ	k Security Applications.					
UNIT I	SYMMETRIC & AS	SYMMETRIC KEY ALGORITHMS					Ģ
Substitutiona	l Ciphers, Transposi	tion Ciphers, Data Encryption Stan	dard (DE	S) – (Гripl	e DES,	,
Block Cipher	modes of operation	- AES Cipher.					
UNIT II	PUBLIC KEY CRY	PTOGRAPHY					Ģ
Introduction	to number Theory:	Modular Arithmetic - Euclid's Algo	rithm - Fe	erma	ťs ar	d Eul	ar's
Theorems - T	he Chinese Remaind	ler Theorem and Discrete Logarith	ms. Publi	c Key	y		
Cryptography	v and RSA – Key Man	agement – Diffie – Hellman key Ex	change.				
UNIT III	AUTHENTICATIO	N					Ģ
Hash Algorith	ms: MD5 Message D	Vigest Algorithm – Secure Hash Alg	orithm –	RIPE	MD-2	160 -	
HMAC. Digita	l Signatures – Digita	l Signature Standard – User Auther	ntication	Proto	ocols.		
UNIT IV	NETWORK SECU	RITY APPLICATIONS					Ģ
Kerberos - W	eb Security: Web Sec	curity issues- Secure Sockets Layer	· (SSL) an	d Tra	anspo	ort Lay	yer
Security (TLS) – Secure Electronio	c Transaction (SET). Electronic Ma	il Securit <u>y</u>	y: PG	P - S,	/MIMI	Ξ.
UNIT V	SYSTEM LEVEL SI	ECURITY					Ģ
Intrusion det	ection – password n	nanagement – Viruses and related	Threats –	Viru	is Coi	unter	
Measures - Fi	rewall Design Princi	ples – Trusted Systems.					
			Periods			45	
	ssessment Method		E. J.C				
Continuous A Test(3	Assessment 0Marks)	Formative Assessment Test(10Marks)	End Se Exa			arks)	
1. Descri 2. MCQ	ptive Questions	MCQ,SEMINAR,ASSIGNMENT		Desci Quest MCQ	-		
			1				

<u>rancis Xavier Engine</u>	eering Conege Dept. 0j 11 –	-PG RZUZI	. / Curriculum ana Sy	TIADI	
C202.1	Apply the mathematical	foundation	s in security principl	les.	
C202.2	Identify the features of e	ncryption a	and decryption.		
C202.3	Apply various End	cryption,	Authentication	and	Digital
	Signature Algorithms.				
C202.4	Deal with different gener and Techniques.	ral purpose	e and application spe	cific Se	curity Protocols
C202.5	Understand the Network	Security A	applications.		
Reference Books					
4 147-11- 0.		NT . 10		1 D	"

- William Stallings, "Cryptography and Network Security Principles and Practices", 5th Edition, Pearson Education, 2010.
- Behrouz A. For uzan and Debdeep Mukhopadhyay, "Cryptography and Network Security", 2nd Edition, Tata Mc Graw - Hill, 2010.
- Bruice Schneier, "Applied Cryptography: Protocols, Algorithms and Source Code in C", 2nd Edition, Wiley India (P) Ltd., 2008.
- Charles P. P fleeger and Shari Lawrence P fleeger, "Security in Computing", 4th edition, Pearson Education, 2011.

CO Vs PO Mapping and CO Vs PSO Mapping

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	PS01	PSO2	PSO3
C202.1	3		2	2									
C202.2	3	3	3	2				3	3	3			
C202.3			3	3	3			3	3				
C202.4	1			2				2	2				
C202.5	2		3	3	3			3	2	3			
C202.6		2		2	3	3	2			3			

21IF2603		INTERNET OF THINGS		L 3	Т 0	P 0	C 3
Prerequisites	s for the course			0	Ŭ	Ū	
-		wledge on Microprocessors					
Objectives							
1. To exp	lore various compo	nents of Internet of things such as S	Sensors, i	interr	netw	orkin	g and
cybers	pace.						
2. To und	erstand the various	IoT protocols used for communica	tion				
3. To desi	ign and develop the	program for IoT devices					
4. To Des	ign an IoT devices t	o work with a Cloud Computing inf	rastructu	ıre.			
5. Able to	design and implem	ent IoT circuits and solutions.					
UNIT I	INTRODUCTION	TO INTERNET OF THINGS					9
Introduction	To IoT: Sensing, A	Actuation, Networking basics, Com	municati	on P	roto	cols, S	Sensor
Networks, Ma	chine-To -Machine	Communications, IoT Definition, C	haracter	istics	. IoT	Func	tional
Blocks, Physic	al design of IoT, Log	gical design of IoT, Communication	models &	& API	s.		
UNIT II	IOT STRUCTURE						9
M2M to IoT - 7	Гhe Vision - Introdu	ction, From M2M to IoT, M2M towa	ards IoT ·	- the g	globa	al con	text, A
Usecase exam	ple, Differing Chara	acteristics. Definitions, M2M Value	chains,	IoT V	Value	e Cha	ins, An
emerging indu	istrial structure for	IoT					
UNIT III	IOT ARCHITECTU	IRE					9
IoT Reference	Architecture – Gett	ing Familiar with IoT Architecture,	Various	archi	tecti	ural v	iews of
IoT such as Fu	Inctional, Information	on, Operational and Deployment. C	onstraint	ts affe	ectin	g desi	gn in
		al design Constraints				0	0
UNIT IV	APPLICATIONS O	FIOT					9
		cations, Surveillance applications, (Other IoT	'appl	icati	ons	
				upp.	loui	0110	
UNIT V	DEVELOPING IOT	SOLUTIONS					9
Introduction	to Python ,Intro	duction to different IoT tools, In	ntroducti	ion t	o Ai	duin	o and
Raspberry Pi	Implementation	of IoT with Arduino and Rasph	erry, Clo	oud (Comj	outing	g, Fog
Computing, C	onnected Vehicles,	Data Aggregation for the IoT	in Smart	t Citi	es, F	rivac	y and
Security Issue	s in IoT.						
		Total I	Periods			45	
00	ssessment Method						
Continuous A Test(3)	ssessment)Marks)	Formative Assessment Test(10Marks)	End Ser			arks)	
τερίοι	,ai n.sj		ыла	s(0		ai 113J	

. I	uncis Auvier Engine	ering conege Dept. 0/11-FG K2021 / Curriculum and Synabl	
	1. Descrip 2. MCQ	IVe Unestions	criptive estions Q
	Outcomes		
	Upon completion	of the course ,the students will be able to :	
	C203.1	Understand general concepts of Internet of Things (IoT) (Une	derstand)
	C203.2	Recognize various devices, sensors and applications (Knowle	edge)
	C203.3	Analyze various M2M and IoT Architectures (Analyze)	
	C203.4	Apply design concept to IoT Solutions (Apply)	

C203.5 Evaluate design issues in IoT Applications (Evaluate)

C203.6 Create IoT solutions using sensors, actuators and Devices (Create)

Reference Books

- 1. Vijay Madisetti and Arshdeep Bahga, "Internet of Things (A Hands-on Approach)", 1st Edition ,VPT,2014
- Jan Holler, Vlasios Tsiatsis, Catherine Mulligan, Stefan Avesand, Stamatis Karnouskos, David Boyle, "From Machine-To –Machine to the Internet of Things: Introduction to a New Age of Intelligence", 1st Edition, Academic Press, 2014.
- 3. Francis da Costa, "Rethinking the Internet of Things: A Scalable Approach to Connecting Everything", 1st Edition, A press Publications, 2013
- Cuno P fister, Getting Started with the Internet of Things, O"Reilly Media, 2011, ISBN: 978-1-4493- 9357-1.
- 5. Srinivasa KG, "Internet of Things", CENGAGE Leaning India, 2017.
- Raj Kamal, "Internet of Things: Architecture and Design Principles", 1st Edition, Mc Graw Hill Education, 2017.

CO Vs PO Mapping and CO Vs PSO Mapping

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	PS01	PSO2	PSO3
C203.1	3					3				3			
C203.2	2		3	3		2				3			
C203.3			3	3						3			
C203.4		3	3	3	3								
C203.5		3	2	3	3								
C203.6		3	3	3	2								

	gineering conege Dept. 0/11-16 K2021 / Curriculum and Syn	L	Т	Р	С
21IF2604	BIG DATA ANALYTICS	3	0	0	3
Prerequisites	s for the course				
The students s	should have the knowledge on database and cloud concepts				
Objectives					
1. To und	erstand the competitive advantages of big data analytics				
2. To und	erstand the big data frame works				
3. To lear	n data analysis methods				
4. To lear	n stream computing				
5. To gair	knowledge on Hadoop related Tools such as H-Base, Cassandr	a, Pig	g, and	Hive	for
big dat	a analytics.				
UNIT I	INTRODUCTION TO BIG DATA				9
Big Data – De	finition , Characteristic Features – Big Data Applications - Bi	g Dat	a vs	Tradi	tional
Data - Risks o	f Big Data - Structure of Big Data - Challenges of Conventional	Syste	ms - `	Web I	Data –
	Analytic Scalability - Evolution of Analytic Processes, Tools and	-			
	- Modern Data Analytic Tools.			·	
UNIT II	HADOOP FRAMEWORK				9
	le Systems – Large – Scale File System Organization – HDFS cor	icent	s – M	an Re	duce
	orithms using Map Reduce, Matrix-Vector Multiplication – Had	_		-	aace
UNIT III	DATA ANALYSIS				9
Statistical Met	hods: Regression modeling, Multivariate Analysis - Classifica	ation	: SV	M & F	Kernel
Methods - Rul	e Mining - Cluster Analysis, Types of Data in Cluster Analysis, I	Partit	ionin	ig Met	thods,
Hierarchical I	Methods, Density Based Methods, Grid Based Methods, Mo	del B	ased	Clus	tering
Methods, Clus	tering High Dimensional Data – Predictive Analytics – Data ana	lysis	using	g R.	_
UNIT IV	MINING DATA STREAMS				9
Streams: Conc	epts – Stream Data Model and Architecture – Sampling data in	a stre	eam -	Mini	ng
	and Mining Time – series data – Real Time Analytics Platform (U
	Real Time Sentiment Analysis, Stock Market Predictions.		JP		
UNIT V	BIG DATA FRAMEWORKS				9
Introduction	to No-SQL – Aggregate Data Models – H-base: Data Model and	Imple	emen	tatior	ıs –H-
	- Examples – .Cassandra: Data Model – Examples – Cassand	_			
	ig – Grunt – Pig Data Model – Pig Latin – developing and test				-
	pes and File Formats – Hive-QL Data Definition – Hive- QL Data				
Hive-QL Quer			•		
1 1	Total Periods			45	
	100011011003				

Francis Xavier Engineering College | Dept. of IT–PG | R2021 / Curriculum and Syllabi Suggestive Assessment Methods

	nuous Ass Test(30M		Formative Assessment Test(10Marks)	End Semester Exams(60 Marks) 1. Descriptive Questions 2. MCQ							
	Descripti MCQ	ve Questions	MCQ,SEMINAR,ASSIGNMENT								
Outco				·							
Upon	completi C204.1		e, the students will be able to :	hig data analytica							
			ow To leverage the insights from	.							
	C204.2 Understand the concepts on Hadoop framework										
	C204.3 Analyze data by utilizing various statistical approaches										
	C204.4 Analyze data by utilizing various data mining approaches										
	C204.5 Perform analytics on real-time streaming data										
	C204.6	Understand th	ne various No-SQL alternative data	base models							
Refer	ence Bool	KS									
1.	Bill Frank	s, "Taming the B	ig Data Tidal Wave: Finding Oppor	tunities in Huge Data Stream							
	With Advanced Analytics", Wiley and SAS Business Series, 2012.										
2.	David Loshin,"Big Data Analytics: From Strategic Planning to Enterprise Integration with										
	Tools, Te	chniques, No-SQI	., and Graph", 2013.								
3.	Learning R–A Step-by-step Function Guide to Data Analysis, Richard Cotton, O"Reilly Med 2013.										
4.	Michael E	erthold, David J.	Hand, "Intelligent Data Analysis", S	Springer, Second Edition ,							
	2007.										
5.	Michael Minelli, Michelle Chambers, and Ambiga Dhiraj, "Big Data, Big Analytics: Emergin										
	Business Intelligence and Analytic Trends for Today's Businesses", Wiley, 2013.										
6		0	U U								
0.	i .j.sauala	ge and mirowler	, "No-SQL Distilled: A Brief Guide to	o the Emerging world of							
	Polyglot I	Persistence", Add	ison –Wesley Professional, 2012.								

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	PS01	PSO2	PSO3
CO204.1	3	3								3			
CO204.2	3	3											
C0204.3	3	3	3	2	3				2	2			
CO204.4	3	3	3	2	3				2	2			
CO204.5	3	3	3	3	3	2			2	2			
CO204.6	3	3								3			

21IF2911	TECHNICAL PAPER WRITING AND SEMINAR	L	Т	Р	С
21112911		0	0	2	1
Objectives					

- In this course, students will develop the scientific and technical reading and writing skills they need.
- To understand and construct research articles. A term paper requires a student to obtain information from a variety of sources (i.e., Journals, dictionaries, reference books) and then place it in logically developed ideas. The work involves the following steps:

Selecting a subject narrowing the subject into a Topic

- 1. Stating an objective.
- 2. Collecting the relevant bibliography(atleast15journalpapers)
- 3. Preparing a working outline.
- 4. Studying the papers and understanding the authors contributions and critically analyzing each paper.
- 5. Preparing a working outline
- 6. Linking the papers and preparing a draft of the paper.
- 7. Preparing conclusions based on the reading of all the papers.
- 8. Writing the Final Paper and giving final Presentation

Please keep a file where the work carried out by you is maintained. Activities to be carried out.

Activity	Instructions	Submission week	Evaluation
Selection of area of interest and Topic Stating an Objective	You are requested To select an area of interest, Topic and state an objective	2 nd week	3 % Based on clarity of thought, current relevance and clarity in writing
Collecting Information about your area & Topic	 List 1 Special Interest Groups or professional society List 2 journals List 2 conferences, symposia or workshops List 1thesis title List3web presences (mailing lists, forums, news sites) List 3 authors who publish regularly in your area Attach a call for papers (CFP) from your area. 	3 rd week	3% (the selected information must be area specific and of international and national standard)
Collection of Journal papers in the Topic in the con text of the objective – collect 20 &then filter	 You have To provide a complete list of references you will be using- Based on your objective -Search various digital libraries and Google Scholar When picking papers to read-try To : Pick papers that are related To each other in some ways and/or that are in the same field so that you can write a meaningful survey out of them, Favour papers from well-known journals and conferences, Favour "first" or "foundation al" papers in the field (as indicated in other people's survey paper), Favour more recent papers, Pick a recent survey of the field so you can quickly gain an overview, Find relationships with respect To each other and To your Topic area(classification scheme/categorization) Mark in the hard copy of papers whether complete work or section /sections of the paper are being considered 	4 th week	6% (the list of standard papers and reason for selection)
Reading and notes for first5papers	 Reading Paper Process For each paper formatable answering the following questions: What is the main topic of the article? What was/were the main issue(s) the author said they want to discuss? Why did the author claim it was important? How does the work build on other's work, in the author's opinion? 	5 th week	8% (the table given should indicate your understanding of the paper and the evaluation is based on your Conclusions about each paper)

FrancisXavierEngi	neeringCollege DepTo fIT-PG R2021/Curriculuman	dSyllabi	
	 What simplifying assumptions does the author claim To be making? What did the author do? How did the author claim they were going to evaluate their work and compare it to others? What did the author say were the limitations of their research? What did the author say were the important directions for future research? Conclude with limitations/issues not addressed by the paper (from the perspective of your survey) 		
Reading and notes for next5papers	Repeat Reading Paper Process	6 th week	8% (the table given should indicate your understanding of the paper and the evaluation is based on your conclusions About each paper)
Reading and notes for final5papers	Repeat Reading Paper Process	7 th week	8% (the table given should indicate your understanding of the paper and the evaluation is based on Your conclusions about each paper)
Draft outline 1and Linking papers	Prepare a draft Outline, your survey goals, along with a classification / categorization diagram	8 th week	8% (this component will be evaluated based on the linking and classification among the papers)
Abstract	Prepare a draft abstract and give a presentation	9 th week	6% (Clarity, purpose and conclusion) 6% Presentation & Viva Voce
			36

*rancisXavierEng	ineeringCollege DepTo fIT–PG R2021/Curricu	ılumandSyllabi	
Introduction Background	Write an introduction and background sections	10 th week	5% (clarity)
Sections of the paper	Write the sections of your paper based on the classification / categorization diagra in keeping with the goals of your survey		10% (this component will be evaluated based on the linking and classification among the papers)
Your Conclusions	Write your conclusions and future work	12 th week	5% (conclusion s –clarity and your ideas)
Final Draft	Complete the final draft of your paper	13 th week	10% (formatting, English, Clarity and linking) 4% Plagiarism Check Report
Seminar	Abrief15slides on your paper	14 th & 15 th week	10% (based on presentation and Viva-voce)
			Total Periods:30
Suggestive Asso	essment Methods		Total Periods:30
Suggestive Asso Lab Componen Assessments(5		End Semester Exams(50Marks)	Total Periods:30
Lab Componen Assessments(5	ts		
Lab Componen Assessments(5 • Presenta	ts 50Marks)	Exams(50Marks)	
Lab Componen Assessments(5 • Presenta Outcomes:	ts 50Marks)	• Presentation	
Lab Componen Assessments(5 • Presenta Outcomes:	ts 50Marks) tions, Reviews ion of the course ,the students will be abl	Exams(50Marks) Presentation e to :	
Lab Componen Assessments(5 • Presenta Outcomes: Upon complet	ts 50Marks) tions, Reviews ion of the course ,the students will be abl 1 Choose the field and topic of their dis	Exams(50Marks) Presentation e to : sertation	ns, Reviews
Lab Componen Assessments(5 • Presenta Outcomes: Upon complet C207.	ts 50Marks) tions, Reviews ion of the course ,the students will be abl 1 Choose the field and topic of their dis	Exams(50Marks) Presentation e to : sertation	ns, Reviews
Lab Componen Assessments(5 • Presenta Outcomes: Upon complet C207.	ts 50Marks) tions, Reviews ion of the course ,the students will be abl 1 Choose the field and topic of their dis 2 Inculcating academic skills, including research	Exams(50Marks) Presentation e to : sertation	ns, Reviews

FrancisXavierEngineeringCollege DeptofIT-PG R2021/CurriculumandSylla
--

C207.5	Gather, systematize, and process information and prepare analytic
	reports and documents.
C207.6	Acquainting the standard work flow in government bodies and public
	organizations
1	

COVs PO Mapping and CO Vs PSO Mapping

СО	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	PS01	PSO2	PSO3
C207.1	1						2	3					
C207.2	2					1			3				
C207.3	1							2	3				
C207.4			2						3	1			
C207.5	2					1			3				
C207.6	1							2	3				

21IF2611	DATA ANALYTICS LABORATO RY	L	Т	Р	C		
		0	0	4	2		
Prerequisites	for the course						
The students sh	hould have the knowledge on Java programming.						
Objectives							
• To learn and	implement basic concepts in Hadoop						
• To learn and i	mplement clustering techniques						
S.No	List of Experiments	CO					
1	Install, configure and run Hadoop and HDFS		C	201			
2	Implement word count/ frequency programs using Map Reduce		C	202			
3	Implement an MR program that processes a weather dataset		C	202			
4	Implement Linear and logistic Regression		C	:03			
5	Implement SVM/Decision tree classification techniques		C	:03			
6	6Implement clustering techniquesCO4						
7Visualize data using any plotting frameworkCO5							
8	Implement an application that stores big data in H-base/Mongo DB/ Pig using Hadoop /R.		C	:06			
	Total I	Perio	ds: 60)			
Suggestive Ass	sessment Methods						

 Upon completion of the course ,the students will be able to : C208.1 Process big data using Hadoop framework. C208.2 Build and apply linear regression models. C208.3 Build and apply logistic regression models. C208.4 Perform data analysis with machine learning methods. C208.5 Perform graphical data analysis. C208.6 Implement applications using that backups the data in H-base/Mongo DB/ Pig Laboratory Requirements Standalone desktop, Hadoop, Cloud end database. Reference Books Bill Franks, "Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Stree with Advanced Analytics", Wiley and SAS Business Series, 2012. David Loshin, "Big Data Analytics: From Strategic Planning to Enterprise Integration w Tools, Techniques, No-SQL, and Graph", 2013. Learning R–A Step-by-step Function Guide To Data Analysis, Richard Cotton, O"Reilly Media, 2013.	 Process big data using Hadoop framework. C208.1 Process big data using Hadoop framework. C208.2 Build and apply linear regression models. C208.3 Build and apply logistic regression models. C208.4 Perform data analysis with machine learning methods. C208.5 Perform graphical data analysis. C208.6 Implement applications using that backups the data in H-base/Mongo DB/ Pig Prig Pry Requirements ne desktop, Hadoop, Cloud end database. ze Books Bill Franks, "Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with Advanced Analytics", Wiley and SAS Business Series, 2012. David Loshin, "Big Data Analytics: From Strategic Planning to Enterprise Integration with Tools, Techniques, No-SQL, and Graph", 2013. Learning R-A Step-by-step Function Guide To Data Analysis, Richard Cotton, 0"Reilly Media, 2013.	50Marks)		End Semester Exams (50Marks)
C208.2 Build and apply linear regression models. C208.3 Build and apply logistic regression models. C208.4 Perform data analysis with machine learning methods. C208.5 Perform graphical data analysis. C208.6 Implement applications using that backups the data in H-base/Mongo DB/ Pig Laboratory Requirements Standalone desktop, Hadoop, Cloud end database. Reference Books 1. Bill Franks, "Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Stree with Advanced Analytics", Wiley and SAS Business Series, 2012. 2. David Loshin, "Big Data Analytics: From Strategic Planning to Enterprise Integration w Tools, Techniques, No-SQL, and Graph", 2013. 3. Learning R–A Step-by-step Function Guide To Data Analysis, Richard Cotton, O"Reilly Media, 2013. Web Resources	Dempletion of the course ,the students will be able to : C208.1 Process big data using Hadoop framework. C208.2 Build and apply linear regression models. C208.3 Build and apply logistic regression models. C208.4 Perform data analysis with machine learning methods. C208.5 Perform graphical data analysis. C208.6 Implement applications using that backups the data in H-base/Mongo DB/ Pig Pry Requirements ne desktop, Hadoop, Cloud end database. E Books Bill Franks, "Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with Advanced Analytics", Wiley and SAS Business Series, 2012. David Loshin, "Big Data Analytics: From Strategic Planning to Enterprise Integration with Tools, Techniques, No-SQL, and Graph", 2013. Learning R-A Step-by-step Function Guide To Data Analysis, Richard Cotton, O"Reilly Media, 2013. Ources	• Experiments	s, Viva	Experiments, Viva
 C208.1 Process big data using Hadoop framework. C208.2 Build and apply linear regression models. C208.3 Build and apply logistic regression models. C208.4 Perform data analysis with machine learning methods. C208.5 Perform graphical data analysis. C208.6 Implement applications using that backups the data in H-base/Mongo DB/ Pig Laboratory Requirements Standalone desktop, Hadoop, Cloud end database. Reference Books 1. Bill Franks, "Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Strewith Advanced Analytics", Wiley and SAS Business Series, 2012. 2. David Loshin, "Big Data Analytics: From Strategic Planning to Enterprise Integration w Tools, Techniques, No-SQL, and Graph", 2013. 3. Learning R-A Step-by-step Function Guide To Data Analysis, Richard Cotton, O"Reilly Media, 2013. Web Resources 	 C208.1 Process big data using Hadoop framework. C208.2 Build and apply linear regression models. C208.3 Build and apply logistic regression models. C208.4 Perform data analysis with machine learning methods. C208.5 Perform graphical data analysis. C208.6 Implement applications using that backups the data in H-base/Mongo DB/ Pig Pry Requirements ne desktop, Hadoop, Cloud end database. re Books Bill Franks, "Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with Advanced Analytics", Wiley and SAS Business Series, 2012. David Loshin, "Big Data Analytics: From Strategic Planning to Enterprise Integration with Tools, Techniques, No-SQL, and Graph", 2013. Learning R-A Step-by-step Function Guide To Data Analysis, Richard Cotton, O"Reilly Media, 2013.	utcomes:		
C208.2 Build and apply linear regression models. C208.3 Build and apply logistic regression models. C208.4 Perform data analysis with machine learning methods. C208.5 Perform graphical data analysis. C208.6 Implement applications using that backups the data in H-base/Mongo DB/ Pig Laboratory Requirements Standalone desktop, Hadoop, Cloud end database. Reference Books 1. Bill Franks, "Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Stree with Advanced Analytics", Wiley and SAS Business Series, 2012. 2. David Loshin, "Big Data Analytics: From Strategic Planning to Enterprise Integration w Tools, Techniques, No-SQL, and Graph", 2013. 3. Learning R-A Step-by-step Function Guide To Data Analysis, Richard Cotton, O"Reilly Media, 2013. Web Resources	C208.2 Build and apply linear regression models. C208.3 Build and apply logistic regression models. C208.4 Perform data analysis with machine learning methods. C208.5 Perform graphical data analysis. C208.6 Implement applications using that backups the data in H-base/Mongo DB/ Pig Dry Requirements ne desktop, Hadoop, Cloud end database. 2e Books Bill Franks, "Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with Advanced Analytics", Wiley and SAS Business Series, 2012. David Loshin, "Big Data Analytics: From Strategic Planning to Enterprise Integration with Tools, Techniques, No-SQL, and Graph", 2013. Learning R–A Step-by-step Function Guide To Data Analysis, Richard Cotton, O"Reilly Media, 2013. Ources	Jpon completion	of the course ,the students will	be able to :
C208.3 Build and apply logistic regression models. C208.4 Perform data analysis with machine learning methods. C208.5 Perform graphical data analysis. C208.6 Implement applications using that backups the data in H-base/Mongo DB/ Pig Laboratory Requirements Standalone desktop, Hadoop, Cloud end database. Reference Books 1. Bill Franks, "Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Stree with Advanced Analytics", Wiley and SAS Business Series, 2012. 2. David Loshin, "Big Data Analytics: From Strategic Planning to Enterprise Integration w Tools, Techniques, No-SQL, and Graph", 2013. 3. Learning R–A Step-by-step Function Guide To Data Analysis, Richard Cotton, O"Reilly Media, 2013. Web Resources	C208.3 Build and apply logistic regression models. C208.4 Perform data analysis with machine learning methods. C208.5 Perform graphical data analysis. C208.6 Implement applications using that backups the data in H-base/Mongo DB/ Pig Dry Requirements ne desktop, Hadoop, Cloud end database. 26 Books Bill Franks, "Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with Advanced Analytics", Wiley and SAS Business Series, 2012. David Loshin, "Big Data Analytics: From Strategic Planning to Enterprise Integration with Tools, Techniques, No-SQL, and Graph", 2013. Learning R–A Step-by-step Function Guide To Data Analysis, Richard Cotton, O"Reilly Media, 2013. Durces	C208.1	Process big data using Hadoop fi	camework.
 C208.4 Perform data analysis with machine learning methods. C208.5 Perform graphical data analysis. C208.6 Implement applications using that backups the data in H-base/Mongo DB/ Pig Laboratory Requirements Standalone desktop, Hadoop, Cloud end database. Reference Books 1. Bill Franks, "Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Strewith Advanced Analytics", Wiley and SAS Business Series, 2012. 2. David Loshin, "Big Data Analytics: From Strategic Planning to Enterprise Integration w Tools, Techniques, No-SQL, and Graph", 2013. 3. Learning R–A Step-by-step Function Guide To Data Analysis, Richard Cotton, O"Reilly Media, 2013. Web Resources 	C208.4 Perform data analysis with machine learning methods. C208.5 Perform graphical data analysis. C208.6 Implement applications using that backups the data in H-base/Mongo DB/ Pig Dry Requirements ne desktop, Hadoop, Cloud end database. Ce Books Bill Franks, "Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with Advanced Analytics", Wiley and SAS Business Series, 2012. David Loshin, "Big Data Analytics: From Strategic Planning to Enterprise Integration with Tools, Techniques, No-SQL, and Graph", 2013. Learning R–A Step-by-step Function Guide To Data Analysis, Richard Cotton, O"Reilly Media, 2013. Dources	C208.2	Build and apply linear regressior	n models.
 C208.5 Perform graphical data analysis. C208.6 Implement applications using that backups the data in H-base/Mongo DB/ Pig Laboratory Requirements Standalone desktop, Hadoop, Cloud end database. Reference Books 1. Bill Franks, "Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Strewith Advanced Analytics", Wiley and SAS Business Series, 2012. 2. David Loshin, "Big Data Analytics: From Strategic Planning to Enterprise Integration w Tools, Techniques, No-SQL, and Graph", 2013. 3. Learning R–A Step-by-step Function Guide To Data Analysis, Richard Cotton, O"Reilly Media, 2013. Web Resources 	C208.5 Perform graphical data analysis. C208.6 Implement applications using that backups the data in H-base/Mongo DB/ Pig Dry Requirements ne desktop, Hadoop, Cloud end database. 2E Books Bill Franks, "Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with Advanced Analytics", Wiley and SAS Business Series, 2012. David Loshin, "Big Data Analytics: From Strategic Planning to Enterprise Integration with Tools, Techniques, No-SQL, and Graph", 2013. Learning R–A Step-by-step Function Guide To Data Analysis, Richard Cotton, O"Reilly Media, 2013. Durces	C208.3	Build and apply logistic regression	on models.
 C208.6 Implement applications using that backups the data in H-base/Mongo DB/ Pig Laboratory Requirements Standalone desktop, Hadoop, Cloud end database. Reference Books Bill Franks, "Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Strewith Advanced Analytics", Wiley and SAS Business Series, 2012. David Loshin, "Big Data Analytics: From Strategic Planning to Enterprise Integration w Tools, Techniques, No-SQL, and Graph", 2013. Learning R–A Step-by-step Function Guide To Data Analysis, Richard Cotton, O"Reilly Media, 2013. Web Resources 	C208.6 Implement applications using that backups the data in H-base/Mongo DB/ Pig ory Requirements ne desktop, Hadoop, Cloud end database. ce Books Bill Franks, "Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with Advanced Analytics", Wiley and SAS Business Series, 2012. David Loshin, "Big Data Analytics: From Strategic Planning to Enterprise Integration with Tools, Techniques, No-SQL, and Graph", 2013. Learning R–A Step-by-step Function Guide To Data Analysis, Richard Cotton, O"Reilly Media, 2013.	C208.4	Perform data analysis with mach	ine learning methods.
Pig Laboratory Requirements Standalone desktop, Hadoop, Cloud end database. Reference Books 1. Bill Franks, "Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Strewith Advanced Analytics", Wiley and SAS Business Series, 2012. 2. David Loshin, "Big Data Analytics: From Strategic Planning to Enterprise Integration w Tools, Techniques, No-SQL, and Graph", 2013. 3. Learning R–A Step-by-step Function Guide To Data Analysis, Richard Cotton, O"Reilly Media, 2013. Web Resources	Pig pry Requirements ne desktop, Hadoop, Cloud end database. The Books Bill Franks, "Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with Advanced Analytics", Wiley and SAS Business Series, 2012. David Loshin, "Big Data Analytics: From Strategic Planning to Enterprise Integration with Tools, Techniques, No-SQL, and Graph", 2013. Learning R–A Step-by-step Function Guide To Data Analysis, Richard Cotton, O"Reilly Media, 2013. Dources	C208.5	Perform graphical data analysis.	
 Laboratory Requirements Standalone desktop, Hadoop, Cloud end database. Reference Books Bill Franks, "Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Strewith Advanced Analytics", Wiley and SAS Business Series, 2012. David Loshin, "Big Data Analytics: From Strategic Planning to Enterprise Integration w Tools, Techniques, No-SQL, and Graph", 2013. Learning R–A Step-by-step Function Guide To Data Analysis, Richard Cotton, O"Reilly Media, 2013. Web Resources 	ory Requirements ne desktop, Hadoop, Cloud end database. Ce Books Bill Franks, "Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with Advanced Analytics", Wiley and SAS Business Series, 2012. David Loshin, "Big Data Analytics: From Strategic Planning to Enterprise Integration with Tools, Techniques, No-SQL, and Graph", 2013. Learning R–A Step-by-step Function Guide To Data Analysis, Richard Cotton, O"Reilly Media, 2013.	C208.6	Implement applications using that	at backups the data in H-base/Mongo DB/
 Reference Books Bill Franks, "Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Strewith Advanced Analytics", Wiley and SAS Business Series, 2012. David Loshin, "Big Data Analytics: From Strategic Planning to Enterprise Integration w Tools, Techniques, No-SQL, and Graph", 2013. Learning R–A Step-by-step Function Guide To Data Analysis, Richard Cotton, O"Reilly Media, 2013. Web Resources 	ne desktop, Hadoop, Cloud end database. ce Books Bill Franks, "Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with Advanced Analytics", Wiley and SAS Business Series, 2012. David Loshin, "Big Data Analytics: From Strategic Planning to Enterprise Integration with Tools, Techniques, No-SQL, and Graph", 2013. Learning R–A Step-by-step Function Guide To Data Analysis, Richard Cotton, O"Reilly Media, 2013. Fources		Pig	
 Reference Books Bill Franks, "Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Strewith Advanced Analytics", Wiley and SAS Business Series, 2012. David Loshin, "Big Data Analytics: From Strategic Planning to Enterprise Integration w Tools, Techniques, No-SQL, and Graph", 2013. Learning R–A Step-by-step Function Guide To Data Analysis, Richard Cotton, O"Reilly Media, 2013. Web Resources 	ce Books Bill Franks, "Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with Advanced Analytics", Wiley and SAS Business Series, 2012. David Loshin, "Big Data Analytics: From Strategic Planning to Enterprise Integration with Tools, Techniques, No-SQL, and Graph", 2013. Learning R–A Step-by-step Function Guide To Data Analysis, Richard Cotton, O"Reilly Media, 2013.			
 Bill Franks, "Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Strewith Advanced Analytics", Wiley and SAS Business Series, 2012. David Loshin, "Big Data Analytics: From Strategic Planning to Enterprise Integration w Tools, Techniques, No-SQL, and Graph", 2013. Learning R–A Step-by-step Function Guide To Data Analysis, Richard Cotton, O"Reilly Media, 2013. Web Resources	Bill Franks, "Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with Advanced Analytics", Wiley and SAS Business Series, 2012. David Loshin, "Big Data Analytics: From Strategic Planning to Enterprise Integration with Tools, Techniques, No-SQL, and Graph", 2013. Learning R–A Step-by-step Function Guide To Data Analysis, Richard Cotton, O"Reilly Media, 2013.	tandalone deskto	p, Hadoop, Cloud end database.	
 with Advanced Analytics", Wiley and SAS Business Series, 2012. 2. David Loshin, "Big Data Analytics: From Strategic Planning to Enterprise Integration w Tools, Techniques, No-SQL, and Graph", 2013. 3. Learning R–A Step-by-step Function Guide To Data Analysis, Richard Cotton, O"Reilly Media, 2013. 	with Advanced Analytics", Wiley and SAS Business Series, 2012. David Loshin, "Big Data Analytics: From Strategic Planning to Enterprise Integration with Tools, Techniques, No-SQL, and Graph", 2013. Learning R–A Step-by-step Function Guide To Data Analysis, Richard Cotton, O"Reilly Media, 2013.			
 David Loshin, "Big Data Analytics: From Strategic Planning to Enterprise Integration w Tools, Techniques, No-SQL, and Graph", 2013. Learning R–A Step-by-step Function Guide To Data Analysis, Richard Cotton, O"Reilly Media, 2013. Web Resources	David Loshin, "Big Data Analytics: From Strategic Planning to Enterprise Integration with Tools, Techniques, No-SQL, and Graph", 2013. Learning R–A Step-by-step Function Guide To Data Analysis, Richard Cotton, O"Reilly Media, 2013.	1. Bill Fran	ks, "Taming the Big Data Tidal Wav	e: Finding Opportunities in Huge Data Streams
 Tools, Techniques, No-SQL, and Graph", 2013. 3. Learning R–A Step-by-step Function Guide To Data Analysis, Richard Cotton, O"Reilly Media, 2013. 	Tools, Techniques, No-SQL, and Graph", 2013. Learning R–A Step-by-step Function Guide To Data Analysis, Richard Cotton, O"Reilly Media, 2013.	with Adv	anced Analytics", Wiley and SAS Bu	usiness Series, 2012.
 Learning R–A Step-by-step Function Guide To Data Analysis, Richard Cotton, O"Reilly Media, 2013. Web Resources 	Learning R–A Step-by-step Function Guide To Data Analysis, Richard Cotton, O"Reilly Media, 2013.	2. David Lo	shin, "Big Data Analytics: From Str	ategic Planning to Enterprise Integration with
Media, 2013. Web Resources	Media, 2013.	Tools, Te	chniques, No-SQL, and Graph", 201	13.
Web Resources	ources	3. Learning	R-A Step-by-step Function Guide	To Data Analysis, Richard Cotton, O"Reilly
Web Resources		Media, 2	013.	
		Veb Resources		
www.cloudresources.net			zes.net	

CO Vs PO Mapping and CO vs. PSO Mapping

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	PSO1	PSO2	PSO3
CO208.1	3	3								3			
CO208.2	3	3											
CO208.3	3	3	3	2	3				2	2			
CO208.4	3	3	3	2	3				2	2			
CO208.5	3	3	3	3	3	2			2	2			
CO208.6	3	3								3			

FrancisXavierEngineeringCollege|DeptofIT-PG|R2021/CurriculumandSyllabi PROFESSIONAL ELECTIVE-I

21F2701	DATA AND CLOUD SECURITY	L 3	Т 0	Р 0	<u>С</u> 3
Prerequisites	for the course				
	dents should have the knowledge on cloud computing.				
Objectives					
	arn the importance of security in cloud computing arn the concepts of asset management in cloud				
	idy the security issues in cloud				
UNIT I	INTRODUCTION TO CLOUD COMPUTING			9	
	ARCHITECTURE AND SECURITY				
Understanding	g Cloud Computing – The IT foundation for Cloud – A Brief F	Prime	r on	Secu	rity –
Security Archi	tecture – Cloud Reference Architecture - Control over Security	in the	e Clo	ud M	odel –
Making sense	of Cloud Deployment–Real-world Cloud Usage Scenarios.				
UNIT II	DATA AND CLOUD ASSET MANAGEMENT				9
Threat Actors	s, Diagrams, and Trust Boundaries-Cloud Delivery Model	s-The	Clo	ud S	hared
Responsibility	Model -Risk Management; Data Asset Management and	Prot	ectio	on :	Data
Identification	and Classification - Data Asset Management in the Cloud - H	Protec	cting	Data	in the
Cloud; Cloud A	Asset Management and Protection: Differences from Tradition	onal I'	Г–Ту	pes o	f
Cloud Assets-A	Asset Management Pipeline.				
UNIT III	VULNERABILITY AND IDENTITY ACCESS MANAGEMENT				9
Identity and A	ccess Management: Differences from Tradition al IT - Life C	ycle f	or I	dentit	y and
Access Auther	ntication –Authentication –Authorization –Revalidate; ${f V}$	ulne	rabil	ity A	ccess
Management	Vulnerable Areas – Finding and Fixing Vulnerabilities – Clo	ud Pi	ovid	er Se	curity
Management 7	Cools–Risk Management Processes – Vulnerability Managemen	t Met	rics -	- Chai	ıge
Management					
UNIT IV	NETWORK SECURITY				9
Concepts and	Definitions-Encryption in Motion -Firewalls and Netwo	ork S	egme	entati	on –
Allowing Adm	inistrative Access – Web Application Firewalls and RASP – A	nti-D	DoS	– Intr	usion
Detection and	Prevention Systems – Egress Filtering–Data Loss Prevention				
UNIT V	SECURITY AND EVALUATION CRITERIA			C	9
Building an Int	cernal Cloud -Private Clouds: Motivation and Overview - Secur	ity Cr	iteri	a for	
Ensuring a Pri	vate Cloud –Selecting an External Cloud Provider - Evaluating	Cloud	Secu	irity:	An

	Total I	Periods 45
uggestive Assessment Method	S	
Continuous Assessment Test (30Marks)	Formative Assessment Test (10Marks)	End Semester Exams (60Marks)
Descriptive questions	• MCQ	 Descriptive
• MCQ	 Assignment 	questions
	• Seminar	• MCQ
Outcomes		
Upon completion of the course		
	he importance of security in cloud	
C205-1.2 Understand	he concepts of asset management	in cloud
C205-1.3 Understand	he security issues in cloud	
C205-1.4 Identify the v	rulnerabilities and how To handle t	chem.
C205-1.5 Apply variou	s mechanisms to handle security is	sues in cloud
C205-1.6 Build an inte	rnal cloud	
Text Books		
1. J.R.("Vic")Winkler, "Securi	ng the Cloud: Cloud Computer Secu	rity Techniques and
2. Tactics", Syngress, 2011.		
3. Greg Schulz, "Cloud and Vi	rtual Data Storage Networking", CF	RCPress, 2012.
Reference Books		
1. Ronald L. Kurtz, Russell De	ean Vines, "Cloud Security–A Comp	rehensive Guide to Secure
CloudComputing", WileyPu	ıblishiing, 2010.	
2. TimMather,SubraKumaras	wamy,ShahedLatif,"CloudSecuritya	andPrivacy:An
3. Enterprise Perspective on	Risks and Compliance", O'Reilly Me	edia, First edition, 2009.
4. Lee New combe, "Securing	Cloud Services", IT Governance Pu	blishing, 2012.

CO Vs PO Mapping and CO Vs PSO Mapping

CO	PO	PS	PS	PS											
	1	2	3	4	5	6	7	8	9	10	11	12	01	02	03
C205-1.1	3	3								3				3	
C205-1.2	3	3								3			3	3	

ancisXavier 0205-1.3 0205-1.4 0205-1.5 0205-1.6 21IF270 Prerequis	3 3 3 3	3 3 3 3	3	2 2	3	2		3 3	3 3	3 3			2	3 3		
0205-1.5 0205-1.6 21IF270	3 3	3	-					3					2	3		
0205-1.6 21IF270	3		-						-			-				
21IF270		3	3	2	3	2			3	3				3		
	2								3	3				3		
	2]
	2															
	2												1			
	Z			NET) 17 A N		DELE		CUDI	гv		_	_	-	
Prerequis				IN E I	WUF			KELE	222.21	ECURI	IX		L	Т	Р	C
Prerequis		<u> </u>	<u> </u>										3	0	0	3
• The						o haci	ia ida	- on 14	ring	and w	rologo	netwo	rlico			
• The		ents	SHOU	nu na	vetn		ic idea		viieu		lieless	netwo	1 KS.			
		rn ab	out s	securi	ng wi	ireles	s netv	vorks								
2. Ic	dentif	y an	d ana	alyze v	vario	us the	e secu	rity is	sues	in wire	eless n	nobile d	comm	unica	ation.	
3. T	'o lear	n va	rious	s issue	es of a	applic	cation	level	secu	ritv in	wirele	ess envi	ronm	ent a	nd its	s
	elated					- F F										-
4. T	'o und	lerst	and t	the fu	ndam	ental	prote	ocols	involv	ved in	wirele	ss netv	vork s	ecuri	ity.	
5. T	'o und	lerst	and t	the fu	ndam	ental	conc	epts i	nvolv	ed in v	vireles	ss threa	ıts.			
UNITI										ICATI						9
Mobile Co					-		-					-				
Mobile Co	mmu	nicat	tions	- Mol	oile D	evice)	s Sec	urity	Requ	iremei	nts, Mo	obile W	reles	s net	tworl	c level
Security, S				-						-						
WLANs, W	vireles	ss Th	reat	s, Seci	urity	for 20	G Wi-I	Fi App	olicati	ons, R	ecent	Securit	y Sche	emes	for V	Vi-Fi
Application													1			
UNITII				_				ITY IN	N CEL	LULAI	R					9
Concertion			-	RKS A			-]	l :-	11	1		CCN		<u>)</u>
Generation							2									
UMTS secu	•		• •				2	•	•					ons (of MA	NETS,
MANET Fe	eature	es, Se	ecurit	ty Cha	lleng	es in	MANI	ETs, S	ecurit	ty Atta	cks or	MAN	ETs			
UNITIII			LICA' WOR	TION	L AN	EVEL		CURIT EROG			-	O US ELESS				9
			WOR		AIN	D	ΠΕΙΙ	EKUG	ENEU	103	WIK	elejj				
Ubiquitous	s Con	nput	ing,	Need	for l	Novel	Secu	rity S	Schen	nes fo	r UC,	Securit	y Cha	lleng	ges fo	or UC,
Heterogen	ieous	Wir	eless	netw	ork a	archit	ectur	e, Het	eroge	eneous	netw	ork ap	plicati	on	in di	saster
manageme	ent, Se	ecuri	ity pr	obler	ns an	d solı	utions	in he	eterog	eneou	s wire	less ne	twork	s.		
UNITIV		WIR	ELES	SS SEN	ISOR	NET	WOR	K SEC	URIT	Y						9

Attacks on wireless sensor networks and counter measures Prevention mechanisms: authentication and traffic protection centralized and passive intruder detection decentralized intrusion detection

UNITV	WIRELESS THREATS	9
Introduction t	to wireless technologies - history, challenges, risks, advances	in wireless security,
Radio Frequer	ncy – RF Terminology, interference, covert channels, and hardw	ware. Hacking 802.11
wireless tech	nologies- eavesdropping, jamming - wireless channel vulner	ability analysis, WiFi
cybercrimes a	and awareness-countermeasures-wireless security standards	wireless Setup, risks
and security c	ontrols.	

										Т	otal Po	eriods		45	5				
Suggesti	ive As	sess	ment	Meth	ods														
Continu			smen	t Test	t F	orma				nt Tes	t	End Se			ms				
	<u>0Mar</u>			•				<u>Mark</u>	sj				60Ma						
	escrip	otive	quest	ion s		•	MCQ	-				•	Descr	-					
• IV	ICQ					•		gnme	nt				quest	ions					
<u> </u>						•	Sem	inar				•	MCQ						
Outcom			6.1																
Upon co																			
C2	205-2	.1		itify tl ile ne			nent	of sec	urity	and va	irious	issues	at wir	eless a	nd				
C2	205-2	.2		lyze tl vorks				ireles	S	envi	ronm	ent inc	luding	device	<u>,</u>				
C2	205-2	.3	Dist	inguis	sh the	attac	ks at					reless	netwo	rk and					
C		1							equired for the m. nent for mobile adhoc vironment										
L2	205-2	.4									e adno	С							
C2	205-2	.5	Imp	lemer							ıs envi	ronme	nt in v	vireles	S				
C2	205-2	.6		vork lyze s	ecuri	ty thr	eats r	elate	d to w	vireles	s netw	vork							
Textboo	-																		
1. Pa	allapa	Venl	katara	am, Sa	tish E	Babu,	Wire	less a	nd Mo	obile N	etwor	k Secu	rity, Fi	rst Ed	ition,				
Т	ata M	c Grav	w Hill	, 201	Э.														
2. T	ara M	. Swa	mi Na	than	and C	harle	s R. E	ldon,	Wire	less Se	curity	and Pi	ivacy-	Best P	ractice				
a	nd De	sign 7	ſechn	iques	, Addi	ison	Wesl	ey, 20	02.										
Referen	ce Bo	oks																	
1. Be	hrouz	Foro	uzan,	"Cryp	otogra	aphy	& Net	work	Secu	rity", T	'ata M	c Graw	Hill, 2	008. V	Volfga				
	sterha				-					5					U				
Web Res																			
	:p://w																		
CO Vs PO	0 Map	ping	and	CO Vs	s PSO	Map	ping												
<u> </u>	DO	DΟ	DO	-	-	DO						T			1				
CO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS				

0205-2.1	1		2			3			Currici			Ī					
		1				3											
0205-2.2		1		2					2								
0205-2.3	1		2					3									
0205-2.4	1		2				3										
0205-2.5			1			2			3								3
0205-2.6		2			2			3									
						1		1						1	1	1	
21IF27	03]	ENER	GY A	WAR	E COI	MPUTI	NG				L	T	P	C
Prerequi	isites	for	the c	ourse	•									3	0	0	3
-						e kno	wled	ge on	compi	iter a	archi	tect	ure.				
Objective	es																
		ders	tand t	the fu	ndam	ental	ls of E	nergy	7 Effici	ent C	omp	utir	ıg				
2. '	To ur	ders	tand t	he co	ncep	t of E	nergy	Effic	ient Sto	orage	e Sys	tem	IS				
3. '	To in	trodu	ce th	e vari	ous ty	ypes	of sch	eduli	ng algo	rithr	ns ir	en	ergy e	efficie	nt co	mput	ing
4. '	To in	trodu	ce th	e con	cept o	of Gre	en Ne	etwor	king								
5. 7	To st	udy E	nergy	y Awa	re Co	mput	ting A	pplica	ations								
UNIT I		INT	RODI	JCTIO	DN									9			
Sub-res-h	old (Comp	uting	– Ene	rgy E	fficie	nt Ne	tworl	k-on -(Chip .	Arch	itec	tures	for M	lulti-	Core	
Systems-	Ener	gy-Eff	ficien	tMIPS	CPU	Corev	vithFi	ne-Gr	ainedF	Run-7	Гime	Pov	verGa	ting-			
CaseStud	y:Gey	vser												-			
UNIT II		ENE	RGY	EFFIC	CIENT	STO	RAG	E									
Power-Ef	ficier	nt Sti	ategi	es fo	r Sto	rage	Svste	ems -	Energ	v-Sav	ving	Тес	chnia	ues fo	or Di	isk S	torag
			U			U	2				U		•				0
Systems									-							0	
Systems Datacente	515 - .			TEECI	ENT	SCHE	DULI	NG A	LGORI	THM	15						
-		ENE	RGY I	SELCI				t Scl	nedulir				1 00	<u> </u>		nic V	oltag
Datacente					Ener	·gy-E	fficier		icuum	1 g 0 1	f Pa	rall	el Ta	sks-D	ynan		
Datacente	ns ai	nd A	nalys	is of						U							catio
Datacento UNIT III Algorithm	ns ai peed	nd A Scali	nalys ng-M	is of emeti	c Alg	orith	ms fo	r Ene	rgy-Av	vare	Com	put					catio
Datacento UNIT III Algorithm Scaling-S	ns ai peed	nd A Scali in Coi	nalys ng-Mo nputi	is of emeti ng Cli	c Alg usters	orith s-Onl	ms fo ine jo	r Ene b sch	rgy-Av	vare g Alg	Com	put					catio

			<i>ptofIT–PG R2021/CurriculumandS</i> bile Applications-Energy Efficienc		er-IP Systems-
			rks-Green TCAM-Based Internet R	-	er ir bysteins
UNIT			COMPUTING APPLICATIONS		9
					-
Energ	y Awareness	s in Video Code	c Design – Overview of H.264 / AV	C Video Code	c Design - Energy
Aware	e Surveillanc	e Camera -Low	Power Design Challenge in Biome	dical Implant	Electronics
			Total	Periods	45
00		sment Method		1	
Conti		ssment Test	Formative Assessment Test		ster Exams
	(30Marks)		(10Marks)		arks)
•	Descriptive	questions	MCQ Assignment		criptive
•	MCQ		AssignmentSeminar	• MCC	stions
			• Semman	• MCC	ł
Outco	omes				
Upon	completion	n of the course	e ,the students will be able to :		
	C205-3.1	Design Powe	er efficient architecture Hardwar	e and Softw	are
	C205-3.2	Analyze the o	lifferent types of Energy Efficient	Storage syste	ms.
	C205-3.3	•	different types of Green Netw ent computing	orking schei	mes in the
	C205-3.4	Explore the	application s of Energy Aware Cor	nputing	
	C205-3.5	Gain familiar	ity with state-of-the -art Tools s	such as proc	essor simulators
		memory mo	dels and use them To implem	ent and eva	luate techniques
		described in	the technical literature		
	C205-3.6		naries and discuss critically peer- sub area of energy-aware computi		erature on
Textb	ooks				
1.	BobSteiger	Wald,Chris:Lue	o,EnergyAwarecomputing,IntelPr	ess,2012	
2.	Chon g-Mir	Kyung,Sungioo	yoo,EnergyAwaresystemdesignAl	gorithmsand	Architecture,
	Springer,20	11			
Refer	ence Books				
			HandbookOfEnergyAwareandGre	enComputing	chapmaand

Hall/ CRC, 2012.

CO Vs PO Mapping and CO Vs PSO Mapping

СО	PO	PS	PS	PS											
	1	2	3	4	5	6	7	8	9	10	11	12	01	02	03
C205-3.1	1				2					3					
C205-3.2			2	2	2										

FrancisXavi						

I'T UTICISAUVI	CI LIIG	meer	mguu	negej	Depti	<u> </u>	ujnz	021/0	Juiii	ulullu	nusyn		
C205-3.3	1					3		3					
C205-3.4			1		2				3				
C205-3.5		1		2			3			3			
C205-3.6	1		2		1		3			3			

21IF2704	BIO-INSPIRED COMPUTING AND IMAGE PROCESSING	L	Т	Р	С
	APPLICATIONS	3	0	0	3
Prerequisites	s for the course				
• The stu	dents should have the knowledge on Artificial Intelligence.				
Objectives					
	earn bio-inspired theorem and algorithms				
2. To U	nderstand random walk and simulated annealing				
3. To L	earn genetic algorithm and differential evolution				
4. To L	earns warm optimization and ant-colony for feature selection				
	nderstand bio-inspired application in image processing	1			
UNIT I	INTRODUCTION				9
Introduction '	Fo algorithm-Newton's method-optimization algorithm -No-Fi	ree-Li	ınch	Theo	rems
- Nature-Inspi	redMataheuristics-AnalysisofAlgorithms-NatureInspires Algor	ithms	s-Par	amete	er
tuning and par	rameter control.				
UNIT II	RANDOM WALK AND ANEALING				9
Random varia	bles - Isotropic random walks - Levy distribution and flights -	Mark	ov cl	nains	– step
sizes and s	earch efficiency-Modality and intermittent search stra	ategy-	imp	ortand	ce of
randomization	n -Eagle strategy-Annealing and Boltzmann Distribution	- pa	aram	eters	- SA
	ochastic Tunneling.	-			
UNITIII	GENETICALOGORITHMSANDDIFFERENTIAL				
	EVOLUTION				9
Introduction	To genetic algorithms and - role of genetic operators - choic	ce of p	oarar	neter	s - GA
variants-schei	na theorem-convergence analysis-introduction To differentia	l evo	lutio	n -va	riants
-choice of para	ameters -convergence analysis -implementation .				
UNITIV	SWARM OPTIMIZATION AND FIREFLY ALGORITHM				9
Swarm Intellig	gence - PSO algorithm - accelerated PSO - implementation - c	onver	genc	e ana	lysis -
binary PSO - 7	The Firefly algorithm - algorithm analysis - implementation -	· varia	ants-	Ant c	olony
-	Foward feature selection.				2
r					

UNITV Bio Inco	ired C							CESS		Droc	accina	Anon	orvior	A7 E:-	0 Tuni:
Bio-Insp		_							_		_				
Enhance								U							- Fin
Tuning	_					-				-		-			_
Equaliza		0			0		0					U	U		
Glass Op	acity l	Nodu	les De	etectio	on ar	nd Seg	gment	tation	usin	g Snak	e Mod	el-Mot	oile Ob	ject Tr	acking
Using Cu	ickoo	Searc	h												
										Тс	otal Pe	eriods		45	5
Suggest Continu	ous A	ssess				Forma				nt Tes	t	End Se			ms
	OMar escrip		auoct	ions			(10) MCC	Mark	s)				60Mai		
	icq	live	quest	10115		•		e gnme	nt			•	Descr questi	-	
	C					•	Sem	0				٠	мсq		
Outcom	es														
Upon c															
C	205-4.	1	Imp	lemer	nt and	l appl	y bio	-inspi	red al	gorith	ms				
C	205-4.	2	Expl	lain ra	andor	n wal	k and	l simu	lated	annea	ling				
C	205-4.	3	Imp	lemer	nt and	l appl	y gen	etic a	lgorit	hms					
C	205-4.	4	Expl	lain sv	warm	Intel	ligen	ce and	l ant c	colony	for fea	ature s	electio	n	
C	205-4.	5	Арр	ly bio	-insp	ired t	echni	ques	in ima	age pro	ocessii	ıg.			
C	205-4.	6				0		•		ll as tr 1d clas		nal ma ion.	chine l	learnir	ıg
Textboo	oks														
1. E	iben, A	A.E., S	Smith,	Jame	s E, "	Intro	ductio	on to I	Evolut	tionary	y Comj	puting'	', Sprir	nger20	15.
2. H	lelio J	.C. Ba	rbosa	ı, "Ant	c Colo	ny Op	otimiz	zation	-Teo	chniqu	es and	l Appli	cation	s",Inte	ch2013
3. X	in-She	eYang	, Jaao	Paul	o pap	a, "Bi	o-Ins	pired	Comp	outing	and Aj	oplicat	ion		
S	inImag	gePro	cessi	ng",El	sevie	r201	6								
Referen	ceBoo	oks													
1. X	in-She	e Yang	g,"Nat	turel s	spire	d Opti	imiza	tion A	Algori	thm, E	lsevie	r First	Editio	n 201	4
2. Y	,C ang	ui, XI	ao, Ga	andon	ni, Ka	rama	noglu	ı ,"Swa	arm Iı	ntellige	ence a	ind Bio	-Inspi	red	
С	ompu	ting",	Elsev	vier Fi	irst E	dition	201	13							
CO Vs. P	0 Ma	pping	g and	CO v	s. PSC) Mar	oping	5							
<u> </u>				DO	DO				DO	DO	DO	DO	DC	DC	DC
	PO	PO	PO	PO	РО _	PO	PO -	PO	PO	PO	PO	PO	PS	PS	PS
CO	1	2	3	4	5	6	7	8	9	10	11	12	01	02	03
						2	1	1		3		1	1	1	1
205-4.1	1			2		Z				5					

RECOGNITION Image is a statistical argument of the students of the students of the students of the students and its equivalent open source Image processing environments like Mat-lab and its equivalent open source Image processing environments. • To expose the students To a broad range of image processing techniques and issues are their applications, and To provide the student with practical experiences using them. • To appreciate the use of image processing in current technologies and to expose the students to real-world applications of the image processing. UNIT I FUNDAMENTALS OF IMAGE PROCESSING Introduction - Elements of visual perception, Steps in Image Processing Systems - Digit Imaging System - Image Acquisition - Sampling and Quantization - Pixel Relationships - Fi Formats - colour images and models-Image Operations - Arithmetic, logical, statistical are spatial operations. - To image Transforms - Discrete and Fast Fourier Transform and Discrete Cosine Transform , Spat Domain - Gray level Transformations Histogram Processing Spatial Filtering - Smoothing and Sharpening filters-Homo-morphic Filtering, Noise models, Constrained and Unconstrained restoration	models.																
21IF2705 DIGITAL IMAGE PROCESSING AND PATTERN RECOGNITION L T P C 3 0 0 3 0 0 3 Prerequisites for the course • The students should have the knowledge on Signal Processing. • To understand the basic concepts and algorithms of digital processing. • To familiarize the student with the image processing environments like Mat-lab and its equivalent open source Image processing environments. •																	
21IF2705 DIGITAL IMAGE PROCESSING AND PATTERN RECOGNITION L T P C 3 0 0 3 0 0 3 Prerequisites for the course • The students should have the knowledge on Signal Processing. • To understand the basic concepts and algorithms of digital processing. • To familiarize the student with the image processing environments like Mat-lab and its equivalent open source Image processing environments. • • To appreciate the use of image processing in current technologies and issues ar their applications, and To provide the student with practical experiences using them. • To appreciate the use of image processing in current technologies and to expose the students to real-world applications of the image processing. III FUNDAMENTALS OF IMAGE PROCESSING Introduction - Elements of visual perception, Steps in Image Processing Systems - Digit Imaging System - Image Acquisition - Sampling and Quantization - Pixel Relationships - F Formats - colour images and models-Image Operations - Arithmetic, logical, statistical ar spatial operations. UNIT II IMAGE ENHANCEMENTAND RESTORATION Image Transforms - Discrete and Fast Fourier Transform and Discrete Cosine Transform , Spat Domain - Gray level Transformations Histogram Processing Spatial Filtering - Smoothing ar	filters-H	omo-	morp	hic I	Filtering	, Noise	e mo	dels,	Const	train	ed a	nd	Unc	onstr	ained	resto	oratio
21IF2705 DIGITAL IMAGE PROCESSING AND PATTERN RECOGNITION L T P C 3 0 0 3 0 0 3 Prerequisites for the course • The students should have the knowledge on Signal Processing. • To understand the basic concepts and algorithms of digital processing. • To familiarize the student with the image processing environments like Mat-lab and its equivalent open source Image processing environments. • To expose the students To a broad range of image processing techniques and issues an their applications, and To provide the student with practical experiences using them. • To appreciate the use of image processing in current technologies and to expose the students to real-world applications of the image processing. UNIT I FUNDAMENTALS OF IMAGE PROCESSING Introduction - Elements of visual perception, Steps in Image Processing Systems - Digit Imaging System - Image Acquisition - Sampling and Quantization - Pixel Relationships - Fi Formats - colour images and models-Image Operations - Arithmetic, logical, statistical au spatial operations. UNIT II IMAGE ENHANCEMENTAND RESTORATION Image Transforms -Discrete and Fast Fourier Transform and Discrete Cosine Transform , Spat	Sharpeni	ng. I	Frequ	ency	Domain	: Filter	ing i	n Fre	equen	cy [Domai	n-S	Smoo	othing	and	Shar	penin
21IF2705 DIGITAL IMAGE PROCESSING AND PATTERN RECOGNITION L T P C 3 0 0 3 0 0 3 Prerequisites for the course • The students should have the knowledge on Signal Processing. • To understand the basic concepts and algorithms of digital processing. • To familiarize the student with the image processing environments like Mat-lab and its equivalent open source Image processing environments. •	Domain	- Gra	y lev	el Tra	ansform	ations	Histog	gram	Proce	essin	g Spa	tial	Filt	ering	– Sm	loothii	ng an
21IF2705 DIGITAL IMAGE PROCESSING AND PATTERN RECOGNITION L T P C 3 0 0 3 0 0 3 Prerequisites for the course • The students should have the knowledge on Signal Processing. Objectives • To understand the basic concepts and algorithms of digital processing. • To familiarize the student with the image processing environments like Mat-lab and its equivalent open source Image processing environments. • To expose the students To a broad range of image processing techniques and issues ar their applications, and To provide the student with practical experiences using them. • To appreciate the use of image processing in current technologies and to expose the students to real-world applications of the image processing. UNIT I FUNDAMENTALS OF IMAGE PROCESSING Introduction - Elements of visual perception, Steps in Image Processing Systems - Digit Imaging System - Image Acquisition - Sampling and Quantization - Pixel Relationships - Fi Formats - colour images and models-Image Operations - Arithmetic, logical, statistical ar spatial operations.	Image Tr	ansfo	orms	-Disc	rete and	Fast Fo	ourier	Tran	sform	n and	l Disc	rete	e Cos	sine T	ransf	orm,	Spatia
21IF2705 DIGITAL IMAGE PROCESSING AND PATTERN RECOGNITION L T P C 3 0 0 3 0 0 3 Prerequisites for the course • The students should have the knowledge on Signal Processing. Objectives • To understand the basic concepts and algorithms of digital processing. • To familiarize the student with the image processing environments like Mat-lab and its equivalent open source Image processing environments. • To expose the students To a broad range of image processing techniques and issues an their applications, and To provide the student with practical experiences using them. • To appreciate the use of image processing in current technologies and to expose the students to real-world applications of the image processing. Introduction - Elements of visual perception, Steps in Image Processing Systems - Digit Imaging System - Image Acquisition - Sampling and Quantization - Pixel Relationships - Fi Formats - colour images and models-Image Operations - Arithmetic, logical, statistical and statistical and statistical and models-Image Operations - Arithmetic, logical, statistical and statistical a	UNIT	II	IMA	GE E	NHANCI	EMENT	AND I	REST	ORAT	TION							
21IF2705 DIGITAL IMAGE PROCESSING AND PATTERN RECOGNITION L T P C 3 0 0 3 0 0 3 Prerequisites for the course • The students should have the knowledge on Signal Processing. Objectives • To understand the basic concepts and algorithms of digital processing. • To familiarize the student with the image processing environments like Mat-lab and its equivalent open source Image processing environments. • To expose the students To a broad range of image processing techniques and issues an their applications, and To provide the student with practical experiences using them. • To appreciate the use of image processing in current technologies and to expose the students to real-world applications of the image processing. UNIT 1 FUNDAMENTALS OF IMAGE PROCESSING Introduction - Elements of visual perception, Steps in Image Processing Systems - Digital Imaging System - Image Acquisition - Sampling and Quantization - Pixel Relationships - Finange	spatial o	perat	ions.														
21IF2705 DIGITAL IMAGE PROCESSING AND PATTERN RECOGNITION L T P C 3 0 0 3 0 0 3 Prerequisites for the course • The students should have the knowledge on Signal Processing. Objectives • To understand the basic concepts and algorithms of digital processing. • To familiarize the student with the image processing environments like Mat-lab and its equivalent open source Image processing environments. • To expose the students To a broad range of image processing techniques and issues an their applications, and To provide the student with practical experiences using them. • To appreciate the use of image processing in current technologies and to expose the students to real-world applications of the image processing. UNIT I UNIT I FUNDAMENTALS OF IMAGE PROCESSING Introduction - Elements of visual perception, Steps in Image Processing Systems - Digital	Formats	- cc	lour	imag	es and	models	-Imag	e Op	eratio	ons -	- Arit	hm	etic,	logic	al, st	atistic	al an
21IF2705DIGITAL IMAGE PROCESSING AND PATTERN RECOGNITIONLTPC3003Prerequisites for the course• The students should have the knowledge on Signal Processing.• The students should have the knowledge on Signal Processing.• Objectives• To understand the basic concepts and algorithms of digital processing.• To familiarize the student with the image processing environments like Mat-lab and its equivalent open source Image processing environments.• To expose the students To a broad range of image processing techniques and issues and their applications, and To provide the student with practical experiences using them.• To appreciate the use of image processing in current technologies and to expose the students to real-world applications of the image processing.UNIT IFUNDAMENTALS OF IMAGE PROCESSING	Imaging	Syste	em - I	mage	Acquisi	tion –	Samp	oling a	and Q	uant	izatio	n	– Pi	xel R	elatio	nships	- Fil
21IF2705 DIGITAL IMAGE PROCESSING AND PATTERN RECOGNITION L T P C 3 0 0 3 0 0 3 Prerequisites for the course • The students should have the knowledge on Signal Processing. • To understand the basic concepts and algorithms of digital processing. • To appreciate the student with the image processing environments like Mat-lab and its equivalent open source Image processing environments. •	Introduc	tion	– El	emen	nts of vi	sual pe	ercept	ion, S	Steps	in I	mage	Pr	oces	sing	Syste	ms –	Digita
21IF2705 DIGITAL IMAGE PROCESSING AND PATTERN RECOGNITION L T P C 3 0 0 3 Prerequisites for the course • The students should have the knowledge on Signal Processing. • The students should have the knowledge on Signal Processing. • To understand the basic concepts and algorithms of digital processing. • To familiarize the student with the image processing environments like Mat-lab and its equivalent open source Image processing environments. • To expose the students To a broad range of image processing techniques and issues ar their applications, and To provide the student with practical experiences using them. • To appreciate the use of image processing in current technologies and to expose the	UNIT	'I	FUN	IDAM	IENTAL	5 OF IM	AGE I	PROC	ESSIN	IG							
21IF2705DIGITAL IMAGE PROCESSING AND PATTERN RECOGNITIONLTPC3003Prerequisites for the course• The students should have the knowledge on Signal Processing.• The students should have the knowledge on Signal Processing.• The students should have the knowledge on Signal Processing.• To understand the basic concepts and algorithms of digital processing.• To understand the basic concepts and algorithms of digital processing.• To familiarize the student with the image processing environments like Mat-lab and its equivalent open source Image processing environments.• To expose the students To a broad range of image processing techniques and issues ar their applications, and To provide the student with practical experiences using them.		stud	ents t	to rea	l-world	applica	tions	of the	imag	e pro	ocessi	ng.					
21IF2705DIGITAL IMAGE PROCESSING AND PATTERN RECOGNITIONLTPC3003Prerequisites for the course• The students should have the knowledge on Signal Processing.Objectives• To understand the basic concepts and algorithms of digital processing.• To familiarize the student with the image processing environments like Mat-lab and its equivalent open source Image processing environments.• To expose the students To a broad range of image processing techniques and issues and iss	•				•						•					0	
21IF2705DIGITAL IMAGE PROCESSING AND PATTERN RECOGNITIONLTPC3003Prerequisites for the course• The students should have the knowledge on Signal Processing.• The students should have the knowledge on Signal Processing.• The students should have the knowledge on Signal Processing.• To understand the basic concepts and algorithms of digital processing.• To familiarize the student with the image processing environments like Mat-lab and its equivalent open source Image processing environments.	·		-					-					-	-			
21IF2705DIGITAL IMAGE PROCESSING AND PATTERN RECOGNITIONLTPC3003Prerequisites for the course• The students should have the knowledge on Signal Processing.• Objectives• To understand the basic concepts and algorithms of digital processing.• To familiarize the student with the image processing environments like Mat-lab and	•		-		-				-				σ tec	hniau	ec an	d issu	es ani
21IF2705DIGITAL IMAGE PROCESSING AND PATTERN RECOGNITIONLTPC3003Prerequisites for the course• The students should have the knowledge on Signal Processing.Objectives• To understand the basic concepts and algorithms of digital processing.	•							U	•		0		ime	IIIS IIK	e mai	iab a	iiu
21IF2705 DIGITAL IMAGE PROCESSING AND PATTERN RECOGNITION L T P C 3 0 0 3 Prerequisites for the course The students should have the knowledge on Signal Processing. Objectives	•						•	0			U	-		0			,
21IF2705 DIGITAL IMAGE PROCESSING AND PATTERN RECOGNITION L T P C 3 0 0 3 Prerequisites for the course																	
21IF2705 DIGITAL IMAGE PROCESSING AND PATTERN L T P C RECOGNITION 3 0 0 3	• T	ne sti	udent	s sho	uld have	the kno	owled	ge on	Signa	al Pro	ocessi	ng.					
21IF2705 DIGITAL IMAGE PROCESSING AND PATTERN L T P C	Prerequ	isite	s for t	the co	ourse										0	U	5
						RE	COGN	ITIO	N					3	0	0	3
PROFESSIONAL ELECTIVE-II	21IF27	05		DIC	GITAL IN	IAGE P	ROCE	SSIN	G ANI	D PA	TTER	RN		I	Т	Р	C
TETERAL AND A STATE AND A STA	Prerequ • T	isite: ne stu es	ıdent	t he co s sho	GITAL IN Durse uld have	1AGE P RE the kno	ROCE COGN	SSIN IITIO ge on	G ANI N Signa	D PA	TTER	N ng.		3	0		
			I	1	1 1	I		-			I						
	205-4.6	1				3	3										
205-4.6 1 3 3 0	205-4.5	2															
	205-4.4							2	2								
205-4.5 2 2 2 2 2			2	2	2												

FrancisXavierEngineeringCollege/DeptofIT-PG/R2021/CurriculumandSyllabi
 Detection of Discontinuities – Edge Operators – Edge Linking and Boundary Detection –
 Thresholding – Region Based Segmentation – Motion Segmentation, Image Morphology:
 Binary and Gray level morphology operations - Erosion, Dilation, Opening and Closing Operations
 – Distance Transforms – Basic morphological Algorithms. Features – Textures – Boundary
 representations and Descriptions – Component Labeling – Regional descriptors and Feature

UNIT IV	INTRODUCTION	TO PATTERN RECOGNITION		
Component Lab	oeling - Image Fea	tures - Textures - Boundary repr	esentations	and descriptions
Regional desci	riptors – Featur	e selection and Feature dimer	nsionality r	eduction .Imag
Classification a	nd Recognition -	Statistical Classifiers _ Clustering A	Algorithms -	- Hierarchical and
Partitional clus	tering			
UNIT V	IMAGE PATTERN	RECOGNITION CASE STUDIES		
Image Understa	nding – Case Stud	ies in Bio-metrics, Video Processi	ng, Image Fi	ision - Image
-	_	er marking - Stereovision - Visual		_
		_	Periods	<u> </u>
Suggestive Ass	essment Method		I	
Continuous As (30Mark	sessment Test	Formative Assessment Test		ester Exams Marks)
	ive questions	(10Marks) • MCQ	· · ·	escriptive
• MCQ	1	• Assignment	qu	estions
		• Seminar	• M0	CQ
Outcomes				
		e, the students will be able to :		
C206-1		should be able to implement basi	c image pro	cessing
	Algorithms u	sing MATLAB Tools		
C206-1	.2 Design an ap processing	plication that incorporates differe	ent concepts	s of Image
C206-1	.3 Apply and ex	plore new techniques in the areas	of image er	nhancement,
	restoration,	segmentation, compression, wave	et processin	ng and image
	morphology.			
C206-1	.4 Critically and	lyze different approaches to impl	ements min	i projects
C206-1	.5 Explore the p	oossibility of Appling image proces	ssing concep	ots in various
	domains			
C206-1	.6 Apply the pa	ttern recognition concepts in real	life problen	ns
		- •	—	

- 1. Alasdair Mc Andrew, "Introduction To Digital Image Processing with Matlab", CengageLearning2011, India.
- 2. AnilJJain, "FundamentalsofDigitalImageProcessing", PHI, 2011.
- 3. Rafael C. Gonzalez and Richard E. Woods, "Digital Image Processing", Third Edition, Pearson Education ,2008,NewDelhi.

Reference Books

1. S. Sridhar, "Digital Image Processing", Oxford University Press, 2011, New Delhi.

2. Wilhelm Burger, Mark J Berge, "Digital Image Processing: An algorithmic Introduction using

Java", Springer International Edition, 2008.

Web Resources

1. http://www.imageprocessingplace.com

CO Vs. PO Mapping and CO vs. PSO Mapping

СО	PO	PS	PS	PS											
	1	2	3	4	5	6	7	8	9	10	11	12	01	02	03
C206-1.1	3	2	3			3									3
C206-1.2		3	3		2					2					3
C206-1.3	3	3	2	2	2					2					3
C206-1.4		3	3	3						2					3
C206-1.5							2	2		3					3
C206-1.6							3	2	3	3					3

21F2706	GREEN COMPUTING	L	Т	Р	С
		3	0	0	3
Prerequisite	s for the course				
• The stu	idents should have the knowledge on data warehousing.				
Objectives					
1. To le	arn the fundamentals of Green Computing.				
2. To ai	nalyze the Green computing Grid Framework.				
3. To u	nderstand the issues related with Green compliance.				
4. To st	udy and develop various case studies.				
UNIT I	INTRODUCTION				9
Energy-efficie	nt-power efficient and thermal aware computing and commun	icatio	n -N	lewto	n 's
Cooling mode	l and basic thermodynamics and sustainability.				
UNIT II	POWER MANAGEMENT				12
	1	1			- 4

FrancisXavierEngineeringCollege|DeptofIT-PG|R2021/CurriculumandSyllabi Operating system Directed power management – Power management history and motivation – Key power management concepts – power management scenarios – ACPI desktop motherboard design **UNIT III** DEVELOPMENT OF EFFICIENT POWER MANAGEMENT 12 SYSTEM Dual mode desktop power delivery – system BIOS – Designing mobile systems – Communication with peripheral devices – Drivers – Developing robust power managed applications UNIT IV **ENERGY EFFICIENT DATA CENTER** 12 Data center power consumption – Power metrics – Energy efficient data center tuning – energy Efficient server management – Industry vision and recommendations UNIT V **CASE STUDIES** 12 The Environmentally Responsible Business Strategies (ERBS) – Case Study Scenarios for Trial Runs – Case Studies – Applying Green IT Strategies and Applications to a Home, Hospital, Packaging Industry and Telecom Sector. **Total Periods** 45 **Suggestive Assessment Methods Continuous Assessment Test Formative Assessment Test End Semester Exams** (30Marks) (10Marks) (60Marks) • Descriptive questions MCQ Descriptive Assignment MCQ questions MCQ Seminar **Outcomes** Upon completion of the course ,the students will be able to : C206-2.1 Acquire knowledge to adopt green computing practices. C206-2.2 Enhance the skill in energy saving practices in their use of hardware. C206-2.3 Evaluate technology tools that can reduce paper waste and carbon foot print by the stakeholders. C206-2.4 Understand the ways to minimize equipment disposal requirements. C206-2.5 To minimize negative impacts on the environment. C205-2.6 Build an internal cloud **Text Books** 1. Jerzy Kolinski, Ram Chary, Andrew Henroid, and Barry Press, "Building the Power Efficient PC A Developer's Guide To ACPI Power Management", Intel Press August2001. 2. Lauri Minas, Brad Ellison, "Energy Efficiency for Information Technology: How To Reduce Power Consumption in Servers and Data Centers", Intel Press, 2009. **Reference Books**

- 1. Bhuvan Unhelkar, "Green IT Strategies and Applications-Using Environmental Intelligence", CRC Press, June 2011.
- 2. Wu Chun Feng, "Green Computing: Large-Scale Energy Efficiency", CRC Press INC, 2013.

Web Resources

1. http://www.greencomputing.com/

CO Vs. PO Mapping and CO vs. PSO Mapping

СО	PO	PS	PS	PS											
	1	2	3	4	5	6	7	8	9	10	11	12	01	02	03
C206-2.1	1		3			3								3	
C206-2.2		2			2				2				3	3	
C206-2.3			1			1		3						3	
C206-2.4				2			3			1			3	3	
C206-2.5			1			2			3					3	
C206-2.6	1				2			3						3	

Objectives • The stru	for the course lents should have the knowledge on Artificial Intelligence.	3	0	0	3
 The stud Objectives The stru 					
Objectives • The stru	0 0				
• The stru					
• The lear	cture of agents				
	ning mechanisms of agents				
• The com	munication and cooperation within agents				
• The desi	gn of agents				
• Apply th	e agents in various types of environments				
UNIT I	INTRODUCTION				(
Agents as a pa	radigm for software engineering – Agents as a Tool for u	nders	stand	ling h	uma
	elligent Agent: Agents and Objects – Agents and Expert S			_	
	tems – Abstract Architectures for Intelligent Agents – How T	-		-	
To Do				0	
UNIT II	LEARNING IN AGENTS				(
•	se – Handling variables and qualifiers – Dealing within tracta es – Procedural control of reasoning – Rules in production – I ogics.				ng
UNIT III	COMMUNICATION AND COOPERATION IN AGENTS				ļ
Software Tools	for ontology - OWL - XML - KIF - Speech acts - Cooperative	Distr	ibut	ed Pro	oblen
Solving - Task S	Sharing and Result Sharing - Result Sharing - Combining Task	and	Resu	lt Sha	ring
Handling Incon	sistency - Coordination – Multi agent Planning and Synchroni	zatio	n		
UNIT IV	DEVELOPING INTELLIGENT AGENT SYSTEMS				(
Situated Agent	s: Actions and Percepts - Proactive and Reactive Agents: (Goals	and	Even	ts -
Challenging Age	ent Environments: Plans and Beliefs - Social Agents - Agent	Execu	ution	Сус	le -
Deciding on	the Agent Types - Grouping functionalities - Review	Agen	t Co	uplin	g –
Acquaintance D	iagrams-Develop Agent Descriptors				
UNITV	APPLICATIONS				9
Agent for work	flow and business process management – Mobile agents – Age	ents f	or di	stribu	ted
Systems – agen	ts for information retrieval and management – agents for ele	ctron	ic co	mmer	ce –

C										Тс	otal Pe	riods		45	5			
	stive As																	
Contii	1uous A (30Mar		smen	t Test	t F	forma		Asse: Mark:		nt Tes	t]	End Se	emeste 60Mai		ms			
•	Descriț MCQ	otive	quest	ions		• •	MCQ Assig Sem	gnme	nt				Descri questi MCQ	-				
Outco	mes																	
Upon	comple	etion	of th	e cou	rse, t	the st	uden	ts wi	ll be a	able to):							
	C206-3	.1	Imp	lemer	nt a co	omput	tation	al age	ent w	ith var	ious se	earchir	ıg tech	inique	s.			
	C206-3	.2	Use	the le	arnin	g meo	chani	sms fo	or an	Artific	ial age	nt.						
	C206-3	.3					mmu	nicati	on ar	nd co-o	perati	on me	thodo	logies	in a			
	0004.0			ti-age		_							ŗ	c.				
	C206-3			•		U	0				used ir			e of ag	ents			
	C206-3	.5	Арр	ly the	agen	ts to l	be use	ed in v	variou	is type	es of en	vironr	nents					
	C206-3	.6	Use	the ag	gents	in vir	tual e	enviro	nmer	nts								
Text F	Books																	
1.	Michae	el Woo	oldrid	ge, Ar	1 Intro	oduct	ion to	o Mult	i Age	nt Syst	tems, S	econd	Editio	n, Joh	n Wileg			
	and So	ns, 20	09.															
	Ctuort																	
2.	Stuart	Russe	ell, Pet	ter No	orvig,-	–Arti	ficial	Intell	igenc	e :A Mo	odern A	Approa	ach , T	Third E	dition			
2.	Pearso				_	–Arti	ficial	Intell	igenc	e :A Mo	odern A	Approa	ach∥, T	Third E	dition			
	Pearso	n Edu			_	–Arti	ficial	Intell	igenc	e :A Mo	odern 4	Approa	ach , T	Third E	dition			
Refer		n Edu oks	icatio	n, 200)9.				_									
Refer	Pearso e nce Bo Lin Pac	n Edu ooks lghan	n, Mic	n, 200 hael V	9. Vinik				_									
Refer 1.	Pearso ence Bo Lin Pac Wiley p	n Edu ooks lghan oublic	n, Mic	n, 200 hael V s, 200	99. Vinik 95	off, De	evelo	ping I	ntelli	gent A	gent Sy	ystems	: A Pra	actical	Guide			
Refer 1.	Pearso ence Bo Lin Pac Wiley p Ronald	n Edu Joks Ighan Dublic Brac	n, Mic ation	n, 200 hael V s, 200 , Hect	99. Vinik 95 cor Le	off, Do	evelo 1e—K	ping I nowle	ntelli edge F	gent A Repres	gent Sy	ystems	: A Pra	actical	Guide			
Refer 1. 2.	Pearso ence Bo Lin Pac Wiley p Ronald Morgan	n Edu ooks Ighan oublic Brac n Kau	n, Mic ation hman	n, 200 hael V s, 200 , Hect n Seri	99. Vinik 15 cor Le es in 2	off, Do vesqu Artific	evelo 1e—K cial In	ping I nowle itellig	ntelli edge F	gent A Repres	gent Sy	ystems	: A Pra	actical	Guide			
Refer 1. 2.	Pearso ence Bo Lin Pac Wiley p Ronald	n Edu ooks Ighan oublic Brac n Kau	n, Mic ation hman	n, 200 hael V s, 200 , Hect n Seri	99. Vinik 15 cor Le es in 2	off, Do vesqu Artific	evelo 1e—K cial In	ping I nowle itellig	ntelli edge F	gent A Repres	gent Sy	ystems	: A Pra	actical	Guide			
Refer 1. 2. CO Vs	Pearso ence Bo Lin Pac Wiley p Ronald Morgan	n Edu ooks Ighan oublic Brac n Kau	n, Mic ation hman	n, 200 hael V s, 200 , Hect n Seri	99. Vinik 15 cor Le es in 2	off, Do vesqu Artific	evelo 1e—K cial In	ping I nowle itellig	ntelli edge F	gent A Repres	gent Sy	ystems	: A Pra	actical	Guide			
Refer 1. 2. CO Vs. C	Pearso ence Bo Lin Pac Wiley p Ronald Morgan	n Edu ooks Ighan oublic Brac n Kau ppin	n, Mic ation hman fmani g and	n, 200 hael V s, 200 , Hect n Seri CO v	99. Vinik 5 cor Le es in A s. PSC	off, Do vesqu Artific) Map	evelo ue—K cial In pping	ping I nowle itellig	ntelli edge F ence	gent A Repres 2004.	gent S <u>i</u> entatio	ystems	: A Pra	actical oning	Guide			
Refer 1. 2.	Pearso ence Bo Lin Pac Wiley p Ronald Morgan . PO Ma PO 1	n Edu ooks Ighan oublic Brac n Kau pping PO	n, Mic ation hman fmann g and	n, 200 hael V s, 200 , Hect n Seri CO v : PO	99. Vinik 5 cor Le es in A s. PSC PO	off, Do vesqu Artific) Map PO	evelo 1e—K cial Ir pping PO	ping I nowle itellig	ntelli edge F ence PO	gent A Repres 2004. PO	gent Sy entatic PO	ystems on and PO	: A Pra	actical oning PS	Guide, , The PS			
Refer 1. 2. CO Vs C O 206-3.2	Pearso ence Bo Lin Pac Wiley p Ronald Morgan . PO Ma PO 1 1	n Edu ooks Ighan oublic Brac n Kau pping PO	n, Mic ation hman fmann g and PO 3	n, 200 hael V s, 200 , Hect n Seri CO v : PO	99. Vinik 5 cor Le es in A s. PSC PO	off, Do vesqu Artific D Map PO 6	evelo 1e—K cial Ir pping PO	ping I nowle itellig	ntelli edge F ence PO	gent A Repres 2004. PO	gent Sy entatic PO	ystems on and PO	Reaso PS 01	actical oning PS 02	Guide , The PS 03			
Refer 1. 2. CO Vs C O	Pearso ence Bo Lin Pac Wiley p Ronald Morgan . PO Ma PO 1 1 1	n Edu ooks Ighan oublic Brac n Kau pping PO 2	n, Mic ation hman fmann g and PO 3	n, 200 hael V s, 200 , Hect n Seri CO v : PO	99. Vinik 5 cor Le es in A s. PSC PO 5	off, Do vesqu Artific D Map PO 6	evelo 1e—K cial Ir pping PO	ping I nowle itellig	ntelli edge F ence PO 9	gent A Repres 2004. PO	gent Sy entatic PO	ystems on and PO	:: A Pra Reaso PS 01 3	actical oning PS O2 3	Guide , The PS 03 3			

C206-3.5		1		2		3		3	3	3
C206-3.6	1		2		3			3		3

[
21IF2708	INFORMATION RETRIEVAL TECHNIQUES	L	Т	Р	С
Duono qui sito s	for the course	3	0	0	3
Prerequisites	Idents should have the knowledge on Data Mining.				
	active should have the knowledge on Data Mining.				
• To 1	inderstand the basics of information retrieval with pertir	ience	То	mode	ling
	ns and indexing	101100	10	liioue	
	et an understanding of machine learning techniques for te	xt clas	ssific	ation	and
clustering.	et an anaerstanding of machine fearming teeninques for ter		551110	ation	unu
C	nderstand the various applications of information retrieva	l givir	ig en	nphas	is to
multimedia IR,		- 8			10 00
	iderstand the concepts of digital libraries				
	INTRODUCTION				9
Basic Concepts	– Practical Issues - Retrieval Process – Architecture - Boolear	ı Retri	eval	– Ret	rieval
)pen Source IR Systems–History of Web Search – Web Charac				
	R ––IR Versus Web Search – Components of a Search engine			-	L
UNIT II	MODELING				9
					-
_	Characterization of IR Models – Boolean Model – Vector Mod			_	_
-	nking -Language Models - Set Theoretic Models - Probabilist	tic Mo	dels	– Alg	ebraic
Models – Struct	cured Text Retrieval Models–Models for Browsing.				
UNIT III	INDEXING				9
Static and Dyna	amic Inverted Indices – Index Construction and Index Com	pressi	on. S	Searc	hing –
Sequential Se	earching and Pattern Matching. Query Operations	- Qi	uery	Langu	ages-
QueryProcessir	ng-RelevanceFeedbackandQueryExpansion -Automatic Local a	and Gl	obal	Analy	/sis –
Measuring Effe	ctiveness and Efficiency			-	
UNIT IV	CLASSIFICATION AND CLUSTERING				9
Text Classificat	ion and Naïve Bayes – Vector Space Classification – Support	t vecto	or ma	achine	es and
Machine learni	ng on documents. Flat Clustering – Hierarchical Clustering – M	latrix	deco	mpos	itions
and latent sema	antic indexing – Fusion and Meta learning				
	-				

ncisXavierEn	gineer	ingCo	llege l	Depto	fIT–P	G R20)21/Ci	urricu	lumai	ndSyll	labi				
UNIT V	SEA	ARCH	ING T	THE V	VEB										9
Searching th	ne Wel	o – Str	uctur	e of t	he We	eb–IR	and v	veb se	earch	– Sta	tic an	d Dyn	amic I	Ranki	ng – Web
Crawling an	d Ind	exing	– Lin	k Ana	alysis	- XM	L Ret	rieval	Mult	imed	ia IR	Mod	els an	d Lan	guages –
Indexing and	d Sear	ching	Paral	lel an	d Dist	ribut	ed IR -	- Digi	tal Lił	orarie	es				
										Гotal	Peri	ods	45		
Suggestive											-				
Continuou:	s Asse 80Mar		nt Te	st	Forn		e Asse 10Ma		ent Te	est	En		ester Mark		15
	criptiv		stions	5	•	MC		iksj			•		riptive		
• MCC	-	-			•		signm	ent				ques			
					•	Ser	ninar				•	M	ICQ		
Outcomes															
Upon comp															
C206-4.1	В	Build a	n Info	ormat	ion R	letriev	val sys	stem ı	ising	the av	<i>v</i> ailab	le Too	ols		
C206-4.2	I	dentif	y and	desig	n the	vario	ous co	mpon	ents o	of an I	Inform	natio	n Retr	rieval	system
C206-4.3	A	pply	machi	ine le	arnin	g tech	nique	es to t	ext cl	assifi	catio	n and	cluste	ering	which is
used for ef	fficient	t Infor	matic	on Ref	trieva	l									
C206-4.4	D)esign	an ef	ficien	t sear	ch en	gine a	nd an	alyze	the V	Veb c	onten	t struc	ture	
C206-4.5	E	xplair	n the	conc	epts o	of Ind	lexing	, voca	abular	y, nc	ormal	izatio	n and	dictio	onary in
Informatio	on retr	ieval.													
C206-4.6	U	Inders	stand	the is	sues i	nvolv	red in	Provi	ding a	n IR :	servio	ce on a	a web s	scale.	
Text Books									_						
1. Chri	istoph	er D. N	Manni	ng, Pi	rabha	kar Ra	aghav	an, Hi	nrich	Schu	tze, "I	Introd	uction	to	
Information	Retri	eval",	Camb	oridge	Univ	ersity	Press	s, Firs	t Sout	h Asi	an Ed	lition,	2008.		
2. Rica	irdo Ba	aeza –	Yates	s, Ber	thier	Ribeir	•o – N	e To ,	"Mod	ern Ir	nform	ation	Retrie	val: T	he
Concepts an	d Tecł	nolog	gy beh	nind S	earch	" (AC	M Pre	ss Boo	oks), S	Secon	d Edi	tion, 2	2011.		
Reference I	Books														
1. Stefan E													mation		Retrieval
Implementi England, 20	-	l Eval	uating	g Sear	ch Er	ngines	s", The	e MIT	Press	s, Can	nbrid	ge, Ma	assach	usett	London,
Liigianu, 20	10.														
Web Resou	rces														
https://blog	g.netw	rix.co	m/20	20/07	7/02/	cloud	-data	-secur	ity/						
CO Vs. PO	Маррі	ing ar	nd CO	vs. P	SO Ma	appin	g								
СО		<u> </u>	1	1	1		<u> </u>	DO	DO	РО	DO	РО	DC	DC	DC
	PO 1	PO 2	PO 2	PO	PO	PO	PO 7	PO			PO		PS	PS	PS
	1	2	3	4	5	6	7	8	9	10	11	12	01	02	03

FrancisXavierEngineeringCollege DeptofIT-PG R2021/	

C206-4.1	1		1			3						3	3
C206-4.2		2		2					2			3	3
C206-4.3	1		1					3				3	3
C206-4.4			2				3			1		2	3
C206-4.5			1			2			3			3	3
C206-4.6		1			2			3				3	3

PROFESSIONAL ELECTIVE-III

21IF3701	SOCIAL NETWORK ANALYSIS	L	Τ	Р	С
		3	0	0	3
	Objectives:				
• To 1	inderstand the components of the social Network				
• To 1	nodel and visualize the social network				
• To 1	mine the users in the w4				
• To 1	understand the evolution of the social Network				
• To 1	know the application s in Real Time Systems				
Pre – requi	site: The students should have the knowledge on Data M	/lining	and w	eb	
Technology					
UNIT I	INTRODUCTION			9	
Introduction	n To Web - Limitation s of current Web – Development	t of Ser	nantic	Web	
Emergence	of the Social Web – Statistical Properties of Social Netw	orks -N	Jetwor	·k	
analysis - D	evelopment of Social Network Analysis - Key concepts a	nd mea	asures	in	
network and	alysis - Discussion networks - Blogs and on line commu	nities -	Web-	based	
networks					
UNIT II	MODELING AND VISUALIZATION			9	
Visualizing	Online Social Networks - A Taxonomy of Visualization	s - Gra	ph Re	presen	tation
- Centrality	- Clustering - Node-Edge Diagrams - Visualizing Socia	l Netw	orks v	vith M	latrix-
Based Repr	resentation s- Node-Link Diagrams - Hybrid Representation	ation s	s - Mo	odellin	g and
aggregating	social network data - Random Walks and their Applic	cations	–Use	of Ha	ardtop
and Map Re	educe - On To logical representation of social individual	ls and r	elation	nships	
UNIT III	MINING COMMUNITIES			9	
Aggregating	g and reasoning with social network data, Advanced Rep	resenta	tions -	– Extr	acting
evolution	of Web Community from a Series of Web Archive - D	etecting	g Con	muni	ties in
Social Netv	vorks - Evaluating Communities - Core Methods for Co	ommur	nity De	etectio	on &
Mining - A	pplication s of Community Mining Algorithms - Node	Classif	icatior	n in	Social
Networks.					
UNIT IV	EVOLUTION			9	
Evolution	in Social Networks - Framework - Tracing Smoothly	Evolvii	ng Coi	nmun	ities -
Models and	Algorithms for Social Influence Analysis - Influence R	Related	Statis	tics -	Social

Similarity and Influence - Influence Maximization in Viral Marketing - Algorithms and

PO	vs. CO	Mapping	5								
C30	1.6	Desc	ribe the	applica	tion s in	volved i	n real ti	ne syste	ms		
C30	1.5	Predi	ct the p	ossible	next out	come of	the soci	al netwo	ork		
C30	1.4	Appl	y social	network	t in real	time app	lication.				
C30	1.3	Mine	the beh	aviour	of the us	sers in th	ne social	networ	k		
C30					the soci						
C30		-			als comp						
Upon	the o	completio	n of th	e cour	se the s	student	should	be able '	Го		
Cour	se Out	comes:									
		ork Analy									
7.		nys law K						1 0	·	,	
6.		Mika, "S							, 1st edi	tion, 20	07.
		niques and			C	·		U			C
5.		dong Xu		ın Zhan	g and Li	n Li, "W	eb Mini	ng and S	Social N	etworkii	ng –
		ger, 2010		,					8		,
4.		, Mark Sn								d Analys	sis".
3.	-	ı C. Agga			etwork I	Data Ana	lytics"	Snringer	·· 2014		
2.		ger, 1st e				work re	ennoiog.		ipplicad	ion s,	
2.		o Furht, "I		,				· 1	U		
1.		ork Analy						-			
1.		Abraham	Aboul	F11a Ha	ccanion	Václav	Snáčal (Comput	ation of	Social	
	rence(s)										
	Period	-	Intection	1							
-	-	emplate P			Emerge		casting	Social	Networ	K Allaly	/515 10
•		pproach ' Scientific			-						
	U	Based Ap									
UNI					1					9	4 NT
		Relation									
		orks - F			link Pre	diction	— Ba	yesian I	robabil	istic Mo	odels
		- with Sc									
•		-				Network	-			without	•

CO No	PO _a	PO _b	POc	PO _d	PO _e	PO _f	POg	PO _h	PO _i	PO _l
C301.1	3		2			3				

C301.2		1			2				2	
C301.3			2			3		3		
C301.4	3			2			3			
C301.5			2			2			3	
	_		3						5	
C301.6					2			3		
w, $2 \rightarrow Med$	lium, 3	\rightarrow Hig	<u>h</u>							
21IF3702	MOF	BILE A	APPLIC	ATION	DEVI	ELOPM	ENT	L	Т	Р
2111 5702								3	0	0
Objectives:									Ĭ	ľ
• Unde	erstand	system	require	ments fo	r mobil	e applic	ation s			
		-	-					t from or	vonlea	
				sing spec		one devo	elopmen	i framev	WORKS	
• Gene	erate mo	obile ap	oplicatio	on desig	'n					
• Impl	lement t	he des	sign usin	g specif	ic mobil	e develo	opment f	ramewo	rks	
				• •			I			
• Depl	loy the	mobile	e applica	tion s in			-			
	-			tion s in	n market	place fo	r distrib	oution	nputing	and l
Pre – requi	isite: Th			tion s in	n market	place fo	r distrib	oution	puting	; and J
Pre – requi Programmin	isite: Th	ne stude	ents sho	tion s in	n market	place fo	r distrib	oution	nputing	; and J
Pre – requi Programmin UNIT I	isite: Th ng. INTR	ne stude	ents sho	tion s in uld have	n market the kno	place fo	r distrib on Mol	oution pile com		9
Pre – requi Programmin UNIT I Introductior	isite: Th ng. INTR(n to m	obile a	ents sho TION	tion s ir uld have	n market the kno nbeddec	place fo wledge	r distrib on Mol	bution bile com	busine	9 ss driv
Pre – requi Programmin UNIT I Introductior	isite: The ng. INTRO n to me olication	obile and a stude	ents sho TION application Publishin	tion s in uld have	n market the kno nbeddec delivery	place fo wledge	r distrib on Mol	bution bile com	busine	9 ss driv
Pre – requi Programmin UNIT I Introductior mobile app gathering ar	isite: The ng. INTRO n to me olication	obile a obile a s – P ation	TION Publishin for mob	tion s in uld have	n market the kno nbeddec delivery	place fo wledge	r distrib on Mol	bution bile com	busine	9 ss driv
Pre – requi Programmin UNIT I Introduction mobile app	isite: The ng. INTRO n to molication nd valid BASIC	obile a obile a ation	ents sho TION application Publishin for mob	tion s in uld have ons – Er og and ile appli	n market the kno nbeddec delivery cations.	place fo wledge l system of mo	r distrib on Mol s - Marl bile apj	pution pile com	busine 1s – I	9 ss driv Requin
Pre – requi Programmin UNIT I Introduction mobile app gathering ar UNIT II	isite: The ng. INTRO n to me olication nd valid BASIO n – Ba	obile a obile a as – P ation C DES sics of	TION application for mob IGN embedd	tion s in uld have ons – Er ag and ile appli	n market the kno nbeddec delivery cations. ms desig	place fo wledge l system of mo	r distrib on Mol s - Marl bile apj bedded	oution pile com cet and plication OS - De	busine ns – I esign co	9 ss dri Requin 9 onstra
Pre – requi Programmin UNIT I Introduction mobile app gathering an UNIT II Introduction mobile appl	isite: The ng. INTRO n to me olication nd valid BASIO n – Ba lications	obile a obile a as – P ation C DES sics of s, both	TION application for mob IGN embedd hardwar	tion s in uld have ons – Er ag and ile appli led syste re and so	n market the kno nbeddec delivery cations. ms desig	place fo wledge l system of mo gn – Em related –	r distrib on Mol s - Marl bile apj bedded	oution pile com cet and plication OS - De cting m	busine ns – I esign co obile a	9 ss dri Requin 9 onstra
Pre – requi Programmin UNIT I Introduction mobile app gathering an UNIT II Introduction	isite: The ng. INTRO In to me olication Ind valid BASIO In – Ba lications aces for	obile a obile a as – P ation C DES sics of s, both mobil	TION application for mob IGN embedd hardwar le applic	tion s in uld have ons – Er ag and ile appli led syste re and so cations –	n market the kno nbeddec delivery cations. ms desig	nplace for wledge I system of mo gn – Em related – h events	r distrib on Mol s - Marl bile apj bedded Archite	oution pile com cet and plication OS - De cting m stures -	busine ns – I esign c obile a - Achie	9 ss dri Requin 9 onstra
Pre – requi Programmin UNIT I Introduction mobile app gathering an UNIT II Introduction mobile appl User interfa	isite: The ng. INTRO In to me olication Ind valid BASIO In – Ba lications aces for – perfor	De stude ODUC obile a as – P ation C DES sics of s, both mobil mance	TION application for mob IGN embedd hardwar le applic	tion s in uld have ons – Er ag and ile appli led syste re and so cations – ty, secur	n market the kno nbeddec delivery cations. ms desig	nplace for wledge I system of mo gn – Em related – h events	r distrib on Mol s - Marl bile apj bedded Archite	oution pile com cet and plication OS - De cting m stures -	busine ns – I esign c obile a - Achie	9 ss dri Requin 9 onstra
Pre – requi Programmin UNIT I Introduction mobile app gathering an UNIT II Introduction mobile appl User interfa constraints -	isite: The ng. INTRO In to me olication and valid BASIO In – Ba lications aces for – perfor ADVA	obile a obile a as – P ation C DES sics of s, both mobil mance	TION application for mob IGN embedd hardwar le applic , usabili D DESIG	tion s in uld have ons – En ag and ile appli led syste re and so cations – ty, secur GN	n market the kno nbeddec delivery cations. ms desig oftware r -To sucl ity, avai	place for wledge I system of mo gn – Em related – h events lability	r distrib on Mol s - Marl bile apj bedded Archite and ge	oution pile com cet and plication OS - De cting m stures – ifiabilit	busine ns – I esign c obile a - Achio y.	9 ss driv Requin 9 onstra applica eving 9
Pre – requi Programmin UNIT I Introduction mobile app gathering an UNIT II Introduction mobile appl User interfa constraints - UNIT III Designing a	isite: The ng. INTRO INI	obile a obile a as – P ation C DES sics of s, both mobil mance NCEI ion s	TION application publishin for mob IGN embedd hardwar le applic , usabili DESIC with mo	tion s in uld have ons – En ag and ile appli led syste re and so cations – ty, secur GN ultimedia	n market the kno nbeddec delivery cations. ms desig oftware r -To sucl ity, avai	place for wledge I system of mo gn – Em related – h events lability	r distrib on Mol s - Marl bile app bedded Archite and ge and mod	oution pile com cet and plication OS - De cting m stures – ifiabilit	busine hs – I esign co obile a - Achio y. - Integ	9 ss driv Requin 9 onstra applica eving 9 ration
Pre – requi Programmin UNIT I Introduction mobile app gathering an UNIT II Introduction mobile appl User interfa constraints - UNIT III	isite: The ng. INTRO INI	obile a obile a as – P ation C DES sics of s, both mobil mance NCEI ion s adia net	TION application publishin for mob IGN embedd hardwar le applic , usabili DESIC with more sworking	tion s in uld have ons – En ag and ile appli iled syste re and so cations – ty, secur GN ultimedia g applica	n market the kno nbeddec delivery cations. ms desig oftware r -To sucl ity, avai a and w tion s -	place for wledge I system of mo gn – Em related – h events lability eb acce - Access	r distrib on Mol s - Marl bile app bedded Archite and ge and mod ss capab ing appl	oution pile com cet and plication OS - De cting m stures - ifiabilit pilities - ication	busine hs – I esign co obile a - Achio y. - Integ	9 ss driv Requin 9 onstra applica eving 9 ration
Pre – requi Programmin UNIT I Introduction mobile app gathering an UNIT II Introduction mobile appl User interfa constraints - UNIT III Designing a GPS and so	isite: The ng. INTRO INI	obile a obile a as – P ation C DES sics of s, both mobil mance NCEI ion s adia net ment –	TION application publishin for mob IGN embedd hardwar le applic , usabili DESIC with more sworking	tion s in uld have ons – En ag and ile appli iled syste re and so cations – ty, secur GN ultimedia g applica	n market the kno nbeddec delivery cations. ms desig oftware r -To sucl ity, avai a and w tion s -	place for wledge I system of mo gn – Em related – h events lability eb acce - Access	r distrib on Mol s - Marl bile app bedded Archite and ge and mod ss capab ing appl	oution pile com cet and plication OS - De cting m stures - ifiabilit pilities - ication	busine hs – I esign co obile a - Achio y. - Integ	9 ss driv Requin 9 onstra applica eving 9 ration

NIT V	IOS	9
	h to Objective C – iOS features – UI implementation – To such	n frameworks –
	a persistence using Core Data and SQLite – Location aware app	
	e Location and Map Kit – Integrating calendar and address book	U
	lia application – Using Wi-Fi - iPhone marketplace.	
Total Peri		
Reference		
	rlie Collins, Michael Gal pin and Matthias Kipper, "Android in P	Practice", Dream
	h, 2012.	
	id Mark, Jack Nutting, Jeff LA Marché and Frederic Olsson, "Be	eginning iOS 6
	elopment: Exploring the iOS SDK", A press, 2013.	
3. http	://developer.android.com/develop/index.html.	
4. Jan	es Dove and Ash Furrow, "Beginning Objective C", a press, 2012	2.
5. Jeff	Mc Wherter and Scott Go well, "Professional Mobile Application	n
Dev	relopment", Wrox, 2012.	
6. Rec	to Meier, "Professional android Development", Wiley-India Edit	ion, 2012.
Course O	itcomes:	
Upon the	completion of the course the student should be able To	
C302.1	Describe the requirements for mobile application s	
C302.2	Explain the challenges in mobile application design and d	levelopment
C302.3	Develop design for mobile application s for specific requi	irements
C302.4	Implement the design using Android SDK	
C302.5	Implement the design using Objective C and iOS	
C302.6	Deploy mobile application s in Android and iPhone market	tplace for
	distribution	

CO No	PO _a	PO _b	POc	POd	PO _e	PO _f	POg	PO _h	PO _i	POl
C302.1	3		3			3				
C302.2		3			3				2	
C302.3			1			2		3		

C302.4			3			3			3
C302.5		3			3			3	-
C302.6	1			2			3		

 $1 \rightarrow Low, 2 \rightarrow Medium, 3 \rightarrow High$

21IF3703	VIDEO ANALYTICS	L	Т	Р	С
		3	0	0	3
Objectives .					

- To know the fundamental concepts of big data and analytics
- To learn various techniques for mining data streams
- To acquire the knowledge of extracting information from surveillance videos.
- To learn Event Modelling for different applications.
- To understand the models used for recognition of objects in videos.

UNIT I INTRODUCTION TO BIG DATA & DATA ANALYSIS

S

9

9

Introduction To Big Data Platform – Challenges of Conventional systems – Web data-Evolution of Analytic scalability- analytic processes and Tools- Analysis Vs. Reporting-Modern data analytic Tools- Data Analysis: Regression Modelling- Bayesian Modelling-Rule induction .

UNIT II MINING DATA STREAMS

Introduction To Stream concepts- Stream data model and architecture – Stream Computing-Sampling data in a Stream- Filtering Streams- Counting distinct elements in a Stream-Estimating moments- Counting oneness in a window- Decaying window- Real time Analytics platform (RTAP) applications - case studies.

UNIT III VIDEO ANALYTICS

9

Introduction - Video Basics - Fundamentals for Video Surveillance- Scene Artifacts - Object Detection and Tracking: Adaptive Background Modelling and Subtraction - Pedestrian Detection and Tracking- Vehicle Detection and Tracking- Articulated Human Motion Tracking in Low-Dimension al Latent Spaces.

UNIT IV BEHAVIOURAL ANALYSIS & ACTIVITY RECOGNITION 9

Event Modelling- Behavioural Analysis- Human Activity Recognition - Complex Activity Recognition - Activity modelling using 3D shape, Video summarization, and shape based activity models- Suspicious Activity Detection.

UNIT V HUMAN FACE RECOGNITION & GAIT ANALYSIS

9

Introduction : Overview of Recognition algorithms – Human Recognition using Face: Face Recognition from still images, Face Recognition from video, Evaluation of Face Recognition Technologies- Human Recognition using gait: HMM Framework for Gait Recognition , View Invariant Gait Recognition , Role of Shape and Dynamics in Gait Recognition .

Total Periods: 45

Reference(s):

- Anand Raja Raman and Jeffrey David Ullman, Mining of Massive Datasets, Cambridge University Press, 2012.
- 2. Michael Berthold, David J.Hand, Intelligent Data Analysis, Springer, 2007.
- 3. Rama Chellappa, Amit K.Roy-Chowdhury, Kevin Zhou's, "Recognition of Humans and their Activities using Video", Morgan Claypool Publishers, 2005.
- 4. Yunqian Ma, Gang Qi an, "Intelligent Video Surveillance: Systems and Technology", CRC Press (Taylor and Francis Group), 2009.

Course Outcomes:

Upon the o	completion of the course the student should be able To
C302.1	Work with big data platform and its analysis techniques.
C302.2	Design efficient algorithms for mining the data from large volumes
C302.3	Work with surveillance videos for analytics
C302.4	Design of optimization algorithms for better analysis and recognition of
	objects in a scene
C302.5	Model a framework for Human Activity Recognition
C302.6	Understand the concepts in Human Face Recognition & Gait Analysis
PO vs. CO	Mapping

CO No	PO _a	PO _b	POc	PO _d	PO _e	PO _f	POg	PO _h	PO _i	PO ₁
C302.1	3	2	3	2	2			2		3
C302.2	3	3	3	1	2			3		3
C302.3	2		2	1	3					3
C302.4	2	2	3	2	3	1		2	2	3
C302.5	2	1	3	2	3	1	1		2	3

C302.6	2	3	3	1	3	2	2	1	1	3	3
w, $2 \rightarrow Mee$	dium. 3	→ High									
,		0									
21IF3704	DEE	P LEAR	RNING					L	Т	Р	C
								3	0	0	3
Objectives	:							I			
• To	present	the math	nematic	al, stati	stical ar	d compu	itation a	l challe	nges of	f build	ling
neu	ral netw	orks									
• To	study th	ie concep	pts of d	eep lea	rning						
• To	introduc	ce dimen	nsionali	ty redu	ction te	chnique	8				
• To	enable t	he stude	ents To	know	deep lea	rning teo	chniques	To sup	port re	eal-tin	ne
app	lication	S									
• To	examine	e the cas	e studie	es of de	ep learn	ing techr	niques				
UNIT I	INTR	ODUCT	ION							9	
UNIT I Introduction		ODUCT machir		ning- L	Linear n	nodels (S	SVMs a	nd Perc	eptron		logi
Introductio	n To	machir	ne learr	-					-	s, 1	-
	n To)- Intro	machir To Neu	ne leari iral Net	s: Wha	t a shall		ork com	putes- 7	Frainin	s, l g a ne	etwo
Introduction regression	n To)- Intro on s, b	machir To Neu pack prop	ne learn Iral Net pagation	s: Wha	t a shall	ow netw	ork com	putes- 7	Frainin	s, l g a ne	etwo
Introduction regression loss function universal fu	n To)- Intro on s, b inction	machir To Neu pack prop	ne learn ural Net pagation mates	s: Wha	t a shall	ow netw	ork com	putes- 7	Frainin	s, l g a ne	etwo
Introduction regression loss function universal fu UNIT II	n To)- Intro on s, b inction DEEP	machir To Neu back prop approxin	ne learn ural Net pagation mates ORKS	s: Whan and	t a shall d stocha	ow netw stic grad	ork com dient de	putes- 7 scent- N	Frainin Neural	g a netwo	orks
Introduction regression loss function universal fu UNIT II History of	n To)- Intro on s, b inction DEEP Deep Lo	machir To Neu back prop approxin NETW earning-	ne learn nral Net pagation mates ORKS A Prob	s: Whan and and abilistic	t a shall d stocha c Theory	ow netw stic grad	ork com dient de	ng- Back	Frainin Neural k propa	g a netwo netwo 9 agatio	orks
Introduction regression loss function universal fu UNIT II History of regularization	n To)- Intro on s, b inction DEEP Deep Le	machir To Neu back prop approxin NETW earning- A ch norma	ne learn ural Net pagation mates ORKS A Proba	as: Wha n and abilistic n - VC	t a shall d stocha c Theory C Dimer	ow netw stic grad	ork com dient de o Learni nd Neur	ng- Back	Frainin Neural k propa	s, 1 g a netwo netwo 9 agatio Vs. S	orks on shall
Introduction regression loss function universal fu UNIT II History of regularization	n To)- Intro on s, b inction DEEP Deep Lo ion, bato Convo	machir To Neu pack prop approxin NETW earning- ch norma lutional	ne learn ural Net pagation mates ORKS A Proba	as: Wha n and abilistic n - VC	t a shall d stocha c Theory C Dimer	ow netw stic grad	ork com dient de o Learni nd Neur	ng- Back	Frainin Neural k propa	s, 1 g a netwo netwo 9 agatio Vs. S	orks on Shall
Introduction regression loss function universal fu UNIT II History of regularization	n To)- Intro on s, b inction DEEP Deep Lo ion, bato Convo	machir To Neu pack prop approxin NETW earning- ch norma lutional	ne learn ural Net pagation mates ORKS A Proba	as: Wha n and abilistic n - VC	t a shall d stocha c Theory C Dimer	ow netw stic grad	ork com dient de o Learni nd Neur	ng- Back	Frainin Neural k propa	s, 1 g a netwo netwo 9 agatio Vs. S	orks on a Shall
Introduction regression loss function universal fu UNIT II History of regularization Networks- supervised	n To)- Intro on s, b unction DEEP Deep La ion, bata Convo Learnin	machir To Neu pack prop approxin NETW earning- A ch norma lutional	ne learn nral Net pagation mates ORKS A Proba alization Networ	as: Wha n and abilistic n - VC rks - 0	t a shall d stocha c Theory C Dimer Generati	ow netw astic grad v of Deep asion a ve Adv	ork com dient de o Learni nd Neur	ng- Back	Frainin Neural k propa	s, 1 g a netwo netwo 9 agatio Vs. S AN),	ork on ha
Introduction regression loss function universal fu UNIT II History of regularization	n To)- Intro on s, b inction DEEP Deep La ion, bata Convo Learnin DIMF	machir To Neu pack prop approxin NETW earning- ch norma lutional g ENTION	ne learn nral Net pagation mates ORKS A Proba alization Networ ALIT	s: Wha n and abilistic n - VC rks - 0	t a shall d stocha c Theory C Dimer Generati	ow netw ostic grad of Deep nsion a ve Adv	ork com dient de p Learni nd Neur ersarial	putes- 7 scent- N ng- Bac al Nets Networ	Frainin Jeural k propa -Deep ks (G	s, 1 g a netwo netwo 9 agatio Vs. S AN), 9	etwo orks on Shal Se
Introduction regression loss function universal fu UNIT II History of regularization Networks- supervised UNIT III	n To)- Intro on s, b inction DEEP Deep La ion, bata Convo Learnin DIME	machir To Neu pack prop approxin NETW earning- ch norma lutional g ENTION	ne learn ural Net pagation mates ORKS A Proba alization Networ ALIT manifold	as: Wha n and abilistic n - VC rks - 0 Y RED ds, met	t a shall d stocha c Theory C Dimer Generati DUCTIC tric lear	ow netw astic grad v of Deep asion a ve Adv DN ning - A	ork com dient de o Learni nd Neur ersarial	ng- Back ng- Back al Nets Networ	Frainin Jeural k propa -Deep ks (G	s, 1 g a net netwo 9 agatio Vs. S AN), 9 mensi	ona
Introduction regression loss function universal fu UNIT II History of regularization Networks- supervised UNIT III Linear (PC	n To)- Intro on s, b inction DEEP Deep Lo ion, bato Convo Learnin DIME CA, LD in net	machir To Neu pack prop approxin NETW earning- A ch norma lutional lutional g CNTION A) and n works -	ne learn pagation mates ORKS A Proba alization Networ ALIT nanifolo Introdu	as: Wha n and abilistic n - VC rks - 0 Y RED ds, met	t a shall d stocha c Theory C Dimer Generati DUCTIC tric lear To C	ow netw astic grad v of Deep asion a ve Adv DN ning - A onvent -	ork com dient de o Learni nd Neur ersarial	putes- 7 scent- N ng- Back ral Nets Networ	Frainin Jeural k propa Deep ks (G and di – Alex	s, 1 g a net netwo 9 agatio Vs. S AN), 9 mensi x Net,	etwo orks on Shal Se ona V(
Introduction regression loss function universal fu UNIT II History of regularization Networks- supervised UNIT III Linear (PC) reduction	n To)- Intro on s, b inction DEEP Deep Lo ion, bato Convo Learnin DIME CA, LDA in net , Res N	machir To Neu back prop approxin NETW earning- A ch norma lutional lutional lutional g CNTION A) and n works - Net - Tra	ne learn ural Net pagation mates ORKS A Proba alization Networ ALIT nanifolo Introdu ining a	as: Wha n and abilistic n - VC rks - 0 Y RED ds, met	t a shall d stocha c Theory C Dimer Generati DUCTIC tric lear To C	ow netw astic grad v of Deep asion a ve Adv DN ning - A onvent -	ork com dient de o Learni nd Neur ersarial	putes- 7 scent- N ng- Back ral Nets Networ	Frainin Jeural k propa Deep ks (G and di – Alex	s, 1 g a net netwo 9 agatio Vs. S AN), 9 mensi x Net,	etwo orks on Se ona V(
Introduction regression loss function universal function UNIT II History of regularization Networks- supervised UNIT III Linear (PC) reduction Inception	n To)- Intro on s, b inction DEEP Deep Lo ion, bato Convo Learnin DIME CA, LDA in net , Res N meter op	machir To Neu back prop approxin NETW earning- A ch norma lutional lutional lutional g CNTION A) and n works - Net - Tra	ne learn pagation mates ORKS A Proba alization Networ ALIT nanifold Introdu ining a on .	abilistic n and abilistic n - VC rks - 0 Y RED ds, met action	t a shall d stocha c Theory C Dimer Generati DUCTIC tric lear To C ent: wei	ow netw astic grad y of Deep asion a ve Adv DN ning - A onvent - ghts initi	ork com dient de o Learni nd Neur ersarial auto en Archite	putes- 7 scent- N ng- Back ral Nets Networ	Frainin Jeural k propa Deep ks (G and di – Alex	s, 1 g a net netwo 9 agatio Vs. S AN), 9 mensi x Net,	etwo orks on Shall Se ona V(
Introduction regression loss function universal fu UNIT II History of regularization Networks- supervised UNIT III Linear (PC reduction Inception hyper param	n To)- Intro on s, b inction DEEP Deep Lo ion, bato Convo Learnin DIME CA, LDA in net , Res M meter op	machir To Neu pack prop approxin NETWO earning- <i>J</i> ch norma lutional lutional lutional eg ENTION A) and n works - Net - Tra ptimization	ne learn pagation mates ORKS A Proba alization Networ ALIT nanifold Introdu ining a on .	s: Wha n and abilistic n - VC rks - 0 Y RED ds, met action a Conve	t a shall d stocha c Theory C Dimer Generati DUCTIC tric lear To C ent: wei ENERA	ow netw astic grad of Deep asion a ve Adv DN ning - A onvent - ghts initi LIZAT	ork com dient de p Learni nd Neur ersarial uto en Archite ialization	putes- 7 scent- N ng- Bac al Nets- Networ coders = ectures - n , bata	Frainin Veural k propa Deep ks (G and di – Alex ch norn	s, 1 g a net netwo 9 agatio Vs. S AN), 9 mensi a Net, maliza	etwo orks on Se ona v(ation
Introduction regression loss function universal fu UNIT II History of regularization Networks- supervised UNIT III Linear (PC reduction Inception hyper param UNIT IV	n To)- Intro on s, b inction DEEP Deep Lo ion, bato Convo Learnin DIME CA, LDA in net , Res M meter op OPTI on in d	machir To Neu pack prop approxin NETWO earning- <i>J</i> ch norma lutional lutional lutional eg ENTION A) and n works - Net - Tra ptimization	ne learn pagation mates ORKS A Proba alization Networ ALIT nanifold Introdu ining a on . ION A	s: Wha n and abilistic n - VC rks - 0 Y RED ds, met iction i Conve	t a shall d stocha c Theory C Dimer Generati DUCTIC tric lear To C ent: wei ENERA n vex o	ow netw astic grad of Deep asion a ve Adv DN ning - A onvent - ghts initi LIZAT	ork com dient de o Learni nd Neur ersarial uto en Archite ialization	putes- 7 scent- N ng- Back al Nets- Networ coders = ectures - n , batc deep no	Frainin Veural Veural k propa Deep ks (G and di – Alex ch norn etwork	s- Sto	etwo orks on Shall Se ona VC ation

RNNs & I	Deep Reir	offerceme	ent Lear	rning - C	omputat	tion al 8	& Artific	ial Neu	roscienc	e.
UNIT V	CASE	STUDY	AND .	APPLIC	CATION	N S			9)
Image net	Detecti	on -Au	idio Wa	ave Net-	Natural	Langua	ge Proc	essing V	Word2Ve	ec - Join
Detection	- Bio-Ir	oformation	cs- Face	e Recog	nition	- Scene	Underst	anding-	Gatheri	ng Imag
Captions										
Total Peri	ods: 45									
Reference	(s):									
1. Co	sma Rohi	lla Shali	zi, Adv	anced D	ata Anal	ysis froi	m an Ele	mentary	Point of	f View,
201	.5.									
2. De	ng & Yu,	Deep L	earning	: Method	ls and A	pplicatio	ons, Nov	v Publisl	ners, 201	3.
3. Ian	Good fel	llow, Yo	shua Ba	agnio, A	aron C	arville, I	Deep Lea	arning, N	/IT Pres	s, 2016.
Michael N	ielsen, No	eural Ne	tworks	and Dee	p Learni	ng, Dete	erminatio	on Pres	s, 2015.	
Course O	utcomes	:								
Upon the	comple	tion of	the co	ourse th	e stude	nt shoul	d be ab	le To		
C302.1	Ur	Iderstand	1 basics	of deep	learning	5				
C302.2	Im	plement	various	s deep le	arning n	nodels				
C302.3	Re	align hi	gh dime	ension al	l data us	ing redu	ction te	chnique	S	
C302.4	Ar	nalyse op	otimizat	ion in c	leep lear	ming				
C302.5	Ar	nalyse ge	eneraliza	ation in	deep le	arning				
C302.6	Ex	plore the	e deep	learning	applicat	ion s				
PO vs. C	O Mappi	ing								
CO No	PO _a	PO _b	POc	PO _d	PO _e	PO _f	POg	PO _h	PO _i	PO _l
C302.1	2	2					2			3

C302.2	2	2	2	2		2			2
C302.3	2		2	2			2		2
C302.4	2		2	2			2	2	3
C302.5	2							2	3
C302.6	2		2	2			2		

 $1 \rightarrow \text{Low}, 2 \rightarrow \text{Medium}, 3 \rightarrow \text{High}$

PROFESSIONAL ELECTIVE-IV

211F3705	AUTO MATA THEORY AND FORMAL	L	Т	Р	С
2111 3703	LANGUAGES	L 3	0	1 0	3
Objectives:					
-	now the formal relationships between machines, langua	ges and	oramr	nar	
	construct automata for any given word pattern and find	-	-		ar.
	essions	ns cqui	valent	icguit	u
-	design grammars for recognizing the syntax of any giv	en lang	1200		
	understand the need for designing Turing machines and	-	•	1 *7	
			-	•	
	nave the capability To solve un-decidable problems ar REGULAR EXPRESSION S AND LANGUAGES	u nr p	Ioblem		
UNIT I		1		9	6.1
	n to Formal Proof – Additional Forms of proof – In		•		•
	on - Regular Expressions – Regular and Non Reg		0 0		
-	of Regular Languages - Proving Languages Not To	Be I	Regular	• - De	ecision
Properties of	f Regular Languages.				
UNIT II	AUTO MATA			9	
Finite Auto	mata – Deterministic Finite Automata – Non -determ	ninistic	Finite	Auto	mata –
	omata with Epsilon Transitions – Kleenex's Th				
	on of Automata - Finite Automata and Regular Express		1		
UNIT III	CON TEXT-FREE GRAMMARS AND LANGUA	GES		9	
Context-Fre	ee Grammars – Parse Trees – Ambiguity in Grammars	and La	anguag	es – N	Normal
forms for C	context-Free Grammars – Pumping Lemma for Context	-Free L	anguag	ges - C	Closure
and Decisi	on Properties of Context-Free Languages - Phases	of a	compli	er - I	exical
Analysis –	Parsing – Compiler Design using Lexical Analysis an	d Parsi	ng – G	ramm	ars for
Natural Lar	guage Processing.				
UNIT IV	PUSHDOWN AUTO MATA AND TURING MACI	HINES		9	
Definition	- Languages of a Pushdown Automata - Equivalence o	f Pushc	lown A	utoma	ata and
Con text-	Free Grammars - Deterministic Pushdown Automa	ata - T	uring	Mach	ines –
Programmi	ng Techniques for Turing Machines - Basic Turing Mac	chine E	xtensio	n s.	
UNIT V	UNDECIDABILITY			9	
Not Recurs	ively Enumerable Language – Recursively Enumerab	le Un-c	lecidab	le pro	oblem–

Un-decidable Problems about Turing Machines – Post's Correspondence Problem - The classes P and NP - NP- complete problems.

Total Periods: 45

Reference(s):

- Alfred V. Ahoy, Monica S. Lam, Ravi Seth, and Jeffrey D. Ullman, "Compilers: Principles, Techniques, & Tools", Second Edition Boston: Addison -Wesley, 2007.
- 2. H.R.Lewis and C.H.Papadimitriou, "Elements of The theory of Computation", Second Edition, Pearson Education /PHI, 2003.
- 3. J.E.Hopcroft, R.Motwani and J.D Ullman, "Introduction to Automata Theory, Languages and Computations", Third Edition, Pearson Education, 2007.
- 4. J. Martin, "Introduction to Languages and the Theory of Computation", Third Edition, TMH, 2003.
- 5. Michael Sipper, "Introduction of the Theory and Computation", Thomson Borecole, 1997.

Course Outcomes:

Upon the completion of the course the student should be able To

C302.1 Construct Automata for a language and regular expression for any pattern.

C302.2 Construct Automata for regular expression for any pattern.

- C302.3 Write Context free grammar for any construct and perform syntax analysis
- C302.4 Design Push down Automata for any language and solve problems

C302.5 Propose computation solutions using Turing machines.

C302.6 Derive whether a problem is decidable or not

PO vs. CO Mapping

CO No	PO _a	PO _b	POc	PO _d	PO _e	PO _f	POg	PO _h	PO _i	PO ₁
C302.1	2	2	2							3
C302.2	2	2				2	2			3
C302.3	2	2	3	2	2		2			3
C302.4	2	2	3		2	2			2	3
C302.5		2	3							3
C302.6		2								

 $1 \rightarrow \text{Low}, 2 \rightarrow \text{Medium}, 3 \rightarrow \text{High}$

FrancisXavierEngineeringCol	

21IF3706	GPU ARCHITECTURE AND PROGRAMMING	L	Т	Р	С
		3	0	0	3
Objectives:					
Ŭ	nderstand the architecture of GPUs in order To program	the m	effecti	velv	
	rogram using GPU programming frameworks.		circen	very.	
-	ptimize multimedia application s To run on GPUs				
• 10 0	primize multimedia application s to tun on OFOs				
UNIT I	GPU ARCHITECTURES			9	
Parallel Pro	cessors – Classification – Performance – Multime	edia Sl	IMD A	rchite	ecture
	IDIA Case Study – GPU Computational Structures – IS.				
UNIT II	GPU COMPUTING AND CUDA		- J	9	
Introduction	– Parallel Programming Languages and models	– Evc	olution	of C	Graph
pipelines -	GPGPUs - CUDA Program Structure - Device mem	nories	– Data	a Trai	nsfer
Varial Error	tion a				
Kernel Func	CHOIL S				
UNIT III	CUDA			9	
UNIT III		oility -	- CUD		norie
UNIT III	CUDA ads - thread Organization – Synchronization & Scalab	oility –	- CUD		norie
UNIT III CUDA Thre	CUDA ads - thread Organization – Synchronization & Scalab	oility –	- CUD		norie
UNIT III CUDA Thre Performance UNIT IV	CUDA ads - thread Organization – Synchronization & Scalab e			A mer	
UNIT III CUDA Thre Performance UNIT IV Open CL S	CUDA ads - thread Organization – Synchronization & Scalab e OPENCL BASICS			A mer 9	
UNIT III CUDA Thre Performance UNIT IV Open CL S	CUDA ads - thread Organization – Synchronization & Scalab e OPENCL BASICS tandard – Kernels – Host Device Interaction – Exe	ecutior	n En	A mer 9	
UNIT III CUDA Thre Performance UNIT IV Open CL S Memory Mo UNIT V	CUDA ads - thread Organization – Synchronization & Scalab e OPENCL BASICS tandard – Kernels – Host Device Interaction – Exe odel – Basic Open CL Examples OPENCL CON CURRENCY & EXECUTION MO	ecutior DDEL	n En	A mer 9 vironi 9	ment
UNIT III CUDA Thre Performance UNIT IV Open CL S Memory Mo UNIT V Open CL	CUDA ads - thread Organization – Synchronization & Scalable OPENCL BASICS tandard – Kernels – Host Device Interaction – Execute odel – Basic Open CL Examples OPENCL CON CURRENCY & EXECUTION MODE Synchronization – Kernels – Fences – Barriers	ecutior DDEL s – (n En	9 vironi g –	ment Glob
UNIT III CUDA Thre Performance UNIT IV Open CL S Memory Mo UNIT V Open CL Synchroniza	CUDA ads - thread Organization – Synchronization & Scalable OPENCL BASICS tandard – Kernels – Host Device Interaction – Execute odel – Basic Open CL Examples OPENCL CON CURRENCY & EXECUTION MC Synchronization – Kernels – Fences – Barriers tion – Memory Consistency – Events – Host side memory	ecutior DDEL s – (n En	9 vironi g –	ment Glob
UNIT III CUDA Thre Performance UNIT IV Open CL S Memory Mo UNIT V Open CL Synchroniza memory Mo	CUDA ads - thread Organization – Synchronization & Scalab OPENCL BASICS tandard – Kernels – Host Device Interaction – Exe odel – Basic Open CL Examples OPENCL CON CURRENCY & EXECUTION MC Synchronization – Kernels – Fences – Barriers tion – Memory Consistency – Events – Host side mem del – Case study	ecutior DDEL s – (n En	9 vironi g –	ment Glob
UNIT III CUDA Thre Performance UNIT IV Open CL S Memory Mo UNIT V Open CL Synchroniza	CUDA ads - thread Organization – Synchronization & Scalab OPENCL BASICS tandard – Kernels – Host Device Interaction – Exe odel – Basic Open CL Examples OPENCL CON CURRENCY & EXECUTION MC Synchronization – Kernels – Fences – Barriers tion – Memory Consistency – Events – Host side mem del – Case study	ecutior DDEL s – (n En	9 vironi g –	ment Glob
UNIT III CUDA Thre Performance UNIT IV Open CL S Memory Mo UNIT V Open CL Synchroniza memory Mo	CUDA ads - thread Organization – Synchronization & Scalab OPENCL BASICS tandard – Kernels – Host Device Interaction – Exe odel – Basic Open CL Examples OPENCL CON CURRENCY & EXECUTION MC Synchronization – Kernels – Fences – Barriers ation – Memory Consistency – Events – Host side mem del – Case study ds: 45	ecutior DDEL s – (n En	9 vironi g –	ment Glob
UNIT III CUDA Thre Performance UNIT IV Open CL S Memory Mo UNIT V Open CL Synchroniza memory Mo Total Period Reference(s	CUDA ads - thread Organization – Synchronization & Scalab OPENCL BASICS tandard – Kernels – Host Device Interaction – Exe odel – Basic Open CL Examples OPENCL CON CURRENCY & EXECUTION MC Synchronization – Kernels – Fences – Barriers ation – Memory Consistency – Events – Host side mem del – Case study ds: 45	ecutior DDEL s – (nory m	n En Queuin	9 vironi g – Devia	ment Glob ce Sie
UNIT III CUDA Thre Performance UNIT IV Open CL S Memory Mo UNIT V Open CL Synchroniza memory Mo Total Period Reference(s 1. B.R.	CUDA ads - thread Organization – Synchronization & Scalab OPENCL BASICS tandard – Kernels – Host Device Interaction – Exe odel – Basic Open CL Examples OPENCL CON CURRENCY & EXECUTION MC Synchronization – Kernels – Fences – Barriers ation – Memory Consistency – Events – Host side memory del – Case study ds: 45	ecutior DDEL s – (nory m	n En Queuin	9 vironi g – Devia	ment Glob ce Sie
UNIT III CUDA Thre Performance UNIT IV Open CL S Memory Mo UNIT V Open CL Synchroniza memory Mo Total Period Reference(s 1. B.R. comp	CUDA ads - thread Organization – Synchronization & Scalab OPENCL BASICS tandard – Kernels – Host Device Interaction – Exe odel – Basic Open CL Examples OPENCL CON CURRENCY & EXECUTION MC Synchronization – Kernels – Fences – Barriers tion – Memory Consistency – Events – Host side mem del – Case study ds: 45): Gagster, L. Howe's, D.R. Kael, P. Misty, D. Sc	ecutior DDEL s – (hory m hwa,	n En Queuin nodel –	9 vironi 9 g – Devid	ment Glob ce Sid
UNIT III CUDA Thre Performance UNIT IV Open CL S Memory Mo UNIT V Open CL Synchroniza memory Mo Total Period Reference(s 1. B.R. comp 2. Davi	CUDA ads - thread Organization – Synchronization & Scalab e OPENCL BASICS tandard – Kernels – Host Device Interaction – Exe odel – Basic Open CL Examples OPENCL CON CURRENCY & EXECUTION MC Synchronization – Kernels – Fences – Barriers ttion – Memory Consistency – Events – Host side mem del – Case study dis: 45): Gagster, L. Howe's, D.R. Kael, P. Misty, D. Sc puting with Open CL", Morgan Kauffman, 2012	ecutior DDEL s – (hory m hwa,	n En Queuin nodel –	9 vironi 9 g – Devid	Glob ce Sie

approach", Morgan Kaufmann / Elsevier, 5th edition, 2012.

- 4. J. Sanders and E. Kandrot, "CUDA by Example: An Introduction to General-Purpose GPU Programming", Addison Wesley, 2010.
- 5. Wen-mei W. Hwu, "GPU Computing Gems", Morgan Kaufmann / Elsevier, 2011Brokecole, 1997.

Course Outcomes:

Upon the completion of the course the student should be able To

- C302.1 Understand the concepts about GPU architecture
- C302.2 Analyse the GPU Computing and CUDA
- C302.3 Validate GPU Computing and CUDA
- C302.4 Develop multimedia application s using GPUs
- C302.5 Understand the basics on OPENCL
- C302.6 Implement the real world application s using OPENCL

PO vs. CO Mapping

CO No	POa	PO _b	POc	POd	PO _e	PO _f	POg	PO _h	PO _i	POl
C302.1	3								2	
C302.2	3	3	2		2	2	3			
C302.3	3	3	3	3	2		2		3	2
C302.4	3	3	3	3	2		2		3	2
C302.5	3							2		3
C302.6	3	3	3	3	2		2	2	3	2

$1 \rightarrow Low, 2 \rightarrow Medium, 3 \rightarrow High$

211F3707	CYBER LAWS AND SECURITY POLICIES	L	Т	Р	С
		3	0	0	3
Objectives:					
• To en	able the learner to understand, explore, acquire and under	erstandi	ng of	Cyber	Law.

• To develop the competencies for identifying frauds and deceptions (confidence tricks, scams) and other cybercrimes.

• To examine how the online digital world has been inflicted with new cybercrimes, implications for society and law enforcement response.

	of at	ttack and a Tool for criminal activity.	
Pre-	requisi	ite of course: Fundamentals of Computer Network, Network Securit	y, Internet
	Tecl	hnology.	
UNI	ΤI	INTRODUCTION OF CYBER LAWS	9
Indi	an Info	rmation Technology Act, as amended up To data - rules framed u	under the Ac
in p	articula	r, the rules relating To regulation of cyber cafes, certification	authority an
digit	tal sign	nature and other commercially significant aspects – selected comp	parative cybe
laws	s in othe	er countries.	
UNI	TI	CYBERCRIME MOBILE & WIRELESS DEVICES	9
Wha	at is Cy	bercrime? Forgery, Hacking, Software Piracy, Computer Network In	ntrusion Ho
Crin	ninals I	Plan Attacks, Passive Attack, Active Attacks, Cyber stalking. Secur	rity challenge
post	ed by 1	mobile devices, cryptographic security for mobile devices, Attack	s on mobil
cell	phones	, Theft, Virus, Hacking. Bluetooth; Different viruses on laptop.	
UNI	TIII	TO OLS AND METHODS USED IN CYBER CRIME	9
Prox	ky serve	I ers, Password checking, Random checking, Trojan Horses and Back	doors; DOS
DDO	OS atta	cks; SQL injection: Buffer over flow.	
UNI	TIV	ELECTRON IC BUSINESS AND LEGAL ISSUES	9
Elec	ctronic	Business and legal issues Legal issues in Evolution and devel	lopment in I
com	merce	, paper vs. paper less contracts E-Commerce models- B2B, B2C,E	security
UNI	ΤV	CYBERCRIME & CYBERSECURITY	9
Phis	hing n	Inethods, ID Theft; Online identity method. Legal aspects, Indian	laws, IT ac
Pub	lic key	certificate	
Tota	al Perio		
Refe	erence(s):	
1.	Cyb	er security by Nina Goole & Sunit Belapune; Pub: Wiley India	
2.		dbook of Cyber Laws, by Vakul Sharma, MacMillan.	
3.	Cyb	er law by Nandan Klamath, Fifth Edition, Universal law Publicatio	n , 01 Jan
	2012		
4.	Con	nputers, Technology and the new internet laws by Karnika Seth, Upd	lated Edition,
	Lovi	is nexis Publication, 01 Jan 2013.	

Course	Outcom	es:									
Upon th	ne comp	oletion	of the c	ourse t	he stud	ent sho	uld be a	ble To			
C307.1	1	Analyse various types of cybercrime and for mulate procedures for real									
		world cybercrime Investigation s									
C307.2]	Resolve challenges posed To law enforcement agents, policy makers and prosecutors									
C307.3	I	Use and	Analyse	the soft	ware To	ols and	methods	currentl	y availa	ble for	
		fi	nding il	legal act	ivities o	n comp	outer disl	ks and in	compu	ter	
		n	etworks								
C307.4		Analyse	the crim	inal acti	vity on	the Inte	rnet and	propose	availab	le Tools	
		Т	o preve	nt such a	ctivity.						
C307.5]	Find solutions in cybercrime investigations, evidence and applicable law for									
		re	eal world	d case st	udies.						
C307.6		Study the	e cyber	laws in o	different	countri	es				
PO vs. 0	CO Map	ping									
CO No	PO _a	POb	POc	POd	PO _e	PO _f	POg	PO _h	PO _i	PO ₁	
C307.1		3	3	3							
		3		3					3		
C307.2										3	
C307.2 C307.3		3	3	3						5	
		3	3	3							
C307.3									3		

$1 \rightarrow Low, 2 \rightarrow Medium, 3 \rightarrow High$

21IF3708	TRUST NETWORKS	L	Т	Р	С
		3	0	0	3

Objectives:

- To understand trust networks
- To learn how decentralization of trust is achieved
- To study the technologies behind crypto currencies
- To impart knowledge in block chain network mining
- To acquire knowledge in emerging concepts using block chain

Pre-requisi	ite of course: Fundamentals of Computer Network, Network Security,	Internet
Technology	<i>י</i> .	
UNIT I	TRUST NETWORKS	9
Technical a	nd Business Imperatives – Trust Networks To enable the machine	economy –
Decentraliz	ation of Trust – Technologies Block chain and Crypto currency	
UNIT II	DECENTRALIZATION OF NETWORK	9
Centralizati	on Vs. Decentralization – Building Consensus – Distributed C	consensus –
Consensus	Algorithm – Consensus without Identity- Incentives and Proof of Wor	k –Forming
the Decent	ralized Network	
UNIT III	BLOCKCHAIN	9
Block chair	n the protocol – Types of Block chain Networks – Design principles o	f the Block
chain econo	omy - Networked Integrity - Distributed power - Value as Incentive	e – Security
and Privacy	– Rights and Inclusion – Distributed Ledger – Non Repudiation	
UNIT IV	CRYPTO CURRENCIES	9
Cryptograp	hic Hash Functions – Cryptography basics and Concepts – Bit coi	n – Digital
Signatures	as Identities – e-Wallets – Personal Crypto security - Bit coin Minin	g – Mining
Hardware –	Energy Consumption – Mining Pools – Mining Incentives and Strate	gies
UNIT V	EMERGING CON CEPTS AND FRAMEWORKS	9
Smart Cont	racts – Ethereum, Hyper ledger, Multi chain Frameworks – Solidity Pr	ogramming
Language –	Block chain with IOT and Cloud	
Total Perio	ds: 45	
Doforonool	-)•	
Reference(s1.Don		16
	and Alex Tap Scott, "Block chain Revolution". Portfolio Penguin 20 iam Magyar, "Business Block chain Promise, Practice and Application	
	t Internet Technology, John Wiley & Sons 2016.	or the
INCA	i memer reemology, john whey & Johs 2010.	
Course Ou	tcomes:	
Upon the	completion of the course the student should be able To	
C308.1	Realize the importance of trust networks	
C308.2	Comprehend the challenges and design issues in bit coin technologies	ogy
C308.3	Analyse the algorithms developed for bit coin mining	

C308.4 Use appropriate techniques for designing trust-based business networks

C308.5 To securely interact with the m,

C308.6 Integrate ideas from block chain technology into their own projects.

PO vs. CO Mapping

CO No	POa	PO _b	POc	POd	PO _e	PO _f	POg	PO _h	PO _i	PO ₁
C308.1	3									
C308.2	3		3	2						
C308.3		3								
C308.4			3	2	3	2			3	2
C308.5	1	2			2			2		
C308.6			2	3	3	2	2		3	

$1 \rightarrow Low, 2 \rightarrow Medium, 3 \rightarrow High$

PROFESSIONAL ELECTIVE-V

21IF3709		WIRELESS ADHOC AND SENSOR NETWORKS	L	Т	Р	С
		NET WORKS	3	0	0	3
Object	ives:					
•	To un	derstand the basics of Ad-hoc & Sensor Networks.				
•	To lea	arn various fundamental and emerging protocols of al	l layers.			
•	To sti	ady about the issues pertaining to major obstacles in e	stablishr	nent ar	nd effi	cient
	mana	gement of Ad-hoc and sensor networks.				
•	To un	derstand the nature and applications of Ad-hoc and so	ensor net	works.		
•	To un	derstand various security practices and protocols of A	d-hoc a	nd Sen	sor	
	Netw	orks.				
Pre-re	quisit	e of course: Fundamentals of Computer Network, Netwo	twork Se	ecurity	, Wire	less
Networ	rk.					
UNIT	I	MAC & TCP IN AD HOC NETWORKS			9	
Fundar	nental	s of WLANs – IEEE 802.11 Architecture - Self con	figurat	ion a	nd Au	ito-co
I windda			-			

	- Contention Based Protocols - TCP over Ad-Hoc networks-Te	CP protocol
overview -	TCP and MANETs – Solutions for TCP over Ad-Hoc Networks.	
UNIT II	ROUTING IN AD HOC NETWORKS	9
Routing in	Ad-Hoc Networks- Introduction -Topology based versus Positi	on based
Approaches	s- Proactive, Reactive, Hybrid Routing Approach-Principles and issue	s – Location
services - l	DREAM – Quorums based location service – Grid – Forwarding	strategies -
Greedy pac	ket forwarding – Restricted directional flooding- Hierarchical Routing	g- Issues and
Challenges	in providing QoS.	
	MAC, ROUTING & QOS IN WIRELESS SENSOR	0
UNIT III	NETWORKS	9
Physical La	n – Architecture - Single node architecture – Sensor networks ons – Energy Efficient Design principles for WSNs – Protocols f ayer : Transceiver Design considerations – MAC Layer Protocols – IE ink Layer and Error Control issues - Routing Protocols – Mobile	For WSN -
	bots - Data Centric & Contention Based Networking – Transport gestion Control issues – Application Layer support.	FIOLOCOIS &
Q03 - C01	gesuon Control issues – Application Layer support.	
LINIT IV	SENSOD MANACEMENT	0
UNIT IV		9 Drotocolo
Sensor Mar	nagement - Topology Control Protocols and Sensing Mode Selection	Protocols -
Sensor Mar Time syncl	hagement - Topology Control Protocols and Sensing Mode Selection pronization - Localization and positioning – Operating systems	Protocols -
Sensor Mar Time syncl Network pr	nagement - Topology Control Protocols and Sensing Mode Selection nronization - Localization and positioning – Operating systems ogramming – Sensor Network Simulators.	Protocols - and Sensor
Sensor Mar Time syncl Network pr UNIT V	nagement - Topology Control Protocols and Sensing Mode Selection nronization - Localization and positioning – Operating systems ogramming – Sensor Network Simulators. SECURITY IN AD HOC AND SENSOR NETWORKS	Protocols - and Sensor 9
Sensor Mar Time syncl Network pr UNIT V Security in	hagement - Topology Control Protocols and Sensing Mode Selection hronization - Localization and positioning – Operating systems ogramming – Sensor Network Simulators. SECURITY IN AD HOC AND SENSOR NETWORKS Ad-Hoc and Sensor networks – Key Distribution and Management	Protocols - and Sensor 9 t – Software
Sensor Mar Time syncl Network pr UNIT V Security in based Anti-	 hagement - Topology Control Protocols and Sensing Mode Selection hronization - Localization and positioning – Operating systems ogramming – Sensor Network Simulators. SECURITY IN AD HOC AND SENSOR NETWORKS Ad-Hoc and Sensor networks – Key Distribution and Management tamper techniques – water marking techniques – Defense against rout 	Protocols - and Sensor 9 t – Software ing attacks -
Sensor Mar Time syncl Network pr UNIT V Security in based Anti- Secure Ad	 hagement - Topology Control Protocols and Sensing Mode Selection haronization - Localization and positioning – Operating systems ogramming – Sensor Network Simulators. SECURITY IN AD HOC AND SENSOR NETWORKS Ad-Hoc and Sensor networks – Key Distribution and Management tamper techniques – water marking techniques – Defense against rout hoc routing protocols – Broadcast authentication WSN protocols 	Protocols - and Sensor 9 t – Software ing attacks -
Sensor Mar Time syncl Network pr UNIT V Security in based Anti- Secure Ad Biba – Sens	hagement - Topology Control Protocols and Sensing Mode Selection hronization - Localization and positioning – Operating systems ogramming – Sensor Network Simulators. SECURITY IN AD HOC AND SENSOR NETWORKS Ad-Hoc and Sensor networks – Key Distribution and Management tamper techniques – water marking techniques – Defense against rout hoc routing protocols – Broadcast authentication WSN protocols sor Network Security Protocols – SPINS.	Protocols - and Sensor 9 t – Software ing attacks -
Sensor Mar Time syncl Network pr UNIT V Security in based Anti- Secure Ad Biba – Sens	hagement - Topology Control Protocols and Sensing Mode Selection hronization - Localization and positioning – Operating systems ogramming – Sensor Network Simulators. SECURITY IN AD HOC AND SENSOR NETWORKS Ad-Hoc and Sensor networks – Key Distribution and Management tamper techniques – water marking techniques – Defense against rout hoc routing protocols – Broadcast authentication WSN protocols sor Network Security Protocols – SPINS.	Protocols - and Sensor 9 t – Software ing attacks -
Sensor Mar Time synch Network pr UNIT V Security in based Anti- Secure Ad Biba – Sens Total Perio	hagement - Topology Control Protocols and Sensing Mode Selection nronization - Localization and positioning – Operating systems ogramming – Sensor Network Simulators. SECURITY IN AD HOC AND SENSOR NETWORKS Ad-Hoc and Sensor networks – Key Distribution and Management tamper techniques – water marking techniques – Defense against rout hoc routing protocols – Broadcast authentication WSN protocols sor Network Security Protocols – SPINS.	Protocols - and Sensor 9 t – Software ing attacks -
Sensor Mar Time synch Network pr UNIT V Security in based Anti- Secure Ad Biba – Sens Total Perio Reference(s	hagement - Topology Control Protocols and Sensing Mode Selection nronization - Localization and positioning – Operating systems ogramming – Sensor Network Simulators. SECURITY IN AD HOC AND SENSOR NETWORKS Ad-Hoc and Sensor networks – Key Distribution and Management tamper techniques – water marking techniques – Defense against rout hoc routing protocols – Broadcast authentication WSN protocols sor Network Security Protocols – SPINS.	Protocols - and Sensor 9 t – Software ing attacks - – TESLA –
Sensor Mar Time synch Network pr UNIT V Security in based Anti- Secure Ad Biba – Sens Total Perior Reference(s 1. Adri	 agement - Topology Control Protocols and Sensing Mode Selection aronization - Localization and positioning – Operating systems ogramming – Sensor Network Simulators. SECURITY IN AD HOC AND SENSOR NETWORKS Ad-Hoc and Sensor networks – Key Distribution and Management tamper techniques – water marking techniques – Defense against rout hoc routing protocols – Broadcast authentication WSN protocols sor Network Security Protocols – SPINS. 	Protocols - and Sensor 9 t – Software ing attacks - – TESLA –
Sensor Mar Time synch Network pr UNIT V Security in based Anti- Secure Ad Biba – Sens Total Perior Reference(s 1. Adri Wire	 hagement - Topology Control Protocols and Sensing Mode Selection hagement - Localization and positioning – Operating systems ogramming – Sensor Network Simulators. SECURITY IN AD HOC AND SENSOR NETWORKS Ad-Hoc and Sensor networks – Key Distribution and Management tamper techniques – water marking techniques – Defense against rout hoc routing protocols – Broadcast authentication WSN protocols sor Network Security Protocols – SPINS. ds: 45 s): ian Perrig, J. D. Tygar, "Secure Broadcast Communication: In Wired a 	Protocols - and Sensor 9 t – Software ing attacks - – TESLA –
Sensor Mar Time synch Network pr UNIT V Security in based Anti- Secure Ad Biba – Sens Total Perior Reference(s 1. Adri Wire 2. C.K	hagement - Topology Control Protocols and Sensing Mode Selection hronization - Localization and positioning – Operating systems ogramming – Sensor Network Simulators. SECURITY IN AD HOC AND SENSOR NETWORKS Ad-Hoc and Sensor networks – Key Distribution and Management tamper techniques – water marking techniques – Defense against rout hoc routing protocols – Broadcast authentication WSN protocols sor Network Security Protocols – SPINS. ds: 45 s): tan Perrig, J. D. Tygar, "Secure Broadcast Communication: In Wired a eless Networks", Springer, 2006.	Protocols - and Sensor 9 t – Software ing attacks - – TESLA –
Sensor Mar Time synch Network pr UNIT V Security in based Anti- Secure Ad Biba – Sens Total Perior Reference(s 1. Adri Wird 2. C.K 3. C.Si	hagement - Topology Control Protocols and Sensing Mode Selection nronization - Localization and positioning – Operating systems ogramming – Sensor Network Simulators. SECURITY IN AD HOC AND SENSOR NETWORKS Ad-Hoc and Sensor networks – Key Distribution and Management tamper techniques – water marking techniques – Defense against rout hoc routing protocols – Broadcast authentication WSN protocols sor Network Security Protocols – SPINS. ds: 45 s): ian Perrig, J. D. Tygar, "Secure Broadcast Communication: In Wired a eless Networks", Springer, 2006. .To h, "Ad Hoc Mobile Wireless Networks", Pearson Education, 2005	Protocols - and Sensor 9 t – Software ing attacks - – TESLA –

FrancisXavierEngineeringCollege|DeptofIT-PG|R2021/CurriculumandSyllabi Networks: Theory and Applications (2nd Edition), World Scientific Publishing, 2011. 5. Erdal Çayırcı, Chunming Rong, "Security in Wireless Ad Hoc and Sensor Networks", John Wiley and Sons, 2009. 6. Holger Karl, Andrea's willig, Protocols and Architectures for Wireless Sensor Networks, John Wiley & Sons, Inc.2005. 7. Subir Kumar Sarkar, T G Basavaraju, C Puttamadappa, "Ad Hoc Mobile Wireless Networks", Auer Bach Publications, 2008. 8. Waltenegus Darcie, Christian Poellabauer Wireless Sensor Networks Theory and Practice", John Wiley and Sons, 2010. **Course Outcomes:** Upon the completion of the course the student should be able To C309.1 Identify different issues in wireless ad hoc and sensor networks. C309.2 To analyse protocols developed for ad hoc and sensor networks. C309.3 To identify and address the security threats in ad hoc and sensor networks. C309.4 Design the various routing protocols for Ad hoc networks C309.5 Emphasis knowledge in various function al areas such as Physical Layer, MAC Layer & Application Layer of Sensor Networks C309.6 Establish a Sensor network environment for different type of application s. **PO vs. CO Mapping** POc POg POa POb POd PO_e POf POh POi PO CO No C309.1 2 3 2 C309.2 2 2 3 C309.3 2 3 3 3 2 3 3

2

3

 $1 \rightarrow \text{Low}, 2 \rightarrow \text{Medium}, 3 \rightarrow \text{High}$

3

3

3

3

2

3

C309.4

C309.5

C309.6

3

3

3

2

3

	SOFTWARE TESTING AND QUALITY	L	Т	Р	С
21IF3710	ASSURANCE		0	0	3
Objectives:		3	-	Ĩ	
•	duce basic concepts of software testing				
	rstand white box, block box, object oriented, web base	d and cl	loud te	sting	
	v in details automation testing and Tools used for aut			-	
	rstand the importance of software quality and assuranc			-	
	opment.		5		
	INTRODUCTION			9	
	, historical perspective, Definition , Core Componen	ta Oual	ity Vie		nonoic
			2		
Aspect, Cu	stomers suppliers and process, Total Quality Ma	nageme	ent(TQ	M), (Qualit
practices of	TQM, Quality Management through- Statistical	process	Cont	rol, C	Cultura
Changes, C	ontinual Improvement cycle, quality in different	areas, 1	Benchr	narkir	ng an
metrics. Pro	blem Solving Techniques, Problem Solving Software	To ols	. Softw	are C	Juality
	, Constraints of Software product Quality assessm				- •
- •	Productivity Relationship, Requirements of Product	l, Orga	mzauo	n c	Culture
		0			
	ics of Software, Software Development Process, Typ				ticalit
	ics of Software, Software Development Process, Typs, Problematic areas of SDLC, Software Quality Manag				ticalit
Definition s		gement,	Why	Softwa	ticalit are ha
Definition s defects, Pro	, Problematic areas of SDLC, Software Quality Manag	gement, ement S	Why System	Softwa 's Str	ticalit are ha
Definition s defects, Pro	s, Problematic areas of SDLC, Software Quality Manage	gement, ement S	Why System	Softwa 's Str	ticalit are ha
Definition s defects, Pro Pillars of Qu UNIT II	s, Problematic areas of SDLC, Software Quality Manages, Problematic areas of SDLC, Software Quality Manages related To Software Quality, Quality Management System, Important aspects of quality	gement, ement S y manag	Why System	Softwa 's Str 9	ticalit are ha ucture
Definition s defects, Pro Pillars of Qu UNIT II Review of	s, Problematic areas of SDLC, Software Quality Managers related To Software Quality, Quality Managers related To Software Quality, Quality Managers, Important aspects of quality TEST PLANNING AND MANAGEMENT	gement, ement s y manag	Why System gement	Softwa 's Str 9 t life	ticalit are ha ucture cycle
Definition s defects, Pro Pillars of Qu UNIT II Review of Requiremen	s, Problematic areas of SDLC, Software Quality Manages cesses related To Software Quality, Quality Manages ality Management System, Important aspects of quality TEST PLANNING AND MANAGEMENT Fundamentals of Software Testing, Testing during	gement, ement s y manag g develo ortant F	Why System gement opmen Features	Softwa 's Str 9 t life s of 7	ticalit are ha ucture cycle Festin
Definition s defects, Pro Pillars of Qu UNIT II Review of Requiremen Process, Mi	s, Problematic areas of SDLC, Software Quality Manages cesses related To Software Quality, Quality Manages ality Management System, Important aspects of quality TEST PLANNING AND MANAGEMENT Fundamentals of Software Testing, Testing during t Traceability matrix, essentials, Work bench, Important sconceptions, Principles, salient and policy of Software	gement, ement s y manag develo ortant F are test	Why System gement opmen Seatures ting, T	Softwa 's Str 9 t life s of 7 est St	ticalit are ha ucture cycle Festin rategy
Definition s defects, Pro Pillars of Qu UNIT II Review of Requiremen Process, Mi Test Plannir	s, Problematic areas of SDLC, Software Quality Manages cesses related To Software Quality, Quality Manages ality Management System, Important aspects of quality TEST PLANNING AND MANAGEMENT Fundamentals of Software Testing, Testing during t Traceability matrix, essentials, Work bench, Important sconceptions, Principles, salient and policy of Software ag, Testing Process and number of defects found, Test	gement, ement s y manag g develo prtant F are test teem e	Why System gement opmen Seatures ting, T fficien	Softwa 's Str t life s of 7 est St cy, M	ticalit are ha ucture cycle Festin rategy utatio
Definition s defects, Pro Pillars of Qu UNIT II Review of Requiremen Process, Mi Test Plannir testing, chal	s, Problematic areas of SDLC, Software Quality Manages cesses related To Software Quality, Quality Manages ality Management System, Important aspects of quality TEST PLANNING AND MANAGEMENT Fundamentals of Software Testing, Testing during t Traceability matrix, essentials, Work bench, Import sconceptions, Principles, salient and policy of Software ag, Testing Process and number of defects found, Test llenges, test team approach, Process problem faced,	gement, ement S y manag develo ortant F are test teem e Cost a	Why System System gement opmen Seatures ting, T fficien aspect,	Softwa 's Str t life s of 7 est St cy, M estab	ticalit are ha ucture cycle Festin rategy utatio lishin
Definition s defects, Pro Pillars of Qu UNIT II Review of Requiremen Process, Mi Test Plannir testing, chal testing polic	s, Problematic areas of SDLC, Software Quality Manages cesses related To Software Quality, Quality Manages ality Management System, Important aspects of quality TEST PLANNING AND MANAGEMENT Fundamentals of Software Testing, Testing during t Traceability matrix, essentials, Work bench, Import sconceptions, Principles, salient and policy of Software ag, Testing Process and number of defects found, Test llenges, test team approach, Process problem faced, ey, methods, structured approach, categories of defect	gement, ement S y manag develo ortant F are test teem e Cost a , Defec	Why System System gement opmen Seatures ting, T fficien aspect, t/ error	Softwa 's Str 9 t life s of 7 est St cy, M estab r/ mis	ticalit are ha ucture cycle Festin rategy utatio lishin take i
Definition s defects, Pro Pillars of Qu UNIT II Review of Requiremen Process, Mi Test Plannir testing, chal testing polic software, D	s, Problematic areas of SDLC, Software Quality Manages cesses related To Software Quality, Quality Manages ality Management System, Important aspects of quality TEST PLANNING AND MANAGEMENT Fundamentals of Software Testing, Testing during t Traceability matrix, essentials, Work bench, Import sconceptions, Principles, salient and policy of Software ag, Testing Process and number of defects found, Test llenges, test team approach, Process problem faced, ey, methods, structured approach, categories of defect eveloping Test Strategy and Plan, Testing process,	gement, ement S y manag develo ortant F are test teem e Cost a , Defec Attitud	Why System System gement opmen Seatures ting, T fficien aspect, t/ error e Tow	Softwa 's Str 9 t life s of 7 est St cy, M estab r/ mis ards t	ticalit are ha ucture cycle restin rategy utatio lishin take i
Definition s defects, Pro Pillars of Qu UNIT II Review of Requiremen Process, Mi Test Plannir testing, chal testing polic software, D	s, Problematic areas of SDLC, Software Quality Manages cesses related To Software Quality, Quality Manages ality Management System, Important aspects of quality TEST PLANNING AND MANAGEMENT Fundamentals of Software Testing, Testing during t Traceability matrix, essentials, Work bench, Import sconceptions, Principles, salient and policy of Software ag, Testing Process and number of defects found, Test llenges, test team approach, Process problem faced, ey, methods, structured approach, categories of defect	gement, ement S y manag develo ortant F are test teem e Cost a , Defec Attitud	Why System System gement opmen Seatures ting, T fficien aspect, t/ error e Tow	Softwa 's Str 9 t life s of 7 est St cy, M estab r/ mis ards t	ticalit are ha ucture cycle restin rategy utatio lishin take i
Definition s defects, Pro Pillars of Qu UNIT II Review of Requiremen Process, Mi Test Plannir testing, chal testing polic software, D	s, Problematic areas of SDLC, Software Quality Manages cesses related To Software Quality, Quality Manages ality Management System, Important aspects of quality TEST PLANNING AND MANAGEMENT Fundamentals of Software Testing, Testing during t Traceability matrix, essentials, Work bench, Import sconceptions, Principles, salient and policy of Software ag, Testing Process and number of defects found, Test llenges, test team approach, Process problem faced, ey, methods, structured approach, categories of defect eveloping Test Strategy and Plan, Testing process,	gement, ement S y manag g develo ortant F are test teem e Cost a , Defec Attitud g, skills	Why System System gement opmen Seatures ting, T fficien aspect, t/ error e Tow require	Softwa 's Str 9 t life s of 7 est St cy, M estab r/ mis ards t	ticalit are ha ucture cycle restin rategy utatio lishin take i
Definition s defects, Pro Pillars of Qu UNIT II Review of Requiremen Process, Mi Test Plannir testing, chal testing polic software, D approaches,	s, Problematic areas of SDLC, Software Quality Manages cesses related To Software Quality, Quality Manages ality Management System, Important aspects of quality TEST PLANNING AND MANAGEMENT Fundamentals of Software Testing, Testing during t Traceability matrix, essentials, Work bench, Imports sconceptions, Principles, salient and policy of Software ag, Testing Process and number of defects found, Test llenges, test team approach, Process problem faced, ey, methods, structured approach, categories of defect eveloping Test Strategy and Plan, Testing process, challenges, Raising management awareness for testing	gement, ement S y manag g develo ortant F are test teem e Cost a , Defec Attitud g, skills	Why System System gement opmen Seatures ting, T fficien aspect, t/ error e Tow require	Softwa 's Str 9 t life s of 7 est St cy, M estab t/ mis ards t ed by t	ticalit are ha ucture cycle restin rategy utatio lishin take in
Definition s defects, Pro Pillars of Qu UNIT II Review of Requiremen Process, Mi Test Plannir testing, chal testing polic software, D approaches, UNIT III	a, Problematic areas of SDLC, Software Quality Manages cesses related To Software Quality, Quality Manages ality Management System, Important aspects of quality TEST PLANNING AND MANAGEMENT Fundamentals of Software Testing, Testing during t Traceability matrix, essentials, Work bench, Import sconceptions, Principles, salient and policy of Software ag, Testing Process and number of defects found, Test llenges, test team approach, Process problem faced, ey, methods, structured approach, categories of defect eveloping Test Strategy and Plan, Testing process, challenges, Raising management awareness for testing SOFTWARE TEST AUTO MATION AND SELE	gement, ement S y manag g develo ortant F are test teem e Cost a , Defec Attitud g, skills	Why System System gement opmen Seatures ting, T fficien aspect, t/ error e Tow require TO	Softwa 's Str 9 t life s of 7 est St cy, M estab c/ mis ards t ed by t 9	ticalit are ha ucture cycle Festin rategy utatio lishin take in testing

requirement for Test Tool, Process Model for Automation , Selecting Test Tool, Automation for XP/Agile model, Challenges in Automation , Data-driven Testing. Automation Tools like JUnit, Jmeter. Introducing Selenium, Brief History of The Selenium Project, Selenium's Tool Suite, Selenium IDE, Selenium RC, Selenium Web driver, Selenium Grid, Test Design Considerations

UNIT IV QUALITY MANAGEMENT

Software Quality, Software Quality Dilemma, Achieving Software Quality, Software Quality Assurance. Elements of SQA, SQA Tasks, Goals, and Metrics, Formal Approaches To SQA, Statistical Software Quality Assurance, Six Sigma for Software Engineering, ISO 9000 Quality Standards, SQA Plan

UNIT V SOFTWARE QUALITY TO OLS

Total Quality Management, Product Quality Metrics, In process Quality Metrics, Software maintenance, Ishikawa's 7 basic Tools, Checklists, Pareto diagrams, Histogram, Run Charts, Scatter diagrams, Control chart, Cause Effect diagram. Defect Removal Effectiveness and Process Maturity Level.

Total Periods: 45

Reference(s):

1.	M G Limaye, "Software Testing Principles, Techniques and Tools", Tata McGraw
	Hill, ISBN: 9780070139909 0070139903

- Srinivasan Desikan, Gopalswamy Ramesh, "Software Testing Principles and Practices", Pearson, ISBN-10: 817758121X.
- Naresh Chauhan, "Software Testing Principles and Practices ", OXFOR D, ISBN-10: 0198061846. ISBN-13: 9780198061847
- Stephen Kan, "Metrics and Models in Software Quality Engineering", Pearson, ISBN-10: 0133988082; ISBN-13: 978-0133988086

Course Outcomes:

Upon the	e completion of the course the student should be able To
C309.1	Describe fundamental concepts in software testing such as manual testing,
	automation testing and software quality assurance.
C309.2	Design and develop project test plan, design test cases, test data, and con
	duct test operations
C309.3	Apply recent automation Tool for various software testing for testing
	software

9

9

C309.4 Apply different approaches of quality management, assurance, and quality standard To software system

C309.5 Apply and analyze effectiveness Software Quality Tools

C309.6 Understand the various software Tools used in software testing.

PO vs. CO Mapping

CO No	POa	POb	POc	POd	PO _e	PO _f	POg	PO _h	PO _i	PO ₁
C309.1	2		2							
C309.2		2		3	2				2	
C309.3	1		3			3		3		
C309.4		3		2	3		3			3
C309.5									3	
C309.6	3							3		

$1 \rightarrow Low, 2 \rightarrow Medium, 3 \rightarrow High$

21IF3711	IF3711 DESIGN THINKING L							
		3	0	0	3			
Objectives:		1						
• To i	ntroduce the idea of design thinking in product develop	ment						
• To u	nderstand the practice of design thinking							
• To le	everage use of Tools for the design process							
• To le	• To learn the application of design thinking for the IT industry							
• To d	esign using the methodology							
Pre-requisit	e of course :							
UNIT I	INTRODUCTION			9				
Design thin	king – Shared model in team based design – Theory	and p	ractice	e in E	Design			
.1 . 1								
thinking – E	xploring work of Designers across globe – MVP or Prote	otyping						
thinking – E	xploring work of Designers across globe – MVP or Proto Tools for Design Thinking	otyping		9				
UNIT II Real-Time of		ficient	collab	-	n i			
UNIT II Real-Time of	Tools for Design Thinking lesign interaction capture and analysis – Enabling ef	ficient	collab	-	n i			

environm	ent – Sce	enario ba	ased Pro	ototyping	3					
UNIT IV										9
DT For s	strategic	innovati	ons - G	rowth –	Story te	elling - P	redictab	ility – S	trategic	Foresight -
Change -	- Sense	Making	g - Ma	intenanc	ce Relev	vance –	Value	redefini	tion	- Extreme
Competit	ion – ez	xperienc	e desig	n - Stan	dardizat	ion – H	Iumaniz	ation -	Creativ	ve Culture –
Rapid pro	ototyping	, Strateg	gy and C	Organiza	tion – l	Business	Model of	design.		
UNIT V										9
Design Tl	hinking V	Work sh	op Emp	athize, I	Design, I	deate, P	rototype	and Tes	st.	
Total Per	iods: 45									
Reference	e(s).									
	. ,	on of Bi	usiness:	Why De	esion Th	inking i	s the Ne	xt Comr	etitive	Advantage",
	009.	Sil of D	u5111055.	Wily D	651 <u>5</u> 11 11	iniking i		at comp		, in the tent of t
	Design T	hinking	: Under	stand –]	Improve	– Apply	, 201 1	(Unit III	[).	
	U	Ũ			1				,	u at Business
0	r Design	School'	', 2013.	(Unit IV	/).					
4. h	ttps://dsc	hool.sta	nfor d.e	du/use-o	our-meth	nods/				
5. h	ttps://ww	w.intera	action -	design.c	org/litera	ture/arti	cle/5-sta	ges-in-tl	he -desi	gn-thinking-
р	rocess									
6. h	ttp://www	w.creativ	vityatwo	ork.com/	/design-1	hinking	-strategy	-for -inr	ovation	ı /
Course (Outcome	s:								
Upon th	e compl	etion (of the c	ourse t	he stud	ent shou	uld be a	ble to		
C309.1	А	pply de	sign thii	nking fo	r produc	t develo	pment.			
C309.2	U	se desig	n think	ing Tool	S					
C309.3	Ic	lentify n	need for	produc	ts and di	sruption	_			
C309.4	D	esign in	novativ	e produo	cts					
C309.5	А	pply dea	sign thii	nking To	o impro	ve on e	xisting p	oroducts	in IT &	Facilitate
		de	esign thi	nking w	orkshop)				
C309.6	F	acilitate	design	thinking	g worksh	op				
PO vs. C	CO Mapp	oing								
CO No	POa	POb	POc	POd	POe	PO _f	POg	PO _h	POi	POl
C309.1	2			2						2
C309.2										
	2			2					2	2

C309.3	2				2	2			2
C309.4	2	2	2		2	2		2	3
C309.5		2	2	2					2
C309.6		2							2

$1 \rightarrow Low, 2 \rightarrow Medium, 3 \rightarrow High$

21IF3712	FORECASTING AND OPTIMIZATION	L	Т	Р	C
	FORECASTING AND OF HIMILATION	3	0	0	3
Objectives:		-	Ů	Ŭ	
-	ovide a comprehensive introduction of the for e-cast	ing mot	hoda		
-	-	-			
	udy the various regression models and perform for e	-			
	nderstand the auto regressive models and its variants f		casting		
• To ge	et an overview of various numerical methods of optimi	zation			
• To ge	t an insight into advanced optimization techniques.				
Pre-requisite	e of course :				
UNIT I	INTRODUCTION TO FORECASTING			9	
The Nature	and Uses of Forecasts- The Forecasting Process- R	esource	s for	Forec	asting
Types of For	ecasting Techniques - Graphical Displays- Time Serie	s Plots-	Plottir	ng Sm	oothe
• •				0	
Data- Numer	ical Description of Time Series Data- Stationary Tim	le Series	- Auto	o cova	arianc
and Auto o	correlation Functions- Use of Data Transform	ations	and A	Adjust	ments
Transformati	ons- Trend and Season al Adjustments- General A	pproach	n To	Time	Serie
Modelling a				c	
•	d For e-casting- Evaluating and Monitoring For e-cast	sting Mo	odel Pe	erform	nance
L	d For e-casting- Evaluating and Monitoring For e-casting Model Evaluation - Choosing Between Competing N	•			
casting Mode	Model Evaluation - Choosing Between Competing N	•			
-	Model Evaluation - Choosing Between Competing N	Iodels-			
	Model Evaluation - Choosing Between Competing N	Iodels-		oring a	
UNIT II	Model Evaluation - Choosing Between Competing N	fodels- : G	Monito	oring a	a Fore
UNIT II Least Square	Model Evaluation - Choosing Between Competing Net REGRESSION ANALYSIS AND FORECASTIN	Iodels- I G istical I	Monito	oring a 9 ce in	a Fore
UNIT II Least Square Regression.	Model Evaluation - Choosing Between Competing Net REGRESSION ANALYSIS AND FORECASTING as Estimation in Linear Regression Models. Stat	fodels- G istical I Indi	Monito	9 9 ce in Regr	a Fore
UNIT II Least Square Regression. Coefficients	Model Evaluation - Choosing Between Competing Net REGRESSION ANALYSIS AND FORECASTING as Estimation in Linear Regression Models. Stat Test for Significance of Regression - Tests on	fodels- G istical I Indi n Ind	Monito nferen vidual ividua	9 9 ce in Regu I Regu	Linea ression
UNIT II Least Square Regression. Coefficients Coefficients.	Model Evaluation - Choosing Between Competing Net REGRESSION ANALYSIS AND FORECASTIN es Estimation in Linear Regression Models. Stat Test for Significance of Regression - Tests on and Groups of Coefficients- Confidence Intervals o	G istical I Indi n Ind	Monito nferen vidual ividual f New	9 9 ce in Regi l Regi Obser	Linea ression ression
UNIT II Least Square Regression. Coefficients Coefficients. s. Model Ad	Model Evaluation - Choosing Between Competing Net REGRESSION ANALYSIS AND FORECASTIN es Estimation in Linear Regression Models. Stat Test for Significance of Regression - Tests on and Groups of Coefficients- Confidence Intervals o Confidence Intervals on the Mean Response. Predic	G istical I Indi n Indi tion of and PR	Monito nferen vidual ividual f New ESS.	9 9 ce in Regi l Regi Obsei Measu	Linea ression ression rvation ures o
UNIT II Least Square Regression. Coefficients Coefficients. s. Model Ad Leverage an	Model Evaluation - Choosing Between Competing Net REGRESSION ANALYSIS AND FORECASTIN es Estimation in Linear Regression Models. Stat Test for Significance of Regression - Tests on and Groups of Coefficients- Confidence Intervals o Confidence Intervals on the Mean Response. Predic equacy Checking- Residual Plots- Scaled Residuals	G istical I Indi n Indi and PR ression	Monito nferen vidual ividua f New ESS. - Gen	9 9 ce in Regi l Regi Obsei Measu eralize	Linea ression ression ression ression ression ression ression ression ression ression ression ression

	: The Durbin-Watson Test- Outliers- Multi-collinearity- Hetrosc	kedasticity-
Auto corre	elation and Structural Breaks- Estimating the Parameters in 7	Time Series
Regression	Models	
UNIT III	AUTO REGRESSIVE INTEGRATED MOVING AVERAGE	9
	(ARIMA) AND OTHE R MODELS	•
First Order	Exponential Smoothing- Second Order Exponential Smoothing- H	igher Order
Exponentia	l Smoothing- Exponential Smoothing for Season al Data- Linear	Models for
Stationary	Time Series- Finite Order Moving Average (MA) Processes- Finite	Order Auto
regressive	Processes- Mixed Auto regressive-Moving Average Processes- Non	stationary
Processes-	Time Series Model Building- Forecasting ARIMA Processes-	Season a
Processes-	Exponential Smoothers and ARIMA Models- Multivariate Stationa	ry Process
Vector AF	RIMA Models- Vector AR (VAR) Models- State Space Models-	ARCH and
GARCH M	lodels- Direct Forecasting of Percentiles-Neural Networks and Forecast	ing
UNIT IV	NUMERICAL METHODS OF OPTIMIZATION	9
What is op	timization? -Linear programming- Integer programming- Quadratic programming-	ogramming
Non-linear	programming- Stochastic programming- Dynamic programming- Co	ombinatoria
optimizatio	on - Infinite- dimensional optimization - Constraint satisfaction .	
UNIT V	ADVANCED OPTIMIZATION TECHNIQUES AND	9
	ASPECTS OF OPTIMIZATION	9
Hill climbi	ng- simulated annealing- genetic algorithm- Ant colony- Optimization	n of Fuzzy
	ng- simulated annealing- genetic algorithm- Ant colony- Optimization Neural-Network-Based Optimization - Reduction of Size of an C	-
Systems- 1		ptimization
Systems- N Problem- 1	Neural-Network-Based Optimization - Reduction of Size of an C	Optimization and Stresses
Systems- 1 Problem- 1 Derivatives	Neural-Network-Based Optimization - Reduction of Size of an C Fast Reanalysis Techniques- Derivatives of Static Displacements an	Optimization nd Stresses Response
Systems- M Problem- D Derivatives Sensitivity	Neural-Network-Based Optimization - Reduction of Size of an C Fast Reanalysis Techniques- Derivatives of Static Displacements ar s of Eigen values and Eigen vectors- Derivatives of Transient	Optimization nd Stresses Response
Systems- M Problem- D Derivatives Sensitivity	Neural-Network-Based Optimization - Reduction of Size of an O Fast Reanalysis Techniques- Derivatives of Static Displacements ar s of Eigen values and Eigen vectors- Derivatives of Transient of Optimum Solution To Problem Parameters- Multilevel Opti processing- Multi objective Optimization .	Optimization nd Stresses Response
Systems- M Problem- D Derivatives Sensitivity Parallel Pro Total Perio	Neural-Network-Based Optimization - Reduction of Size of an C Fast Reanalysis Techniques- Derivatives of Static Displacements ar s of Eigen values and Eigen vectors- Derivatives of Transient of Optimum Solution To Problem Parameters- Multilevel Opti pocessing- Multi objective Optimization . ods: 45	Optimization nd Stresses Response
Systems- N Problem- D Derivatives Sensitivity Parallel Pro Total Perio Reference	Neural-Network-Based Optimization - Reduction of Size of an C Fast Reanalysis Techniques- Derivatives of Static Displacements ar s of Eigen values and Eigen vectors- Derivatives of Transient of Optimum Solution To Problem Parameters- Multilevel Opti pocessing- Multi objective Optimization . ods: 45 s):	Optimization nd Stresses Response mization
Systems- M Problem- D Derivatives Sensitivity Parallel Pro Total Perio Reference 1. C.	Neural-Network-Based Optimization - Reduction of Size of an C Fast Reanalysis Techniques- Derivatives of Static Displacements ar s of Eigen values and Eigen vectors- Derivatives of Transient of Optimum Solution To Problem Parameters- Multilevel Opti Decessing- Multi objective Optimization . Defs: 45 B. Gupta, "Optimization Techniques in Operation Research".I.K.	Optimization nd Stresses Response mization
Systems- M Problem- D Derivatives Sensitivity Parallel Pro Total Perio Reference 1. C. Pu	Neural-Network-Based Optimization - Reduction of Size of an C Fast Reanalysis Techniques- Derivatives of Static Displacements ar s of Eigen values and Eigen vectors- Derivatives of Transient of Optimum Solution To Problem Parameters- Multilevel Opti pocessing- Multi objective Optimization . ods: 45 s): B. Gupta, "Optimization Techniques in Operation Research".I.K. blishing House, Pvt Ltd., 2 nd Edition, 2012.	Optimization nd Stresses Response mization
Systems- N Problem- D Derivatives Sensitivity Parallel Pro Total Perio Reference 1. C. Pu 2. Ge	 Neural-Network-Based Optimization - Reduction of Size of an C Fast Reanalysis Techniques- Derivatives of Static Displacements ar s of Eigen values and Eigen vectors- Derivatives of Transient of Optimum Solution To Problem Parameters- Multilevel Optimization-Multi objective Optimization . ods: 45 B. Gupta, "Optimization Techniques in Operation Research".I.K. blishing House, Pvt Ltd., 2nd Edition, 2012. orge Athanasopoulos and Rob J. Hyndman, "Forecasting: Prime Parameters Prime Parameters Prime Parameters Prime Parameters Prime Parameters Prime Parameters Parame	Optimization nd Stresses Response mization
Systems- N Problem- D Derivatives Sensitivity Parallel Pro Total Perio Reference 1. C. Pu 2. Ge Pra	Neural-Network-Based Optimization - Reduction of Size of an C Fast Reanalysis Techniques- Derivatives of Static Displacements ar s of Eigen values and Eigen vectors- Derivatives of Transient of Optimum Solution To Problem Parameters- Multilevel Opti pocessing- Multi objective Optimization . ods: 45 s): B. Gupta, "Optimization Techniques in Operation Research".I.K. blishing House, Pvt Ltd., 2 nd Edition, 2012.	Optimization nd Stresses Response mization Internation

September 2010.

- 4. L. R. Folds, "Optimization Techniques: An Introduction". Springer-Verlag New York, 1981
- 5. Ronald L. Rardin, "Optimization in operations research". Prentice Hall, 1998
- 6. Spyros Makridakis and Steven C. Wheelwright, "Forecasting: Methods and Applications". Wiley 1997.

Course Outcomes:

Upon the completion of the course the student should be able To

- C309.1 Identify the types of forecasting techniques.
- C309.2 Perform time series modelling and forecasting
- C309.3 Evaluate the performance of forecasting models
- C309.4 Perform regression analysis using different regression models
- C309.5 Distinguish and Identify a suitable numerical method of optimization
- C309.6 Discuss the concept of advanced optimization techniques using soft

computing techniques and apply the m To various problems

PO vs. CO Mapping

CO No	POa	POb	POc	POd	PO _e	PO _f	POg	PO _h	PO _i	POl
C309.1	2				2				2	2
C309.2	3		2			2			2	2
C309.3	3	2	2		2	2				2
C309.4	2	2				2			2	2
C309.5	2	2			2					2
C309.6	2								2	2

 $1 \rightarrow Low, 2 \rightarrow Medium, 3 \rightarrow High$