

B.E - Mechanical Engineering

CURRICULUM AND SYLLABI Choice Based Credit System REGULATIONS 2021

DEPARTMENT VISION

To produce competent Mechanical Engineers of excellent technical and managerial skills with profound morality for global, national and confront societal development.

DEPARTMENT MISSION

2000

ann

- To provide quality education in Mechanical Engineering with inter disciplinary approach, encouraging innovation, research and entrepreneurship.
- To make the department self-reliant through multiple programs with excellent curriculum, best practices and industry exposure.
- To inculcate technical, professional, leadership skills moral ethics and lifelong learning

DEPARTMENT OF MECHANICAL ENGINEERING

FRANCIS XAVIER FRANCIS XAVIER ENGINEERING COLLEGE AN AUTONOMOUS INSTITUTION Department of Mechanical Engineering

Curriculum and Syllabi – R 2021-UG CHOICE BASED CREDIT SYSTEM(CBCS)OUTCOME BASED EDUCATION (OBE)

Vision of the Department

To produce competent Mechanical Engineers of excellent technical and managerial skills with profound morality for global, national and confront societal development.

Mission of the Department

1. To provide quality education in Mechanical Engineering with inter disciplinary approach, encouraging innovation, research and entrepreneurship through world class infrastructure and proficient teachers.

2. To make the department self-reliant through multiple programs with excellent curriculum, best practices and industry exposure.

3. To inculcate technical, professional, leadership skills, moral ethics and lifelong learning.

Francis Xavier Engineering College

(An Autonomous Institution) Tirunelveli 627 003 Tamil Nadu India

Department of Mechanical Engineering

Curriculum and Syllabi – R 2021-UG CHOICE BASED CREDIT SYSTEM(CBCS) OUTCOME BASED EDUCATION (OBE)

Vision of the Department

To produce competent Mechanical Engineers of excellent technical and managerial skills with profound morality for global, national and confront societal development.

Mission of the Department

1. To provide quality education in Mechanical Engineering with inter disciplinary approach, encouraging innovation, research and entrepreneurship through world class infrastructure and proficient teachers.

2. To make the department self-reliant through multiple programs with excellent curriculum, best practices and industry exposure.

3. To inculcate technical, professional, leadership skills, moral ethics and lifelong learning.

Table of Content

S.No	Content	Page No
1	VISION AND MISSION OF THE DEPARTMENT	1
2	TABLE OF CONTENTS	2
3	PROGRAM EDUCATIONAL OBJECTIVES (PEOs)	3
4	PROGRAMME OUTCOMES(POs)	4
5	PROGRAM SPECIFIC OUTCOMES (PSOs)	5
6	MAPPING WITH PO VS PEO, PSO	7
7	SUMMARY OF CREDIT DISTRIBUTION	8
8	I-VIII SEMESTER SYLLABI	19
9	PROFESSIONAL ELECTIVES	230
10	OPEN ELECTIVES	418
11	VALUE ADDED COURSES	470
12	ONLINE COURSES: SWAYAM NPTEL	475
12	MINOR/SPECIALIZATION COURSE ON ADDITIVE MANUFACTURING	477

Programme Educational Outcomes (PEOs)

Bachelor of Mechanical Engineering curriculum is designed to impart Knowledge, Skill and Attitude on the graduates to

PEO 1:Have a successful professional career in Mechanical Engineering and allied industries, either by employment or through entrepreneurship.

PEO 2:Establish competency in Design, Thermal, Materials and Manufacturing system with ethics and social responsibility.

PEO 3: Have a continual receptiveness for leadership and social challenges.

Programme Outcomes(POs)

Engineering Graduates will be able to:

1. Engineering Knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

2. Problem Analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. Design/Development of Solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

4. Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

6. The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. Environment and Sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. Individual and Team Work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. Project Management and Finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-Long Learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Programme Specific Outcomes (PSOs)

On successful completion of the Mechanical Engineering Degree programme, the Graduates shall exhibit the following

PSO 1: Apply the knowledge gained in Mechanical Engineering for **design**, development and **manufacture** of engineering systems.

PSO 2: Analyze, interpret and provide solutions to global needs of engineering industries, the **real life mechanical engineering problems** and **thermal systems** with regard to ethics, environment and society.

Mapping with PEOs with POs, PSOs

РО	PEO1	PEO2	PEO3	Average	Set Target for POs (80% of average)
1	3	3	1	2.3	1.9
2	3	3	1	2.3	1.9
3	3	3	1	2.3	1.9
4	3	3	1	2.3	1.9
5	3	2	2	2.3	1.9
6	2	3	2	2.3	1.9
7	2	3	2	2.3	1.9
8	2	3	2	2.3	1.9
9	2	2	3	2.3	1.9
10	2	2	3	2.3	1.9
11	2	2	2	2.0	1.6
12	2	2	2	2.0	1.6
PSO1	3	3	2	2.7	2.1
PSO2	2	2	3	2.3	1.9

FRANCIS XAVIER ENGINEERING COLLEGE B.E. – MECHANICAL ENGINEERING REGULATIONS 2021 Choice Based Credit System and Outcome Based Education SUMMARY OF CREDIT DISTRIBUTION

C No	Catagory			Cı	redits Pe	r Semest	er			Total	Credits
S. No	Category	Ι	II	III	IV	V	VI	VII	VIII	Credits	in %
1	HSSM	3	2	1	1		3	3		13	7.78
2	BS	12	4	4						20	11.98
3	ES	3	16	3						22	13.17
4	РС			16	23	17	8			64	38.32
5	PE					3	6	9		18	10.78
6	OE					3	3	6		12	7.19
7	EEC			1	1	1	3	6	6	18	10.78
Т	OTAL	18	22	25	25	24	23	24	6	167	

Minimum Number of Credits to be Acquired for UG Regular : 167 Minimum Number of Credits to be Acquired for UG Lateral : 125

- HSS Humanities and Social Sciences including Management
- **BS** Basic Science
- **ES Engineering Sciences**
- PC Professional Core
- PE Professional Elective
- OE Open Elective/Programme Specific Elective for Expandable Scope
- EEC Employability Enhancement Course

FRANCIS XAVIER ENGINEERING COLLEGE

B.E. – MECHANICAL ENGINEERING REGULATIONS 2021

Choice Based Credit System and Outcome Based Education

I-VIII Semester Curricula and Syllabi

SEMESTER I

S.No	Course Code	Course Name	Category	Contact Periods	L	Т	Р	C
Theo	ry Courses							
1	21MA1201	Matrices and Advanced Calculus	BS	4	3	1	0	4
2	21PH1302	Engineering Physics	BS	3	3	0	0	3
3	21CY1401	Engineering Chemistry	BS	3	3	0	0	3
Theo	ry Cum Pract	ical Courses						
1	21CS1514	C Programming	ES	4	2	0	2	3
2	21HS1101	English for Professional Communication	HSSM	4	2	0	2	3
Pract	ical Courses							
1	21PY1311	Physics and Chemistry Lab	BS	4	0	0	4	2
			Total	22	13	1	8	18

SEMESTER II

S.No	Course Code	Course Name	Category	Contact Periods	L	Т	Р	C
Theo	ry Courses							
1	21HS2101	English for Technical Communication	HSSM	2	2	0	0	2
2	21MA2201	Partial Differential Equation and Application of Fourier Series	BS	4	3	1	0	4
3	21ME2501	Engineering Mechanics	ES	3	3	0	0	3
Theo	ry cum Practi	ical Courses						
1	21ME1513	Computer Aided Engineering Graphics	ES	5	3	0	2	4
2	21EE2501	Fundamentals of Electrical and Electronics Science	ES	4	2	0	2	3
3	21CS2512	Python Programming	ES	5	1	2	2	4
Pract	tical Course							
1	21GE1512	Engineering Workshop	ES	4	0	0	4	2
			Total	27	14	3	10	22

SEMESTER III

S.No	Course Code	Course Name	Category	Contact Periods	L	Т	Р	С
Theo	ry Courses		•					
1	21MA3201	Probability and Statistical Analysis	BS	4	3	1	0	4
2	21ME3601	Engineering Thermodynamics	РС	4	3	1	0	4
3	21ME3602	Fluid Mechanics and Machinery	РС	3	2	1	0	3
4	21ME3501	Engineering Materials and Metallurgy	ES	3	3	0	0	3
5	21ME3603	Manufacturing Technology	PC	3	3	0	0	3
6	21PT3902	Verbal Ability	EEC	2	0	0	2	1
7	21HS1103	Tamil Heritage தமிழர் மரபு	HSSM	2	2	0	0	1
Pract	ical Courses							
1	21ME3611	Computer Aided Machine Drawing Laboratory	РС	4	0	0	4	2
2	21ME3612	Manufacturing Technology Laboratory	РС	4	0	0	4	2
3	21ME3613	Fluid Mechanics and Machines Laboratory	РС	4	0	0	4	2
			Total	33	16	3	14	25

SEMESTER IV

S.No	Course Code	Course Name	Category	Contact Periods	L	Τ	Р	С
Theo	ry Courses							
1	21ME4601	CNC Machines and Automation	РС	3	3	0	0	3
2	21ME4602	Strength of Materials	РС	3	2	1	0	3
3	21ME4603	Thermal Engineering	РС	3	2	1	0	3
4	21ME4604	Theory of Machines	РС	4	3	1	0	4
5	21GE2M02	Environmental and sustainable Engineering	МС	2	2	0	0	0
6	21PT3901	Aptitude – I	EEC	2	0	0	2	1
7	21HS2103	Technology in Tamil Culture தமிழரும் தொழில்நுட்பமும்	HSSM	2	2	0	0	1
Theo	ry cum Practi	cal Courses						
1	21ME4605	Metrology and Instrumentations	РС	5	3	0	2	4
Pract	tical Courses							
1	21ME4611	Thermal Engineering Laboratory	РС	4	0	0	4	2
2	21ME4612	Strength of materials Laboratory	РС	4	0	0	4	2
3	21ME4613	Kinematics And Dynamics Laboratory	РС	4	0	0	4	2
			Total	36	17	3	16	25

SEMESTER V

S.No	Course Code	Course Name	Category	Contact Periods	L	Т	Р	C
Theo	ry Courses						1	
1	21ME5601	Heat and Mass Transfer	РС	3	2	1	0	3
2	21ME5602	Design of Machine Elements and Joints	РС	3	2	1	0	3
3	21ME5603	Automobile Engineering	РС	3	3	0	0	3
4	PE1	Professional Elective – I	PE	3	3	0	0	3
5	OE1	Open Elective – I	OE	3	3	0	0	3
6	21PT3904	Reasoning	EEC	2	0	0	2	1
Theo	ry Cum Pract	ical			•		•	•
7	21ME5604	Mechatronics and Internet of Things	РС	5	3	0	2	4
Pract	cical Courses							•
1	21ME5611	Heat and Mass Transfer Laboratory	РС	4	0	0	4	2
2	21ME5612	CAD/CAM Laboratory	РС	4	0	0	4	2
3		Summer Internship / Industrial Training***	EEC	0	0	0	0	1
			Total	30	16	2	12	24

*** Optional

SEMESTER VI

S.No	Course Code	Course Name	Category	Contact Periods	L	Т	Р	С
Theo	ry Courses							
1	21ME6601	Design of Transmission Systems	РС	3	2	1	0	3
2	21ME6602	Finite Element Analysis	РС	3	2	1	0	3
3	21HS3101	Ethics And Values	HSSM	3	3	0	0	3
4	PE2	Professional Elective – II	PE	3	3	0	0	3
5	PE3	Professional Elective – III	PE	3	3	0	0	3
6	OE2	Open Elective – II	OE	3	3	0	0	3
7	21PT3903	Aptitude II	EEC	2	0	0	2	1
Pract	ical Courses					•	•	
1	21ME6611	Finite Element Analysis Laboratory	РС	4	0	0	4	2
2	21ME6612	Design and Fabrication Project	EEC	4	0	0	4	2
			Total	28	16	2	10	23

SEMESTER VII

S. No	Course Code	Course Name	Category	Contact Periods	L	Т	Р	С
Theo	ry Courses							
1	21HS7101	Total Quality Management	HSSM	3	3	0	0	3
2	PE4	Professional Elective – IV	PE	3	3	0	0	3
3	PE5	Professional Elective – V	PE	3	3	0	0	3
4	PE6	Professional Elective – VI	PE	3	3	0	0	3
5	OE3	Open Elective – III	OE	3	3	0	0	3
6	OE4	Open Elective – IV	OE	3	3	0	0	3
Pract	ical Courses		-					
1	21ME7911	Technical Comprehension	EEC	4	0	0	4	2
			Total	22	18	0	4	20

SEMESTER VIII

S.No	Course Code	Course Name	Category	Contact Periods	L	Т	Р	C
Pract	ical Courses							
1	21ME8901	Project Work / Internship based Project	EEC	12	0	0	20	10
			Total	12	0	0	20	10

Minimum Number of Credits to be Acquired:167

List of Humanities and Social Sciences Including Management (HSSM)

S.No	Course Code	Course Name	Category	Contact Periods	L	Т	Р	C
Theo	ry Courses							
1	21HS1101	English for Professional Communication	HSSM	4	2	0	1	3
2	21HS1103	Tamil Heritage தமிழர் மரபு	HSSM	2	2	0	0	1
3	21HS2103	Technology in Tamil Culture தமிழரும் தொழில்நுட்பமும்	HSSM	2	2	0	0	1
4	21HS2101	English for Technical Communication	HSSM	2	2	0	0	2
5	21HS3101	Ethics And Values	HSSM	3	3	0	0	3
6	21HS7601	Total Quality Management	HSSM	3	3	0	0	3

List of Basic Science Courses

S.No	Course	Course Name	Category	Contact	L	Т	Р	C
	Code			Periods				
Theo	ry Courses							
1	21MA1201	Matrices and Advanced Calculus	BS	4	3	1	0	4
2	21PH1302	Engineering Physics	BS	3	3	0	0	3
3	21CY1401	Engineering Chemistry	BS	3	3	0	0	3
4	21MA2201	Partial Differential Equation And Application of Fourier Series	BS	4	3	1	0	4
5	21MA3201	Probability and Statistical Analysis	BS	4	3	1	0	4
Pract	cical Courses							
1	21GE1311	Physics and Chemistry Lab	BS	4	0	0	2	2

List of Engineering Science Courses

S.No	Course	Course Name	Category	Contact	L	Т	Р	C
	Code			Periods				
Theo	ry Courses							
1	21ME2501	Engineering Mechanics	ES	3	3	0	0	3
2	21ME3501	Engineering Materials and Metallurgy	ES	3	3	0	0	3
Theo	ry cum Practi	ical Courses						
1	21EE2501	Fundamentals of Electrical and	ES	5	3	0	2	4
		Electronics Science						
2	21ME1513	Computer Aided Engineering Graphics	ES	5	3	0	2	4
3	21CS1514	C Programming	ES	4	2	0	2	3
4	21CS2512	Python programming	ES	4	2	0	2	3
Pract	cical Courses	-						
1	21GE1512	Engineering Workshop	ES	4	0	0	2	2

List of Employability Enhancement Course

S.No	Course Code	Course Name	Category	Contact Periods	L	Т	Р	С
Theo	ry Courses							
1	21PT3902	Verbal Ability	EEC	2	0	0	2	1
2	21PT3901	Aptitude – I	EEC	2	0	0	2	1
3	21PT3904	Reasoning	EEC	2	0	0	2	1
4	21PT3903	Soft Skills Aptitude II	EEC	2	0	0	2	1
Pract	ical Courses							•
1	21ME6612	Design and Fabrication project	EEC	4	0	0	4	2
2	21ME7911	Technical Comprehension	EEC	4	0	0	4	2
3	21ME8602	Project Work / Internship based Project	EEC	12	0	0	20	10

S.No	Course Code	Course Name	Semester	L	T	Р	C	Stream/ Domain
Profe	ssional Electiv	e I						
1	21ME5701	Applied Hydraulics and Pneumatics	5	3	0	0	3	Design
2	21ME5702	Mechanical Behaviour of Materials	5	3	0	0	3	Design
3	21ME5703	Advanced IC Engines	5	3	0	0	3	Thermal
4	21ME5704	Alternate Fuels	5	3	0	0	3	Thermal
5	21ME5705	Maintenance Engineering	5	3	0	0	3	I.A & M
6	21ME5706	Principles of Management	5	3	0	0	3	I.A & M
7	21ME5707	Composite Materials	5	3	0	0	3	Mat.Manuf acturing
8	21ME5708	Polymer Technology	5	3	0	0	3	Mat.Manuf acturing
9	21ME5709	Professional Ethics in Engineering	5	3	0	0	3	Diversified Group`
10	21ME5710	Introduction to Aircraft System	5	3	0	0	3	Diversified Group
Profes	ssional Electiv	e II	·					
1	21ME6701	Mechanical Vibration and Control	6	3	0	0	3	Design
2	21ME6702	Concepts of Engineering Design	6	3	0	0	3	Design
3	21ME6703	Fundamentals of Combustion	6	3	0	0	3	Thermal
4	21ME6704	Fuel Cell Technology	6	3	0	0	3	Thermal
5	21ME6705	Industrial Engineering and Management	6	3	0	0	3	I.A & M
6	21ME6706	Lean Six Sigma	6	3	0	0	3	I.A & M
7	21ME6707	Computer Integrated Manufacturing	6	3	0	0	3	Mat.Manuf acturing
8	21ME6708	Flexible Manufacturing System	6	3	0	0	3	Mat.Manuf acturing
9	21ME6709	Hybrid vehicle technology	6	3	0	0	3	Diversified Group`
10	21ME6710	Electric Vehicle	6	3	0	0	3	Diversified Group`
Profe	ssional Electiv	e III						
1	21ME6711	Product Design for Sustainability	6	3	0	0	3	Design
2	21ME6712	Industrial Tribology	6	3	0	0	3	Design
3	21ME6713	Gas Dynamics and Jet Propulsion	6	3	0	0	3	Thermal
			6	3	0	0	3	Thermal

LIST OF PROFESSIONAL ELECTIVE COURSES

Francis Xavier Engineering College/ Dept of Mechanical Engineering/ R2021/Curriculum and Syllabi

5	21ME6715	Industry 4.0	6	3	0	0	3	I.A & M
6	21ME6716	Industrial Robotics	6	3	0	0	3	I.A & M
7	21ME6717	Modern Machining Process	6	3	0	0	3	Mat.Manuf acturing
8	21ME6718	Solid State Joining Process	6	3	0	0	3	Mat.Manuf acturing
9	21ME6719	Entrepreneurship Development	6	3	0	0	3	Diversified Group
10	21ME6720	Corrosion and Surface Engineering	6	3	0	0	3	Diversified Group
Pr	ofessional Ele	ctive IV						
1	21ME7701	Design for Manufacturing and Assembly	7	3	0	0	3	Design
2	21ME7702	Industrial Ergonomics in Design	7	3	0	0	3	Design
3	21ME7703	Computational Fluid Dynamics	7	3	0	0	3	Thermal
4	21ME7704	HVAC systems	7	3	0	0	3	Thermal
5	21ME7705	Process Planning and Cost Estimation	7	3	0	0	3	I.A & M
6	21ME7706	Industrial Internet of Things	7	3	0	0	3	I.A & M
7	21ME7707	Manufacturing and Inspection of Gears	7	3	0	0	3	Mat.Manuf acturing
8	21ME7708	Precision Manufacturing	7	3	0	0	3	Mat.Manuf acturing
9	21ME7709	Traditional and Non-Traditional optimization tool	7	3	0	0	3	Diversified Group`
10	21ME7710	Vehicle styling and design	7	3	0	0	3	Diversified Group`
Profe	ssional Electiv	e V						I
1	21ME7711	Product Design and Development	7	3	0	0	3	Design
2	21ME7712	Product life Cycle Management	7	3	0	0	3	Design
3	21ME7713	Cryogenics Engineering	7	3	0	0	3	Thermal
4	21ME7714	Power Plant Engineering	7	3	0	0	3	Thermal
5	21ME7715	Production Planning and Control	7	3	0	0	3	I.A & M
6	21ME7716	Low Cost Automation	7	3	0	0	3	I.A & M
7	21ME7717	Sustainability through Green Manufacturing System	7	3	0	0	3	Mat.Manuf acturing
8	21ME7718	Advanced Manufacturing Process for micro system fabrication	7	3	0	0	3	Mat.Manuf acturing
9	21ME7719	Electro and Electroless Plating	7	3	0	0	3	Diversified Group`
10	21ME7720	Energy Conversion in Industries	7	3	0	0	3	Diversified Group`

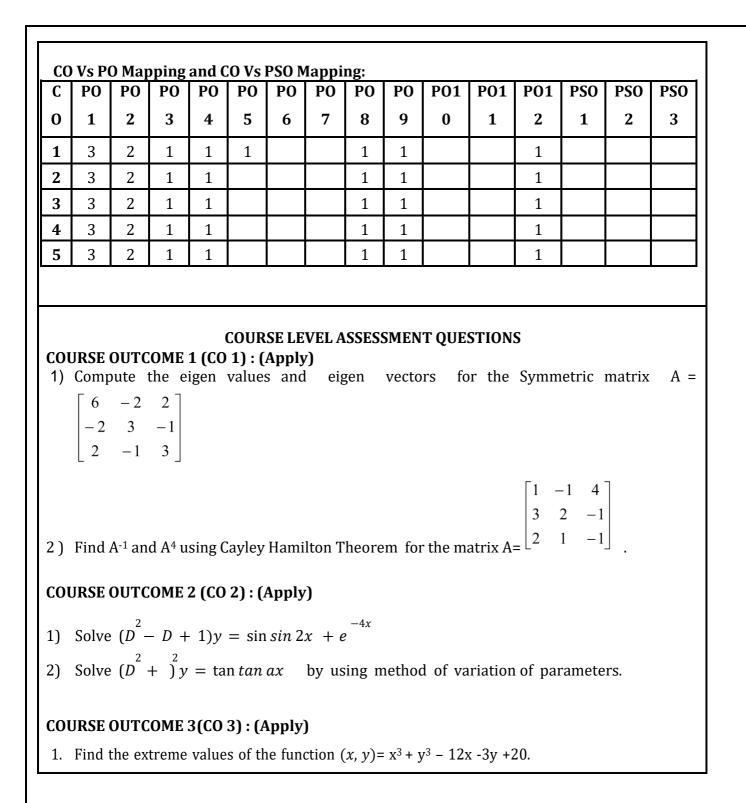
Francis Xavier Engineering College/ Dept of Mechanical Engineering/ R2021/Curriculum and Syllabi

Profe	ssional Electiv	re VI						
1	21ME7721	Design of Jigs and Fixtures	7	3	0	0	3	Design
2	21ME7722	Failure analysis and NDT Techniques	7	3	0	0	3	Design
3	21ME7723	Energy Conservation and Waste Heat Recovery	7	3	0	0	3	Thermal
4	21ME7724	Simulation of IC Engines	7	3	0	0	3	Thermal
5	21ME7725	Supply chain Management and Logistics	7	3	0	0	3	I.A & M
6	21ME7726	Operations Research	7	3	0	0	3	I.A & M
7	21ME7727	Introduction to NANO Technology	7	3	0	0	3	Mat.Manuf acturing
8	21ME7728	Smart and New Materials	7	3	0	0	3	Mat.Manuf acturing
9	21ME7729	Drone Technologies	7	3	0	0	3	Diversified Group`
10	21ME7730	Industrial Safety Engineering	7	3	0	0	3	Diversified Group`

Francis Xavier Engineering College/ Dept of Mechanical Engineering/ R2021/Curriculum and Syllabi

LIST OF OPEN ELECTIVES

S.No	Course Code	Course Name	Semester	L	Т	Р	C
OPEN	ELECTIVE 1						
1	21ME5801	Nuclear Engineering	5	3	0	0	3
2	21ME5802	Renewable Energy Sources	5	3	0	0	3
3	21ME5803	Additive Manufacturing	5	3	0	0	3
4	21ME5804	Fundamental of Research	5	3	0	0	3
OPEN	ELECTIVE 2				·		
1	21ME6801	Solar cells and Fundamentals	6	3	0	0	3
2	21ME6802	Energy Engineering and Management	6	3	0	0	3
3	21ME6803	Design of Experiments	6	3	0	0	3
4	21ME6804	Engineering Economics and Cost Analysis	6	3	0	0	3
OPEN	ELECTIVE 3						
1	21ME7801	Industrial Economics and Foreign Trade	7	3	0	0	3
2	21ME7802	Fundamentals of Ergonomics	7	3	0	0	3
3	21ME7803	Pollution Control and its Equipments	7	3	0	0	3
4	21ME7804	Energy storage devices	7	3	0	0	3
OPEN	ELECTIVE 4						
1	21ME7805	Digital Manufacturing	7	3	0	0	3
2	21ME7806	Marine Vehicles	7	3	0	0	3
3	21ME7807	Safety measures for Engineers	7	3	0	0	3
4	21ME7808	Introduction to Robotics	7	3	0	0	3


SEMESTER I

				1	
21MA1201	MATRICES AND ADVANCED CALCULUS	L	Т	Р	С
Preamble: The course consists of top Equations and Vector calcu will cover the following ma second order with constant two variables, Maxima and Green's theorem and Gauss Prerequisites for the cour Students should have basic Objectives 1. To apply advanced m 2. To familiarize with t	ics in Matrices, Differential calculus, Integral calculus with applications to various engineering problem topics: Cayley Hamilton Theorem, Linear differe coefficients, Methods of Variation parameter, Tayl Minima for two variables, Area and Volume in a modivergence theorem. Transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform transform t	3 lems. ntial lor's nultij	1 This equa expa ple in	0 ferer s cou ation nsio	4 ntial urse ns of n of
-	lity in Vector calculus.				
UNIT I	MATRICES		9-	+3	
and its applications SUGGESTED EVALUATION • Tutorial Problems of Add MATLAB and for	n Eigen values , Eigen Vectors and Cayley Hamiler application Add Power method to find Eigen valu	ton T	Theo Eigen	rem vec	and
UNIT II	ORDINARY DIFFERENTIAL EQUATIONS		9-	+3	
second order with constant	omplementary Function – Particular Integral - Lir t coefficients of types exponential, trigonometry, p ods of Variation of parameter - Engineering Applicat METHODS:	olynd	omia		
	n Linear differential equations of different type	s and	d Me	thoc	l of
UNIT III	FUNCTIONS OF SEVERAL VARIABLES		9-	⊦3	
and Minima for two varial homogeneous function.	Partial derivatives – Taylor's expansion for two va bles – Jacobians of two and three variables – Eu METHODS: n Taylor's series, Jacobians, Maxima and Minima for	ler's	theo	orem	for
UNIT IV	MULTIPLE INTEGRALS		9-	+3	
Definite Integrals – Propert – Area as a double integral i – Volume as a Triple Integra SUGGESTED EVALUATION	ties of definite integrals - Double integration in Cart n Cartesian coordinates – Triple integration in Cart l		COO	rdin	
	VECTOR CALCULUS		0	+3	
Vector dot product and Vec irrotational fields –Unit nor	tor cross product - Gradient, divergence, curl – Sol mal vector - Angle between two surfaces - Directio ergence theorem (without proof) – Engineering App	onal (dal a deriv	nd vativ	es –

SUGGESTED EVALUATION METHODS:

Tutorial Problems on Angle between two surfaces, Green's theorem, Gauss divergence theorem.

Sugge	estive Assessment Methods		
	Continuous Assessment Test (20 Marks)	Formative Assessment Test (20 Marks)	End Semester Exams (60 Marks)
1. Des	criptive Questions	1.Assignment 2. Online Quizzes	1. Descriptive Question
Outco	omes		
201:	completion of the course, the students Find the eigen values, eigen vectors, ir Identify the suitable method to solve s	overse and the positive pow	(Apply
203:	Find the maxima and minima for a giv g stationary points		(Apply
CO5: A	Compute area and volume using doub Apply the concepts of Differentiation a Books	1 8	(Apply (Apply) (Apply)
		thomatics" 12rd adition 20	17
	B. S. Grewal, "Higher Engineering Ma		117.
2.	James Stewart, Calculus – Early Tran	scendals, 8 th Edition, 2016.	
Refer	ence Books		
	ence Books A Textbook of Engineering Mathemati	ics(Dr. A.P.I. Abdul Kalam Te	echnical University.
	A Textbook of Engineering Mathemati		
1.	A Textbook of Engineering Mathematic Lucknow) (For . Gautam Bhudh tee	chnical Universities ,Luckno	ow) January 2020
1.	A Textbook of Engineering Mathematic Lucknow) (For . Gautam Bhudh teo K. Ganesan, Sundarammal Kesavan, K	chnical Universities ,Luckno X. S. Ganapathy Subramania	ow) January 2020
1. 2.	A Textbook of Engineering Mathematic Lucknow) (For . Gautam Bhudh teo K. Ganesan, Sundarammal Kesavan, K "Calculus and Solid Geometry", Revise	chnical Universities ,Luckno X. S. Ganapathy Subramania	ow) January 2020
1. 2. Web I	A Textbook of Engineering Mathematic Lucknow) (For . Gautam Bhudh teo K. Ganesan, Sundarammal Kesavan, K "Calculus and Solid Geometry", Revise Resources	chnical Universities ,Luckno X. S. Ganapathy Subramania	ow) January 2020
1. 2. Web I 1.	A Textbook of Engineering Mathematic Lucknow) (For . Gautam Bhudh teo K. Ganesan, Sundarammal Kesavan, K "Calculus and Solid Geometry", Revise Resources https://youtu.be/hbk01uhgsos https://archive.nptel.ac.in/content/s	chnical Universities ,Luckno K. S. Ganapathy Subramanian ed Edition, 2017	ow) January 2020 n & V. Srinivasan,
1. 2. Web I 1.	A Textbook of Engineering Mathematic Lucknow) (For . Gautam Bhudh teo K. Ganesan, Sundarammal Kesavan, K "Calculus and Solid Geometry", Revise Resources https://youtu.be/hbk01uhgsos https://archive.nptel.ac.in/content/s mp4	chnical Universities ,Luckno K. S. Ganapathy Subramanian ed Edition, 2017 storage2/111/105/111105	ow) January 2020 n & V. Srinivasan, 122/MP4/mod01lec01.
1. 2. Web I 1. 2.	A Textbook of Engineering Mathematic Lucknow) (For . Gautam Bhudh teo K. Ganesan, Sundarammal Kesavan, K "Calculus and Solid Geometry", Revise Resources https://youtu.be/hbk01uhgsos https://archive.nptel.ac.in/content/s mp4	chnical Universities ,Luckno K. S. Ganapathy Subramanian ed Edition, 2017 storage2/111/105/111105 os://youtu.be/h5urBuE4Xh	ow) January 2020 n & V. Srinivasan, 122/MP4/mod01lec01.
1. 2. Web I 1. 2.	A Textbook of Engineering Mathematic Lucknow) (For . Gautam Bhudh teo K. Ganesan, Sundarammal Kesavan, K "Calculus and Solid Geometry", Revise Resources https://youtu.be/hbk01uhgsos https://archive.nptel.ac.in/content/s mp4 Eigen values and eigen vectors - http	chnical Universities ,Luckno K. S. Ganapathy Subramanian ed Edition, 2017 storage2/111/105/111105 os://youtu.be/h5urBuE4Xh outu.be/WROFJ15hk00	ow) January 2020 n & V. Srinivasan, 122/MP4/mod01lec01.
1. 2. Web I 1. 2. 3.	A Textbook of Engineering Mathematic Lucknow) (For . Gautam Bhudh teo K. Ganesan, Sundarammal Kesavan, K "Calculus and Solid Geometry", Revise Resources https://youtu.be/hbk01uhgsos https://archive.nptel.ac.in/content/s mp4 Eigen values and eigen vectors - https://youtu.be/https/https://youtu.be/https://youtu.be/https/https/https/https/https/ht	chnical Universities ,Luckno K. S. Ganapathy Subramanian ed Edition, 2017 storage2/111/105/111105 ps://youtu.be/h5urBuE4Xh outu.be/WROFJ15hk00 kw	ow) January 2020 n & V. Srinivasan, 122/MP4/mod01lec01.
1. 2. Web I 1. 2. 3. 4.	A Textbook of Engineering Mathematic Lucknow) (For . Gautam Bhudh teo K. Ganesan, Sundarammal Kesavan, K "Calculus and Solid Geometry", Revise Resources https://youtu.be/hbk01uhgsos https://archive.nptel.ac.in/content/s mp4 Eigen values and eigen vectors - https://youtu.be/mp4 Eigen values and eigen vectors - https://youtu.be/Im242eBqax Functions of several variables -https://youtu.be/	chnical Universities ,Luckno K. S. Ganapathy Subramanian ed Edition, 2017 storage2/111/105/111105 os://youtu.be/h5urBuE4Xh outu.be/WROFJ15hk00 kw ://youtu.be/PA82F91e1vs	ow) January 2020 n & V. Srinivasan, 122/MP4/mod01lec01.
1. 2. Web I 1. 2. 3. 4. 5.	A Textbook of Engineering Mathematic Lucknow) (For . Gautam Bhudh teo K. Ganesan, Sundarammal Kesavan, K "Calculus and Solid Geometry", Revise Resources https://youtu.be/hbk01uhgsos https://archive.nptel.ac.in/content/s mp4 Eigen values and eigen vectors - <u>http</u> Cayley Hamilton theorem - <u>https://youtu.be/Im242eBqay</u>	chnical Universities ,Luckno K. S. Ganapathy Subramanian ed Edition, 2017 storage2/111/105/111105 ps://youtu.be/h5urBuE4Xh outu.be/WROFJ15hk00 kw c//youtu.be/PA82F91e1vs D7yHjzE,	ow) January 2020 n & V. Srinivasan, 122/MP4/mod01lec01.
1. 2. Web I 1. 2. 3. 4. 5.	A Textbook of Engineering Mathematic Lucknow) (For . Gautam Bhudh teo K. Ganesan, Sundarammal Kesavan, K "Calculus and Solid Geometry", Revise Resources https://youtu.be/hbk01uhgsos https://archive.nptel.ac.in/content/s mp4 Eigen values and eigen vectors - http://youtu.be/https://youtu.be/Im242eBqay Functions of several variables -https://youtu.be/bVuic	chnical Universities ,Luckno K. S. Ganapathy Subramanian ed Edition, 2017 storage2/111/105/111105 os://youtu.be/h5urBuE4Xh outu.be/WROFJ15hk00 kw ://youtu.be/PA82F91e1vs D7yHjzE, /3BbrC9JcjOU	ow) January 2020 n & V. Srinivasan, 122/MP4/mod01lec01.
1. 2. Web I 1. 2. 3. 4. 5. 6.	A Textbook of Engineering Mathematic Lucknow) (For . Gautam Bhudh teo K. Ganesan, Sundarammal Kesavan, K "Calculus and Solid Geometry", Revise Resources https://youtu.be/hbk01uhgsos https://archive.nptel.ac.in/content/s mp4 Eigen values and eigen vectors - https://youtu.be/https://youtu.be/Im242eBqax Functions of several variables -https://youtu.be/Im242eBqax Integration - https://youtu.be/bVuit Multiple integrals -https://youtu.be/bVuit	chnical Universities ,Luckno K. S. Ganapathy Subramanian ed Edition, 2017 storage2/111/105/111105 ps://youtu.be/h5urBuE4Xh outu.be/WROFJ15hk00 kw c//youtu.be/PA82F91e1vs D7yHjzE, /3BbrC9JcjOU outu.be/w KiHgultbM	ow) January 2020 n & V. Srinivasan, 122/MP4/mod01lec01.
1. 2. Web I 1. 2. 3. 4. 5. 6.	A Textbook of Engineering Mathematic Lucknow) (For . Gautam Bhudh teo K. Ganesan, Sundarammal Kesavan, K "Calculus and Solid Geometry", Revise Resources https://youtu.be/hbk01uhgsos https://archive.nptel.ac.in/content/s mp4 Eigen values and eigen vectors - <u>http</u> Cayley Hamilton theorem - <u>https://youtu.be/Im242eBqay</u> Functions of several variables - <u>https:</u> Integration - <u>https://youtu.be/bVuic</u> Multiple integrals - <u>https://youtu.be/bVuic</u>	chnical Universities ,Luckno K. S. Ganapathy Subramanian ed Edition, 2017 storage2/111/105/111105 os://youtu.be/h5urBuE4Xh outu.be/WROFJ15hk00 kw c//youtu.be/PA82F91e1vs D7yHjzE, /3BbrC9JcjOU outu.be/w KiHgultbM 3ZC4Mo1fS0i	ow) January 2020 n & V. Srinivasan, 122/MP4/mod01lec01.

2. Calculate the maxima and minima of the function (x, y) = x y (1-x-y). COURSE OUTCOME 4(CO 4) : (Apply) 1) Find the area of the ellipse $\frac{x^2}{x} + \frac{y^2}{b} = 1$. a b c 2) Find ∫∫∫ xyz dz dy dx COURSE OUTCOME 5(CO 5) : (Apply) 1. Find the directional derivative of $\emptyset = xy^2 + yz^3$ at the point (2,-1,1) in the direction of i+2j+2k. 2. Using Green's theorem, find $\int (x^2 - y^2) dx + 2xy dy$ where C is the boundary of the rectangle in the XOY-plane bounded by the lines $x = 0, x = a, y = 0, y = \underline{b}$. 3. Verify Gauss divergence theorem for $\vec{F} = 4x\vec{z}i - y\vec{j} + y\vec{z}k$ over the cube bounded by x = 0, x = 1, y = 0, y = 1, z = 0 and z = 1. Prepared by, Verified by, A. Santiago Stephen Dr. T.Manimozhi, Prof/Maths Asso.Prof/Maths

21PH1302 (COMMON TO CIVIL & MECH) 3 0 0 3 Preamble This course aims in imparting the fundamental connection of physics and engineering with machines and materials by incorporating the basic concepts & principles of physics to encompass the application in engineering. Prerequisites for the course Students should have Basic theoretical concepts of Physics in XI and XII Objectives -		[T	T	Р	C
Preamble This course aims in inparting the fundamental connection of physics and engineering with machines and materials by incorporating the basic concepts & principles of physics to encompass the application in engineering. Prerequisites for the course Students should have Basic theoretical concepts of Physics in XI and XII Objectives	21PH1302	(C						_
This course aims in imparting the fundamental connection of physics and engineering with machines and materials by incorporating the basic concepts & principles of physics to encompass the application in engineering. Prerequisites for the course Students should have Basic theoretical concepts of Physics in XI and XII Objectives . To enable the students to gain knowledge on properties of matter. . To inculcate knowledge on heat transfer. . To study the basics of acoustics and ultrasonics. . To understand the crystal parameters and to classify the type of the defect present in the crystal. . To explore the wide advancement in engineering materials by motivating the applications of quantum mechanics. UNIT I PROPERTIES OF MATTER 9 Elasticity - Torsion pendulum -Determination of rigidity modulus- Moment of inertia of a body (regular) - Bending of beams - Bending moment - Cantilever - Theory and experiment of Young's modulus determination - Uniform and non-uniform bending. I shaped girders. 9 UNIT I THERMAL PHYSICS 9 Transfer of heat energy - thermal expansion of solids and liquids - expansion joints - bimetallic strips - thermal conduction, convection and radiation - heat conductions in solids - thermal conductivity - Lee's disc method: heery and experiment - thermal explorations in solids - thermal conductivity - Lee's Miscan water heaters. 9 UNIT II ACOUSTICS AND ULTRASONICS 9 Classification of Soun	Preamble	(0			5	U	0	3
materials by incorporating the basic concepts & principles of physics to encompass the application in engineering. Prerequisites for the course Students should have Basic theoretical concepts of Physics in XI and XII Objectives . To enable the students to gain knowledge on properties of matter To inculcate knowledge on heat transfer To study the basics of acoustics and ultrasonics To understand the crystal parameters and to classify the type of the defect present in the crystal To study the basics of acoustics and ultrasonics To understand the crystal parameters and to classify the type of the defect present in the crystal To study the basics of acoustics and ultrasonics To understand the crystal parameters and to classify the type of the defect present in the crystal To study the basics of acoustics and ultrasonics UNIT I PROPERTIES OF MATTER 9 Elasticity - Poisson's ratio and relationship between moduli (qualitative) - Stress-strain diagram - Factors affecting elasticity - Torsion pendulum -Determination of rigidity modulus- Moment of inertia of a body (regular)- Bending of beams - Bending moment - Cantilever - Theory and experiment of Young's modulus determination - Uniform and non-uniform bending -1 shaped girders. UNIT II THERMAL PHYSICS 9 Transfer of heat energy - thermal expansion of solids and liquids - expansion joints - bimetallic strips - thermal conduction, convection and radiation - heat conductions in solids - thermal conductivity - Lee's disc method: theory and experiment - thermal Insulation - applications: heat exchangers, refrigerators, ovens and solar water heaters. UNIT II ACOUSTICS AND ULTRASONICS 9 Classification of Sound- decibel- Weber-Fechner law -Absorption Coefficient and its determination-Sound absorbing materials -factors affecting acoustics of buildings and their remedies. Production of ultrasonics by magnetostriction and piezoelectric methods - Engineering applications of Ultrasonics -Non-destructive testing- Pulse echo technique. UNIT V SOLID STATE PHYS		imparting the fundar	mental connection of physics and eng	ineering v	with n	nachi	nes a	nd
engineering. Prerequisites for the course Students should have Basic theoretical concepts of Physics in XI and XII Objective . To enable the students to gain knowledge on properties of matter To inclucate knowledge on heat transfer To understand the crystal parameters and to classify the type of the defect present in the crystal To enable the students to gain knowledge on properties of matter To understand the crystal parameters and to classify the type of the defect present in the crystal To explore the wide advancement in engineering materials by motivating the applications of quantum mechanics. UNIT I PROPERTIES OF MATTER 9 Elasticity - Poisson's ratio and relationship between moduli (qualitative) - Stress-strain diagram - Factors affecting elasticity - Torsion pendulum -Determination of rigidity modulus- Moment of inertia of a body (regular)- Bending of beams - Bending moment - Cantilever - Theory and experiment of Young's modulus determination - Uniform and non-uniform bending - I shaped girders. UNIT II THERMAL PHYSICS 9 Transfer of heat energy - thermal expansion of solids and liquids - expansion joints - bimetallic strips - thermal conduction, convection and radiation - heat conductions in solids - thermal conductivity - Lee's disc method: theory and experiment - thermal insulation - applications: heat exchangers, refrigerators, ovens and solar water heaters. UNIT II ACOUSTICS AND ULTRASONICS 9 Classification of Sound- decibel- Weber-Fechner law -Absorption Coefficient and its determination-Sound absorbing materials -factors affecting acoustics of buildings and their remedies. Production dutrasonics ware heaters. UNIT V SOLID STATE PHYSICS 9 Single crystalline, polycrystalline and amorphous materials - single crystals: unit cell, crystal systems print decets, line defects - Burger vectors. Applications: Powder X-ray diffraction UNIT V ADVANCED DENGINEERING MATERIALS 9 Metallic glasses: Types, Glass forming ability of alloys, melt spinning process and applications. Shape memory alloys (SMA		1 0		0				
Prerequisites for the course Students should have Basic theoretical concepts of Physics in XI and XII Objectives To cnable the students to gain knowledge on properties of matter. To sinculcate knowledge on heat transfer. To understand the crystal parameters and to classify the type of the defect present in the crystal. To explore the wide advancement in engineering materials by motivating the applications of quantum mechanics. UNIT I PROPERTIES OF MATTER P Elasticity - Poisson's ratio and relationship between moduli (qualitative) - Stress-strain diagram - Factors affecting elasticity - Torsion pendulum -Determination of rigidity modulus. Moment of inertia of a body (regular)- Bending of beams - Bending moment - Cantliver - Theory and experiment of Young's modulus determination - Uniform and non-uniform bending - I shaped girders. 9 UNIT II THERMAL PHYSICS 9 Transfer of heat energy - thermal expansion of solids and liquids – expansion joints – bimetallic strips - thermal conductivent, onvection and radiation – heat conductions in solids – thermal conductivity - Lee's disc method: theory and experiment - thermal insulation – applications: heat exchangers, refrigerators, ovens and solar water heaters. 9 Classification of Sound- decibel- Weber-Fechner law –Absorption Coefficient and its determination-Sound absorbing materials – factors affecting acoustics of buildings and their remedies. Production of ultrasonics by magnetostriction and piezoelectric methods - Engineering applications of Ultrasonics -Non-destructive testing- Pul		0		1				
Students should have Basic theoretical concepts of Physics in XI and XII Objectives . To enable the students to gain knowledge on properties of matter. . To inculcate knowledge on heat transfer. . To study the basics of acoustics and ultrasonics. . To understand the crystal parameters and to classify the type of the defect present in the crystal. . To study the basics of acoustics and ultrasonics. . To understand the crystal parameters and to classify the type of the defect present in the crystal. . To study the basics of acoustics and ultrasonics. . WINT I PROPERTIES OF MATTER 9 Elasticity - Torsion pendulum -Determination of rigidity modulus. Moment of inertia of a body (regular)- Bending of beams - Bending moment - Cantilever - Theory and experiment of Young's modulus determination - Uniform and non-uniform bending - I shaped girders. 9 UNIT II THERMAL PHYSICS 9 Transfer of heat energy - thermal expansion of solids and liquids - expansion joints - bimetallic strips - thermal conduction, convection and radiation - heat conductions in solids - thermal conductivity - Lees disc method: heary affecting acoustics of buildings and their remedies. Production of ultrasonics by magnetostriction and piezoelectric methods - Engineering applications: heat exchangers, refrigerators, overs and solar water heaters. 9 UNIT II ACOUSTICS AND ULTRASONICS 9 Classification of Sound- decibel- Weber-Fechner law -Abso		he course						
To enable the students to gain knowledge on properties of matter. To inculcate knowledge on heat transfer. To inculcate knowledge on heat transfer. To to study the basics of acoustics and ultrasonics. To explore the wide advancement in engineering materials by motivating the applications of quantum mechanics. UNIT I PROPERTIES OF MATTER 9 Elasticity - Poisson's ratio and relationship between moduli (qualitative) - Stress-strain diagram - Factors affecting elasticity - Torsion pendulum -Determination of rigidity modulus- Moment of inertia of a body (regular)- Bending of beams - Bending moment - Cantilever - Theory and experiment of Young's modulus determination - Uniform and non-uniform bending - I shaped girders. 9 UNIT II THERMAL PHYSICS 9 Transfer of heat energy - thermal expansion of solids and liquids - expansion joints - bimetallic strips - thermal conduction, convection and radiation - heat conductions in solids - thermal conductivity - Lee's disc method: theory and experiment - thermal insulation - applications: heat exchangers, refrigerators, ovens and solar water heaters. 9 UNIT III ACOUSTICS AND ULTRASONICS 9 Classification of Sound- decibel- Weber-Fechner law -Absorption Coefficient and its determination-Sounc absorbing materials -factors affecting acoustics of buildings and their remedies. Production of ultrasonics by magnetostriction and piezoelectric methods - Engineering applications of Ultrasonics -Non-destructive testing- Pulse echo technique. 9 UNIT IV	-		oncepts of Physics in XI and XII					
Productate knowledge on heat transfer.5. To study the basics of acoustics and ultrasonics.6. To understand the crystal parameters and to classify the type of the defect present in the crystal.6. To explore the wide advancement in engineering materials by motivating the applications of quantum mechanics.UNIT IPROPERTIES OF MATTER9Elasticity - Poisson's ratio and relationship between moduli (qualitative) - Stress-strain diagram - Factors affecting elasticity - Torsion pendulum -Determination of rigidity modulus- Moment of inertia of a body (regular)- Bending of beams - Bending moment - Cantilever - Theory and experiment of Young's modulus determination - Uniform and non-uniform bending - I shaped girders.UNIT IITHERMAL PHYSICS9Transfer of heat energy - thermal expansion of solids and liquids - expansion joints - bimetallic strips - thermal conduction, convection and radiation - heat conductions in solids - thermal conductivity - Lee's disc method: theory and experiment - thermal insulation - applications: heat exchangers, refrigerators, ovens and solar water heaters.UNT IIIACOUSTICS AND ULTRASONICS9Classification of Sound- decibel- Weber-Fechner law -Absorption Coefficient and its determination-Sound absorbing materials -factors affecting acoustics of buildings and their remedies. Production of ultrasonics by magnetostriction and piezoelectric methods - Engineering applications of Ultrasonics - Non-destructive testing-Pulse echo technique.UNT IVSOLID STATE PHYSICS9Single crystalline, polycrystalline and amorphous materials - single crystals: unit cell, crystal systems Bravais lattices, coordination number and packing factor for SC, BCC, FCC, HCP - Crystal imperfections point defects, line defects -	Objectives		· · ·					
To study the basics of acoustics and ultrasonics.I. To understand the crystal parameters and to classify the type of the defect present in the crystal.S. To explore the wide advancement in engineering materials by motivating the applications of quantum mechanics.UNIT IPROPERTIES OF MATTER(regular). Bending of beams - Bending moment - Cantilever - Theory and experiment of Young's modulus determination - Uniform and non-uniform bending - I shaped girders.9UNIT IITHERMAL PHYSICS9Transfer of heat energy - thermal expansion of solids and liquids - expansion joints - bimetallic strips - thermal conduction, convection and radiation - heat conductions: in solids - thermal conductivity - Lee's disc method: theory and experiment - thermal insulation - applications: heat exchangers, refrigerators, overs and solar water heaters.9UNIT IIIACOUSTICS AND ULTRASONICS9Classification of Sound- decibel- Weber-Fechner law -Absorption Coefficient and its determination-Sound absorbing materials -factors affecting acoustics of buildings and their remedies. Production of ultrasonics by magnetostriction and piezoelectric methods - Engineering applications of Ultrasonics - Non-destructive testing-Pulse echo technique.9UNIT IVSOLID STATE PHYSICS9Single crystalline, polycrystalline and amorphous materials - single crystals: unit cell, crystal systems piravial slattices, coordination number and packing factor for SC, BCC, FCC, HCP - Crystal imperfections point defects, line defects - Burger vectors. Applications: Powder X-ray diffraction.UNIT IVADVANCED ENGINEERING MATERIALS9Metallic glasses: Types, Glass forming ability of alloys, melt spinning process and applications.9Shape memo	. To enable the stud	dents to gain knowled	dge on properties of matter.					
Image: To understand the crystal parameters and to classify the type of the defect present in the crystal. Image: The organization of the type of the defect present in the crystal. Image: The type of the type of the defect present in the crystal. Image: The type of type of the type of the defect present in the crystal. Image: The type of type of the type of the defect present in the crystal. Image: The type of type of type of the type of the defect present in the crystal. Image: The type of type of type of type of the type of the defect present in the crystal. Image: The type of type of type of type of the type of the defect present in the crystal. Image: The type of type of type of type of the type of the defect present in the crystal. Image: The type of type of type of the type of the defect present in the crystal. Image: The type of type of type of the defect present in the crystal. Image: The type of type of type of the defect present in the crystal. Image: The type of type of type of type of the defect present in the crystal. Image: The type of type of type of type of the defect present in the crystal. Image: The type of type of type of the type of the defect present in the crystal. Image: The type of	2. To inculcate know	vledge on heat transfe	er.					
Not explore the wide advancement in engineering materials by motivating the applications of quantum mechanics. UNIT I PROPERTIES OF MATTER 9 Elasticity - Torsion pendulum -Determination of rigidity modulus. Moment of inertia of a body (regular)- Bending of beams - Bending moment - Cantilever - Theory and experiment of Young's modulus determination - Uniform and non-uniform bending - I shaped girders. 9 UNIT II THERMAL PHYSICS 9 Transfer of heat energy - thermal expansion of solids and liquids - expansion joints - bimetallic strips - thermal conduction, convection and radiation - heat conductions in solids - thermal conductivity - Lee's disc method: theory and experiment - thermal insulation - applications: heat exchangers, refrigerators, ovens and solar water heaters. 9 UNIT II ACOUSTICS AND ULTRASONICS 9 UNIT II ACOUSTICS AND ULTRASONICS 9 Classification of Sound- decibel- Weber-Fechner law ~Absorption Coefficient and its determination-Sound absorbing materials -factors affecting acoustics of buildings and their remedies. Production of ultrasonics by magnetostriction and piezoelectric methods - Engineering applications of Ultrasonics -Non-destructive testing- Pulse echo technique. 9 UNIT IV SOLID STATE PHYSICS 9 Single crystallin	B. To study the basic	s of acoustics and ult	rasonics.					
mechanics. PROPERTIES OF MATTER 9 Elasticity - Poisson's ratio and relationship between moduli (qualitative) - Stress-strain diagram - Factors affecting elasticity - Torsion pendulum -Determination of rigidity modulus- Moment of Inertia of a body (regular)- Bending of beams - Bending moment - Cantilever - Theory and experiment of Young's modulus determination - Uniform and non-uniform bending - I shaped girders. 9 UNIT II THERMAL PHYSICS 9 Transfer of heat energy - thermal expansion of solids and liquids - expansion joints - bimetallic strips - thermal conduction, convection and radiation - heat conductions in solids - thermal conductivity - Lee's disc method: theory and experiment - thermal insulation - applications: heat exchangers, refrigerators, ovens and solar water heaters. 9 Classification of Sound - decibel- Weber-Fechner law -Absorption Coefficient and its determination-Sound absorbing materials -factors affecting acoustics of buildings and their remedies. Production of ultrasonics by magnetostriction and piezoelectric methods - Engineering applications of Ultrasonics -Non-destructive testing- Pulse echo technique. 9 UNIT IV SOLID STATE PHYSICS 9 Single crystalline, polycrystalline and amorphous materials - single crystals: unit cell, crystal systems Bravais lattices, coordination number and packing factor for SC, BCC, FCC, HCP - Crystal imperfections point defects, line defects - Burger vectors. Applications: Powder X-ray diffraction. 9 Metallic glasses: Types, Glass forming ability of alloys, melt spinning process and applications. Shape memory alloys (SMA): Phase	. To understand the	e crystal parameters	and to classify the type of the defect pr	esent in t	he cry	stal.		
UNIT I PROPERTIES OF MATTER 9 Elasticity - Poisson's ratio and relationship between moduli (qualitative) - Stress-strain diagram - Factors affecting elasticity - Torsion pendulum -Determination of rigidity modulus- Moment of inertia of a body (regular)- Bending of beams - Bending moment - Cantilever - Theory and experiment of Young's modulus determination - Uniform and non-uniform bending - I shaped girders. UNIT II THERMAL PHYSICS 9 Transfer of heat energy - thermal expansion of solids and liquids - expansion joints - bimetallic strips - thermal conduction, convection and radiation - heat conductions in solids - thermal conductivity - Lee's disc method: theory and experiment - thermal insulation - applications: heat exchangers, refrigerators, ovens and solar water heaters. 9 UNIT II ACOUSTICS AND ULTRASONICS 9 Classification of Sound- decibel- Weber-Fechner law -Absorption Coefficient and its determination-Sound absorbing materials – factors affecting acoustics of buildings and their remedies. Production of ultrasonics by magnetostriction and piezoelectric methods - Engineering applications of Ultrasonics -Non-destructive testing- Pulse echo technique. 9 UNIT IV SOLID STATE PHYSICS 9 Single crystalline, polycrystalline and amorphous materials – single crystals: unit cell, crystal systems Bravais lattices, coordination number and packing factor for SC, BCC, FCC, HCP - Crystal imperfections point defects, line defects - Burger vectors. Applications: Powder X-ray diffraction 9 Metallic glasses: Types, Glass forming ability o	5. To explore the w	ide advancement in e	engineering materials by motivating t	he applic	ations	s of q	uantı	ım
Elasticity - Poisson's ratio and relationship between moduli (qualitative) - Stress-strain diagram - Factors affecting elasticity - Torsion pendulum -Determination of rigidity modulus- Moment of inertia of a body (regular)- Bending of beams - Bending moment - Cantilever - Theory and experiment of Young's modulus determination - Uniform and non-uniform bending - I shaped girders. UNIT II THERMAL PHYSICS 9 Transfer of heat energy - thermal expansion of solids and liquids - expansion joints - bimetallic strips - thermal conduction, convection and radiation - heat conductions in solids - thermal conductivity - Lee's disc method: theory and experiment - thermal insulation - applications: heat exchangers, refrigerators, ovens and solar water heaters. 9 UNIT II ACOUSTICS AND ULTRASONICS 9 Classification of Sound- decibel- Weber-Fechner law -Absorption Coefficient and its determination-Sound absorbing materials -factors affecting acoustics of buildings and their remedies. Production of ultrasonics by magnetostriction and piezoelectric methods - Engineering applications of Ultrasonics -Non-destructive testing- Pulse echo technique. 9 UNIT IV SOLID STATE PHYSICS 9 Single crystalline, polycrystalline and amorphous materials - single crystals: unit cell, crystal systems provais lattices, coordination number and packing factor for SC, BCC, FCC, HCP - Crystal imperfections point defects, line defects - Burger vectors. Applications: Powder X-ray diffraction 9 Metallic glasses: Types, Glass forming ability of alloys, melt spinning process and applications. Shape memory alloys (SMA): Phase, shape memory effect, pseudo elastic effec	mechanics.							
affecting elasticity - Torsion pendulum -Determination of rigidity modulus- Moment of inertia of a body (regular)- Bending of beams - Bending moment - Cantilever - Theory and experiment of Young's modulus determination - Uniform and non-uniform bending - I shaped girders. UNIT II THERMAL PHYSICS 9 Transfer of heat energy - thermal expansion of solids and liquids - expansion joints - bimetallic strips - thermal conduction, convection and radiation - heat conductions in solids - thermal conductivity - Lee's disc method: theory and experiment - thermal insulation - applications: heat exchangers, refrigerators, ovens and solar water heaters. UNIT III ACOUSTICS AND ULTRASONICS 9 Classification of Sound- decibel- Weber-Fechner law -Absorption Coefficient and its determination-Sound absorbing materials -factors affecting acoustics of buildings and their remedies. Production of ultrasonics by magnetostriction and piezoelectric methods - Engineering applications of Ultrasonics - Non-destructive testing- Pulse echo technique. UNIT IV SOLID STATE PHYSICS 9 Single crystalline, polycrystalline and amorphous materials - single crystals: unit cell, crystal systems Bravais lattices, coordination number and packing factor for SC, BCC, FCC, HCP - Crystal imperfections point defects, line defects - Burger vectors. Applications: Powder X-ray diffraction UNIT V ADVANCED ENGINEERING MATERIALS 9 Metallic glasses: Types, Glass forming ability of alloys, melt spinning process and applications. Shape memory alloys (SMA): Phase, shape memory effect, pseudo elastic effect NiTi alloy, application, Nanomaterials: Preparation (bottom up and top down approaches) -Pulsed Laser Method- Ball Milling Method - properties and applications. Shape memory alloys (SMA): Phase, shape memory effect, pseudo elastic effect NiTi alloy, application, Nanomaterials: Preparation (bottom up and top down approaches) -Pulsed Laser Method-Ball Milling Method - properties and applications. Shape memory alloys (GMA): Phase, shape memory effect, pseudo	UNIT I		PROPERTIES OF MATTER			9)	
(regular)- Bending of beams - Bending moment - Cantilever - Theory and experiment of Young's modulus determination - Uniform and non-uniform bending - I shaped girders. 9 UNIT II THERMAL PHYSICS 9 Transfer of heat energy - thermal expansion of solids and liquids - expansion joints - bimetallic strips - thermal conduction, convection and radiation - heat conductions in solids - thermal conductivity - Lee's disc method: theory and experiment - thermal insulation - applications: heat exchangers, refrigerators, ovens and solar water heaters. 9 UNIT III ACOUSTICS AND ULTRASONICS 9 Classification of Sound- decibel- Weber-Fechner law -Absorption Coefficient and its determination-Sound absorbing materials -factors affecting acoustics of buildings and their remedies. Production of ultrasonics by magnetostriction and piezoelectric methods - Engineering applications of Ultrasonics -Non-destructive testing- Pulse echo technique. 9 UNIT IV SOLID STATE PHYSICS 9 Single crystalline, polycrystalline and amorphous materials - single crystals: unit cell, crystal systems Bravais lattices, coordination number and packing factor for SC, BCC, FCC, HCP - Crystal imperfections point defects, line defects - Burger vectors. Applications: Powder X-ray diffraction 9 Multi V ADVANCED ENGINEERING MATERIALS 9 Metallic glasses: Types, Glass forming ability of alloys, melt spinning process and applications. 9 Shape memory alloys (SMA): Phase, shape memory effect, pseudo elastic effect NITi alloy, application, Nanomaterial	-		,					
determination - Uniform and non-uniform bending - I shaped girders. UNIT II THERMAL PHYSICS 9 Transfer of heat energy - thermal expansion of solids and liquids - expansion joints - bimetallic strips - thermal conduction, convection and radiation - heat conductions in solids - thermal conductivity - Lee's disc method: theory and experiment - thermal insulation - applications: heat exchangers, refrigerators, ovens and solar water heaters. 9 UNIT III ACOUSTICS AND ULTRASONICS 9 Classification of Sound- decibel- Weber-Fechner law -Absorption Coefficient and its determination-Sound absorbing materials -factors affecting acoustics of buildings and their remedies. Production of ultrasonics by magnetostriction and piezoelectric methods - Engineering applications of Ultrasonics -Non-destructive testing- Pulse echo technique. 9 UNIT IV SOLID STATE PHYSICS 9 Single crystalline, polycrystalline and amorphous materials - single crystals: unit cell, crystal systems Bravais lattices, coordination number and packing factor for SC, BCC, FCC, HCP - Crystal imperfections point defects, line defects - Burger vectors. Applications: Powder X-ray diffraction 9 Metallic glasses: Types, Glass forming ability of alloys, melt spinning process and applications. 9 Metallic glasses: Types, Glass forming ability of alloys, melt spinning process and applications. 9 Metallic glasses: Types, Glass forming ability of alloys, melt spinning process and applications. 9 Metallic glasses: Types, Gl	0	-						
UNIT II THERMAL PHYSICS 9 Transfer of heat energy - thermal expansion of solids and liquids - expansion joints - bimetallic strips - thermal conduction, convection and radiation - heat conductions in solids - thermal conductivity - Lee's disc method: theory and experiment - thermal insulation - applications: heat exchangers, refrigerators, ovens and solar water heaters. 9 UNIT III ACOUSTICS AND ULTRASONICS 9 Classification of Sound- decibel- Weber-Fechner law -Absorption Coefficient and its determination-Sound absorbing materials -factors affecting acoustics of buildings and their remedies. Production of ultrasonics by magnetostriction and piezoelectric methods - Engineering applications of Ultrasonics -Non-destructive testing- Pulse echo technique. 9 UNIT IV SOLID STATE PHYSICS 9 Single crystalline, polycrystalline and amorphous materials - single crystals: unit cell, crystal systems pravais lattices, coordination number and packing factor for SC, BCC, FCC, HCP - Crystal imperfections point defects - Burger vectors. Applications: Powder X-ray diffraction 9 Metallic glasses: Types, Glass forming ability of alloys, melt spinning process and applications. Shape memory alloys (SMA): Phase, shape memory effect, pseudo elastic effect NiTi alloy, application, Nanomaterials: Preparation (bottom up and top down approaches) -Pulsed Laser Method- Ball Milling Method - properties and applications. 45 Suggestive Assessment Methods I. Assignment (20 Marks) I. Assignment 2. Online Quizzes AT 1 - 10 Marks Descriptive <td></td> <td></td> <td></td> <td>eriment o</td> <td>of You</td> <td>ng's n</td> <td>nodu</td> <td>lus</td>				eriment o	of You	ng's n	nodu	lus
Transfer of heat energy - thermal expansion of solids and liquids - expansion joints - bimetallic strips - thermal conduction, convection and radiation - heat conductions in solids - thermal conductivity - Lee's disc method: theory and experiment - thermal insulation - applications: heat exchangers, refrigerators, ovens and solar water heaters.UNIT IIIACOUSTICS AND ULTRASONICS9Classification of Sound- decibel- Weber-Fechner law -Absorption Coefficient and its determination-Sound absorbing materials -factors affecting acoustics of buildings and their remedies. Production of ultrasonics by magnetostriction and piezoelectric methods - Engineering applications of Ultrasonics -Non-destructive testing- Pulse echo technique.9UNIT IVSOLID STATE PHYSICS9Single crystalline, polycrystalline and amorphous materials - single crystals: unit cell, crystal systems Bravais lattices, coordination number and packing factor for SC, BCC, FCC, HCP - Crystal imperfections point defects, line defects - Burger vectors. Applications: Powder X-ray diffractionUNIT VADVANCED ENGINEERING MATERIALS9Metallic glasses: Types, Glass forming ability of alloys, melt spinning process and applications. Shape memory alloys (SMA): Phase, shape memory effect, pseudo elastic effect NiTi alloy, application, Nanomaterials: Preparation (bottom up and top down approaches) -Pulsed Laser Method- Ball Milling Method - properties and applications.45Suggestive Assessment Test (20 Marks)Formative Assessment Test (20 Marks)End Semester Exams (60 Marks)AT 1 - 10 Marks2.Online Quizzes 3.DescriptiveAT 2 - 10 Marks3.Problem-Solving Activities		form and non-uniform						
thermal conduction, convection and radiation – heat conductions in solids – thermal conductivity – Lee's disc method: theory and experiment – thermal insulation – applications: heat exchangers, refrigerators, ovens and solar water heaters. UNIT III ACOUSTICS AND ULTRASONICS 9 Classification of Sound- decibel- Weber–Fechner law –Absorption Coefficient and its determination-Sound absorbing materials –factors affecting acoustics of buildings and their remedies. Production of ultrasonics by magnetostriction and piezoelectric methods - Engineering applications of Ultrasonics -Non-destructive testing- Pulse echo technique. UNIT IV SOLID STATE PHYSICS 9 Single crystalline, polycrystalline and amorphous materials – single crystals: unit cell, crystal systems Bravais lattices, coordination number and packing factor for SC, BCC, FCC, HCP – Crystal imperfections point defects, line defects – Burger vectors. Applications: Powder X-ray diffraction UNIT V ADVANCED ENGINEERING MATERIALS 9 Metallic glasses: Types, Glass forming ability of alloys, melt spinning process and applications. Shape memory alloys (SMA): Phase, shape memory effect, pseudo elastic effect NiTi alloy, application, Nanomaterials: Preparation (bottom up and top down approaches) -Pulsed Laser Method- Ball Milling Method – properties and applications. Suggestive Assessment Methods Continuous Assessment Test (20 Marks) 1. Assignment 2. Online Quizzes AT 1 – 10 Marks 2. Online Quizzes AT 2 – 10 Marks 3. Problem-Solving Activities								
disc method: theory and experiment – thermal insulation – applications: heat exchangers, refrigerators, ovens and solar water heaters. UNIT III ACOUSTICS AND ULTRASONICS 9 Classification of Sound- decibel- Weber–Fechner law –Absorption Coefficient and its determination-Sound absorbing materials –factors affecting acoustics of buildings and their remedies. Production of ultrasonics by magnetostriction and piezoelectric methods - Engineering applications of Ultrasonics -Non-destructive testing- Pulse echo technique. 9 UNIT IV SOLID STATE PHYSICS 9 Single crystalline, polycrystalline and amorphous materials – single crystals: unit cell, crystal systems Bravais lattices, coordination number and packing factor for SC, BCC, FCC, HCP – Crystal imperfections point defects, line defects – Burger vectors. Applications: Powder X-ray diffraction 9 Metallic glasses: Types, Glass forming ability of alloys, melt spinning process and applications. Shape memory alloys (SMA): Phase, shape memory effect, pseudo elastic effect NiTi alloy, application, Nanomaterials: Preparation (bottom up and top down approaches) -Pulsed Laser Method- Ball Milling Method – properties and applications. 45 Suggestive Assessment Test (20 Marks) Formative Assessment Test (20 Marks) End Semester Exams (60 Marks) 1. Assignment 2. Online Quizzes Descriptive				-			_	
ovens and solar water heaters. 9 UNIT III ACOUSTICS AND ULTRASONICS 9 Classification of Sound- decibel- Weber-Fechner law -Absorption Coefficient and its determination-Sound absorbing materials -factors affecting acoustics of buildings and their remedies. Production of ultrasonics by magnetostriction and piezoelectric methods - Engineering applications of Ultrasonics -Non-destructive testing- Pulse echo technique. 9 UNIT IV SOLID STATE PHYSICS 9 Single crystalline, polycrystalline and amorphous materials - single crystals: unit cell, crystal systems Bravais lattices, coordination number and packing factor for SC, BCC, FCC, HCP - Crystal imperfections point defects, line defects - Burger vectors. Applications: Powder X-ray diffraction 9 WINT V ADVANCED ENGINEERING MATERIALS 9 Metallic glasses: Types, Glass forming ability of alloys, melt spinning process and applications. 9 Metallic glasses: Preparation (bottom up and top down approaches) -Pulsed Laser Method- Ball Milling Method - properties and applications. 9 Suggestive Assessment Test (20 Marks) Formative Assessment Test (20 Marks) End Semester Exams (60 Marks) AT 1 - 10 Marks 2. Online Quizzes Descriptive						-	-	
UNIT IIIACOUSTICS AND ULTRASONICS9Classification of Sound- decibel- Weber-Fechner law -Absorption Coefficient and its determination-Sound absorbing materials -factors affecting acoustics of buildings and their remedies. Production of ultrasonics by magnetostriction and piezoelectric methods - Engineering applications of Ultrasonics -Non-destructive testing- Pulse echo technique.9UNIT IVSOLID STATE PHYSICS9Single crystalline, polycrystalline and amorphous materials - single crystals: unit cell, crystal systems Bravais lattices, coordination number and packing factor for SC, BCC, FCC, HCP - Crystal imperfections point defects, line defects - Burger vectors. Applications: Powder X-ray diffraction9UNIT VADVANCED ENGINEERING MATERIALS9Metallic glasses: Types, Glass forming ability of alloys, melt spinning process and applications. Shape memory alloys (SMA): Phase, shape memory effect, pseudo elastic effect NiTi alloy, application, Nanomaterials: Preparation (bottom up and top down approaches) -Pulsed Laser Method- Ball Milling Method - properties and applications.45Suggestive Assessment Methods (20 Marks)[0 Marks][60 Marks]Cantinuous Assessment Test (20 Marks)I. Assignment 2. Online Quizzes 3. Problem-Solving ActivitiesDescriptive	-	=	hermal insulation – applications: heat	: exchang	ers, re	efrige	rator	s,
Classification of Sound- decibel- Weber–Fechner law –Absorption Coefficient and its determination-Sound absorbing materials –factors affecting acoustics of buildings and their remedies. Production of ultrasonics by magnetostriction and piezoelectric methods - Engineering applications of Ultrasonics -Non-destructive testing- Pulse echo technique. UNIT IV SOLID STATE PHYSICS 9 Single crystalline, polycrystalline and amorphous materials – single crystals: unit cell, crystal systems Bravais lattices, coordination number and packing factor for SC, BCC, FCC, HCP – Crystal imperfections point defects, line defects – Burger vectors. Applications: Powder X-ray diffraction 9 UNIT V ADVANCED ENGINEERING MATERIALS 9 Metallic glasses: Types, Glass forming ability of alloys, melt spinning process and applications. Shape memory alloys (SMA): Phase, shape memory effect, pseudo elastic effect NiTi alloy, application, Nanomaterials: Preparation (bottom up and top down approaches) -Pulsed Laser Method- Ball Milling Method – properties and applications. 45 Suggestive Assessment Methods (20 Marks) (60 Marks) CAT 1 – 10 Marks 2. Online Quizzes Descriptive CAT 2 – 10 Marks 3. Problem-Solving Activities Descriptive		1						
absorbing materials - factors affecting acoustics of buildings and their remedies. Production of ultrasonics by magnetostriction and piezoelectric methods - Engineering applications of Ultrasonics -Non-destructive testing- Pulse echo technique. UNIT IV SOLID STATE PHYSICS 9 Single crystalline, polycrystalline and amorphous materials - single crystals: unit cell, crystal systems Bravais lattices, coordination number and packing factor for SC, BCC, FCC, HCP - Crystal imperfections point defects, line defects - Burger vectors. Applications: Powder X-ray diffraction 9 MIT V ADVANCED ENGINEERING MATERIALS 9 Metallic glasses: Types, Glass forming ability of alloys, melt spinning process and applications. 9 Shape memory alloys (SMA): Phase, shape memory effect, pseudo elastic effect NiTi alloy, application, Nanomaterials: Preparation (bottom up and top down approaches) -Pulsed Laser Method- Ball Milling Method - properties and applications. 45 Suggestive Assessment Methods Formative Assessment Test (20 Marks) End Semester Exams (20 Marks) 1. Assignment 2. Online Quizzes Descriptive 2. Online Quizzes 3. Problem-Solving Activities Descriptive								
by magnetostriction and piezoelectric methods - Engineering applications of Ultrasonics -Non-destructive testing- Pulse echo technique. UNIT IV SOLID STATE PHYSICS 9 Single crystalline, polycrystalline and amorphous materials - single crystals: unit cell, crystal systems Bravais lattices, coordination number and packing factor for SC, BCC, FCC, HCP - Crystal imperfections point defects, line defects - Burger vectors. Applications: Powder X-ray diffraction 9 UNIT V ADVANCED ENGINEERING MATERIALS 9 Metallic glasses: Types, Glass forming ability of alloys, melt spinning process and applications. Shape memory alloys (SMA): Phase, shape memory effect, pseudo elastic effect NiTi alloy, application, Nanomaterials: Preparation (bottom up and top down approaches) -Pulsed Laser Method- Ball Milling Method - properties and applications. 45 Suggestive Assessment Methods Interview Assessment Test (20 Marks) End Semester Exams (60 Marks) 1. Assignment 2. Online Quizzes Descriptive 2. Online Quizzes 3. Problem-Solving Activities Descriptive			•					
testing- Pulse echo technique.UNIT IVSOLID STATE PHYSICS9Single crystalline, polycrystalline and amorphous materials – single crystals: unit cell, crystal systems Bravais lattices, coordination number and packing factor for SC, BCC, FCC, HCP – Crystal imperfections point defects, line defects – Burger vectors. Applications: Powder X-ray diffractionUNIT VADVANCED ENGINEERING MATERIALS9Metallic glasses: Types, Glass forming ability of alloys, melt spinning process and applications. Shape memory alloys (SMA): Phase, shape memory effect, pseudo elastic effect NiTi alloy, application, Nanomaterials: Preparation (bottom up and top down approaches) -Pulsed Laser Method- Ball Milling Method – properties and applications.45Suggestive Assessment MethodsFormative Assessment Test (20 Marks)End Semester Exams (60 Marks)CAT 1 - 10 Marks2. Online Quizzes 3. Problem-Solving ActivitiesDescriptive	U	0	6					
UNIT IVSOLID STATE PHYSICS9Single crystalline, polycrystalline and amorphous materials – single crystals: unit cell, crystal systems Bravais lattices, coordination number and packing factor for SC, BCC, FCC, HCP – Crystal imperfections point defects, line defects – Burger vectors. Applications: Powder X-ray diffraction9UNIT VADVANCED ENGINEERING MATERIALS9Metallic glasses: Types, Glass forming ability of alloys, melt spinning process and applications. Shape memory alloys (SMA): Phase, shape memory effect, pseudo elastic effect NiTi alloy, application, Nanomaterials: Preparation (bottom up and top down approaches) -Pulsed Laser Method- Ball Milling Method – properties and applications.45Suggestive Assessment MethodsFormative Assessment Test (20 Marks)End Semester Exams (60 Marks)CAT 1 – 10 Marks CAT 2 – 10 Marks1. Assignment 2. Online Quizzes 3. Problem-Solving ActivitiesDescriptive			ethods - Engineering applications of	Ultrasoni	cs -No	on-de	struc	tive
Source of the of the original process and applications.Single crystalline, polycrystalline and amorphous materials – single crystals: unit cell, crystal systemsBravais lattices, coordination number and packing factor for SC, BCC, FCC, HCP – Crystal imperfectionspoint defects, line defects – Burger vectors. Applications: Powder X-ray diffractionUNIT VADVANCED ENGINEERING MATERIALSMetallic glasses: Types, Glass forming ability of alloys, melt spinning process and applications.Shape memory alloys (SMA): Phase, shape memory effect, pseudo elastic effect NiTi alloy, application, Nanomaterials: Preparation (bottom up and top down approaches) -Pulsed Laser Method- Ball Milling Method – properties and applications.Suggestive Assessment Methods45Continuous Assessment Test (20 Marks)Formative Assessment Test (20 Marks)End Semester Exams (60 Marks)CAT 1 - 10 Marks2. Online Quizzes 3. Problem-Solving ActivitiesDescriptive	testing- Pulse echo t	ecnnique.						
Bravais lattices, coordination number and packing factor for SC, BCC, FCC, HCP – Crystal imperfections point defects, line defects – Burger vectors. Applications: Powder X-ray diffraction UNIT V ADVANCED ENGINEERING MATERIALS 9 Metallic glasses: Types, Glass forming ability of alloys, melt spinning process and applications. Shape memory alloys (SMA): Phase, shape memory effect, pseudo elastic effect NiTi alloy, application, Nanomaterials: Preparation (bottom up and top down approaches) -Pulsed Laser Method- Ball Milling Method – properties and applications. Total Periods 45 Suggestive Assessment Methods Continuous Assessment Test (20 Marks) Formative Assessment Test (20 Marks) End Semester Exams (60 Marks) AT 1 – 10 Marks 2. Online Quizzes Descriptive AT 2 – 10 Marks 3. Problem-Solving Activities	UNIT IV		SOLID STATE PHYSICS			9	,	
Bravais lattices, coordination number and packing factor for SC, BCC, FCC, HCP – Crystal imperfections point defects, line defects – Burger vectors. Applications: Powder X-ray diffraction UNIT V ADVANCED ENGINEERING MATERIALS 9 Metallic glasses: Types, Glass forming ability of alloys, melt spinning process and applications. Shape memory alloys (SMA): Phase, shape memory effect, pseudo elastic effect NiTi alloy, application, Nanomaterials: Preparation (bottom up and top down approaches) -Pulsed Laser Method- Ball Milling Method – properties and applications. Total Periods 45 Suggestive Assessment Methods Continuous Assessment Test (20 Marks) Formative Assessment Test (20 Marks) End Semester Exams (60 Marks) AT 1 – 10 Marks 2. Online Quizzes Descriptive AT 2 – 10 Marks 3. Problem-Solving Activities	Single crystalline, p	olycrystalline and a	morphous materials – single crystal	s: unit ce	ell, crv	ystal	syste	ms
point defects - Burger vectors. Applications: Powder X-ray diffractionUNIT VADVANCED ENGINEERING MATERIALS9Metallic glasses: Types, Glass forming ability of alloys, melt spinning process and applications.9Shape memory alloys (SMA): Phase, shape memory effect, pseudo elastic effect NiTi alloy, application, Nanomaterials: Preparation (bottom up and top down approaches) -Pulsed Laser Method- Ball Milling Method - properties and applications.9Total Periods45Suggestive Assessment MethodsContinuous Assessment Test (20 Marks)Formative Assessment Test (20 Marks)End Semester Exams (60 Marks)1.Assignment2.Online QuizzesDescriptiveCAT 1 - 10 Marks CAT 2 - 10 Marks3.Problem-Solving ActivitiesDescriptive					-		-	
UNIT VADVANCED ENGINEERING MATERIALS9Metallic glasses: Types, Glass forming ability of alloys, melt spinning process and applications. Shape memory alloys (SMA): Phase, shape memory effect, pseudo elastic effect NiTi alloy, application, Nanomaterials: Preparation (bottom up and top down approaches) -Pulsed Laser Method- Ball Milling Method – properties and applications.9Method – properties and applications.Total Periods45Suggestive Assessment MethodsContinuous Assessment Test (20 Marks)Formative Assessment Test (20 Marks)End Semester Exams (60 Marks)CAT 1 – 10 Marks CAT 2 – 10 Marks1. Assignment 2. Online Quizzes 3. Problem-Solving ActivitiesDescriptive				-		-		
Metallic glasses: Types, Glass forming ability of alloys, melt spinning process and applications.Shape memory alloys (SMA): Phase, shape memory effect, pseudo elastic effect NiTi alloy, application, Nanomaterials: Preparation (bottom up and top down approaches) -Pulsed Laser Method- Ball Milling Method – properties and applications.Method – properties and applications.Total Periods45Suggestive Assessment MethodsFormative Assessment Test (20 Marks)End Semester Exams (60 Marks)1.AssignmentLaser Method2.Online Quizzes 3.Descriptive	-	-			1	9	,	
Shape memory alloys (SMA): Phase, shape memory effect, pseudo elastic effect NiTi alloy, application, Nanomaterials: Preparation (bottom up and top down approaches) -Pulsed Laser Method- Ball Milling Method – properties and applications.Method – properties and applications.Total Periods45Suggestive Assessment MethodsContinuous Assessment Test (20 Marks)Formative Assessment Test (20 Marks)End Semester Exams (60 Marks)1.Assignment				1 1.	Ļ			
Nanomaterials: Preparation (bottom up and top down approaches) -Pulsed Laser Method- Ball Milling Method – properties and applications.Total Periods45Suggestive Assessment MethodsContinuous Assessment Test (20 Marks)Formative Assessment Test (20 Marks)End Semester Exams (60 Marks)1.Assignment1.AssignmentCAT 1 – 10 Marks CAT 2 – 10 Marks2.Online Quizzes 3.Descriptive							1	
Method – properties and applications.Total Periods45Suggestive Assessment MethodsContinuous Assessment Test (20 Marks)Formative Assessment Test (20 Marks)End Semester Exams (60 Marks)1.Assignment1.AssignmentCAT 1 – 10 Marks CAT 2 – 10 Marks2.Online Quizzes 3.Descriptive		,			-			
Total Periods45Suggestive Assessment MethodsContinuous Assessment Test (20 Marks)Formative Assessment Test (20 Marks)End Semester Exams (60 Marks)1.Assignment1.AssignmentCAT 1 – 10 Marks CAT 2 – 10 Marks2.Online Quizzes 3.Descriptive			and top down approaches) -Puised	Laser Me	tnoa-	Ball	MIIII	ıg
Suggestive Assessment MethodsContinuous Assessment Test (20 Marks)Formative Assessment Test (20 Marks)End Semester Exams (60 Marks)1. AssignmentCAT 1 – 10 Marks2. Online Quizzes 	Method – properties	and applications.	Total	Dominda				
Continuous Assessment Test (20 Marks)Formative Assessment Test (20 Marks)End Semester Exams (60 Marks)1. AssignmentCAT 1 – 10 MarksCAT 2 – 10 Marks3. Problem-Solving Activities	Suggestive Access	wayt Mathada	Iotal	rerioas	<u> </u>	4:	3	
(20 Marks)(20 Marks)(60 Marks)1. Assignment1. AssignmentCAT 1 - 10 Marks2. Online QuizzesDescriptiveCAT 2 - 10 Marks3. Problem-Solving Activities			Formation Access 17		C		7	
1. Assignment2. Online QuizzesCAT 1 – 10 Marks2. Online QuizzesCAT 2 – 10 Marks3. Problem-Solving Activities								S
CAT 1 – 10 Marks2. Online QuizzesDescriptiveCAT 2 – 10 Marks3. Problem-Solving Activities	(20 M	arksj		<u> </u>	<u>(</u> ου Μ	arks	J	
CAT 2 – 10 Marks 3. Problem-Solving Activities			_		Det		_	
			-		Descr	iptive	ŝ	
	Descriptive Questions	5	3. Problem-Solving Activities					

Outcomes Upon completion of the course, the students will be able to: CO1 Recognize the concept of elasticity, stress, strain and bending moments as well as Uniform and non-uniform bending in beams (Understand) CO2 Apply the thermal applications to various home appliances. (Apply) CO3 Understand the characteristics of Music and Noise, Noise pollution and its control using the basic concepts of acoustics and know the principle and properties of ultrasonics using different testing methods. (Understand) CO4 Demonstrate an understanding of several key areas of Crystal Physics. (Understand) CO5 Identify different types of material processing techniques for advanced materials. (Understand) CO4 Demonstrate an understanding of several key areas of Crystal Physics. (Understand) CO4 Demonstrate an understanding of several key areas of Crystal Physics. (Understand) CO4 Demonstrate an understanding of several key areas of Crystal Physics. (Understand) CO4 Demonstrate an understanding of several key areas of Crystal Physics. (Understand) CO4 Demonstrate an understanding of several key areas of Crystal Physics. (Understand) Text Boobs
C01 Recognize the concept of elasticity, stress, strain and bending moments as well as Uniform and non-uniform bending in beams. (Understand) C02 Apply the thermal applications to various home appliances. (Apply) C03 Understand the characteristics of Music and Noise, Noise pollution and its control using the basic concepts of acoustics and know the principle and properties of ultrasonics using different testing methods. (Understand) C04 Demonstrate an understanding of several key areas of Crystal Physics. (Understand) C05 Identify different types of material processing techniques for advanced materials. (Understand) C06 4 Demonstrate an understanding of several key areas of Crystal Physics. (Understand) C07 5 Identify different types of material processing techniques for advanced materials. (Understand) C08 6 Text Books 1 Bhattacharya, D.K. & Poonam, T. "Engineering Physics". Oxford University Press, 2015. 2 Rajendran V, "Engineering Physics. Tata Mc-Graw Hill publishing company limited, New Delhi, Revised Edition 2018 Reference Books Text Books 1 Pandey, B.K. & Chaturvedi, S. – Engineering: A First course". PHI Learning, 2015. 2 Sankar, B.N., Pillai.S.O., Engineering Physics I, New Age International (P) Ltd., 2015 3 Guaxhar, B.N., Pillai.S.O., Engineering: A First course". PHI Learning, 2015. 5 <
non-uniform bending in beams. (Understand) CO2 Apply the thermal applications to various home appliances. (Apply) CO3 Understand the characteristics of Music and Noise, Noise pollution and its control using the basic concepts of acoustics and know the principle and properties of ultrasonics using different testing methods. (Understand) CO4 Demonstrate an understanding of several key areas of Crystal Physics. (Understand) CO5 Identify different types of material processing techniques for advanced materials. (Understand) Text Books
CO2 Apply the thermal applications to various home appliances. (Apply) CO3 Understand the characteristics of Music and Noise, Noise pollution and its control using the basic concepts of acoustics and know the principle and properties of ultrasonics using different testing methods. (Understand) CO4 Demonstrate an understanding of several key areas of Crystal Physics. (Understand) CO5 Identify different types of material processing techniques for advanced materials. (Understand) Text Books Image: Concentration of the physics of thysics of the ph
CO3 Understand the characteristics of Music and Noise, Noise pollution and its control using the basic concepts of acoustics and know the principle and properties of ultrasonics using different testing methods. (Understand) CO4 Demonstrate an understanding of several key areas of Crystal Physics. (Understand) CO4 Demonstrate an understanding of several key areas of Crystal Physics. (Understand) CO5 Identify different types of material processing techniques for advanced materials. (Understand) Text Books 1. Bhattacharya, D.K. & Poonam, T. "Engineering Physics". Oxford University Press, 2015. 2. Rajendran V, "Engineering Physics". Tata Mc-Graw Hill publishing company limited, New Delhi, Revised Edition 2018 Reference Books 1. Pandey, B.K. & Chaturvedi, S. —Engineering Physics.Cengage Learning India2018. 2. Raghavan, V. "Materials Science and Engineering: A First course". PHI Learning, 2015. 3. Sankar, B.N., Pillai.S.O., Engineering Physics I, New Age International (P) Ltd., 2015 4. D. Halliday, R. Resnick and J. Walker. Principles of Physics, Wiley (Indian Edition), 2015. 5. Guozhong Cao, Nanostructures and Nanomaterials, Imperial College Press, 2004. 6. Arthur Beiser, Shobhit Mahajan, S. Rai Choudhury, Concepts of Modern Physics, McGraw-Hill (Indian Edition), 2017. Web Resources 1. https://archive.nptel.a
basic concepts of acoustics and know the principle and properties of ultrasonics using different testing methods. (Understand) C0 4 Demonstrate an understanding of several key areas of Crystal Physics. (Understand) C0 5 Identify different types of material processing techniques for advanced materials. (Understand) Text Books 1. Bhattacharya, D.K. & Poonam, T. "Engineering Physics". Oxford University Press, 2015. 2. Rajendran V, "Engineering Physics". Tata Mc-Graw Hill publishing company limited, New Delhi, Revised Edition 2018 Reference Books 1. Pandey, B.K. & Chaturvedi, S. —Engineering Physics.Cengage Learning India2018. 2. Raghavan, V. "Materials Science and Engineering: A First course". PHI Learning, 2015. 3. Sankar, B.N., Pillai.S.O., Engineering Physics I, New Age International (P) Ltd., 2015 4. D. Halliday, R. Resnick and J. Walker. Principles of Physics, Wiley (Indian Edition), 2015. 5. Guozhong Cao, Nanostructures and Nanomaterials, Imperial College Press, 2004. 6. Arthur Beiser, Shobhit Mahajan, S. Rai Choudhury, Concepts of Modern Physics. Learning. McGrav-Hill (Indian Edition), 2017. Web Resources 1. https://archive.nptel.ac.in/courses/115/105/115105099/ 3. Unit I,II,IV -https://www.brainkart.com/subject/Engineering-Physics 263/
different testing methods. (Understand) CO 4 Demonstrate an understanding of several key areas of Crystal Physics. (Understand) CO 5 Identify different types of material processing techniques for advanced materials. (Understand) Text Books 1 B hattacharya, D.K. & Poonam, T. "Engineering Physics". Oxford University Press, 2015. 2. Rajendran V, "Engineering Physics". Tata Mc-Graw Hill publishing company limited, New Delhi, Revised Edition 2018 Reference Books 1. Pandey, B.K. & Chaturvedi, S. —Engineering Physics.Cengage Learning India2018. 2. Raghavan, V. "Materials Science and Engineering: A First course". PHI Learning, 2015. 3. Sankar, B.N., Pillai.S.O., Engineering Physics I, New Age International (P) Ltd., 2015 4. D. Halliday, R. Resnick and J. Walker. Principles of Physics, Wiley (Indian Edition), 2015. 5. Guozhong Cao, Nanostructures and Nanomaterials, Imperial College Press, 2004. 6. Arthur Beiser, Shobhit Mahajan, S. Rai Choudhury, Concepts of Modern Physics, McGraw-Hill (Indian Edition), 2017. Web Resources 1. https://archive.nptel.ac.in/courses/122/107/122107035/ 2. https://archive.nptel.ac.in/courses/115/105/115105099/ 3. Unit I,II,IV -https://www.brainkart.com/subject/Engineering-Physics 263/ 4. Unit III - https://www.brainkart.com/article/Advanced-Engineering-Materials-Metallic-Glasses 6815/ CO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8
CO 4 Demonstrate an understanding of several key areas of Crystal Physics. (Understand) CO 5 Identify different types of material processing techniques for advanced materials. (Understand) Text Books 1. Bhattacharya, D.K. & Poonam, T. "Engineering Physics". Oxford University Press, 2015. 2. Rajendran V, "Engineering Physics". Tata Mc-Graw Hill publishing company limited, New Delhi, Revised Edition 2018 Reference Books 1. Pandey, B.K. & Chaturvedi, S. —Engineering Physics.Cengage Learning India2018. 2. Raghavan, V. "Materials Science and Engineering: A First course". PHI Learning, 2015. 3. Sankar, B.N., Pillai.S.O., Engineering Physics I, New Age International (P) Ltd., 2015 4. D. Halliday, R. Resnick and J. Walker. Principles of Physics, Wiley (Indian Edition), 2015. 5. Guozhong Cao, Nanostructures and Nanomaterials, Imperial College Press, 2004. 6. Arthur Beiser, Shobhit Mahajan, S. Rai Choudhury, Concepts of Modern Physics, McGraw-Hill (Indian Edition), 2017. Web Resources 1. https://archive.nptel.ac.in/courses/122/107/122107035/ 2. https://archive.nptel.ac.in/courses/115/105/115105099/ 3. Unit I,II,IV -https://www.brainkart.com/subject/Engineering-Physics 263/ Co Vs PO Mapping and CO Vs PSO Mapping CO vs PO Mapping and CO vs PSO Mapping
CO 5 Identify different types of material processing techniques for advanced materials. (Understand) Text Books 1. Bhattacharya, D.K. & Poonam, T. "Engineering Physics". Oxford University Press, 2015. 2. Rajendran V, "Engineering Physics". Tata Mc-Graw Hill publishing company limited, New Delhi, Revised Edition 2018 Reference Books 1. Pandey, B.K. & Chaturvedi, S. —Engineering Physics.Cengage Learning India2018. 2. Raghavan, V. "Materials Science and Engineering: A First course". PHI Learning, 2015. 3. Sankar, B.N., Pillai.S.O., Engineering Physics I, New Age International (P) Ltd., 2015 4. D. Halliday, R. Resnick and J. Walker. Principles of Physics, Wiley (Indian Edition), 2015. 5. Guozhong Cao, Nanostructures and Nanomaterials, Imperial College Press, 2004. 6. Arthur Beiser, Shobhit Mahajan, S. Rai Choudhury, Concepts of Modern Physics, McGraw-Hill (Indian Edition), 2017. Web Resources 1. https://archive.nptel.ac.in/courses/112/107/122107035/ 2. https://www.brainkart.com/asticle/Advanced-Engineering-Physics 263/ 4. Unit I,II,IV - https://www.brainkart.com/article/Advanced-Engineering-Materials-Metallic-Glasses 6815/ Co Vs PO Mapping and CO Vs PSO Mapping Co Vs PO Mapping and CO Vs PSO
Image: Section 2.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1
Text Books 1. Bhattacharya, D.K. & Poonam, T. "Engineering Physics". Oxford University Press, 2015. 2. Rajendran V, "Engineering Physics". Tata Mc-Graw Hill publishing company limited, New Delhi, Revised Edition 2018 Reference Books 1. Pandey, B.K. & Chaturvedi, S. —Engineering Physics.Cengage Learning India2018. 2. Raghavan, V. "Materials Science and Engineering: A First course". PHI Learning, 2015. 3. Sankar, B.N., Pillai.S.O., Engineering Physics I, New Age International (P) Ltd., 2015 4. D. Halliday, R. Resnick and J. Walker. Principles of Physics, Wiley (Indian Edition), 2015. 5. Guozhong Cao, Nanostructures and Nanomaterials, Imperial College Press, 2004. 6. Arthur Beiser, Shobhit Mahajan, S. Rai Choudhury, Concepts of Modern Physics, McGraw-Hill (Indian Edition), 2017. Web Resources 1. https://archive.nptel.ac.in/courses/122/107/122107035/ 2. https://archive.nptel.ac.in/courses/115/105/115105099/ 3. Unit II. https://www.brainkart.com/subject/Engineering-Physics 263/ 4. Unit III- https://www.brainkart.com/article/Advanced-Engineering-Materials-Metallic-Glasses 6815/ Co Vs PO Mapping and CO Vs PSO Mapping Co Vs PO Mapping and CO Vs PSO Mapping C0 P01
1. Bhattacharya, D.K. & Poonam, T. "Engineering Physics". Oxford University Press, 2015. 2. Rajendran V, "Engineering Physics". Tata Mc-Graw Hill publishing company limited, New Delhi, Revised Edition 2018 Reference Books 1. Pandey, B.K. & Chaturvedi, S. —Engineering Physics.Cengage Learning India2018. 2. Raghavan, V. "Materials Science and Engineering: A First course". PHI Learning, 2015. 3. Sankar, B.N., Pillai.S.O., Engineering Physics I, New Age International (P) Ltd., 2015 4. D. Halliday, R. Resnick and J. Walker. Principles of Physics, Wiley (Indian Edition), 2015. 5. Guozhong Cao, Nanostructures and Nanomaterials, Imperial College Press, 2004. 6. Arthur Beiser, Shobhit Mahajan, S. Rai Choudhury, Concepts of Modern Physics, McGraw-Hill (Indian Edition), 2017. Web Resources 1. https://archive.nptel.ac.in/courses/122/107/122107035/ 2. https://archive.nptel.ac.in/courses/115/105/115105099/ 3. Unit III- https://www.brainkart.com/subject/Engineering-Physics 263/ 4. Unit VII-https://www.brainkart.com/article/Advanced-Engineering-Materials-Metallic-Glasses 6815/ CO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO PO PO PO PO PO PS PSO PSO 1 3 2 1 1 1 1 1 2
2. Rajendran V, "Engineering Physics". Tata Mc-Graw Hill publishing company limited, New Delhi, Revised Edition 2018 Reference Books 1. Pandey, B.K. & Chaturvedi, S. —Engineering Physics.Cengage Learning India2018. 2. Raghavan, V. "Materials Science and Engineering: A First course". PHI Learning, 2015. 3. Sankar, B.N., Pillai.S.O., Engineering Physics I, New Age International (P) Ltd., 2015 4. D. Halliday, R. Resnick and J. Walker. Principles of Physics, Wiley (Indian Edition), 2015. 5. Guozhong Cao, Nanostructures and Nanomaterials, Imperial College Press, 2004. 6. Arthur Beiser, Shobhit Mahajan, S. Rai Choudhury, Concepts of Modern Physics, McGraw-Hill (Indian Edition), 2017. Web Resources 1. https://archive.nptel.ac.in/courses/122/107/122107035/ 2. https://archive.nptel.ac.in/courses/115/105/115105099/ 3. Unit I,II,IV -https://www.brainkart.com/subject/Engineering-Physics 263/ 4. Unit III- https://www.brainkart.com/article/Advanced-Engineering-Materials-Metallic-Glasses 6815/ CO Vs PO Mapping and CO Vs PSO Mapping CO P01 P02 P03 P04 P05 P06 P07 P08 P09 P0 P1 1 2 1 3 2 1 1 1 1 1 1 1 1
Delhi, Revised Edition 2018 Reference Books 1. Pandey, B.K. & Chaturvedi, S. —Engineering Physics.Cengage Learning India2018. 2. Raghavan, V. "Materials Science and Engineering: A First course". PHI Learning, 2015. 3. Sankar, B.N., Pillai.S.O., Engineering Physics I, New Age International (P) Ltd., 2015 4. D. Halliday, R. Resnick and J. Walker. Principles of Physics, Wiley (Indian Edition), 2015. 5. Guozhong Cao, Nanostructures and Nanomaterials, Imperial College Press, 2004. 6. Arthur Beiser, Shobhit Mahajan, S. Rai Choudhury, Concepts of Modern Physics, McGraw-Hill (Indian Edition), 2017. Web Resources 1. https://archive.nptel.ac.in/courses/122/107/122107035/ 2. https://archive.nptel.ac.in/courses/115/105/115105099/ 3. Unit I,II,IV -https://www.brainkart.com/subject/Engineering-Physics 263/ 4. Unit III- https://www.brainkart.com/article/Advanced-Engineering-Materials-Metallic-Glasses 6815/ CO Vs PO Mapping and CO Vs PSO Mapping CO Vs PO Mapping and CO Vs PSO Mapping I 1 1 1 1 3 2 1 1 1 1
Reference Books 1. Pandey, B.K. & Chaturvedi, S. —Engineering Physics.Cengage Learning India2018. 2. Raghavan, V. "Materials Science and Engineering: A First course". PHI Learning, 2015. 3. Sankar, B.N., Pillai.S.O., Engineering Physics I, New Age International (P) Ltd., 2015 4. D. Halliday, R. Resnick and J. Walker. Principles of Physics, Wiley (Indian Edition), 2015. 5. Guozhong Cao, Nanostructures and Nanomaterials, Imperial College Press, 2004. 6. Arthur Beiser, Shobhit Mahajan, S. Rai Choudhury, Concepts of Modern Physics, McGraw-Hill (Indian Edition), 2017. Web Resources 1. https://archive.nptel.ac.in/courses/112/107/122107035/ 2. https://archive.nptel.ac.in/courses/115/105/115105099/ 3. Unit I,II,IV -https://www.brainkart.com/subject/Engineering-Physics 263/ 4. Unit III- https://www.brainkart.com/article/Advanced-Engineering-Materials-Metallic-Glasses 6815/ CO Vs PO Mapping and CO Vs PSO Mapping CO Vs PO Mapping and CO Vs PSO Mapping I. 1 1 1 1 3 2 1 1 1 1 2 1 3 2 1 1 1 1 1
1. Pandey, B.K. & Chaturvedi, S. —Engineering Physics.Cengage Learning India2018. 2. Raghavan, V. "Materials Science and Engineering: A First course". PHI Learning, 2015. 3. Sankar, B.N., Pillai.S.O., Engineering Physics I, New Age International (P) Ltd., 2015 4. D. Halliday, R. Resnick and J. Walker. Principles of Physics, Wiley (Indian Edition), 2015. 5. Guozhong Cao, Nanostructures and Nanomaterials, Imperial College Press, 2004. 6. Arthur Beiser, Shobhit Mahajan, S. Rai Choudhury, Concepts of Modern Physics, McGraw-Hill (Indian Edition), 2017. Web Resources 1. https://archive.nptel.ac.in/courses/122/107/122107035/ 2. https://archive.nptel.ac.in/courses/115/105/115105099/ 3. Unit I,II,V -https://www.brainkart.com/subject/Engineering-Physics 263/ 4. Unit III- https://www.brainkart.com/subject/Engineering-Materials-Metallic-Glasses 6815/ CO Vs PO Mapping and CO Vs PSO Mapping CO Vs PO Mapping and CO Vs PSO Mapping C0 P01 P02 P03 P04 P05 P06 P07 P08 P09 P0 P0 PS0 PS0 1 3 2 1 1 1 1 1 1 1 1
 2. Raghavan, V. "Materials Science and Engineering: A First course". PHI Learning, 2015. 3. Sankar, B.N., Pillai.S.O., Engineering Physics I, New Age International (P) Ltd., 2015 4. D. Halliday, R. Resnick and J. Walker. Principles of Physics, Wiley (Indian Edition), 2015. 5. Guozhong Cao, Nanostructures and Nanomaterials, Imperial College Press, 2004. 6. Arthur Beiser, Shobhit Mahajan, S. Rai Choudhury, Concepts of Modern Physics, McGraw-Hill (Indian Edition), 2017. Web Resources https://archive.nptel.ac.in/courses/122/107/122107035/ https://archive.nptel.ac.in/courses/115/105/115105099/ Unit I,II,IV -https://www.brainkart.com/subject/Engineering-Physics 263/ 4. Unit III- https://www.brainkart.com/subject/Engineering-Materials-Metallic-Glasses 6815/ CO PO1 P02 P03 P04 P05 P06 P07 P08 P09 P0 P0 P0 P50 PS0 PS0 11 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 3. Sankar, B.N., Pillai.S.O., Engineering Physics I, New Age International (P) Ltd., 2015 4. D. Halliday, R. Resnick and J. Walker. Principles of Physics, Wiley (Indian Edition), 2015. 5. Guozhong Cao, Nanostructures and Nanomaterials, Imperial College Press, 2004. 6. Arthur Beiser, Shobhit Mahajan, S. Rai Choudhury, Concepts of Modern Physics, McGraw-Hill (Indian Edition), 2017. Web Resources https://archive.nptel.ac.in/courses/122/107/122107035/ https://archive.nptel.ac.in/courses/115/105/115105099/ Unit I,II,IV -https://www.brainkart.com/subject/Engineering-Physics 263/ 4. Unit III- https://www.brainkart.com/article/Advanced-Engineering-Materials-Metallic-Glasses 6815/ CO PO1 P02 P03 P04 P05 P06 P07 P08 P09 P0 P0 P0 P50 PS0 10 11 12 1 2 1 3 2 1 1 1 1
 4. D. Halliday, R. Resnick and J. Walker. Principles of Physics, Wiley (Indian Edition), 2015. 5. Guozhong Cao, Nanostructures and Nanomaterials, Imperial College Press, 2004. 6. Arthur Beiser, Shobhit Mahajan, S. Rai Choudhury, Concepts of Modern Physics, McGraw-Hill (Indian Edition), 2017. Web Resources https://archive.nptel.ac.in/courses/122/107/122107035/ https://archive.nptel.ac.in/courses/115/105/115105099/ Unit I,II,IV - https://www.brainkart.com/subject/Engineering-Physics 263/ Unit III- https://www.brainkart.com/subject/Engineering-Materials-Metallic-Glasses 6815/ CO PO1 P02 P03 P04 P05 P06 P07 P08 P09 P0 P0 P0 P50 P50 11 12 1 2 1 3 2 1 1 1 1 1 1 1
 5. Guozhong Cao, Nanostructures and Nanomaterials, Imperial College Press, 2004. 6. Arthur Beiser, Shobhit Mahajan, S. Rai Choudhury, Concepts of Modern Physics, McGraw-Hill (Indian Edition), 2017. Web Resources https://archive.nptel.ac.in/courses/122/107/122107035/ https://archive.nptel.ac.in/courses/115/105/115105099/ 3. Unit I,II,IV -<u>https://www.brainkart.com/subject/Engineering-Physics 263/</u> 4. Unit III- <u>https://www.brainkart.com/subject/Engineering-Physics 263/</u> 4. Unit V-<u>https://www.brainkart.com/article/Advanced-Engineering-Materials-Metallic-Glasses 6815/</u> CO Vs PO Mapping and CO Vs PSO Mapping CO P01 P02 P03 P04 P05 P06 P07 P08 P09 P0 P0 P0 P0 PS0 PS0 11 12 1 2 1 3 2 1 1 1 1 1 1 1
 6. Arthur Beiser, Shobhit Mahajan, S. Rai Choudhury, Concepts of Modern Physics, McGraw-Hill (Indian Edition), 2017. Web Resources 1. https://archive.nptel.ac.in/courses/122/107/122107035/ 2. https://archive.nptel.ac.in/courses/115/105/115105099/ 3. Unit I,II,IV -https://www.brainkart.com/subject/Engineering-Physics 263/ 4. Unit III- https://www.brainkart.com/subject/Engineering-Physics 263/ 4. Unit III- https://www.brainkart.com/article/Advanced-Engineering-Materials-Metallic-Glasses 6815/ CO vs PO Mapping and CO vs PSO Mapping CO P01 P02 P03 P04 P05 P06 P07 P08 P09 P0 P0 P0 PS0 PS0 11 12 1 2 1 3 2 1 1 1 1 1
 6. Arthur Beiser, Shobhit Mahajan, S. Rai Choudhury, Concepts of Modern Physics, McGraw-Hill (Indian Edition), 2017. Web Resources 1. https://archive.nptel.ac.in/courses/122/107/122107035/ 2. https://archive.nptel.ac.in/courses/115/105/115105099/ 3. Unit I,II,IV -https://www.brainkart.com/subject/Engineering-Physics 263/ 4. Unit III- https://www.brainkart.com/subject/Engineering-Physics 263/ 4. Unit III- https://www.brainkart.com/article/Advanced-Engineering-Materials-Metallic-Glasses 6815/ CO Vs PO Mapping and CO Vs PSO Mapping CO P01 P02 P03 P04 P05 P06 P07 P08 P09 P0 P0 P0 PS0 PS0 11 12 1 2 1 3 2 1 1 1 1 1
McGraw-Hill (Indian Edition), 2017. Web Resources 1. https://archive.nptel.ac.in/courses/122/107/122107035/ 2. https://archive.nptel.ac.in/courses/115/105/115105099/ 3. Unit I,II,IV -https://www.brainkart.com/subject/Engineering-Physics 263/ 4. Unit III- https://www.brainkart.com/subject/Engineering-Physics 263/ 5. UnitV-https://www.brainkart.com/article/Advanced-Engineering-Materials-Metallic-Glasses 6815/ CO Vs PO Mapping and CO Vs PSO Mapping Co P01 P02 P03 P04 P05 P06 P07 P08 P09 P0 P0 PS0 PS0 1 3 2 1 1 1 1 1 1
Web Resources 1. https://archive.nptel.ac.in/courses/122/107/122107035/ 2. https://archive.nptel.ac.in/courses/115/105/115105099/ 3. Unit I,II,IV -https://www.brainkart.com/subject/Engineering-Physics 263/ 4. Unit III- https://www.brainkart.com/subject/Engineering-Physics 263/ 5. UnitV-https://www.brainkart.com/article/Advanced-Engineering-Materials-Metallic-Glasses 6815/ CO Vs PO Mapping and CO Vs PSO Mapping Co Vs PO Mapping and CO Vs PSO Mapping Co PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO PO PS0 PS0 2 1 3 2 1 1 1 1 1 1
2. <u>https://archive.nptel.ac.in/courses/115/105/115105099/</u> 3. Unit I,II,IV - <u>https://www.brainkart.com/subject/Engineering-Physics 263/</u> 4. Unit III- <u>https://www.tce.edu/sites/default/files/PDF/RV3-ACOUSTICS-ULTRASONICS.pdf</u> 5. UnitV- <u>https://www.brainkart.com/article/Advanced-Engineering-Materials-Metallic-Glasses 6815/</u> CO Vs PO Mapping and CO Vs PSO Mapping CO P01 P02 P03 P04 P05 P06 P07 P08 P09 P0 P0 P0 P0 PSO PSO 11 12 1 2 1 3 2 1 1 1 1 1 1 1
3. Unit I,II,IV - <u>https://www.brainkart.com/subject/Engineering-Physics 263/</u> 4. Unit III- <u>https://www.tce.edu/sites/default/files/PDF/RV3-ACOUSTICS-ULTRASONICS.pdf</u> 5. UnitV- <u>https://www.brainkart.com/article/Advanced-Engineering-Materials-Metallic-Glasses 6815/</u> CO VS PO Mapping and CO VS PSO Mapping CO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO PO PO PSO PSO 1 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4. Unit III- https://www.tce.edu/sites/default/files/PDF/RV3-ACOUSTICS-ULTRASONICS.pdf 5. UnitV-https://www.brainkart.com/article/Advanced-Engineering-Materials-Metallic- Glasses 6815/ CO VS PO Mapping and CO VS PSO Mapping CO VS PO Mapping and CO VS PSO Mapping CO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO PO PO PO PSO PSO 1 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5. UnitV- <u>https://www.brainkart.com/article/Advanced-Engineering-Materials-Metallic-Glasses 6815/</u> CO Vs PO Mapping and CO Vs PSO Mapping CO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO PO PO PO PSO PSO 1 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Glasses 6815/ CO VS PO Mapping and CO VS PSO Mapping CO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO PO PO PSO PSO 1 3 2 1 1 1 1 1 1 2
Glasses 6815/ CO VS PO Mapping and CO VS PSO Mapping CO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO PO PO PSO PSO 1 3 2 1 1 1 1 1 1 2
CO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO PO PO PS0 PS0 PS0 1 3 2 1 1 1 1 1 1 2
CO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 10 11 12 1 2 1 3 2 1
1 3 2 1 1 1 1 1 1 2
2 3 2 1 1 1
3 3 2 1 1 1 1

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Recognize the concept of elasticity, stress, strain and bending moments as well as Uniform and non-uniform bending in beams. (Understand)

1.A Scale is under depression at the free end of a cantilever due to load. Describe an experiment to determine the young's modulus of the cantilever using this expression.

2. Give the theory of torsion pendulum and describe a method to find the moment of inertia of an irregular body.

3. How will you determine the young's modulus of material of a bar by non-uniform Bending method? Explain briefly the theory behind the determination of young's modulus.

COURSE OUTCOME 2: Apply the thermal applications to various home appliances. (Apply)

- 1. Can heat exchange through a medium, explain their detailed overview depending on the medium.
- 2. Imagine a quantity of heat flowing through a metal slab whose faces are kept at two different temperatures. Determine the thermal conductivity of a bad conductor.
- 3. The total area of a glass window pane is 0.8 m². Calculate how much heat is conducted per hour through the glass window pane if the thickness of glass is 3 mm. The temperature of the inside surface is 25 °C and outside surface is 4 °C. The thermal conductivity of glass is 1.1 Wm-1K-1

COURSE OUTCOME 3: Understand the characteristics of Music and Noise, Noise pollution and its control using the basic concepts of acoustics and know the principle and properties of ultrasonics using different testing methods. (Understand)

- 1. With the help of a neat sketch the construction and production of ultrasonic waves using piezoelectric oscillator.
- 2. Explain the process of non-destructive testing of materials using ultrasonic waves by pulse echo overlap method.
- 3. Exemplify the increase in the acoustic intensity level when the sound intensity is doubled

COURSE OUTCOME 4: Demonstrate an understanding of several key areas of crystal physics (Understand)

- 1. Estimate the atomic packing factor for SC, BCC & FCC structures.
- 2. Classify the types of the defects present in the crystal.

COURSE OUTCOME 5: Identify different types of material processing techniques for advanced materials. **(Understand)**

- 1. Explain the preparation, types, properties and application of metallic glasses.
- 2. Describe the properties and applications of shape memory alloys.
- 3. Discuss briefly about the working of pulsed laser method used for nanoparticle deposition

	L	С								
21CY1401	ENGINEERING CHEMISTRY	3	0	0	3					
Prerequisites	for the course									
Basic theoretical concepts of Chemistry in higher secondary level.										
Preamble										
To enable the	students to acquire knowledge in the concepts of chem	istry	for	engii	neering					
	nd to familiarize the students with different application	-		-						
electrochemist	ry, corrosion prevention methods, significance of alloys, benef	its of	rene	ewabl	e					
	, engineering materials, desalination etc., which enable them to	o deve	elop a	abiliti	es and					
	elevant to the study and practice of engineering chemistry.									
Objectives										
•	p the students in conversant with boiler feed water requiremen	its, re	lated	prob	lems					
	ter treatment techniques.			_						
	e the students familiar with the principles of electrochemistry a									
	elop an understanding of the basic concepts of phase rule an		• •							
0	and two component systems and appreciate the purpose and sig				-					
	e a thorough understanding on the principles and generation of reactors, solar cells, wind mills and fuel cells.	ener	gy m	Datte	illes,					
	the students learn the basics of polymer chemistry and mecha	nism	oflu	hrica	tion					
UNIT I	WATER AND ITS TREATMENT			9						
	vater – types – expression of hardness – units – estimation of	hardr		-	ter hv					
	rical problems – boiler troubles (scale and sludge) – treatment				-					
	ment (phosphate and calgon conditioning) external treatm									
	ination of brackish water - Reverse Osmosis.		101							
UNIT II	ELECTROCHEMISTRY AND CORROSION			9						
Electrodes- t	ypes, Cells- types, Construction (Daniel cell) - Electroo	de p	otent	ial-	Photo					
	al cell-working and applications – Nernst equation and its appl									
its application										
	uses- Types- Chemical, Electrochemical corrosion (galvanic, o									
	ntrol – Material selection and design aspects – Electroch	emica	al pi	otect	ion –					
	de cathodic Protection method.									
UNIT III	PHASE RULE AND ALLOYS			9						
	roduction, definition of terms with examples, one component sy									
	se rule - thermal analysis and cooling curves - two component :	syster	ns - I	ead-s	ilver					
5	nson's process.	6			fft					
	action- Definition- properties of alloys- significance of alloying, ments- Nichrome and stainless steel (18/8) – heat treatment of			and e	mect					
UNIT IV	ENERGY SOURCES AND STORAGE DEVICES	steel.		9						
_	- Nuclear fusion - Differences between nuclear fission and f	incion	N	-	r chain					
	lear energy - Light Water Nuclear Power Plant - Solar energy c									
- Wind energy.	ical chergy light water Nuclear Fower Flant Solar chergy c	UIIVCI	31011	501						
	el cells: Types of batteries – Primary battery (dry cell) Second	larv h	attei	v (le	ad acid					
	n ion battery – Electric Vehicles – working principles, Fuel cel									
microbial fuel cell; Supercapacitors: Storage principle, types and examples.										
UNIT V	ENGINEERING MATERIALS			9						
Polymers: Class	sification of Polymers – Preparation, properties and uses of '	Гeflor	1 and	l Nyle	on 6,6-					
Benefits and Applications. Composites: Introduction: Definition & Need for composites; Properties										
	s of Polymer matrix composites and hybrid composites.									
	s: Types of nanomaterials; properties and uses of nanopartic									
	and nanotube. Preparation of nanomaterials: sol-gel, chemic	-	-	-						
and electrochemical deposition methods. Applications of nanomaterials in medicine, agriculture,										

energy and electronics.

Total Periods

45

Suggestive Assessment Methods								
Continuous Assessment Test (20 Marks)	Formative Assessment Test (20 Marks)	End Semester Exams (60 Marks)						
Descriptive Type CAT 1 10 Marks CAT 2 10 Marks	1. Assignment 2. MCQs	1.Descriptive Type Questions						

Outcomes

Upon completion of the course, the students will be able to:

CO.1: Infer the quality of water parameters from quality parameter data and propose suitable methodologies to treat water. (Remember).

CO2: Identify and apply the basic principles of electrochemistry and corrosionC103.3:

CO3: Identify suitable alloys for material analysis.

CO4: Identify different forms of energy resources and apply them in suitable energy sectors.C103.5: CO5: Recognize and apply basic knowledge on polymers and nanomaterials to futuristic materials fabrication needs

Text Books

1. P. C. Jain and Monika Jain, "Engineering Chemistry" DhanpatRai Publishing Company (P) LTD, New Delhi, 2018

Reference Books

- 1. Friedrich Emich, "Engineering Chemistry", Scientific International PVT, LTD, New Delhi, 2014.
- 2. PrasantaRath, "Engineering Chemistry", Cengage Learning India PVT, LTD, Delhi, 2015.
- 3. B. S. Murty, P. Shankar, Baldev Raj, B. B. Rath and James Murday, "Text book of nanoscience and nanotechnology", Universities Press-IIM Series in Metallurgy and Materials Science, 2018.
- 4. ShikhaAgarwal, "Engineering Chemistry-Fundamentals and Applications", Cambridge University Press, Delhi, Second Edition, 2019.
- 5. O.V. Roussak and H.D. Gesser, Applied Chemistry-A Text Book for Engineers and Technologists, Springer Science Business Media, New York, 2nd Edition, 2013.
- 6. S. S. Dara and S. S. Umare, "A Textbook of Engineering Chemistry", S. Chand & Company LTD, New Delhi, 2018.

Web Resources

- 1. NPTEL Course <u>https://www.digimat.in/nptel/courses/video/121106014/L01.html</u>
- 2. Mod-06 Lec-36 Fundamentals of Electrochemical Techniques

https://www.youtube.com/watch?v=l2ENx_Y0dNU

- 3. Heat treatment of steel <u>https://www.youtube.com/watch?v=3IQz9LAPuIA</u>
- 4. Renewable energy resources <u>https://youtu.be/mh51mAUexK4</u>
- 5. Nanomaterials <u>https://youtu.be/qUEbxTkPIWI</u>

CO Vs PO Mapping and CO Vs PSO Mapping

CO	P01	P02	P03	P04	PO5	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2
C01	3	2	2	1		1	1					1		
C02	3	2	2	1		1	1					1		
C03	3	1	1	1		1	1					1		
C04	3	2	2	1		1	1					1		
C05	3	2	2	1		1	1					1		

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Students will be able to infer the quality of water parameters from quality parameter data and propose suitable methodologies to treat water. **(Understand)**

- 1. How is the exhausted resin regenerated in an ion exchanger?
- 2. Suggest your valuable ideas to protect the boiler from corrosion.

COURSE OUTCOME 2: Students will be able to identify and apply the basic principles of electrochemistry, corrosion and corrosion control. (Apply)

- 1. Compare the mechanisms involved in electrochemical cells and electrolytic cells.
- 2. How corrosion is prevented by sacrificial anode cathodic protection methods.

COURSE OUTCOME 3: Students will be able to apply the knowledge of phase rule and alloys for material analysis. (Apply)

- 1. Illustrate phase, component and degree of freedom with example
- 2. Will stainless steel rust? Justify.

COURSE OUTCOME 4: Students will be able to recognise different forms of energy resources and apply them in suitable energy sectors. **(Apply)**

- 1. Is it safe to utilize wind energy for domestic purposes? How are commercial wind farms developed and how can I get a wind farm on my property?
- 2. Critically analyze nuclear power technology in terms of environmental and health safety. Draw a general layout of the Light water nuclear reactor and explain its components.

COURSE OUTCOME 5: Students will be able to identify and apply basic concepts of polymer science, composites and nanotechnology in designing the synthesis of materials for engineering and technology applications. (Apply)

- 1. What do you feel the repercussions are for extended life through utilization of nanotechnology?
- 2. Give an account of the preparation properties and uses of Teflon and nylon 6,6. d nylon 6,6.

21CS1514	C Programming	L	Т	Р
	(Common for MECH & CIVIL)	2	0	2

Preamble

This course is intended for the students to learn the basic concepts of C programming to enhance the programming knowledge of students. C programming provides the basis for many new programming languages. The lab experiments will provide practical exposure because C programming is the basic language of choice for hardware interfaces, real time robotic control and to develop and test prototypes in the field of engineering.

Prerequisites for the course

• NIL

Objectives

- 1. To develop a basic programs using conditional statements.
- 2. To develop the problem solving ability in using iterations and arrays
- 3. To solve the complex problems using strings, functions and pointers.
- 4. To develop programs for storing different data using structures and union
- 5. To learn the concept of files and to perform read and write operations

UNIT I BASICS OF C & CONDITIONAL STATEMENTS

Structure of a C program – Compiling and executing C programs - Character Sets in C- Keywords-Identifiers- **Tokens:** Constants, Variables – Data types- Operators and Expressions – Managing Input and Output Operations – **Branching statements:** if – if else – nested if - else if ladder – switch case- break, continue, go-to statement.

SUGGESTED ACTIVITIES

• Demonstrate the use of data types and operators

SUGGESTED EVALUATION METHODS

- Quiz on the basics of C programming
- Write programs using types of branching statements

UNIT II LOOPS A

LOOPS AND ARRAYS

Looping statements: Entry controlled loops – for loop - while loop– exit controlled loops – do while loop-Nested loops - **Arrays:** Declaration- Initialization- One Dimensional Array- Two DimensionalArray and Multidimensional Arrays.

SUGGESTED ACTIVITIES

- Demonstrate the types of looping statements
- Demonstrate the types of arrays

С

3

6

6

SUGGESTED EVALUATION METHODS

- Quiz on the basics of loops and arrays
- Write programs using loops in one, two and multidimensional arrays

UNIT III STRINGS, FUNCTIONS AND POINTERS

6

6

6

Strings: Declaration, Initialization - String Operations – **Functions:** Declaration, Definition, Function Call – Call by Value, Call by Reference - Parameter passing methods, Recursion **Pointers:** Declaration- Definition- Pointers and Functions – Dynamic Memory Allocation.

SUGGESTED ACTIVITIES

- Discussion on functions about Call by Value, Call by Reference and recursion examples
- Demonstrate the use of strings and dynamic memory allocation using pointers

SUGGESTED EVALUATION METHODS

- Quiz on the basics of strings, functions and pointers
- Write programs using functions by incorporating strings and pointers in functions

UNIT IV STRUCTURES AND UNION

Structure: Definition – need – general form - Nested structures – Pointer and Structures – Array of structures – Self-referential Structures - **Unions**: Definition – need – general form –Programs using structures and unions.

SUGGESTED ACTIVITIES

- Discussion on nested structures and self-referential structures using examples
- Demonstrate the difference between structures and unions

SUGGESTED EVALUATION METHODS

- Quiz on the basics of structures and unions
- Write programs using pointers in structures and unions

UNIT V FILE PROCESSING

Introduction to files – **Types of files:** Text, Binary – File Operations – Functions – **Types of File Processing:** Sequential access, Random access – Sequential access files – Random access files.

SUGGESTED ACTIVITIES

- Discussion on the need for file processing and access
- Demonstrate the difference between sequential access files and random access files

SUGGESTED EVALUATION METHODS

- Quiz on the basics of files
- Write programs using modes of file operations

Total Periods 30 Theory +30 Lab

Laboratory Requirements

• 60 Systems with windows / LINUX operating system with C Software or equivalent.

Suggestive Assessment

Continuous Assessment Test (30 Marks)	Lab Components Assessments (20 Marks)	End Semester Exam (50 Marks)		
1. DESCRIPTIVE QUESTIONS 2. PROGRAMMING QUESTIONS	1. LAB EXPERIMENTS 2. MODEL EXAMINATION			
Outcomes Upon completion of the course	the students will be able to:			
	em solving logics using conditional sta	atements.		
	iterations and to apply the basic conc			
	functions and pointers to solve the co			
CO4: To implement the structure	e and union concepts with pointers.			
CO5: To handle the files and to a	ccess the data from the files to implen	nent real time projects.		
Text Books				

Reference Books

1. Byron Gottfried "Programming With C" Fourth Edition, McGrawHill, 2018.

Web Resources

- 1. C Programming Fundamentals https://nptel.ac.in/courses/106105171/
- 2. https://w
- 3. https://w
- 4. https://w
- 5. https://w
- 6. https://w
- 7. https://w

List of experiments

S.NO	NAME OF EXPERIMENTS	СО
	Programs using simple statements	
1	a) Write a program to calculate the slope of a line.	C01
	b) Write a program to convert polar coordinates to Cartesian coordinates	

Fra	incis Xavi	ier Engineering College Dept of Mechanical Engineering R2021/Curriculum and Syl	labi
	2	 Programs using decision making statements a) Design a calculator to perform the arithmetic operations. b) A weather forecasting agency would like to intimate the people about the current temperature with the properclimatic message. Develop a C program to read temperature in centigrade and display a suitable message according to temperature state below : Temp < 0 then Freezing weather Temp 0-10 then Very Cold weather Temp 10-20 then Cold weather Temp 20-30 then Normal in Temp Temp 30-40 then Its Hot Temp >=40 then Its Very Hot 	C01
	3	 Programs using looping statements a) A supermarket manager wishes to keep some toys and puzzle games to enable the customers to manage theirkids during the purchase time. He kept a machine called "Fortune Teller machine", it replies the kid with some fortune message if he enters the palindrome number. It replies with "try again later" if the kid failed to input a valid palindrome number. Write a C program to help the manager to run the "Fortune Teller Machine" perfectly. b) Write a C program to find the factorial of a number using all types of loops 	C02
	4	 Programs using one dimensional and two dimensional arrays a) Given below is the list of marks obtained by a class of 20students in an annual examination. 43 65 7 24 87 90 19 39 58 75 67 87 90 92 14 78 82 99 56 89 Write a program to count the number of students belonging to each of following groups of marks: 0- 9,10-19,upto ,100. b) Write a C program to input a set of integer numbers, count and sum the 	C02
	5	 b) Write a C program to input a set of integer finites, count and sum the positive numbers and the negative numbers then print the count and sum of all positive numbers and negative numbers. Programs using string operations a) Write a C program to find if the given string is palindrome or not b) Write a C program to reverse the given string 	C03
	6	 Programs using user defined functions and recursive functions a) From a given paragraph perform the following using built-infunctions: Find the total number of words. Capitalize the first word of each sentence. Replace a given word with another word. b) Sort the list of numbers using pass by reference. 	C03
	7	 Programs using functions and pointers a) Write a program in C to store n elements in an array and print the elements using pointer. b) Write a program in C to find the factorial of a given number using pointers 	C03
	8	Programs using structures and pointers a) Write a C program to calculate the salary of employees in an organization using the concept of structures with and without the usage of pointers	CO4

Fra	<u>ncis Xav</u> 9	<u>ier Engineering College Dept of Mechanical Engineering R2021/Curriculum and Syla</u> Programs using structures and unions a) Write a C program to display the memory allocation of multiple data types using structure and union	abi CO4
	10	 Programs using file concepts a) Write a program to create a file and store 20 names in it. Write a program to read the names in the file. b) Write a program to add five new names in the existing list by appending the names in the existing file. 	CO5

CO Vs PO Mapping and CO Vs PSO Mapping

СО	РО 1	РО 2	РО 3	РО 4	РО 5	РО 6	РО 7	РО 8	РО 9	P01 0	P01 1	P01 2	PSO 1	PSO 2	PSO 3
1	3	3	3										3		
2	3	3	3										3		
3	3	3	3										3		
4	3	3	3										3		
5	3	3	3										3		

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	Lab Components	Model Exam	END SEM EXAM
REMEMBER	15	15			20
UNDERSTAND	15	15			30
APPLY	60	60	100	100	50
ANALYZE					
EVALUATE					
CREATE					

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1:

- Write a program to round off an integer 'i' to the next largest multiple of another integer 'j'. Example: 256 days when rounded off next largest multiple divisible by a week resulted into 259.
- Suppose a, b and c are integer variables that have been assigned the values a=8, b=3, and c= Determine the value of each of the following arithmetic expressions in C program.

(i) a+b+c (ii) 2*b+3*(a-c) (iii) a/b (iv) a%b

<u>(v) a*(b/c)</u>

Francis Xavier Engineering College/ Dept of Mechanical Engineering/ R2021/Curriculum and Syllabi

COURSE OUTCOME 2:

- 1. Write a C program to reverse a number using while, do while and for loop
- 2. Write a C program to get the two matrices as a run time input and perform addition operation and display the resultant matrix as the output. Let the Matrix $A = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

3 1

Matrix B =
$$\begin{bmatrix} 3 & 2\\ 1 & 4 \end{bmatrix}$$

COURSE OUTCOME 3:

1. Write a C program to sort an array of numbers using function pointers.

2. Write a C program to find factorial of a number using call by value and call by reference methods

COURSE OUTCOME 4:

- 1. Write a C program to store employee information and search a particular employee using employee number.
- 2. Write a C program to get a student data with name, id and percentage and display it using pointers.

COURSE OUTCOME 5:

- 1. Write a C program to read from the num.dat file and find the average of the numbers using random access.
- 2. Write a C program to simulate and maintain the bank's account information such as authentication and authorization of inserted card, and performing the functions of cash withdrawal, cash deposit, and account's balance enquiry. Implement the scenario using random access file.

Francis Xavier Engineering College/ Dept of Mechanical Engineering/ R2021/Curriculum and Syllabi

21HS1101	FNGLISH FOR PROFESSI	ONAL COMMUNICATION	L	Τ	Р	C
21HS1101	ENGLISH FOR I KOFESSI	UNAL COMMUNICATION	2	0	2	3
Preamble				•	•	
This course is	offered to equip students with	the necessary skills to listen,	read, w	vrite	e, and s	speał
so as to comp	rehend and successfully conve	ey any idea, technical or oth	erwise,	as	well as	s giv
them the neces	ssary polish to become persuas	sive communicators.				
Prerequisites	s for the course					
The prerequis	ite knowledge required to stud	y this Course is the basic know	vledge	in E	nglish	
Language.						
Objectives						
	elop listening skills, and enhanc	•	g.			
	municate confidently in varied					
	en the basic reading skills of the		echnolo	gy s	tuden	ts.
	ter vocabulary, sentence struct	cure and to write articles.				
	te emotional awareness.					
Module I	SHARING BASIC INFORMAT	ION			12	
the need of '	Technology in a rapidly char		Vriting	- r	estruc	turir
the need of ' sentences from Yes/No questi		nging global environment; N ating coherence; Language d development - formation of	Vriting evelopi	- r nen	estruc t - Fr	turir amir
the need of ' sentences from Yes/No questi	Technology in a rapidly char m the jumbled words – crea ions, Question tag, Vocabulary andard Abbreviations related to	nging global environment; N ating coherence; Language d development - formation of	Vriting evelopi	- r nen	estruc t - Fr	turir amir
the need of ' sentences from Yes/No questi Adjectives, Sta Suggested Acti	Technology in a rapidly char m the jumbled words – crea ions, Question tag, Vocabulary andard Abbreviations related to	nging global environment; W ating coherence; Language d development - formation of DEngineering.	Vriting evelopi words-	- r men - ve	estruc t - Fr rb – N	turir amir oun
the need of ' sentences from Yes/No questi Adjectives, Sta Suggested Acti i) Listening to concepts from	Technology in a rapidly char m the jumbled words – crea ions, Question tag, Vocabulary undard Abbreviations related to ivities Conversations/ technical suggested app/prescribed	nging global environment; V ating coherence; Language d development - formation of o Engineering. Evaluation Method i) Listening & Speaking: Sul will be assessed for	Vriting evelopi words-	- r men - ve	estruc t - Fr rb – N nversa	turir amir oun tion
the need of ' sentences from Yes/No questi Adjectives, Sta Suggested Acti i) Listening to concepts from modules - Sub	Technology in a rapidly char m the jumbled words – crea ions, Question tag, Vocabulary andard Abbreviations related to ivities Conversations/technical suggested app/prescribed mission of 5 Recorded	nging global environment; Wating coherence; Language d development - formation of b Engineering. Evaluation Method i) Listening & Speaking: Sul will be assessed for a) Language style as that of	Vriting evelopi words-	- r men - ve	estruc t - Fr rb – N nversa	turin amin oun tion
the need of ' sentences from Yes/No questi Adjectives, Sta Suggested Acti i) Listening to concepts from	Technology in a rapidly char m the jumbled words – crea ions, Question tag, Vocabulary andard Abbreviations related to ivities Conversations/technical suggested app/prescribed mission of 5 Recorded	nging global environment; Wating coherence; Language d development - formation of b Engineering. Evaluation Method i) Listening & Speaking: Sul will be assessed for a) Language style as that of b) Pronunciation	Vriting evelopi words-	- r men - ve	estruc t - Fr rb – N nversa	turin amin oun tion
the need of ' sentences from Yes/No questi Adjectives, Sta Suggested Acti i) Listening to concepts from modules - Sub Conversations	Technology in a rapidly char m the jumbled words – crea ions, Question tag, Vocabulary andard Abbreviations related to ivities Conversations/ technical suggested app/prescribed mission of 5 Recorded s.	nging global environment; Wating coherence; Language d development - formation of b Engineering. Evaluation Method i) Listening & Speaking: Sul will be assessed for a) Language style as that of	Vriting evelopi words-	- r men - ve	estruc t - Fr rb – N nversa	turir amir oun tion
the need of ' sentences from Yes/No questi Adjectives, Sta Suggested Acti i) Listening to concepts from modules - Sub Conversations ii) Introducing	Technology in a rapidly char m the jumbled words – crea ions, Question tag, Vocabulary andard Abbreviations related to ivities Conversations/ technical suggested app/prescribed mission of 5 Recorded s. goneself to the audience in a	nging global environment; Wating coherence; Language d development - formation of b Engineering. Evaluation Method i) Listening & Speaking: Sul will be assessed for a) Language style as that of b) Pronunciation c) Intonation	Vriting evelop words- omitted the san	- r men - ve	estruc t - Fr rb – N nversa audio	turin amin oun tion
the need of ' sentences from Yes/No questi Adjectives, Sta Suggested Acti i) Listening to concepts from modules - Sub Conversations ii) Introducing professional w	Technology in a rapidly char m the jumbled words – crea ions, Question tag, Vocabulary andard Abbreviations related to ivities Conversations/ technical suggested app/prescribed mission of 5 Recorded s.	nging global environment; Wating coherence; Language d development - formation of D Engineering. Evaluation Method i) Listening & Speaking: Sul will be assessed for a) Language style as that of b) Pronunciation c) Intonation ii) Introduction: Submitted	Vriting evelop words- omitted the san	- r men - ve	estruc t - Fr rb – N nversa audio	turin amin oun tion
the need of ' sentences from Yes/No questi Adjectives, Sta Suggested Acti i) Listening to concepts from modules - Sub Conversations ii) Introducing professional w	Technology in a rapidly char m the jumbled words – crea ions, Question tag, Vocabulary andard Abbreviations related to ivities Conversations/ technical suggested app/prescribed mission of 5 Recorded s. goneself to the audience in a	nging global environment; Wating coherence; Language d development - formation of b Engineering. Evaluation Method i) Listening & Speaking: Sul will be assessed for a) Language style as that of b) Pronunciation c) Intonation ii) Introduction: Submitted be assessed for	Vriting evelop words- omitted the san Video F	- r men - ve	estruc t - Fr rb – N nversa audio	turir amir oun tion
the need of ' sentences from Yes/No questi Adjectives, Sta Suggested Acti i) Listening to concepts from modules - Sub Conversations ii) Introducing	Technology in a rapidly char m the jumbled words – crea ions, Question tag, Vocabulary andard Abbreviations related to ivities Conversations/ technical suggested app/prescribed mission of 5 Recorded s. goneself to the audience in a	nging global environment; Wating coherence; Language d development - formation of D Engineering. Evaluation Method i) Listening & Speaking: Sul will be assessed for a) Language style as that of b) Pronunciation c) Intonation ii) Introduction: Submitted	Vriting evelop words- omitted the san Video F	- r men - ve	estruc t - Fr rb – N nversa audio	turin amin oun tion
the need of ' sentences from Yes/No questi Adjectives, Sta Suggested Acti i) Listening to concepts from modules - Sub Conversations ii) Introducing professional w submitted.	Technology in a rapidly char m the jumbled words – crea ions, Question tag, Vocabulary andard Abbreviations related to ivities Conversations/ technical suggested app/prescribed mission of 5 Recorded s. goneself to the audience in a	nging global environment; Wating coherence; Language d development - formation of D Engineering. Evaluation Method i) Listening & Speaking: Sul will be assessed for a) Language style as that of b) Pronunciation c) Intonation ii) Introduction: Submitted be assessed for a) Communication Etiquett	Vriting evelop words- omitted the san Video F	- r men - ve	estruc t - Fr rb – N nversa audio	turir amir oun tion
the need of ' sentences from Yes/No questi Adjectives, Sta Suggested Acti i) Listening to concepts from modules - Sub Conversations ii) Introducing professional w submitted.	Technology in a rapidly char m the jumbled words – crea ions, Question tag, Vocabulary andard Abbreviations related to ivities Conversations/ technical suggested app/prescribed mission of 5 Recorded s. goneself to the audience in a vay - Video Recording to be	nging global environment; Wating coherence; Language d development - formation of D Engineering. Evaluation Method i) Listening & Speaking: Sul will be assessed for a) Language style as that of b) Pronunciation c) Intonation ii) Introduction: Submitted be assessed for a) Communication Etiquett b) Language Style	Vriting evelop words- omitted the san Video F	- r men - ve	estruc t - Fr rb – N nversa audio	turir amir oun tion
the need of ' sentences from Yes/No questi Adjectives, Sta Suggested Acti i) Listening to concepts from modules - Sub Conversations ii) Introducing professional w submitted. iii) Reading 3 I answering que	Technology in a rapidly char m the jumbled words – crea ions, Question tag, Vocabulary undard Abbreviations related to ivities Conversations/ technical suggested app/prescribed mission of 5 Recorded s. goneself to the audience in a vay - Video Recording to be Passages on Technology and	nging global environment; Wating coherence; Language d development - formation of D Engineering. Evaluation Method i) Listening & Speaking: Sul will be assessed for a) Language style as that of b) Pronunciation c) Intonation ii) Introduction: Submitted be assessed for a) Communication Etiquett b) Language Style	Vriting evelop words- omitted the san Video F	- r men - ve	estruc t - Fr rb – N nversa audio	turir amir oun tion
the need of ' sentences from Yes/No questi Adjectives, Sta Suggested Acti i) Listening to concepts from modules - Sub Conversations ii) Introducing professional w submitted. iii) Reading 3 I answering que iv) Rearrangin	Technology in a rapidly char m the jumbled words – crea ions, Question tag, Vocabulary undard Abbreviations related to ivities Conversations/ technical suggested app/prescribed mission of 5 Recorded s. goneself to the audience in a vay - Video Recording to be Passages on Technology and estions through Google forms.	nging global environment; Wating coherence; Language de development - formation of Dengineering. Evaluation Method i) Listening & Speaking: Sul will be assessed for a) Language style as that of b) Pronunciation c) Intonation ii) Introduction: Submitted be assessed for a) Communication Etiquett b) Language Style c) Sentence Construction	Vriting evelop words- omitted the san Video F e	- r men - ve	estruc t - Fr rb – N nversa audio	turir amir oun tion will
the need of ' sentences from Yes/No questi Adjectives, Sta Suggested Acti i) Listening to concepts from modules - Sub Conversations ii) Introducing professional w submitted. iii) Reading 3 I answering que iv) Rearrangin	Technology in a rapidly char m the jumbled words – crea ions, Question tag, Vocabulary undard Abbreviations related to ivities Conversations/ technical suggested app/prescribed mission of 5 Recorded s. goneself to the audience in a vay - Video Recording to be Passages on Technology and estions through Google forms.	nging global environment; Wating coherence; Language d development - formation of D Engineering. Evaluation Method i) Listening & Speaking: Sul will be assessed for a) Language style as that of b) Pronunciation c) Intonation ii) Introduction: Submitted be assessed for a) Communication Etiquett b) Language Style	Vriting evelop words- omitted the san Video F e	- r men - ve	estruc t - Fr rb – N nversa audio	turir amir oun tion will

Francis Xavier Engineering College| Dept of Mechanical Engineering| R2021/Curriculum and Syllabi

Listening - Listening to technical lectures by native speakers; Speaking - introducing a device/gadget to the audience – giving importance to its specifications, descriptions, merits and demerits; Reading - extensive reading – short narratives and news items from newspapers related to technology; Writing - sentence structure – short passages / reviews on any gadget – describing an electronic/ mechanical gadget, importance of punctuation, organizing paragraphs; Language development - framing 'Wh' Questions, writing a complete sentence using the fragments given; Vocabulary development- prefix and suffix.

Suggested ActivitiesEvaluation Methodi) Listening to Technical Lectures -i) Listening skills will be tested throughSuggested Youtube channelsa) MCQs - Google Forms - 3 Setsa) Learn Engineeringb) Jared Owenc) Interesting Engineeringb) Practical Engineeringd) Practical Engineeringii) Speaking / Submitting video recording /classroom presentation about anelectronic/electrical/ a mechanical gadgetgiving importance to its specifications,a) Language Style & Fluencyb) Google News / Times Now / and other Techb) Creation of Google Slides / Canva Slidesiv) Writing reviews of a productc)v) Teaching of Grammar Contentsthrough GoogleModule IIIUNDERSTANDING TECHNOLOGY12Listening - listening to technical talks on emerging trends and filling in the blanks - cloze test;Speaking - asking for opinions about technical gadgets - presentation of reviews onelectronic/electrical/mechanical/softwareproducts; Reading - Reading Comprehension -technical passages - Articles from journals; Writing - rearranging jumbled sentences, writingshort essays; Language development - Direct Speech and Indirect Speech - Framing Indirect -Questions - Prepositions - Articles; Vocabulary development - Select Single Word Substitutes
Suggested Youtube channels a) MCQs - Google Forms - 3 Sets a) Learn Engineering b) Jared Owen c) Interesting Engineering b) Quiz - Polling - 2 set d) Practical Engineering ii)Speaking / Submitting video recording / classroom presentation about an electronic/electrical/ a mechanical gadget giving importance to its specifications, descriptions, merits and demerits. iii) Reading articles from Newspaper/ Google News / Times Now / and other Tech News Sites v) Teaching of Grammar Contents iv) Writing reviews of a product v) Teaching of Grammar Contents Module III UNDERSTANDING TECHNOLOGY 12 Listening - listening to technical talks on emerging trends and filling in the blanks - cloze test; Speaking - Reading Comprehension - technical passages - Articles from journals; Writtig - rearranging jumbled sentences, writig short essays; Language development - Direct Speech and Indirect Speech - Framing Indirect - Questions - Prepositions - Articles; Vocabulary development - Select Single Word Substitutes
a) Learn Engineering b) Jared Owen c) Interesting Engineering d) Practical Engineeringb) Quiz - Polling - 2 setii) Speaking / Submitting video recording / classroom presentation about an electronic/electrical/ a mechanical gadget giving importance to its specifications, descriptions, merits and demerits.ii) Speaking: Submitted Video Recording/Presentation during class hours will be assessed for a) Language Style & Fluency b) Creation of Google Slides / Canva Slides c) Content deliveryiii) Reading articles from Newspaper/ Google News / Times Now / and other Tech News SitesActivities iii to v will be assessed through Google form tests/ written tests.iv) Writing reviews of a productVV) Teaching of Grammar Contents12Module IIIUNDERSTANDING TECHNOLOGY12Listening - listening to technical talks on emerging trends and filling in the blanks - cloze test; Speaking - asking for opinions about technical gadgets - presentation of reviews on electronic/electrical/mechanical/software products; Reading - Reading Comprehension - technical passages - Articles from journals; Writing - rearranging jumbled sentences, writing short essays; Language development - Direct Speech and Indirect Speech - Framing Indirect - Questions - Prepositions - Articles; Vocabulary development - Select Single Word Substitutes
b) Jared Owenc) Interesting Engineeringd) Practical Engineeringii) Speaking / Submitting video recording / classroom presentation about an electronic/electrical/ a mechanical gadget giving importance to its specifications, descriptions, merits and demerits.iii) Reading articles from Newspaper/ Google News / Times Now / and other Tech News Sitesiv) Writing reviews of a productv) Teaching of Grammar ContentsModule IIIUNDERSTANDING TECHNOLOGYListening - listening to technical talks on emerging trends and filling in the blanks - cloze test; Speaking - asking for opinions about technical gadgets - presentation of reviews on electronic/electrical/mechanical/software products; Reading - Reading Comprehension - technical passages - Articles from journals; Writing - rearranging jumbled sentences, writing short essays; Language development - Direct Speech and Indirect Speech - Framing Indirect - Questions - Prepositions - Articles; Vocabulary development - Select Single Word Substitutes
c) Interesting Engineering d) Practical Engineeringii)Speaking / Submitting video recording / classroom presentation about an electronic/electrical / a mechanical gadget giving importance to its specifications, descriptions, merits and demerits.ii)Speaking: Submitted Video Recording/Presentation during class hours will be assessed for a) Language Style & Fluency b) Creation of Google Slides / Canva Slides c) Content deliveryiii) Reading articles from Newspaper/ Google News / Times Now / and other Tech News SitesActivities iii to v will be assessed through Google form tests/ written tests.iv) Writing reviews of a productv) Teaching of Grammar ContentsModule IIIUNDERSTANDING TECHNOLOGY12Listening - listening to technical talks on emerging trends and filling in the blanks - cloze test; Speaking - asking for opinions about technical gadgets - presentation of reviews on electronic/electrical/mechanical/software products; Reading - Reading Comprehension - technical passages - Articles from journals; Writing - rearranging jumbled sentences, writing short essays; Language development - Direct Speech and Indirect Speech - Framing Indirect - Questions - Prepositions - Articles; Vocabulary development - Select Single Word Substitutes
 d) Practical Engineering ii) Speaking / Submitting video recording / classroom presentation about an electronic/electrical/ a mechanical gadget giving importance to its specifications, descriptions, merits and demerits. iii) Speaking: Submitted Video Recording/Presentation during class hours will be assessed for a) Language Style & Fluency b) Creation of Google Slides / Canva Slides c) Content delivery Activities iii to v will be assessed through Google form tests/ written tests. iv) Writing reviews of a product v) Teaching of Grammar Contents Module III UNDERSTANDING TECHNOLOGY Listening - listening to technical talks on emerging trends and filling in the blanks – cloze test; Speaking - asking for opinions about technical gadgets – presentation of reviews on electronic/electrical/mechanical/software products; Reading - Reading Comprehension – technical passages – Articles from journals; Writing - rearranging jumbled sentences, writing short essays; Language development - Direct Speech and Indirect Speech – Framing Indirect – Questions - Prepositions – Articles; Vocabulary development – Select Single Word Substitutes
 ii) Speaking: Submitted Video iii) Speaking: Submitted Video iii) Speaking: Submitted Video Recording/Presentation during class hours will be assessed for a) Language Style & Fluency b) Creation of Google Slides / Canva Slides c) Content delivery b) Creation of Google Slides / Canva Slides c) Content delivery Activities iii to v will be assessed through Google form tests/ written tests. iv) Writing reviews of a product v) Teaching of Grammar Contents Module III UNDERSTANDING TECHNOLOGY Listening - listening to technical talks on emerging trends and filling in the blanks - cloze test; Speaking - asking for opinions about technical gadgets - presentation of reviews on electronic/electrical/mechanical/software products; Reading - Reading Comprehension - technical passages - Articles from journals; Writing - rearranging jumbled sentences, writing short essays; Language development - Direct Speech and Indirect Speech - Framing Indirect - Questions - Prepositions - Articles; Vocabulary development - Select Single Word Substitutes
 ii) Speaking / Submitting video recording / classroom presentation about an electronic/electrical/ a mechanical gadget giving importance to its specifications, descriptions, merits and demerits. iii) Reading articles from Newspaper/ Google News / Times Now / and other Tech News Sites iv) Writing reviews of a product v) Teaching of Grammar Contents Module III UNDERSTANDING TECHNOLOGY Listening - listening to technical talks on emerging trends and filling in the blanks – cloze test; Speaking - asking for opinions about technical gadgets – presentation of reviews on electronic/electrical/mechanical/software products; Reading - Reading Comprehension – technical passages – Articles from journals; Writing - rearranging jumbled sentences, writing short essays; Language development - Direct Speech and Indirect Speech – Framing Indirect – Questions - Prepositions – Articles; Vocabulary development – Select Single Word Substitutes
classroom presentation about an electronic/electrical/ a mechanical gadget giving importance to its specifications, descriptions, merits and demerits. be assessed for a) Language Style & Fluency b) Creation of Google Slides / Canva Slides c) Content delivery iii) Reading articles from Newspaper/ Google News / Times Now / and other Tech News Sites Activities iii to v will be assessed through Google form tests/ written tests. iv) Writing reviews of a product v) Teaching of Grammar Contents Module III UNDERSTANDING TECHNOLOGY Listening - listening to technical talks on emerging trends and filling in the blanks – cloze test; Speaking - asking for opinions about technical gadgets – presentation of reviews on electronic/electrical/mechanical/software short essays; Language development - Direct Speech and Indirect Speech – Framing Indirect – Questions - Prepositions – Articles; Vocabulary development – Select Single Word Substitutes
electronic/electrical/ a mechanical gadget giving importance to its specifications, descriptions, merits and demerits. a) Language Style & Fluency b) Creation of Google Slides / Canva Slides c) Content delivery a) Language Style & Fluency b) Creation of Google Slides / Canva Slides c) Content delivery Activities iii to v will be assessed through Google iii) Reading articles from Newspaper/ Google News / Times Now / and other Tech News Sites iv) Writing reviews of a product v) Teaching of Grammar Contents Module III UNDERSTANDING TECHNOLOGY 12 Listening - listening to technical talks on emerging trends and filling in the blanks – cloze test; Speaking - asking for opinions about technical gadgets – presentation of reviews on electronic/electrical/mechanical/software products; Reading - Reading Comprehension – technical passages – Articles from journals; Writing - rearranging jumbled sentences, writing short essays; Language development - Direct Speech and Indirect Speech – Framing Indirect – Questions - Prepositions – Articles; Vocabulary development – Select Single Word Substitutes
giving importance to its specifications, descriptions, merits and demerits. iii) Reading articles from Newspaper/ Google News / Times Now / and other Tech News Sites iv) Writing reviews of a product v) Teaching of Grammar Contents Module III UNDERSTANDING TECHNOLOGY 12 Listening - listening to technical talks on emerging trends and filling in the blanks – cloze test; Speaking - asking for opinions about technical gadgets – presentation of reviews on electronic/electrical/mechanical/software products; Reading - Reading Comprehension – technical passages – Articles from journals; Writing - rearranging jumbled sentences, writing short essays; Language development - Direct Speech and Indirect Speech – Framing Indirect – Questions - Prepositions – Articles; Vocabulary development – Select Single Word Substitutes
descriptions, merits and demerits. c) Content delivery descriptions, merits and demerits. c) Content delivery iii) Reading articles from Newspaper/ Google News / Times Now / and other Tech News Sites Activities iii to v will be assessed through Google form tests/ written tests. iv) Writing reviews of a product v) Teaching of Grammar Contents Module III UNDERSTANDING TECHNOLOGY Listening - listening to technical talks on emerging trends and filling in the blanks - cloze test; Speaking - asking for opinions about technical gadgets - presentation of reviews on electronic/electrical/mechanical/software products; Reading - Reading Comprehension - technical passages - Articles from journals; Writing - rearranging jumbled sentences, writing short essays; Language development - Direct Speech and Indirect Speech - Framing Indirect - Questions - Prepositions - Articles; Vocabulary development - Select Single Word Substitutes
iii) Reading articles from Newspaper/ Activities iii to v will be assessed through Google iii) Reading articles from Newspaper/ form tests/ written tests. Google News / Times Now / and other Tech form tests/ written tests. iv) Writing reviews of a product v) Teaching of Grammar Contents Module III UNDERSTANDING TECHNOLOGY 12 Listening - listening to technical talks on emerging trends and filling in the blanks – cloze test; Speaking - asking for opinions about technical gadgets – presentation of reviews on electronic/electrical/mechanical/software products; Reading - Reading Comprehension – technical passages – Articles from journals; Writing - rearranging jumbled sentences, writing short essays; Language development - Direct Speech and Indirect Speech – Framing Indirect – Questions - Prepositions – Articles; Vocabulary development – Select Single Word Substitutes
 iii) Reading articles from Newspaper/ Google News / Times Now / and other Tech News Sites iv) Writing reviews of a product v) Teaching of Grammar Contents Module III UNDERSTANDING TECHNOLOGY Listening - listening to technical talks on emerging trends and filling in the blanks – cloze test; Speaking - asking for opinions about technical gadgets – presentation of reviews on electronic/electrical/mechanical/software products; Reading - Reading Comprehension – technical passages – Articles from journals; Writing - rearranging jumbled sentences, writing short essays; Language development - Direct Speech and Indirect Speech – Framing Indirect – Questions - Prepositions – Articles; Vocabulary development – Select Single Word Substitutes
 iii) Reading articles from Newspaper/ Google News / Times Now / and other Tech News Sites iv) Writing reviews of a product v) Teaching of Grammar Contents Module III UNDERSTANDING TECHNOLOGY Listening - listening to technical talks on emerging trends and filling in the blanks – cloze test; Speaking - asking for opinions about technical gadgets – presentation of reviews on electronic/electrical/mechanical/software products; Reading - Reading Comprehension – technical passages – Articles from journals; Writing - rearranging jumbled sentences, writing short essays; Language development - Direct Speech and Indirect Speech – Framing Indirect – Questions - Prepositions – Articles; Vocabulary development – Select Single Word Substitutes
Google News / Times Now / and other Tech News Sites iv) Writing reviews of a product v) Teaching of Grammar Contents Module III UNDERSTANDING TECHNOLOGY Listening - listening to technical talks on emerging trends and filling in the blanks – cloze test; Speaking - asking for opinions about technical gadgets – presentation of reviews on electronic/electrical/mechanical/software products; Reading - Reading Comprehension – technical passages – Articles from journals; Writing - rearranging jumbled sentences, writing short essays; Language development - Direct Speech and Indirect Speech – Framing Indirect – Questions - Prepositions – Articles; Vocabulary development – Select Single Word Substitutes
News Sites iv) Writing reviews of a product v) Teaching of Grammar Contents Module III UNDERSTANDING TECHNOLOGY Listening - listening to technical talks on emerging trends and filling in the blanks – cloze test; Speaking - asking for opinions about technical gadgets – presentation of reviews on electronic/electrical/mechanical/software products; Reading - Reading Comprehension – technical passages – Articles from journals; Writing - rearranging jumbled sentences, writing short essays; Language development - Direct Speech and Indirect Speech – Framing Indirect – Questions - Prepositions – Articles; Vocabulary development – Select Single Word Substitutes
iv) Writing reviews of a product v) Teaching of Grammar Contents Module III UNDERSTANDING TECHNOLOGY 12 Listening - listening to technical talks on emerging trends and filling in the blanks – cloze test; Speaking - asking for opinions about technical gadgets – presentation of reviews on electronic/electrical/mechanical/software products; Reading - Reading Comprehension – technical passages – Articles from journals; Writing - rearranging jumbled sentences, writing short essays; Language development - Direct Speech and Indirect Speech – Framing Indirect – Questions - Prepositions – Articles; Vocabulary development – Select Single Word Substitutes
v) Teaching of Grammar Contents Module III UNDERSTANDING TECHNOLOGY 12 Listening - listening to technical talks on emerging trends and filling in the blanks – cloze test; Speaking - asking for opinions about technical gadgets – presentation of reviews on electronic/electrical/mechanical/software products; Reading - Reading Comprehension – technical passages – Articles from journals; Writing - rearranging jumbled sentences, writing short essays; Language development - Direct Speech and Indirect Speech – Framing Indirect – Questions - Prepositions – Articles; Vocabulary development – Select Single Word Substitutes
v) Teaching of Grammar Contents Module III UNDERSTANDING TECHNOLOGY 12 Listening - listening to technical talks on emerging trends and filling in the blanks – cloze test; Speaking - asking for opinions about technical gadgets – presentation of reviews on electronic/electrical/mechanical/software products; Reading - Reading Comprehension – technical passages – Articles from journals; Writing - rearranging jumbled sentences, writing short essays; Language development - Direct Speech and Indirect Speech – Framing Indirect – Questions - Prepositions – Articles; Vocabulary development – Select Single Word Substitutes
Module IIIUNDERSTANDING TECHNOLOGY12Listening - listening to technical talks on emerging trends and filling in the blanks – cloze test; Speaking - asking for opinions about technical gadgets – presentation of reviews on electronic/electrical/mechanical/software products; Reading - Reading Comprehension – technical passages – Articles from journals; Writing - rearranging jumbled sentences, writing short essays; Language development - Direct Speech and Indirect Speech – Framing Indirect – Questions - Prepositions – Articles; Vocabulary development – Select Single Word Substitutes
Module IIIUNDERSTANDING TECHNOLOGY12Listening - listening to technical talks on emerging trends and filling in the blanks – cloze test; Speaking - asking for opinions about technical gadgets – presentation of reviews on electronic/electrical/mechanical/software products; Reading - Reading Comprehension – technical passages – Articles from journals; Writing - rearranging jumbled sentences, writing short essays; Language development - Direct Speech and Indirect Speech – Framing Indirect – Questions - Prepositions – Articles; Vocabulary development – Select Single Word Substitutes
Listening - listening to technical talks on emerging trends and filling in the blanks – cloze test; Speaking - asking for opinions about technical gadgets – presentation of reviews on electronic/electrical/mechanical/software products; Reading - Reading Comprehension – technical passages – Articles from journals; Writing - rearranging jumbled sentences, writing short essays; Language development - Direct Speech and Indirect Speech – Framing Indirect – Questions - Prepositions – Articles; Vocabulary development – Select Single Word Substitutes
Speaking - asking for opinions about technical gadgets – presentation of reviews on electronic/electrical/mechanical/software products; Reading - Reading Comprehension – technical passages – Articles from journals; Writing - rearranging jumbled sentences, writing short essays; Language development - Direct Speech and Indirect Speech – Framing Indirect – Questions - Prepositions – Articles; Vocabulary development – Select Single Word Substitutes
electronic/electrical/mechanical/software products; Reading - Reading Comprehension – technical passages – Articles from journals; Writing - rearranging jumbled sentences, writing short essays; Language development - Direct Speech and Indirect Speech – Framing Indirect – Questions - Prepositions – Articles; Vocabulary development – Select Single Word Substitutes
technical passages – Articles from journals; Writing - rearranging jumbled sentences, writing short essays; Language development - Direct Speech and Indirect Speech – Framing Indirect – Questions - Prepositions – Articles; Vocabulary development – Select Single Word Substitutes
short essays; Language development - Direct Speech and Indirect Speech – Framing Indirect – Questions - Prepositions – Articles; Vocabulary development – Select Single Word Substitutes
Questions - Prepositions - Articles; Vocabulary development - Select Single Word Substitutes
Suggested Activities i) Listening to Technical talks on emerging Evaluation Method
trends - Suggested YouTube channels i) Listening skills will be tested through
a) Bernard Marr a) Cloze Test - 2 Sets
b) Concerning Reality
c) Ideas and Inspiration
ii) Speaking / Submitting video recording /
classroom presentation on giving reviews ii)Speaking: Submitted Video
about a product. Recording/Classroom presentation will be

cis Xavier Engineering	g College Dept of Mechanic	cal Engineering R2021/Curricu	lum and Syllabi
····) Deeding ontiolog	P the staff and wanted	assessed for	
, ,	-Extracts from reputed	a) Inquisitiveness	
journals.		b) Analytical skills	
• > ***	' tubled	c) Presentation Skills	
	nd rearranging Jumbled		
Sentences.		Activities iii to v will be asses	sed through Google
	-	form tests/ written tests.	
v) Teaching of Gram			
Module IV STAT	FING PROBLEMS AND EX	PRESSING SOLUTIONS	12
Speaking - stating words and sentence problem statement problem statement stated – Identifying writing solution co	a problem and expressing e structure; Reading - con and note down solution s c, Analyzing the situation g solution criteria – Choos ontent - Measuring soluti /launch notes; Language	nology and noting down the g solutions giving more focus nprehending Articles from Mag tatements; Writing - Identifyin – Gathering information rela sing the best solution – Imple ton success – Report prepara development- Tenses; Vocal	on pronunciation of gazines – Identify the g problems – Writing ted to the problem menting a solution – tion – White paper
Suggested Activities		Evaluation Method	
	related to Technology -	i) Listening skills will be teste	d through
Suggested YouTube	channels	a) Note making - 2 Sets	
a) Auto Car Ind	ia		
b) Lesics			
c) Student Ener	ſġy		
		ii)Speaking: Submitted Video	Recording /
ii) Speaking / Subm	itting video recording /	Classroom Presentation will b	e assessed for
Classroom presenta	ition on Technical issues	a) Expression of Innovative Id	leas and Solution
faced in a gadget an solutions.	d expressing suitable	b) Sentence Structure	
:::) Deading outidas	Futur ata fuana nomento d	Activities iii to v will be asses	
	-Extracts from reputed Ty problem statements nents.	form tests/ written tests/ wri	itten exercises.
problem statement, – Gathering informa problem stated – Id criteria – Choosing t Implementing a solu content - Measuring	lentifying solution the best solution – ution – writing solution g solution success – – White paper writing –		
v) Teaching of Gram			

Module V	EMOTIONAL AWARENESS AN		12			
	istening Types - Appreciative lis					
	resentation on the importance o	_				
-	el Cognition - Cognitive Control	_				
	d Consciousness; Writing - Arti					
*	nd pessimism to effectively imp		pment - modal ve			
Vocabulary I	Development - Fixed and Semi-Fix	xed Expressions.				
Suggested Ad	ctivities	Evaluation Method				
	videos on types of Listening	i) Listening skills will be test	ed through			
-		a) Google form test- 2 Sets	-			
ii) Presentat	ion on Emotional Intelligence	ii) Speaking: Submitted Video Recording /				
		Classroom Presentation will				
		a) Emotional awareness				
		b) Communication Skills	S .			
iii) Reading /	Articles on High Level Cognition					
iv) Writing -	Articulate emotions using the					
right languag	ge - Balance optimism and	Activities iii to v will be asse	ssed through Goog			
pessimism to	o effectively impact others	form tests/ written tests/ w	ritten exercises.			
	of Grammar Contents					
S.No	List of Ex		CO			
S.No	List of Ex Conversation Recording using		CO CO 1			
S.No 1. 2.	List of Ex Conversation Recording using Self Introduction Video		CO CO 1 CO 1			
S.No 1. 2. 3.	List of Ex Conversation Recording using Self Introduction Video Listening Test - Google Form	the suggested app	CO CO 1 CO 1 CO 2			
S.No 1. 2. 3. 4.	List of ExConversation Recording usingSelf Introduction VideoListening Test - Google FormPresentation on the working p	the suggested app	CO CO 1 CO 1 CO 2 CO 2			
S.No 1. 2. 3. 4. 5.	List of ExConversation Recording usingSelf Introduction VideoListening Test - Google FormPresentation on the working pListening - Cloze Test	the suggested app principle of a gadget	CO CO 1 CO 1 CO 2 CO 2 CO 3			
S.No 1. 2. 3. 4. 5. 6.	List of ExConversation Recording usingSelf Introduction VideoListening Test - Google FormPresentation on the working pListening - Cloze TestReviewing a Product - Video So	the suggested app principle of a gadget	CO CO 1 CO 2 CO 2 CO 3			
S.No 1. 2. 3. 4. 5.	List of ExConversation Recording usingSelf Introduction VideoListening Test - Google FormPresentation on the working pListening - Cloze TestReviewing a Product - Video SoListening and Note Making	the suggested app principle of a gadget ubmission	CO CO 1 CO 1 CO 2 CO 2 CO 3			
S.No 1. 2. 3. 4. 5. 6.	List of ExConversation Recording usingSelf Introduction VideoListening Test - Google FormPresentation on the working pListening - Cloze TestReviewing a Product - Video SoListening and Note MakingTalk on technical issues in a gate	the suggested app principle of a gadget ubmission	CO CO 1 CO 2 CO 2 CO 3			
S.No 1. 2. 3. 4. 5. 6. 7. 8.	List of ExConversation Recording usingSelf Introduction VideoListening Test - Google FormPresentation on the working pListening - Cloze TestReviewing a Product - Video SoListening and Note MakingTalk on technical issues in a gasolutions.	the suggested app principle of a gadget ubmission adget and express suitable	CO CO 1 CO 2 CO 2 CO 3 CO 4			
S.No 1. 2. 3. 4. 5. 6. 7.	List of ExConversation Recording usingSelf Introduction VideoListening Test - Google FormPresentation on the working pListening - Cloze TestReviewing a Product - Video SoListening and Note MakingTalk on technical issues in a gate	the suggested app principle of a gadget ubmission adget and express suitable rm	CO CO 1 CO 2 CO 2 CO 3 CO 4			

cis Xavier Engi	neering College Dept of Mechani	cal Engineering R2021/Cu	rriculum and Syllabi					
Laboratory R	equirements for a batch of 60 St	udents						
Software: Glo	barena							
	nsole and 30 systems for studen	ts.						
	nguage Lab Software							
3. Career Lab	Software							
Suggestive As	sessment Methods:							
1) Listen	ing and answering questions - M	CQ - Cloze Test - Note Mak	ing					
	ing - App/Software based testing							
-	וg - analyze the passage given - ו	understand the concept an	d answer Questions - On-					
line Ba								
4) Writte	en Tests							
Contii	nuous Assessment Test	Lab Components	End Semester Exams					
	(20 Marks)	Assessments	(50 Marks)					
		(30 Marks)						
Written Exam	nination	Completion of	Written Examination					
		Suggested Exercises						
Outcomes								
Upon comple	etion of the course, the studen	ts will be able to:						
CO 1	Enumerate basic information	using communication	etiquette on par with					
01	international communication s	standards. (Apply)						
CO 2	Interpret fundamental technic	al concepts in English lang	uage giving importance to					
02	syntax. (Apply)							
CO 3	Evaluate advanced varied tech	nical concepts in the curre	nt scenario and emerging					
05	trends to invent new concepts.	(Apply)						
CO 4	Write solutions for problems	identified using the exact	vocabulary and structure					
04	without grammatical errors as	expected by the corporate	world. (Apply)					
	Manage and respond to self, others' emotions using skills of Self Awareness, Self							
CO 5	Management, Self-Motivation, Empathy & Social Relations to be an Emotionally							
	Intelligent Human Being. (App	Being. (Apply)						
Text Books								
1. Butter	field, Jeff. Soft Skills for Every on	e. Cengage Learning: New	Delhi,2017.					
2. Sudha	rshana.N.P and Saveetha. C. Engl	ish for Technical Communi	ication. Cambridge					
Univer	rsity Press: New Delhi, 2016.							
Reference B	ooks							
	r, Suresh. E. Engineering English.							
	, L. Thomas and Elaine Langlois,	English & Communication	For Colleges.					
Web Resour								
	troduction: <u>https://youtu.be/Os</u> ng Principle of a Gadget:	<u>a53-KIBK4</u>						
	//www.youtube.com/channel/U	C6af84Gv4Giv7XWdvanvC	0W					
	ct Review: <u>https://youtu.be/Był</u>		<u>4**</u>					
	of India: <u>https://timesofindia.in</u>		lines					
	ing to Technical talks:	<u> </u>						
Auto C	ar India <u>https://m.youtube.com</u>	, ,						
	:https://www.youtube.com/cha		IPbYc600Q Student Energy					
	//www.youtube.com/user/stude							
6. Types	of Listening https://www.youtu	be.com/watch?v=22gzvSii	ndTU&t=1s					
o. Types	or Listening https://www.youtu	be.com/watcn?v=22gzvSh	1010&l=15					

Francis Xavier Engineering College/ Dept of Mechanical Engineering/ R2021/Curriculum and Syllabi

	FUM	apping	g anu		F30 M	аррп	Ig								
СО	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PS
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	03
1				2				2	1	3	2	2			
2	1	1		1				1	2	3	2	2			
3	1	1		1			2	1		2	2	2			
4	1	1		1				2		2	2	2			
5						1	1	2	2	3		2			

SUGGESTED COURSE LEVEL ASSESSMENT QUESTIONS:

COURSE OUTCOME 1 (CO 1) : Enumerate basic information using communication etiquette on par with international communication standards.

- 1) Listen to the talk on basic technical topics and answer the questions provided.
- 2) Introduce yourself in a professional way highlighting Characteristics, Strengths & Weaknesses.
- 3) Read the given technical passage and answer the questions provided.
- 4) Frame Yes/No Questions for the statements given.
- 5) Frame Question tags for the statements given.
- 6) Rearrange the jumbled words into a meaningful sentence.
- 7) Complete the sentence with the Noun form/ Verb Form/ Adjective form (as Directed) of the word given.
- 8) Give the expansion of the Abbreviations given.

COURSE OUTCOME 2 (CO 2) : Interpret fundamental technical concepts in English language giving importance to syntax.

- 1) Listen to the technical lecture and answer the questions provided.
- 2) Introduce a device or a gadget to the class giving importance to its specifications, description, merits and demerits.
- 3) Read the given passage / short narrative / article from a journal or newspaper to the class.

Francis Xavier Engineering College | Dept of Mechanical Engineering | R2021/Curriculum and Syllabi

- 4) Write your review on any one of the gadgets you are using.
 - 5) Frame "Wh" Questions for the statements given.
- 6) Punctuate the following statement given.
- 7) Complete the sentence using the fragments given.
- 8) Write a short passage on the given topic.
- 9) Fill in the blanks with the suitable prefix or suffix as directed.

COURSE OUTCOME 3 (CO 3) :Evaluate advanced varied technical concepts in the current scenario and emerging trends to invent new concepts.

- 1) Listen to the technical talk on the emerging trends and complete the statements given. (Cloze Test)
- 2) Ask questions to get an opinion about technical gadgets / software / devices
- 3) Read the given article from a journal and provide your ideas for further developments.
- 4) Rearrange the following sentences in the proper chronological order.
- 5) Write a short essay on any one of the given technical topics highlighting the future scope of the product.
- 6) Rewrite the following into Indirect Speech.
- 7) Frame indirect questions for the questions given.
- 8) Fill in the blanks with the suitable articles.
- 9) Give the one word substitutes for the given statement.

COURSE OUTCOME 4 (CO 4) : Write solutions for problems identified using the exact vocabulary and structure without grammatical errors as expected by the corporate world.

- 1) Listen to the technical talks and write down the merits and demerits of the product discussed.
- 2) Watch the video, evaluate the concept and express your solutions to the problem.
- 3) Read the given article and note down the problems stated.
- 4) Write down solutions for the problems faced while using a product.
- 5) Draft a white paper writing for the given situation..
- 6) Write launch notes for a product.
- 7) Convert the given statement to another form of the tenses as directed.
- 8) Pick out the suitable synonym for the underlined word in order to minimize plagiarism.
- 9) Fill in the blank with the suitable phrasal verb.

COURSE OUTCOME 5 (CO 5) : Manage and respond to self, others' emotions using skills of Self Awareness, Self Management, Self Motivation, Empathy & Social Relations to be an Emotionally Intelligent Human Being.

- 1) Watch the video on Types of listening and answer the questions.
- 2) Make a presentation on the importance of Emotional Intelligence.
- 3) Read the given article on High level cognition and answer the questions.
- 4) Read the article on social behaviour and redraft it in your own style.
- 5) Comprehend the passage and give your inputs for decision making.
- 6) Watch the video and articulate your emotions using appropriate words.
- 7) Write a note on optimism and pessimism.
- 8) Fill in the blank with the suitable modal verb.
- 9) Pick out the suitable fixed/ semi-fixed expression to complete the given statement.

Francis Xavier Engineering College/ Dept of Mechanical Engineering/ R2021/Curriculum and Syllabi

Т Ρ L 21PY1311 PHYSICS AND CHEMISTRY LABORATORY 0 0

Preamble

С 4 2

The aim of this course is to make the students gain practical knowledge to co-relate with the theoretical studies and develop their practical applications in engineering materials by using the principles in the right way to implement in modern technology.

Prerequisites

Basic practical concepts of Physics and Chemistry in higher secondary level.

Objectives

- To analyze the instrumental techniques used in measuring data.
- To interrogate the competency and understanding of the basic concepts found in experimental Physics.
- To learn about the electronic mechanisms and their usage in a practical manner.
- To learn the interpretation of experimental data using the equipment in the physics laboratory.
- To investigate the errors in experimental measurements and techniques.

Objectives (Chemistry)

- To make the students acquire practical skills in the determination of water quality parameters through volumetric and instrumental analysis.
- To develop an understanding about the range and uses of analytical methods in chemistry.
- To explain the concept of corrosion, its causes, and its environmental consequences.
- To acquaint students with knowledge of molecular weight determination and polymer solubility.

To interpret chemical and physical phenomena through experimental investigations.

C No	PHYSICS	60
S. No	List of Experiments	CO
1	Determination of specific resistance of a given coil of wire – Carey Foster's Bridge.	3
2	Determination of band gap of a Semiconductor (Forbidden energy band gap kit).	1
3	Determination of planck's constant and work function using the principle of photoelectric effect	5
4	Determination of Young's modulus of the material-Non Uniform bending method.	1
5	Determination of thermal conductivity of a bad conductor – Lee's Disc method.	4
6	Determination of velocity of sound and compressibility of liquid – Ultrasonic Interferometer.	1
7	Determination of wavelength of spectral lines using grating – Spectrometer.	2
	CHEMISTRY	
1	Determination of total, temporary & permanent hardness of water by EDTA method.	1,5
2	Corrosion experiments – weight loss method.	3,5
3	Estimation of iron content of the given solution using potentiometer.	2
4	Conductometric titration of strong acid vs strong base.	2
5	Determination of molecular weight of polyvinyl alcohol using Ostwald viscometer.	4
6	Estimation of HCl using Na ₂ CO ₃ as primary standard and determination of alkalinity in water sample.	1,5

	List of Projects (PHYSICS)		
. No.	List of Projects	Related Experiment	CO
1	To study Infrared radiation emitted by different sources using phototransistors.	3	5
2	To study the variations, in current flowing in a circuit containing a LDR, because of a variation:(a) In the power of the incandescent lamp, used to 'illuminate' the LDR. (Keeping all the lamps at a fixed distance).(b) In the distance of an incandescent lamp, (of fixed power), used to 'illuminate' the LDR.	2	1
3	Design a circuit for cool automatic timer controlled Light which controls vehicle traffic passing through the intersection of two or more roadways by giving a visual indication to drivers when to proceed, when to slow , and when to stop using LED and 4017 counter IC along with the 555 timer.	2	1
4	Design and implement a circuit which anyone can make at home to save their home from thefts using the light has high intensity, monochromatic, directional and coherent in nature.	7	2
5	Construct a household circuit consisting of three bulbs using a dual switching method.	1	3
6	Using ultrasonic sensor, design a ultrasonic distance finder using 8051	6	1
7	Design a water level indicator by connecting a Buzzer, resistor and transistor in series and connect this in parallel to LED.	2	1
	List of Projects (CHEMISTRY)		
1	 Water Analysis : Analysis of perennial Thamirabarani River water samples collected from various locations (before and after blending of industrial waste water). i) Determination of various physical and chemical parameters (Hardness, pH,TDS, Alkalinity) of different water samples. ii) From the result, give a detailed report about the water sample whether it is fit/unfit for domestic and industrial purposes. 	1, 6,7	1,5
2.	 Water Quality Monitoring : Analysis of ground water samples collected from various districts (Tirunelveli, Madurai, Tuticorin, Kanyakumari, Tenkasi etc.,). i) Determination of various physical and chemical parameters (Hardness, pH, TDS, Alkalinity) of different water samples. ii) From the result, give a detailed report about the water sample whether it is fit/unfit for domestic and industrial purposes. 	1,6,7	1,5
3.	Household Plumbing Deterioration Monitoring : Study		

	of Conductivity of domestic water (Home) by Arduino		3,5						
	method to track the deterioration of household plumbing.	2	5,5						
	i) From the observations give a detailed report about								
	the existence of various ions in water.								
	ii) Give an explanatory report on tracking the								
	deterioration in household plumbing.								
	Air quality monitoring : Study of air pollution in Nellai								
	smart city in the early morning, noon and evening due to CO/CO2 emissions by Arduino method.								
4	i) From the observations give a detailed report about	4							
4	the impact of air pollution on human health.								
	ii) Deduce an explanatory report on environmental								
	impact due to CO/CO2 emissions.		5						
	Food adulteration : Investigation of adulterants in								
	various food stuffs (milk, chilli powder, turmeric								
	powder, wheat flour, honey and ghee) by Chemical								
5.	methods.	1							
	i) Give a report on the presence of adulterants in the								
	given food samples.								
	ii) From the observations give a brief report about the		5						
	impact of food adulteration on human health.								
	ssessment omnonents Assessments End Semester Ex	ams							
Lab C	omponents Assessments End Semester Ex	ams							
Lab C (50 N		ams							
Lab C (50 N Outco	omponents AssessmentsEnd Semester ExMarks)(50 Marks)	ams							
Lab C (50 N Outco Upon	omponents AssessmentsEnd Semester ExMarks)(50 Marks)mes(Physics)		aterials.						
Lab C (50 N Outco Upon CO1	omponents AssessmentsEnd Semester ExMarks)(50 Marks)mes(Physics)completion of the course, the students will be able to:Analyzation of new instruments and real time application in e	engineering ma							
Lab C (50 N Outco Upon CO1	omponents Assessments End Semester Ex Marks) (50 Marks) mes(Physics) (50 Marks) completion of the course, the students will be able to: Analyzation of new instruments and real time application in equivalence (Analyse)	engineering ma							
Lab C (50 M Outco Upon CO1 CO2	omponents AssessmentsEnd Semester ExMarks)(50 Marks)mes(Physics)completion of the course, the students will be able to:Analyzation of new instruments and real time application in e (Analyse)Applying the basic concepts of physics in the experiments by it	engineering ma interrogating t	the						
Lab C (50 M Outco Upon CO1 CO2 CO3 CO4	omponents AssessmentsEnd Semester ExMarks)(50 Marks)mes(Physics)(50 Marks)completion of the course, the students will be able to:Analyzation of new instruments and real time application in e (Analyse)(Analyse)Applying the basic concepts of physics in the experiments by i data.(Apply)(Applying basic knowledge to design circuits using basic compAcquire the basic enlightenment of the experimental data for	engineering ma interrogating t onents. (Apply interpretation	the y) (Apply)						
Lab C (50 N Outco	omponents AssessmentsEnd Semester ExMarks)(50 Marks)mes(Physics)(50 Marks)completion of the course, the students will be able to:Analyzation of new instruments and real time application in e (Analyse)(Analyse)Applying the basic concepts of physics in the experiments by i data.(Apply)(Applying basic knowledge to design circuits using basic comp	engineering ma interrogating t onents. (Apply interpretation	the y) (Apply)						
Lab C (50 M Outco Upon CO1 CO2 CO3 CO4 CO5	omponents AssessmentsEnd Semester ExMarks)(50 Marks)mes(Physics)(50 Marks)completion of the course, the students will be able to:Analyzation of new instruments and real time application in e (Analyse)(Analyse)Applying the basic concepts of physics in the experiments by i data.(Apply)(Applying basic knowledge to design circuits using basic compAcquire the basic enlightenment of the experimental data for	engineering ma interrogating t onents. (Apply interpretation	the y) (Apply)						
Lab C (50 M Outco Upon CO1 CO2 CO3 CO4 CO5 Outco CO1	omponents Assessments End Semester Ex. Marks) (50 Marks) mes(Physics) completion of the course, the students will be able to: Analyzation of new instruments and real time application in e (Analyse) Applying the basic concepts of physics in the experiments by i data.(Apply) Applying basic knowledge to design circuits using basic comp Acquire the basic enlightenment of the experimental data for Solve problems individually using critical thinking collaboration mes(Chemistry) Analyze the water quality related parameters quantitatively.(engineering ma interrogating t onents. (Apply interpretation ively. (Analyse (Analyse)	the y) (Apply))						
Lab C (50 M Outco Upon CO1 CO2 CO2 CO3 CO4 CO5 Outco CO1	omponents AssessmentsEnd Semester Ex (50 Marks)Marks)(50 Marks)mes(Physics)End Semester Ex (50 Marks)completion of the course, the students will be able to:Analyzation of new instruments and real time application in e (Analyse)Applying the basic concepts of physics in the experiments by i data.(Apply)Applying basic knowledge to design circuits using basic comp Acquire the basic enlightenment of the experimental data for Solve problems individually using critical thinking collaboratimes(Chemistry)Analyze the water quality related parameters quantitatively. (Explain the use of equipment for the measurement of conduct	engineering ma interrogating t onents. (Apply interpretation ively. (Analyse (Analyse)	the y) (Apply))						
Lab C (50 M Outco Upon CO1 CO2 CO2 CO3 CO4 CO5 Outco CO1 CO2	omponents Assessments End Semester Ex. Marks) End Semester Ex. mes(Physics) (50 Marks) completion of the course, the students will be able to: Analyzation of new instruments and real time application in et (Analyse) Applying the basic concepts of physics in the experiments by idata.(Apply) Applying basic knowledge to design circuits using basic comp Acquire the basic enlightenment of the experimental data for Solve problems individually using critical thinking collaboration mes(Chemistry) Analyze the water quality related parameters quantitatively.(Explain the use of equipment for the measurement of conduct potential, pH of solutions, and viscosity. (Apply)	engineering ma interrogating t onents. (Apply interpretation ively. (Analyse (Analyse) tance, electrod	che y) (Apply)) le						
Lab C (50 M Outco Upon CO1 CO2 CO3 CO4 CO5 Outco CO1	omponents AssessmentsEnd Semester ExMarks)(50 Marks)mes(Physics)completion of the course, the students will be able to:Analyzation of new instruments and real time application in e (Analyse)Applying the basic concepts of physics in the experiments by i data.(Apply)Applying basic knowledge to design circuits using basic comp Acquire the basic enlightenment of the experimental data for Solve problems individually using critical thinking collaborationmes(Chemistry)Analyze the water quality related parameters quantitatively. (Explain the use of equipment for the measurement of conduct potential, pH of solutions, and viscosity. (Apply)Analyze the probable corrosion, corrosion rate, and corrosion	engineering ma interrogating t onents. (Apply interpretation ively. (Analyse (Analyse) tance, electrod	che y) (Apply)) le						
Lab C (50 M Outco Upon CO1 CO2 CO3 CO4 CO5 Outco CO1 CO2 CO3	omponents AssessmentsEnd Semester ExMarks)(50 Marks)mes(Physics)completion of the course, the students will be able to:Analyzation of new instruments and real time application in e (Analyse)Applying the basic concepts of physics in the experiments by data.(Apply)Applying basic knowledge to design circuits using basic comp Acquire the basic enlightenment of the experimental data for Solve problems individually using critical thinking collaboratimes(Chemistry)Analyze the water quality related parameters quantitatively. (Explain the use of equipment for the measurement of conduct potential, pH of solutions, and viscosity. (Apply)Analyze the probable corrosion, corrosion rate, and corrosion metallic material in the given environment (Analyze)	engineering ma interrogating t onents. (Apply interpretation ively. (Analyse (Analyse) tance, electrod	the y) (Apply)) le f the						
Lab C (50 M Outco Upon CO1 CO2 CO2 CO3 CO4 CO5 Outco CO1 CO2	omponents AssessmentsEnd Semester ExMarks)(50 Marks)mes(Physics)completion of the course, the students will be able to:Analyzation of new instruments and real time application in e (Analyse)Applying the basic concepts of physics in the experiments by i data.(Apply)Applying the basic concepts of physics in the experiments by i data.(Apply)Applying basic knowledge to design circuits using basic comp Acquire the basic enlightenment of the experimental data for Solve problems individually using critical thinking collaboratimes(Chemistry)Analyze the water quality related parameters quantitatively. (Explain the use of equipment for the measurement of conduct potential, pH of solutions, and viscosity. (Apply)Analyze the probable corrosion, corrosion rate, and corrosion metallic material in the given environment (Analyze)Analyze polymerization data and predict the conversion and red	engineering ma interrogating to onents. (Apply interpretation ively. (Analyse) tance, electrod n mechanism o molecular weig	the y) (Apply)) le f the ght,						
Lab C (50 M Outco Upon CO1 CO2 CO3 CO4 CO5 Outco CO1 CO2 CO3	omponents AssessmentsEnd Semester ExMarks)(50 Marks)mes(Physics)completion of the course, the students will be able to:Analyzation of new instruments and real time application in e (Analyse)Applying the basic concepts of physics in the experiments by data.(Apply)Applying basic knowledge to design circuits using basic comp Acquire the basic enlightenment of the experimental data for Solve problems individually using critical thinking collaboratimes(Chemistry)Analyze the water quality related parameters quantitatively. (Explain the use of equipment for the measurement of conduct potential, pH of solutions, and viscosity. (Apply)Analyze the probable corrosion, corrosion rate, and corrosion metallic material in the given environment (Analyze)	engineering ma interrogating to onents. (Apply interpretation ively. (Analyse) tance, electrod n mechanism o molecular weig	the y) (Apply)) le f the ght,						

Francis Xavier Engineering College| Dept of Mechanical Engineering| R2021/Curriculum and Syllabi Reference Books (Physics)

- Physics Laboratory Manual, Department of Physics, Francis Xavier Engineering College, Tirunelveli.
- A Textbook of Engineering Physics Practical ,UNIVERSITY SCIENCE PRESS (An Imprint of Laxmi Publications Pvt. Ltd.)2nd edition.

Reference Books (Chemistry)

J.Mendham, R.C. Denney, J.D.Barnes, M.Thomas and B.Sivasankar, Vogel's Textbook of Quantitative Chemical Analysis (5th edition 2009).

Web Resources

1.

Virtual Lab - https://bop-iitk.vlabs.ac.in/basics-of-

physics/List%20of%20experiments.html

Young's Modulus- https://vlab.amrita.edu/?sub=1&brch=280&sim=550&cnt=1

Virtual Lab - https://www.vlab.co.in/ba-nptel-labs-physical-sciences

Numerical Aperture -

https://vlab.amrita.edu/index.php?sub=1&brch=189&sim=343&cnt=1

Web Resources (Chemistry)

Water Quality standards - <u>https://www.youtube.com/watch?v=OlGllOZlIyI</u> Corrosion experiments - weight loss method

https://www.youtube.com/watch?v=SMlgTWfdHb8

PHYSICS MAPPING

CO Vs PO Mapping and CO Vs PSO Mapping

СО	P0 1	P0 2	P0 3	P0 4	РО 5	P0 6	P0 7	РО 8	РО 9	P0 10	P0 11	P0 12	PS0 1	PSO 2
1	3	2	1	1	1		1	1	1		1	1		
2	3	2	1	1	1		1	1	1		1	1		
3	3	2	1	1	1		1	1	1		1	1		
4	3	2	1	1	1		1	1	1		1	1		
5	3	2	1	1	1		1	1	1		1	1		

Francis Xavier Engineering College/ Dept of Mechanical Engineering/ R2021/Curriculum and Syllabi CHEMISTRY MAPPING

LUVS	101	արքո	ig and		3150	map	ping							
СО	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO 10	PO 11	PO 12	PSO1	PSO2
1	3		1			2	2					2		
2	3	1	2			1	2					1		
3	3	2	1	1			1					1		
4	2	1	2			2	2					1		
5	2	1	2		1	2	2					1		

CO Vs PO Mapping and CO Vs PSO Mapping

COURSE LEVEL ASSESSMENT QUESTIONS - PHYSICS

COURSE OUTCOME 1: The students will be able to analyzation of new instruments and real time application in engineering materials. (Analyse)

- 1. Determination of band gap of a Semiconductor (Forbidden energy band gap kit).
- Determination of velocity of sound and compressibility of liquid Ultrasonic Interferometer.
 COURSE OUTCOME 2: The students will be able to apply the basic concepts of physics in the

experiments by interrogating the data.(Apply)

- Determination of wavelength of spectral lines using grating Spectrometer.
 COURSE OUTCOME 3: The students will be able to apply basic knowledge to design circuits using basic components. (Apply)
- **1.** Design a circuit for finding unknown resistance and specific resistance of a given coil of wire.

COURSE OUTCOME 4: The students will be able to acquire the basic enlightenment of the experimental data for interpretation (Apply)

 Determine the thermal conductivity of a given bad conductor (Glass) using Lee's disc method. (Given: M= 800 X10⁻³ Kg, S = 370 JKg⁻¹K⁻¹).

COURSE OUTCOME 5: The students will be able to solve problems individually using critical thinking collaboratively. (Analyse)

- 1. Determination of planck's constant and work function using the principle of photoelectric effect
- 2. Find the Young's modulus of the material of a beam using Non-Uniform bending method. (Given : Thickness of the beam d = 6.35 mm)

SEMESTER II

21HS2101	ENC	GLISH FOR TECHNICAL	L	T	P	(,
		COMMUNICATION	2	0	0	2
read and comp job applicatio presentations, acquire the lat	prehend engineering an ns and effective repo participate in group d	regies and skills to enhance professional s ad technology texts. Foster their ability to orts. Develop their speaking skills to iscussions. The outcome of the course is ng, speaking, reading and writing compo he global expectations.	o writ mal to he	e cor ke te elp s	ivinc echni tudei	in ica nt
Prerequisites • The pre	for the course	quired to study this Course is the basic kn	owled	lge ir	1	
Objectives						
technol 2. To draft 3. To deve discuss 4. To stren speciali	ogy texts. t convincing job applicate elop speaking skills to m ions. ngthen listening skills to zation.	o augment ability to read and comprehend tions and effective reports. hake technical presentations, participate in to comprehend technical lectures and talk tochnical and general	n grou	ıp	C	
5. To culti MODULE 1	vate writing skills both	DING AND STUDY SKILLS				
interpreting ch analyzing tech	narts (all the types), gra nical details - writing t	texts / technical blogs and taking dowr phs – comparing and contrasting stateme echnical blogs; Vocabulary Development Active Voice and Passive Voice	ents/p	barag	graph	IS
articles on eme taking down ne	ibrary - Reading erging trends and otes in the prescribed ission through FAST	Evaluation Method i) Content & Structure				
statements. (E Windows 1, RF Analyst, Edge (pare and contrast g. Windows 10 Vs PA Developer Vs RPA Computing Vs puting) related to the	 ii) Submission: Fast form Document Submitted document will be assessed fo a) Communication Etiquette b) Language Style c) Sentence Construction 	r			
programme.						

nitions - writing instructions – check guage Development - Subject Verb Agr gested Activities sit to the Library - Reading cles on emerging trends and ing down purpose statements	ing - statement of purpose - press re klists – recommendations – Minutes reement, Compound Words. raluation Method Content & Structure	
guage Development - Subject Verb Agr gested Activities sit to the Library - Reading cles on emerging trends and ing down purpose statements	reement, Compound Words. raluation Method	of the Meeting
gested Activities sit to the Library - Reading cles on emerging trends and ting down purpose statements	aluation Method	
gested Activities i) (sit to the Library - Reading cles on emerging trends and ting down purpose statements		
gested Activities i) (sit to the Library - Reading cles on emerging trends and ting down purpose statements		
sit to the Library - Reading cles on emerging trends and ing down purpose statements		
cles on emerging trends and ing down purpose statements		
ing down purpose statements		
	Submission: Fast form Document	
-	bmitted document will be assessed for	
0	Format	
a)	Language Style	
	Sentence Construction	
ommendations and Checklists for		
	tivity iii will be assessed through Googl	e form tests/
	ritten tests.	,
Feaching of Grammar Contents		
ODULE 3 INT	FERVIEW SKILLS	6
		Writing opinion
	reasons; Vocabulary Development -	
abulary Language Development - If – C	reasons; Vocabulary Development -	
abulary Language Development - If – C gested Activities Ev	reasons; Vocabulary Development - Conditionals	select Technica
abulary Language Development - If – C gested Activities Eva stening to UPSC Toppers Mock i) A	reasons; Vocabulary Development - Conditionals raluation Method	select Technica
abulary Language Development - If – C gested Activities Events stening to UPSC Toppers Mock i) A rviews. ap	reasons; Vocabulary Development - Conditionals raluation Method Answering questions for Interview ques	select Technica
abulary Language Development - If – C gested Activities Events stening to UPSC Toppers Mock i) A rviews. ap	reasons; Vocabulary Development - Conditionals aluation Method Answering questions for Interview ques p based) sponses will be assessed for a) Fluency	select Technica
abulary Language Development - If – C gested Activities Events stening to UPSC Toppers Mock i) A rviews. ap	reasons; Vocabulary Development - Conditionals raluation Method Answering questions for Interview quest p based) sponses will be assessed for a) Fluency b) Communication etiquette	select Technica
abulary Language Development - If – C gested Activities Events stening to UPSC Toppers Mock i) A rviews. ap	reasons; Vocabulary Development - Conditionals aluation Method Answering questions for Interview ques p based) sponses will be assessed for a) Fluency	select Technica
abulary Language Development - If – C gested Activities Eva stening to UPSC Toppers Mock i) A rviews. apj Re	reasons; Vocabulary Development - Conditionals raluation Method Answering questions for Interview quest p based) responses will be assessed for a) Fluency b) Communication etiquette c) Language style	select Technica
abulary Language Development - If – C gested Activities Eva stening to UPSC Toppers Mock i) A rviews. ap Re	reasons; Vocabulary Development - Conditionals raluation Method Answering questions for Interview quest p based) responses will be assessed for a) Fluency b) Communication etiquette c) Language style Submission: Fast form Document	select Technica
abulary Language Development - If - C gested Activities Ev- stening to UPSC Toppers Mock i) A rviews. ap Re Irafting Job application and Sul	reasons; Vocabulary Development - Conditionals aluation Method Answering questions for Interview ques p based) sponses will be assessed for a) Fluency b) Communication etiquette c) Language style Submission: Fast form Document bmitted document will be assessed for	select Technica
abulary Language Development - If – C gested Activities Evans stening to UPSC Toppers Mock i) A rviews. ap Re Interpretation and Sultant ume building. a)	reasons; Vocabulary Development - Conditionals aluation Method Answering questions for Interview quest p based) sponses will be assessed for a) Fluency b) Communication etiquette c) Language style Submission: Fast form Document bmitted document will be assessed for Language Style	select Technica
abulary Language Development - If – C gested Activities Evans stening to UPSC Toppers Mock i) A rviews. ap Re Interpretation and Sultant ume building. a)	reasons; Vocabulary Development - Conditionals aluation Method Answering questions for Interview quest p based) sponses will be assessed for a) Fluency b) Communication etiquette c) Language style Submission: Fast form Document bmitted document will be assessed for	select Technica
abulary Language Development - If – C gested Activities Evans stening to UPSC Toppers Mock i) A rviews. apj Re vrafting Job application and ume building. a) b)	reasons; Vocabulary Development - Conditionals aluation Method Answering questions for Interview quest p based) sponses will be assessed for a) Fluency b) Communication etiquette c) Language style Submission: Fast form Document bmitted document will be assessed for Language Style Design	select Technica
abulary Language Development - If - C gested Activities Evant stening to UPSC Toppers Mock i) A rviews. app Re Vrafting Job application and Sul ume building. a) b) Act	reasons; Vocabulary Development - Conditionals aluation Method Answering questions for Interview quest p based) sponses will be assessed for a) Fluency b) Communication etiquette c) Language style Submission: Fast form Document bmitted document will be assessed for Language Style	select Technica
abulary Language Development - If - C gested Activities Evant stening to UPSC Toppers Mock i) A rviews. app Re Vrafting Job application and Sul ume building. a) b) Act	reasons; Vocabulary Development - Conditionals aluation Method Answering questions for Interview quest p based) sponses will be assessed for a) Fluency b) Communication etiquette c) Language style Submission: Fast form Document bmitted document will be assessed for Language Style Design tivity iii will be assessed through Google	select Technica

Suggested Act		Evaluation Method		
, ,	views and reports on	i) Content & Structure		
Industries -	0 Due du ete			
,	e & Products ing technology adopted			
c) Career				
d) Latest				
,	2 Industries			
ii) Teaching o	f Grammar Contents	Activity ii will be assessed the written tests.	hrough Google	form tests/
MODULE 5	REPORT WRITING II	·		6
-		Survey Reports, Business Rep ment - advanced use of Article		-
Suggested Act	tivities	Evaluation Method		
, ,	sibility report on-	i) Content & Structure		
	hing a new product /			
Techno				
Min - 2	2	Activity ii will be assessed the	hraugh Gaagle	form tests/
ii) Teaching o	f Grammar Contents	written tests.	in ough doogie	101111 (03(3)
			otal Periods	30
Suggestive A	ssessment Methods			
		Formative Assessment		
(30 Ma	Assessment Test Irks)	Test (10 Marks)	End Semest (60 Marks)	er exams
		(i) Google Form based - on-line Test		
., .	n based - on-line Test	on-line Test incorporating	Written Tes	t
i) Google Forn (i) (ii) Writte		on-line Test incorporating Listening, Speaking and	Written Tes	t
(i) (ii) Writte		on-line Test incorporating	Written Tes	t
(i) (ii) Writte Outcomes	en Test	on-line Test incorporating Listening, Speaking and Reading	Written Tes	t
(i) (ii) Writte Outcomes	en Test tion of the course, the stu	on-line Test incorporating Listening, Speaking and Reading idents will be able to:		
(i) (ii) Writte Outcomes Upon complet	en Test tion of the course, the stu Understand advanced	on-line Test incorporating Listening, Speaking and Reading idents will be able to: technical texts from varied te		
(i) (ii) Writte Outcomes	en Test tion of the course, the stu Understand advanced engineering concepts a	on-line Test incorporating Listening, Speaking and Reading idents will be able to: technical texts from varied te and explore more. (Apply)	chnical genres	to understand
(i) (ii) Writte Outcomes Upon complet CO1	en Test tion of the course, the stu Understand advanced engineering concepts a Review technical conte	on-line Test incorporating Listening, Speaking and Reading idents will be able to: technical texts from varied te and explore more. (Apply) ents written on par with inter	chnical genres national stand	to understand ards and rewrite
(i) (ii) Writte Outcomes Upon complet	en Test tion of the course, the stu Understand advanced engineering concepts a Review technical conte contents using the righ	on-line Test incorporating Listening, Speaking and Reading idents will be able to: technical texts from varied te and explore more. (Apply)	chnical genres national stand	to understand ards and rewrite
(i) (ii) Writte Outcomes Upon complet CO1 CO2	en Test tion of the course, the stu Understand advanced engineering concepts a Review technical conte contents using the righ articles published in re	on-line Test incorporating Listening, Speaking and Reading idents will be able to: technical texts from varied te and explore more. (Apply) ents written on par with inter at vocabulary without gramma	chnical genres national stand atical errors to	to understand ards and rewrite make their
(i) (ii) Writte Outcomes Upon complet CO1	en Test tion of the course, the stu Understand advanced engineering concepts a Review technical conte contents using the righ articles published in re Articulate appropriate following the strategie	on-line Test incorporating Listening, Speaking and Reading idents will be able to: technical texts from varied te and explore more. (Apply) ents written on par with inter at vocabulary without gramma eputed journals. (Apply) ly in interviews and Group Di s expected by the corporate w	chnical genres national stand atical errors to scussions effor vorld. (Apply)	to understand ards and rewrite make their tlessly
(i) (ii) Writte Outcomes Upon complet CO1 CO2	en Test tion of the course, the stu Understand advanced engineering concepts a Review technical conte contents using the righ articles published in re Articulate appropriate following the strategie Write reports utilizing t	on-line Test incorporating Listening, Speaking and Reading dents will be able to: technical texts from varied te and explore more. (Apply) ents written on par with inter at vocabulary without gramma eputed journals. (Apply) ly in interviews and Group Di s expected by the corporate w the required format prescribe	chnical genres national stand atical errors to scussions effor vorld. (Apply) d on par with i	to understand ards and rewrite make their tlessly nternational
(i) (ii) Writte Outcomes Upon complet CO1 CO2	en Test tion of the course, the stu Understand advanced engineering concepts a Review technical conte contents using the righ articles published in re Articulate appropriate following the strategie Write reports utilizing t standards using the exa	on-line Test incorporating Listening, Speaking and Reading idents will be able to: technical texts from varied te and explore more. (Apply) ents written on par with inter at vocabulary without gramma eputed journals. (Apply) ly in interviews and Group Di s expected by the corporate w	chnical genres national stand atical errors to scussions effor vorld. (Apply) d on par with i	to understand ards and rewrite make their tlessly nternational
(i) (ii) Writte Outcomes Upon complet CO1 CO2 CO3	en Test tion of the course, the stu Understand advanced engineering concepts a Review technical conte contents using the righ articles published in re Articulate appropriate following the strategie Write reports utilizing t standards using the exa (Apply)	on-line Test incorporating Listening, Speaking and Reading adents will be able to: technical texts from varied te and explore more. (Apply) ents written on par with inter at vocabulary without gramma eputed journals. (Apply) ly in interviews and Group Di s expected by the corporate w the required format prescribe ct vocabulary to make their re	chnical genres national stand atical errors to scussions effor vorld. (Apply) d on par with i eports worthy	to understand ards and rewrite make their tlessly nternational to be read.
(i) (ii) Writte Outcomes Upon complet CO1 CO2 CO3	en Test tion of the course, the stu Understand advanced engineering concepts a Review technical conte contents using the righ articles published in re Articulate appropriate following the strategie Write reports utilizing t standards using the exa (Apply) Appraise the need for ne	on-line Test incorporating Listening, Speaking and Reading dents will be able to: technical texts from varied te and explore more. (Apply) ents written on par with inter at vocabulary without gramma eputed journals. (Apply) ly in interviews and Group Di s expected by the corporate w the required format prescribe	chnical genres national stand atical errors to scussions effor vorld. (Apply) d on par with i eports worthy ility and surve	to understand ards and rewrite make their tlessly nternational to be read.

	Book Mik		rl Te	chnica	l Com	munic	ation I	Palgra	ve Mar	millar	n. Lon	don 2	012		
								nglish						nts Pri	vate
_		ited, 2		ycere	n ch a.	Ittill		1511511		iiiiai.	v ijay i	icole	mpn		vale
3		,		nd Pus	shn La	ta. Cor	nmun	icatior	n Skills	: A Wo	rkboo	ok. Nev	w Delh	i: OUP	201
		Book													,=•=
1	Ram	nan, M	eenak	shi & S	Sangee	etha Sh	arma.	Comn	nunica	tion S	kills. N	lew D	elhi: 0	UP, 20	18
					0			nunica							
	Pub	lishing	g Comj	pany L	imited	d, 200	7								
Web	Resou	rces													
1								<u>be/4lx</u>							
	-			0				nd-gra	*						
			-					/Write							
			-					<u>m/car</u>					a-resu	<u>me-gu</u>	<u>ide</u>
4	-		0	-				<u>om/w</u>						1 /	
	-		ww.de	akin.e	du.au/	<u>stude</u>	<u>nts/st</u>	udying	<u>g/stud</u>	<u>y-supp</u>	ort/a	cadem	<u>11C-SK11</u>	<u>ls/rep</u>	<u>ort-</u>
5	<u>writ</u> UPS		rview	https	//		tube c	<u>om/w</u>	atch?u	-OhIV	Vo-Oa	410			
						Map		0111/ 11		-011.7	<u>15 04</u>	<u>uio</u>			
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS
CO	1	2	3	4	5	6	7	8	9	10	11	12	01	02	03
1	1		1	2		2	1	1	•	2	1	1			
2	1			2		1		1		3	2	1			
3						3	2	1	2	3		2			
4		1	1	1		1	1	1	2	3	2	2			
5		1		1		1	1	1	1	3	2	2			
						•								•	

SUGGESTED COURSE LEVEL ASSESSMENT QUESTIONS:

COURSE OUTCOME 1 (CO 1) : Understand advanced technical texts from varied technical genres to understand engineering concepts and explore more.

- 1) Read the given passage and take notes.
- 2) Analyse the given type of chart or graph and answer the questions given.
- 3) Analyse the given chart or graph and write paragraphs comparing and contrasting the data.
- 4) Analyse the given chart or graph and write paragraphs giving importance to technical details.
- 5) Fill in the blank with appropriate technical vocabulary.
- 6) Convert the given active voice sentence into passive voice or impersonal passive voice.

COURSE OUTCOME 2 (CO 2) : Review technical contents written on par with international standards and rewrite contents using the right vocabulary without grammatical errors to make their articles published in reputed journals.

- 1) Write a purpose statement for the tool or gadget given.
- 2) Write an extended definition for the given word.
- 3) Write 8 instructions / recommendations on the given topic.
- 4) Write the Minutes of the meeting for the given meeting.
- 5) Fill in the blank with appropriate Subject Verb agreement.
- 6) Fill in the blank with suitable compound words.

COURSE OUTCOME 3 (CO 3) : Articulate appropriately in Interviews and Group Discussions effortlessly following the strategies expected by the corporate world.

- 1) Listening to mock interviews and answering the questions.
- 2) Listen to the strategies of GD and answer the given questions.
- 3) Read and submit a recording of technical content following the strategies of speed reading.
- 4) Write Job application with a cover letter for the given job description.
- 5) Write paragraphs expressing opinion on the given topic.
- 6) Fill in the blank / complete the sentence with appropriate If-Conditionals.

COURSE OUTCOME 4 (CO 4) : Write reports utilizing the required format prescribed on par with international standards using the exact vocabulary to make their reports worthy to be read.

- 1) Write a fire accident report for the provided incident.
- 2) Write an Industrial visit report.
- 3) Write a report on the Project work undertaken by the candidate giving importance to the current status report and the time needed for the completion of the project.
- 4) Find the appropriate synonym for the given word.
- 5) Paraphrase the given passage.
- 6) Fill in the blank with appropriate clauses.

COURSE OUTCOME 5 (CO 5) : Appraise the need for new products and write feasibility and survey reports following the format prescribed in a way to create awareness.

- 1) Write a Feasibility report for a business / project proposal given.
- 2) Write a survey report for the given scenario.
- 3) Pick out the appropriate Verbal Analogy.
- 4) Fill in the blank with appropriate articles.
- 5) Complete the sentence with appropriate Prepositional Phrases.
- 6) Choose the appropriate word to complete the sentence.

21MA2201

PARTIAL DIFFERENTIAL EQUATION AND APPLICATIONS OF FOURIER SERIES

L	Τ	Р	С
3	1	0	4

Preamble:

The course consists of topics in Complex Integration, Partial Differential Equations and Laplace Transforms with applications to various engineering problems. This course will cover the following main topics: Construction of analytic function, Taylors and Laurent's series, Poles and Residues, Half range sine series, Harmonic analysis, Fourier Series Solutions of one dimensional wave and heat flow equation and Applications of Laplace transforms for solving linear ordinary differential equations up to second order with constant coefficients.

Prerequisites for the course

Basic knowledge of Partial differentiation and Integration.

Objectives

- 1. To introduce to the concept of Analytical function
- 2. To familiarize with Complex integration
- 3. To introduce Fourier series analysis which is central to many applications in engineering field and its use in solving boundary value problems
- 4. To acquaint the student with PDE and Fourier series techniques in solving wave and heat flow problems used in various situations.
- 5. To improve the knowledge of Laplace transform.

UNIT IANALYTIC FUNCTIONS9+3Definition of Analytic Function – Cauchy Riemann equations – Properties of analytic functions –
Harmonic function – Harmonic Conjugate - Construction of analytic function by Milne Thomson's
method and bilnear transformation.

SUGGESTED EVALUATION METHODS:

• Tutorial Problems on Construction of analytic function by Milne Thomson's method and bilinear transformation.

UNIT II COMPLEX INTEGRATION

Complex numbers and its conjugate - Cauchy's integral theorem (without proof) – Cauchy's integral formulae and its higher order derivatives (without proof) and its applications – Taylors and Laurent's series – Types of Singularities – Poles and Residues – Cauchy's residue theorem (without proof).

SUGGESTED EVALUATION METHODS:

• Tutorial Problems on Taylors series, Laurent's series and Cauchy's residue theorem.

UNIT III FOURIER SERIES

9+3

9+3

Dirichlet's conditions – General Fourier series – Change of Intervals - Odd and even functions – Half range sine series – Half range cosine series - Root mean square value – Harmonic analysis for Fourier series - Engineering Applications.

• Tutorial Problems on Four series, Harmonic analysis.	HODS: ries series of Odd and even function	ns, Half range sine and cosine
UNIT IV PDE AND APPLIC	ATIONS OF FOURIER SERIES	9+3
Classification of PDE – Method	of separation of variables - Fourier urier Series Solutions of one dir	r Series Solutions of one
SUGGESTED EVALUATION METI		sional wave equation and heat
UNIT V LAPLACE TRANSI	FORMS	9+3
equations up to second order with SUGGESTED EVALUATION METI	Laplace transforms for solving lines a constant coefficients only - Engine H ODS: lace transform using partial fractio	eering Applications.
Solving ODL.	Total Perio	ods 45 + 15 = 60 Periods
Suggestive Assessment Method		
Continuous Assessment Test	Formative Assessment Test	End Semester Exams
(20 Marks)	(20 Marks)	(60 Marks)
1. Descriptive Questions CAT 1 – 10 Marks CAT 2 – 10 Marks	1. Assignment 2. Online Quizzes	1. Descriptive Questions
Outcomes		
Upon completion of the course,	the students will be able to:	
electro-magnetic fields. (Apply) C108.2: Solve complex valued inte C108.3: Construct the Fourier ser C108.4: Solve the problems of on C108.5: Apply Laplace Transforr (Apply)	equations to problems of fluid mec egral functions using residues. ies expansion of the periodic functi e dimensional wave and heat equat n technique to solve the given or	(Apply) ion. (Apply) tion. (Apply)
Text Books		
	neering Mathematics", 45 rd edition, <i>ineering Mathematics</i> ", John Wiley &	
Reference Books		
Lucknow) (For . Gautam B	Mathematics(Dr. A.P.J. Abdul Kalar hudh technical Universities ,Luckn thematics , H. K. DASS, S. CHAND an	ow) January 2020

Web Resources

- 1. Analytic functions https://youtu.be/8jPr6rGstYk
- 2. Complex Integration https://youtu.be/4yC4IXcMKJg
- 3. Fourier series <u>https://youtu.be/LGxE_yZYigI</u>
- 4. Applications of fourier series https://youtu.be/YfGHNdVeyB4
- 5. Laplace Transform https://youtu.be/c9NibpoQjDk

CO Vs PO Mapping and CO Vs PSO Mapping:

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2
1	3	2												
2	3	2												
3	3	2										2		
4	3	2										2		
5	3	2												

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1 (CO 1) : (Apply)

- 1. Construct an analytic function whose imaginary part is $v = e^{x}(x \cos y y \sin y)$
- 2. Find the bilinear transformation that maps the points $Z = 0, -1, \vec{i}$ on to the points $\vec{i}, 0, \infty$.

COURSE OUTCOME 2 (CO 2) : (Apply)

- 1) Solve $\int \frac{e^{-2z}}{(z+1)^4} dz$ using Cauchy's Integral formula where C is |z| = 2. 2) Compute $\int \frac{2z-1}{z(z+1)(z-3)} dz$ using Cauchy's Residue theorem where C is |z| = 2.

COURSE OUTCOME 3 (CO 3) : (Apply)

- 1) Construct Fourier series for f(x) = x in $(-\pi, \pi)$.
- 2) Construct Fourier series for $f(x) = x^2$ in (-l, l).

COURSE OUTCOME 4 (CO 4) : (Apply)

- 1) Identify the PDE $u_{xx} = a^2 u_{tt}$
- **2)** A tightly stretched string with fixed end points x = 0, x = l is initially at rest in its equilibrium position. If it is vibrating, giving each point a velocity $\lambda x(l - x)$. Find the displacement of the string at any time 't'.

COURSE OUTCOME 5 (CO 5) : (Apply)

- 1) Solve $\frac{d^2x}{dt^2} 3\frac{dx}{dt} + 2x = 2$, given x = 0 and $\frac{dx}{dt} = 5$ for t = 0 using Laplace transform method.
- 2) Find the Laplace transform for $\frac{\cos at \cos bt}{\cos at \cos bt}$

21ME2501	ENCINEEDING MECHANICS	L	Т	Р	С	
21ME2501	ENGINEERING MECHANICS	2	1	0	3	
Prerequisite	s for the course		1			
Engineering P	hysics					
Objectives						
	velop the capacity to predict the effects of force and motion where design functions of engineering	hile c	arry	ing ou	it the	
UNIT I	STATICS OF PARTICLES		7	7+2		
triangular Lav components -	 Units and Dimensions – Laws of Mechanics – Lami's theorer w of forces – Vectorial representation of forces – Coplanar Equilibrium of a particle – Forces in space – Equilibrium of stems of forces – Principle of transmissibility 	Force	es –	rectai	ngulai	
UNIT II	EQUILIBRIUM OF RIGID BODIES	7+2				
and Couples -	gram – Types of supports – Action and reaction forces – stable ec - Moment of a force about a point and about an axis – Vector couples – Scalar components of a moment – Varignon's theorem	rial re	epres	sentat	ion o	
and Couples - moments and		rial re	epres ingle	sentat	ion o	
and Couples - moments and force – equilit UNIT III Centroids and by integration Theorems of areas by integ – Parallel axis	 Moment of a force about a point and about an axis – Vector couples – Scalar components of a moment – Varignon's theorem or Rigid bodies in two dimensions 	rial re m – S cular, g stau r, cir	epres ingle triar ndar cular anda	sentat e equir 3+2 ngular d form r, trian rd for	ion o valen area nula ngula mula	
and Couples - moments and force – equilit UNIT III Centroids and by integration Theorems of areas by integ – Parallel axis	 Moment of a force about a point and about an axis – Vector couples – Scalar components of a moment – Varignon's theorem orium of Rigid bodies in two dimensions PROPERTIES OF SURFACES AND SOLIDS centre of mass – Centroids of lines and areas – Rectangular, circe n – T section, I section, – Angle section, Hollow section by using Pappus – Area moments of inertia of plane areas – Rectangular gration – T section, I section, Angle section, Hollow section by using stheorem and perpendicular axis theorem – Principal moments 	rial re m – S cular, g stau r, cir	epres ingle triar ndar cular anda iner	sentat e equir 3+2 ngular d form r, trian rd for	ion o valen areas nula - ngulas rmula	
and Couples - moments and force – equilit UNIT III Centroids and by integration Theorems of 1 areas by integ – Parallel axis areas – Princi UNIT IV Displacements	 Moment of a force about a point and about an axis – Vector couples – Scalar components of a moment – Varignon's theored orium of Rigid bodies in two dimensions PROPERTIES OF SURFACES AND SOLIDS centre of mass – Centroids of lines and areas – Rectangular, circe n – T section, I section, – Angle section, Hollow section by using Pappus – Area moments of inertia of plane areas – Rectangular gration – T section, I section, Angle section, Hollow section by using theorem and perpendicular axis theorem – Principal moments plane axes of inertia-Mass moment of inertia 	rial re m – S cular, g stau r, cir ing st ing st its of	epres ingle triar ndar cular anda iner { viline	sentat e equir 3+2 ngular d form r, trian rd for tia of 3+2 ar mo	ion o valen areas nula - ngular mula plane tion –	
and Couples - moments and force – equilit UNIT III Centroids and by integration Theorems of 1 areas by integ – Parallel axis areas – Princi UNIT IV Displacements	 Moment of a force about a point and about an axis – Vector couples – Scalar components of a moment – Varignon's theored orium of Rigid bodies in two dimensions PROPERTIES OF SURFACES AND SOLIDS centre of mass – Centroids of lines and areas – Rectangular, circe n – T section, I section, – Angle section, Hollow section by using Pappus – Area moments of inertia of plane areas – Rectangula gration – T section, I section, Angle section, Hollow section by using theorem and perpendicular axis theorem – Principal moments pal axes of inertia-Mass moment of inertia DYNAMICS OF PARTICLES Velocity and acceleration, their relationship – Relative motion – 	rial re m – S cular, g stau r, cir ing st ing st its of	epres ingle triar ndar cular anda iner { viline of el	sentat e equir 3+2 ngular d form r, trian rd for tia of 3+2 ar mo	ion o valen · areas nula - ngulas ·mula plane tion –	
and Couples - moments and force – equilit UNIT III Centroids and by integration Theorems of I areas by integ – Parallel axis areas – Princi UNIT IV Displacements Newton's laws UNIT V Friction force	 Moment of a force about a point and about an axis – Vector couples – Scalar components of a moment – Varignon's theored orium of Rigid bodies in two dimensions PROPERTIES OF SURFACES AND SOLIDS centre of mass – Centroids of lines and areas – Rectangular, circe n – T section, I section, – Angle section, Hollow section by using Pappus – Area moments of inertia of plane areas – Rectangula gration – T section, I section, Angle section, Hollow section by using theorem and perpendicular axis theorem – Principal moments are sof inertia-Mass moment of inertia DYNAMICS OF PARTICLES Velocity and acceleration, their relationship – Relative motion – and momenta and Momentum – Impulse and Momentum	rial re m – S cular, g stau r, cir- ing st its of - Curv mpact	epres ingle triar ndar cular anda iner { /iline of el	sentat e equir 3+2 ngular d form r trian r d for tia of 3+2 ar mo astic t 5+2	ion o valent areas nula - ngular mula plane tion - podies	

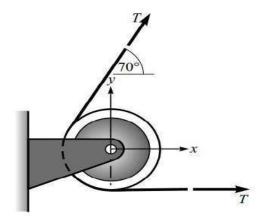
Continuous Assessment Test	Formative Assessment Test	End Semester Exams
(20 Marks)	(20 Marks)	(60 Marks)
CAT – I (10 Marks) CAT – II (10 Marks)	Assignment, Multiple Choice Questions	Multiple Choice Questions
Outcomes		
Upon completion of the course	, the students will be able to:	
	s of mechanics and practice the ve of forces acting on particles.	ctor manipulation, equilibriur
C109.2:Compute reaction force methods	and moment on the rigid bodies	using both vector and scala
C109.3: Determine the center of section	gravity and moment of inertia of	f the standard and composit
C109.4: Apply equation of motion to the problems on dynami	a, principles of D'Alembertz work e cs of particles.	nergy and impulse momentun
C109.5: Describe frictional laws t	to compute the frictional forces for	bodies in contact.
Text Books		
Dynamics", 10th Edition, '	Cornwells and Sanghi, "Vector Me Fata McGraw Hill Noida, Uttar Prac Mechanics Statics and Dynamics" td., New Delhi, (2017)	desh, (2019)
Reference Books		
Limited, (2016) 2. Irving H. Shames, "Engineeri	"Engineering Mechanics: Dynamics", ng Mechanics Statics and Dynamics", 4 Engineering Mechanics", 7 th Edition	4th Edition, Pearson India, (2011
Web Resources	/122/104/122104015/	-

CO Vs PO Mapping and CO Vs PSO Mapping

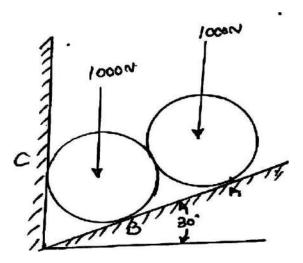
со	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
109.1	2	2	2	2								1	3	2
109.2	2	2	2	2								1	3	2
109.3	1	1	1	2								1	3	2
109.4	1	1	1	2								1	3	2
109.5	1	2	2	1								1	3	2

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	20	15	5		10
UNDERSTAND	30	20	10	10	30
APPLY	30	30	10	10	30
ANALYZE	20	20		5	15
EVALUATE		15			15
CREATE					


COURSE LEVEL ASSESSMENT QUESTIONS

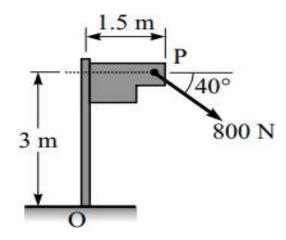
COURSE OUTCOME 1: Enumerate the basic laws of mechanics and practice the vector manipulation, equilibrium conditions on the systems of forces acting on particles. (Remember, Understand, Apply, Analyse)


1. Define coplanar and non-coplanar forces (Remember)

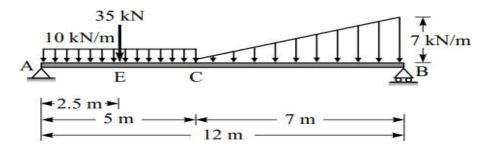
2. Determine the magnitude and direction of the resultant of two forces 100 N and 150 N acting at angle of 45° (Understand)

3. If the two tensions in the pulley cable shown in Fig. are 400 N, determine the resultant R exerted on the pulley by the two tensions. (Apply)

4. Two identical rollers each of weight 1000N are supported by an inclined plane and a vertical wall asshown in fig below. Find the support reactions at points A, B & C. assume all surfaces to be smooth (Analyse)

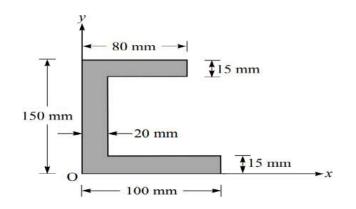


COURSE OUTCOME 2: Compute reaction force and moment on the rigid bodies using both vector and scalar methods (Remember, Understand, Apply, Analyse)

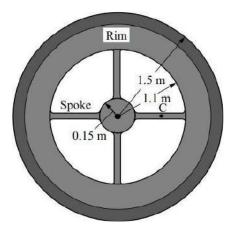

1. List some types of beams based on supports (Remember)

2. State Varignon's theorem (Understand)

3. An 800-N force is applied to a 3-m high pole at the point P, as shown in Fig. Calculate the magnitude of moment of this force about the base point O by four different methods. (Apply)

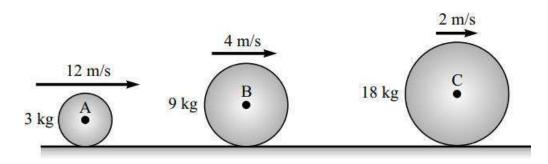


4. Calculate the support reactions for a simply supported beam with hinged support at the end A and roller support at the end B, subjected to inclined loading as shown in Fig. (Analyse)



COURSE OUTCOME 3: Determine the center of gravity and moment of inertia of the standard and composite section (Remember, Understand, Apply)

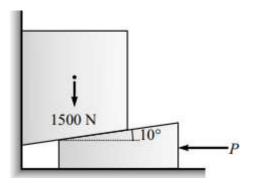
- 1. Write the formula for finding moment of inertia about X and Y axis (Remember)
- 2. Find the centroid of the plane lamina shown in Fig. (Understand)



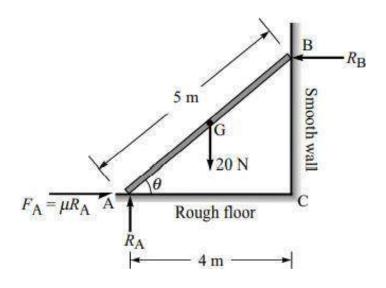
3. A flywheel (Fig.) consists of a rim of 2500-kg mass and four spokes each of 60-kg mass. The rim has inner and outer radii of 1.1 m and 1.5 m, respectively. The shaft at the center of the wheel has a diameter of 0.25 m and a mass of 1200 kg. Determine (a) the moment of inertia of flywheel about its axis of rotation, and (b) its radius of gyration. (Apply)

COURSE OUTCOME 4: Adapt equation of motion, principles of D'Alembertz, work energy and impulsemomentum to the problems on dynamics of particles. (Understand, Remember, Apply, Analyse, Evaluate)

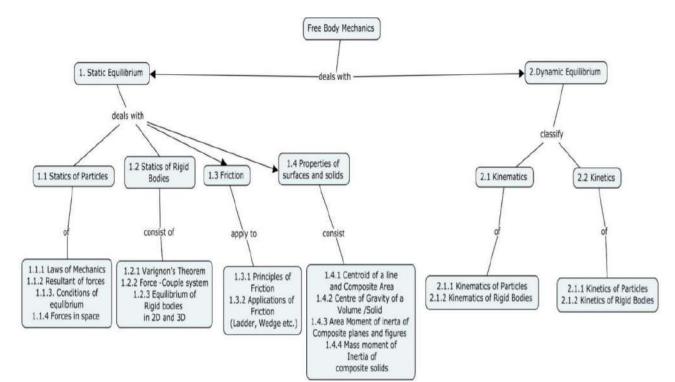
- 1. State Newton's second law of motion (Remember)
- 2. State law of conservation of momentum (Understand)
- 3. In Asian games, for 100 m event an athlete accelerates uniformly from the start to this maximum velocity in a distance of 4 m and runs the remaining distance with that velocity. If the athlete finishes the race in 10.4 seconds, determine (i) his initial acceleration (ii) his maximum velocity (Apply)
- 4. Three spherical balls A, B and C of 3kg, 9kg and 18 kg masses are moving in the same direction with velocities of 12 m/s, 4 m/s and 2 m/s, respectively, as shown in Fig. If the ball A Collides with the ball B which in turn collides with the ball C, proves that the balls A and B come to rest after the impacts. Assume that all the impacts are perfectly elastic. (Analyse)



5. Direct central impact occurs between 300 N body moving to the right with the velocity of 6 m/s and 150 N body moving to the left with the velocity of 10 m/s. Find the velocity of each body after impact if the coefficient of restitution is 0.8 (Evaluate).


COURSE OUTCOME 5: Describe frictional laws to compute the frictional forces for bodies in contact. (Understand, Remember, Apply, Analyse)

- 1. State the laws of dry (coulomb) friction (Remember)
- 2. Define angle of repose (Understand)


3. A 1500-N block overlaying a 10-degree wedge on a horizontal floor and leaning against a vertical wall, is to be raised by applying a horizontal force P as shown in Fig. Determine the force P necessary to just start the motion, if the coefficient of friction is 0.3 (Analyse)

4. A uniform ladder of 5-m length and 20-N weight is placed against a smooth vertical wall with its lower end 4 m away from the wall. If the ladder is just to slip, determine the coefficient of friction between the ladder and floor, and the frictional force acting on the ladder at the point of contact with the floor. (Apply)

CONCEPT MAP

COURSE DESIGNERS:

- 1. M.SARAVANA KUMAR
- 2. M. AYYANAR RAJA
- 3. S. M. RAJ KUMAR

saravanakumar@francisxavier.ac.in ayyanarraja@francisxavier.ac.in rajkumarsm@francisxavier.ac.in

HoD/Mech

21ME151		L	Τ	Р	С
211112131	.3 COMPUTER AIDED ENGINEERING GRAPHICS	1	2	2	4
Prerequis	ites for the course		_		
NIL					
Preamble					
profession	ng drawing is an important tool for all Engineers and als. It is the language of Engineers. Engineering Drawing formation from the engineer who designed a part to the re it.	com	muni	cates	s al
Objective					
2. 3. 4.	To understand the importance of the drawing in engineering a To improve their visualization skills so that they can apply t developing newproducts. To expose them to existing standards related to technical draw To develop graphic skills for communication of concepts, idea engineering products Train to practice engineering graphics through drafting softw	wing wing	skill i	n	of
	SAND CONVENTION				
Importanc	e of graphics in engineering applications – Use of drafting inst 1sand specifications – Size, layout of drawing sheets – Letterin			- BIS	
UNIT I	PROJECTION OF POINTS, LINES AND PLANES			9	
General Pr	inciples of orthographic projection – First Angle Projection, p	rojeo	tion	of po	oint
	adrants – Projection of straight lines located in the first quad			-	
_	es – Projection of planes (Change of position method only)		,		ed t
both plane				10	ed t
both plane	Projection of planes (Change of position method only) PROJECTION OF SOLIDS		1	10	ed t
both plane UNIT II Projection	es – Projection of planes (Change of position method only)		1	10	ed t
both plane UNIT II Projection inclined to	Projection of planes (Change of position method only) PROJECTION OF SOLIDS of simple solids like prisms, pyramids, cylinder, and cone whe		1 e axis	10	ed t
both plane UNIT II Projection inclined to UNIT III Sections o	PROJECTION OF SOLIDS OF SOLIDS OF SOLIDS Ike prisms, pyramids, cylinder, and cone whe onereference plane by change of position method. SECTIONS OF SOLIDS AND DEVELOPMENT OF SURFACES F regular solids as per BIS conventions - Constructing section	n the	1 e axis 1 ews o	is IO IO	npl
both plane UNIT II Projection inclined to UNIT III Sections o objects an	PROJECTION OF SOLIDS Of simple solids like prisms, pyramids, cylinder, and cone whe onereference plane by change of position method. SECTIONS OF SOLIDS AND DEVELOPMENT OF SURFACES	n the	1 e axis 1 ews o	is IO IO	npl
both plane UNIT II Projection inclined to UNIT III Sections o objects an	PROJECTION OF SOLIDS OF SOLIDS OF SOLIDS AND DEVELOPMENT OF SURFACES OF regular solids as per BIS conventions - Constructing section	n the	1 e axis 1 ews o -Proj	is IO IO	npl
both plane UNIT II Projection inclined to UNIT III Sections o objects an truncated UNIT IV	PROJECTION OF SOLIDS OF SOLIDS OF SOLIDS OF SOLIDS Ike prisms, pyramids, cylinder, and cone whe onereference plane by change of position method. SECTIONS OF SOLIDS AND DEVELOPMENT OF SURFACES For regular solids as per BIS conventions - Constructing section d components - Development of lateral surfaces of regular solids- Combinations of solids	al vio	1 e axis 1 ews c -Proj	is 10 of sir ectio 8	npl on c
both plane UNIT II Projection inclined to UNIT III Sections o objects an truncated UNIT IV Principles	PROJECTION OF SOLIDS OF SOLIDS OF SOLIDS OF SOLIDS Ike prisms, pyramids, cylinder, and cone whe onereference plane by change of position method. SECTIONS OF SOLIDS AND DEVELOPMENT OF SURFACES Foregular solids as per BIS conventions - Constructing section d components - Development of lateral surfaces of regular solids- Solids- Combinations of solids ISOMETRIC PROJECTIONS	al vio	1 e axis 1 ews c -Proj	is 10 of sir ectio 8	npl on c

S.No		List of Experiments		СО			
1.	Introduction to drafti simple geometry and	ng commands in AutoCAD. Creation editing practice.	of	C112.1			
2.	Projection of simple components using Au	Geometric objects and engineering toCAD		C112.2			
3.	Construction of simp using AutoCAD	le objects and components sectional	views	C112.3			
4	Construction of devel	opment of surfaces of simple solids		C112.3			
5.	5. Isometric projection of simple components-flange, cylinder, chimney, lamp shades, valve, Brackets using AutoCAD						
6.	Creating a Perspectiv	e Projection of solids using AutoCAD)	C112.5			
7.	Conversion of isomet	ric projections into orthographic pro	ojection	C112.4			
	eriods	15 Lecture +30 Tutorial+ 30 Lal Hours					
Laboratory	Requirements						
		SYSTEM REQUIREMENTS					
	(For a batch of 30 Students)					
2. Lase Software:	r Printer – 1 No.	th 4GB ram with 500GB hard disk –	30 Nos.				
Ŭ.	ckage – AutoCAD – Adequ Assessment Methods	ate license (Open source)					
CAT 1 (20Marks)		AB COMPONENTS 30 Marks)	End Se (50 Ma	emester Exams rks)			
CAT 1 10 CAT 2 10 Outcomes		del Lab with project (10 Marks) o Experiment (20 Marks)		50			
	letion of the course, th	e students will be able to:					
C112.2: App C112.3:Dev	ly the principles of change elop projections of section	angle projection in construction of po ge of position method in projection of ned solids and their developmental s m orthographic projections	of simple				

Text Books

- 1. Venugopal K. and Prabhu Raja V., "Engineering drawing + AutoCAD", New Age International (P) Limited (2022)
- 2. Natrajan K.V., "A text book of Engineering Graphics", Dhanalakshmi Publishers, Chennai (2015)
- 3. Patil, Rajashekar, "Computer Aided Engineering Graphics", New Age International Ltd, 2018

Reference Books

- 1. Kumar M.S., "Engineering Graphics", D.D. Publications, (2015)
- 2. Parthasarathy N.S. and Vela Murali, "Engineering Graphics", Oxford University, Press, New Delhi, (2015)
- 3. Shah M.B. and Rana B.C., "Engineering Drawing", Pearson Education (2009)
- 4. N.D.Bhatt, "Engineering Graphics", Charotor Publishing House, 53RD Edition 2019

Publication of Bureau of Indian Standards:

- 1. IS 10711 2001: Technical products Documentation Size and lay out of drawing sheets
- 2. IS 9609 (Parts 0 and 1) 2001: Technical products Documentation Lettering
- 3. IS 10714 (Part 20) 2001 and SP 46 2003: Lines for technical drawings
- 4. IS 11669 1986 and SP 46 2003: Dimensioning of Technical Drawings
- 5. IS 15021 (Parts 1 to 4) 2001: Technical drawings Projection Methods

Web Resources

- 1. <u>http://nptel.ac.in/courses/112103019</u>
- 2. https://archive.nptel.ac.in/courses/112/105/112105294/

CO Vs PO Mapping and CO Vs PSO Mapping

CO	P01	P02	P03	P04		P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2
112.1	3	1	1	2									3	2
1122	3	1	1	1	1								3	2
112.3	3	1	1	1	1								3	2
112.4	2	2	1	1	1								3	1
112.5	2	2	1	1	1								3	2

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	MODEL	END SEM EXAM
REMEMBER				
UNDERSTAND				
APPLY	10	10	30	50
ANALYZE				
EVALUATE				
CREATE				

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Apply the principles of first angle projection in construction of points and lines. (Apply)

1. Draw the projections of the following points on a common reference line. (Apply)

A,35 mm above HP and 25 mm in front of VP

B,40 mm below HP and 15mm behind VP

C,50 mm above HP and 25 mm behind VP

D,45 mm below HP and 25 mm behind VP

E, 30 mm behind VP and on HP

2. A line CD measuring 80 mm is inclined at an angle of 30° to HP and 45° to VP. The point C is 20 mm above HP and 30 mm in front of VP. Draw the projections of the straight line.(Apply)

COURSE OUTCOME 2: Apply the principles of change of position method in projections of solid problems and draw graphically

1. A pentagonal pyramid of base side 25mm and height 40mm, is resting on the ground on one of its triangular faces. The base edge of that face is inclined 300 to VP. Draw the projections of the solid. (A)

2. A hexagonal prism has side 25mm and height 50mm has a corner of its base on the ground and the long edge containing that corner inclined at 30o to HP and 45o to VP. Draw the projections of the solid. (A)

COURSE OUTCOME 3: Develop projections of sectioned solids and their developmental surface.

- 1. A cylinder of base diameter 50mm and height 60mm rest on its base on HP. It is cut by a plane perpendicular to VP and inclined at 45^o to HP. The cutting plane meets the axis at a distance 15mm from its top base. Draw the sectional plan and true shape of the section. (A)
- 2. A regular hexagonal pyramid side of base 30 mm and height 60 mm is vertically on its base on HP, such that two of its sides of the base are perpendicular to VP. It is cut by a plane inclined at 30° to HP and perpendicular to VP. The cutting plane bisects the axis of the pyramid. Obtain the development of the lateral surface of the truncated pyramid. (A)

COURSE OUTCOME 4: Develop isometric views from orthographic projections

- 1. A cone of diameter 50 mm and axis 70 mm rests on its base on HP. A section plane perpendicular to VP and inclined at 30° to HP cuts the solid and passes through a point on axis which is 40 mm above HP. Draw the isometric view of a truncated cone. (A)
- 2. A pentagonal pyramid of base edge 25 mm and height 65 mm rests vertically on its base on the HP such that one of its base edge parallel to VP. It is cut by a plane, parallel to HP and perpendicular to VP and passes through a point 25 mm from the apex. Draw the isometric view of the frustum of pyramid. (A)

COURSE OUTCOME 5: Construct the perspective projections of simple solids

1. Draw the perspective view of a square prism of base side 40mm and height 50mm. one vertical lateral face is parallel to PP and 30mm away from it. The station point is 80mm from PP, 80mm above the base and 60mm to the right of the axis of the prism. (APPLY)

2.A hexagonal pyramid of base side 25mm and axis length 50mm is resting on GP on its base with a side of base is parallel to and 20mm behind PP. The station point is 60mm above GP and 80mm in front of PP and lies in a central plane which is 50mm to the left of the axis of the pyramid. Draw the perspective view of a pyramid. (APPLY)

21EE2501	FUNDAMENTALS OF ELECTRICAL AND ELECTRONICS SCIENCE	L 3	Т 0	P 2	C 4
Proroquisitos	s for the course	3	U	2	4
Basic Science					
Objectives					
To impart kno	-				
	AC circuits using basic laws.	1			
	uction, working principle, EMF equation of DC machines, singl	e pha	se tra	ansto	rmer
	tor, synchronous motor and induction motor. cal Drives and Characteristics				
	uction, operation, characteristics and applications of semicond	uctor	dovid	205	
	ots of logic gates and their applications.		uevi	.03.	
UNIT I	ELECTRIC CIRCUITS			9	
	chhoff"s Laws, Reduction of series and parallel circuits solvin C circuit fundamentals-Power, Power factor-solving simple AC AC circuits				
to thirde phase					
UNIT II DC MACHINE	ELECTRICAL MACHINES E: Principle of Operation DC Motor-types-torque equat		- sp	9 eed-t	orqu
UNIT II DC MACHINE characteristics AC MACHINES Motor-constru	ELECTRICAL MACHINES	aking ple, 3 orque	phas	eed-t	uctio
UNIT II DC MACHINI characteristics AC MACHINES Motor-constru	ELECTRICAL MACHINES E: Principle of Operation DC Motor-types-torque equat s-losses and efficiency- speed control of DC motors-Electric Bra S: Single phase Transformers - Construction and working princi action–Principle of operation- types-torque equation-speed -to	aking ple, 3 orque	phas	eed-t	uctio
UNIT II DC MACHINH characteristics AC MACHINES Motor-constru 1 phase Induc UNIT III Basic Element Heating and	ELECTRICAL MACHINES E: Principle of Operation DC Motor-types-torque equat s-losses and efficiency- speed control of DC motors-Electric Bra S: Single phase Transformers - Construction and working princi action–Principle of operation- types-torque equation-speed - to tion Motor-Principle of operation-types – Industrial Applicatio	aking ple, 3 orque ns. ce of E – Spe	phas char lectr	e Indr acter 9 ical D	uctio istics
UNIT II DC MACHINE characteristics AC MACHINES Motor-constru 1 phase Induc UNIT III Basic Element Heating and	ELECTRICAL MACHINESE: Principle of Operation DC Motor-types-torque equates-losses and efficiency- speed control of DC motors-Electric BrassS: Single phase Transformers - Construction and working princingaction-Principle of operation- types-torque equation-speed - totion Motor-Principle of operation-types - Industrial ApplicationELECTRICAL DRIVES AND CHARACTERISTICScs - Types of Electric Drives - Factors are influencing the choicCooling curves - Loading Conditions and Classes of Duty	aking ple, 3 orque ns. ce of E – Spe	phas char lectr	e Indr acter 9 ical D	uction istics
UNIT II DC MACHINE characteristics AC MACHINES Motor-constru 1 phase Induc UNIT III Basic Element Heating and Characteristic UNIT IV Operation of configurations Comparison of	ELECTRICAL MACHINES E: Principle of Operation DC Motor-types-torque equat s-losses and efficiency- speed control of DC motors-Electric Brack S: Single phase Transformers - Construction and working princi- action–Principle of operation- types-torque equation-speed -to- tion Motor-Principle of operation-types – Industrial Application ELECTRICAL DRIVES AND CHARACTERISTICS rs – Types of Electric Drives – Factors are influencing the choice Cooling curves – Loading Conditions and Classes of Duty s curves of various electrical drives. – Speed Control of DC and	aking ple, 3 orque ns. :e of E – Spe AC dr T, typ and o	phas char lectr eed - ives	eed-t e Indracter acter 9 ical D - Tor 9 CB, C acteri	uctio istics Drive que E, C stics
UNIT II DC MACHINI characteristics AC MACHINES Motor-constru 1 phase Induc UNIT III Basic Element Heating and Characteristic UNIT IV Operation of configurations Comparison c	ELECTRICAL MACHINES E: Principle of Operation DC Motor-types-torque equates-losses and efficiency- speed control of DC motors-Electric Bracks: Single phase Transformers - Construction and working princinction-Principle of operation- types-torque equation-speed -tottion Motor-Principle of operation-types – Industrial Applicatio ELECTRICAL DRIVES AND CHARACTERISTICS cs - Types of Electric Drives – Factors are influencing the choic Cooling curves – Loading Conditions and Classes of Duty s curves of various electrical drives. – Speed Control of DC and ELECTRONIC DEVICES PN junction diodes, VI characteristics, zener diode, BJ' s, input and output characteristics, JFET - working principle of BJT and FET. MOSFET-types, principle of operation and	aking ple, 3 orque ns. :e of E – Spe AC dr T, typ and o	phas char lectr eed - ives	eed-t e Indracter acter 9 ical D - Tor 9 CB, C acteri	uctio istics Drive que E, C stics
UNIT II DC MACHINE characteristics AC MACHINES Motor-constru 1 phase Induc UNIT III Basic Element Heating and Characteristic UNIT IV Operation of configurations Comparison of Electronic Dev UNIT V Number syste gates, Combin	ELECTRICAL MACHINES E: Principle of Operation DC Motor-types-torque equates-losses and efficiency- speed control of DC motors-Electric Bracks: Single phase Transformers - Construction and working princing action – Principle of operation - types-torque equation-speed - to tion Motor-Principle of operation-types – Industrial Application ELECTRICAL DRIVES AND CHARACTERISTICS rss – Types of Electric Drives – Factors are influencing the choic Cooling curves – Loading Conditions and Classes of Duty s curves of various electrical drives. – Speed Control of DC and ELECTRONIC DEVICES PN junction diodes, VI characteristics, zener diode, BJ's, input and output characteristics, JFET - working principle of BJT and FET. MOSFET-types, principle of operation and vices - Principles and Applications.	aking ple, 3 orque ns. e of E – Spe AC dr T, typ and o chara	phas char lectr eed - rives pes-C chara acter	eed-t e Indu acter 9 ical D - Tor 9 CB, C acteri istics, 9 ment	uctio istics Drive que E, C stics Opt

Continuous Assessment Test (20 Marks)	Model Exam (30 Marks)	End Semester Exams (50 Marks)
CAT – 110 Marks	Lab Experiments – 10 Marks	Descriptive Types
CAT – II 10 Marks	Model lab with project – 20 Marks	
Outcomes	·	·
Upon completion of the course	, the students will be able to:	
C110.3: Explain the concepts of d C110.4: Analyze and compare th device C110.5: Design basic combination Text Books 1. Muthu Subramanian R, Sa McGraw Hill, New Delhi, 2	alivahanan S, "Basic Electrical an	res. cteristics of the semiconductor d Electronics Engineering",
Reference Books		
1. Nagsarkar T K and Sukhija 2012.	a M S, "Basics of Electrical Enginee	ering", Oxford University press
2. V K Mehta, Rohit mehta "P	rinciples of Electronics", S.Chanda	& Company Ltd, 2015.
3 Mahmood Nahvi & Joseph	A. Edminister, "Electric Circuits",	Schaum' Outline Series Mc

Web Resources: Nil

CO Vs PO Mapping and CO Vs PSO Mapping

CO	P01	P02	P03	P04	P05	904	P07	P08	60d	PO 10	P0 11	P0 12	PS01	PS02
110.1	3	3	3	3								2	2	
110.2	3	3	3	3								2	3	
110.3	3	3	3	3								2	3	1
110.4	3	3	3	3	2	1						2	3	1
110.5	3	3	3	3	2	1						2	3	

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	Lab Experiment	Model Exam	END SEM EXAM
REMEMBER	20	20			20
UNDERSTAND	30	30			30
APPLY	20	20	10	10	20
ANALYZE	15	15			15
EVALUATE	15	15			15
CREATE					

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1:

1. The resistivity of the conductor depends on____(u)

2. The resistance of a conductor of diameter d and length l is R Ω . If the diameter of the conductor is halved and its length is doubled, the resistance will be_____(U)

COURSE OUTCOME 2:

1. If field current is decreased in shunt dc motor, the speed of the motor____(U)

2. What is the shunt resistance component equivalent circuit obtained by no load test of an induction motor representative of ? (U)

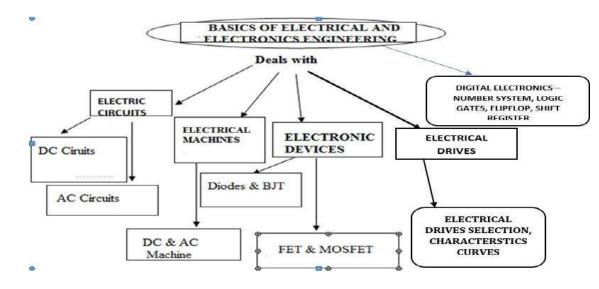
COURSE OUTCOME 3:

- 1. Explain different types of electric drives and the factors affecting the selection of drives (U)
- 2. Explain the thermal model of an electric motor for
 - (a). Heating the electric motor when starting form cold
 - (b). Cooling the electric motor when it is switched off from the mains. (U)

COURSE OUTCOME 4:

1.A CE amplifier when bypassed with a capacitor at the emitter resistance has ____

2. A transistor has $h_{ie} = 1K\Omega$ and $h_{fe} = 60$ with an bypassed emitter resistor $R_e = 1k\Omega$. What will be the input resistance and output resistance?


3. Describe the working of a PN junction diode with neat diagrams. Also explain its V-I Characteristics. 4.Explain the working of the CB configuration of BJT

COURSE OUTCOME 5:

- 1. The following hexadecimal number (1E.43)₁₆ is equivalent to _____ (U)
- 2. In an SR latch built from NOR gates, which condition is not allowed _____ (U)
- 3. Explain the working of JK flip flop with its logic Diagram.(U)
- 4. Design a full adder, construct the truth table, simply the output equations and draw the logic diagram. (U)

S.No	List of Experiments	СО
1	Verification of Ohm"s and Kirchhoff"s Laws	C110.1
2	Measurement of Power and Power Factor in Single Phase RLC Circuit	C110.1
3	Mechanical Characteristics of DC Shunt and Compound Motor	C110.2
4	Load Test on 3 Phase Induction Motor and Electric Braking	C110.2
5	Different Configuration of Bipolar Junction transistor & Field Effect Transistor	C110.3
6	Study of characteristics of Zener diode.	C110.3
7	Speed Control of DC Shunt Motor	C110.4
8	Speed Control of Single phase slip ring induction Motor	C110.4
9	Study of Logic Gates and Implementation of Binary Adder / Subtractor	C110.5
10	Implementation of Shift registers & Modulo – 16 Counter	C110.5

CONCEPT MAP

COURSE DESIGNERS:

1. Kannan P Assistant Professor/ECE

kannanece@francisxavier.ac.in

21CS2512	Python Programming	L	Т	Р	С
	(Common for Mechanical and Civil)	2	0	2	3

Preamble

This course is an introduction to the Python programming language for students without prior programming experience. Students are introduced to core programming concepts like data structures, conditionals, loops, variables, and functions. This course includes an overview of thevarious tools available for writing and running Python, and gets students coding quickly. It is easy for beginners to learn, it is widely used in many scientific areas for data exploration.

Prerequisites for the course

• Problem Solving Techniques, Logical Thinking

Objectives

- 1. To know the features of Python.
- 2. To develop Python programs with conditionals and loops.
- 3. To define Python functions and use function calls.
- 4. To make students to apply Python data structures strings, lists, tuples, dictionaries.
- 5. To work with files in Python.
- 6. To handle exceptions.
- 7. To analyse and explore data using python libraries.

UNIT I INTRODUCTION TO PYTHON

Features of Python - Modes of Python - values and data types: Variables - expressions -statements – Operators - Input and Output – comments.

UNIT II CONTROL FLOW, FUNCTIONS

Conditionals: Boolean values and operators, conditional (if), alternative (if-else), chained conditional (if-elif-else); Iteration: state, while, for, break, continue, pass; Functions: function definition and use, parameters and arguments, recursion.

UNIT III STRING, LIST, TUPLES

8

5

5

Strings: string slices, string functions and methods. Compound data - Lists: list operations - listslices - list methods - list loop. Tuples: tuple assignment - tuple as return value

UNIT IV	DICTIONARY, FILES AND EXCEPTION HANDLING	7

Dictionaries: operations and methods

	ception: text files, reading and writing files, Command line argument	, EITOIS. Symax
rors, Runt	ime errors, Logical Errors – Exceptions – handling exceptions	
NIT V	MODULES AND PACKAGES	5
lodules, pa	ckages, Numpy, Seaborn, Pandas	
	Total Periods	30 Theory +60
		Lab
S.No	List of Experiments	CO
	Python Program using conditional statements	
	a) Write a program for checking the given number is even orodd.	
	b) Write a program for finding biggest number among 3 numbers	
	c) Implement python script to read person's age from keyboard	
1	and display whether he is eligible for voting or not.	CO1
-	d) Implement python script to check the given year is leap year or not.	
	Python Program using looping statements	
	a) Write a Python Program to generate first N natural numbers.	
	b) Write a python program to read a integer and for all non- negative integers i <n ,="" i<sup="" print="">2.</n>	
2	c) Write a Python Program to print factorial of a number.	CO2
Z	d) Write a Python Program to print sum of digits of anumber	02
	e) Python Program to Print All Numbers in a Range	
	Divisible by a Given Number	
	f) Python Program to Find Numbers which are Divisible by	
	7 and Multiple of 5 in a Given Range	
	Python Programs using functions	
3	a) Write a Python Program to Find Fibonacci Numbersusing Recursion	CO2
	b) Write a Python Program to generate Electricity Bill.	
4	Python Programs using string	CO3

	 a) Write a Python Program to calculate the number of digits and letters in a string. b) Write a Python Program to Count Number of Lowercase Characters in a String c) Write a Python Program to Check if the Substring is Present in the Given String 	
5	 Python Programs using list a) Python Program to Print Largest Even and Largest Odd Number in a List b) Python Program to Remove Duplicates from a List. 	CO3
6	 Python Programs using tuples a) Write a Python Program to Create a List of Tuples with the First Element as the Number and Second Element as the Square of the Number 	CO3
	 Python Programs using dictionaries a) Write a Python Program to Find the Sum of All the Items in a Dictionary b) Write a Python Program to Multiply All the Items in a Dictionary 	CO4
5	 Python Programs using files a) Write a Python Program to Count the Number of Lines, words, characters a in Text File b) Python Program to Copy One File to Another File. 	CO4
7	Implementing real-time/technical applications using Exception handling. (divide by zero error, voter's age validity)	CO4
8	 Programs using Python library – NumPy, Pandas, Seaborn a) Write a NumPy program to create an element-wise comparison (greater, greater_equal, less and less_equal) of two given arrays. b) Write a NumPy program to multiply the values of two given vectors. c) Write a Pandas program to get the powers of an array values element-wise. d) Write a Pandas program to create and display a DataFrame from a specified dictionary data which has the index labels. 	CO5

	variabl	Python program to find the correlation es of iris data. Also create a hitmap usin ent their relations.	
Laboratory Re	equirements		
• 60 Syste	ems with window	ws / LINUX operating system with pyt	hon IDLE or equivalent.
	s Assessment est	Lab Components Assessments (30 Marks)	End Semester Practica Exams
(20 N	larks)		(50 Marks)
1. Descriptive q CAT 1 – 10 Ma CAT 2 - 10 Ma	rks	 Lab experiments 10 Marks. Model examination with project 20 Marks 	1. Descriptive questions
Outcomes			
Unon committee	ion of the cours	e, the students will be able to:	
		s for solving problems using condition	al statements.
C111.1: Write C111.2: Write decompose a P	Python program Python program ython program i	as for solving problems using looping	statement and list and
C111.1: Write C111.2: Write decompose a Processing them. C111.3: Repressing them. C111.4: Solve	Python program Python program ython program is sent data using F	as for solving problems using looping nto functions. Python strings, lists, and tuples, and so problems using data represented in d	statement and list and lve computational problems
C111.1: Write C111.2: Write decompose a Py C111.3: Repres using them. C111.4: Solve exceptions white	Python program Python program ython program is sent data using F computational le dealing with c modules and pac	as for solving problems using looping nto functions. Python strings, lists, and tuples, and so problems using data represented in d	statement and list and lve computational problems ictionaries and files handle
C111.1: Write C111.2: Write decompose a Py C111.3: Represusing them. C111.4: Solve exceptions white C111.5: Write	Python program Python program ython program is sent data using F computational le dealing with c modules and pac	as for solving problems using looping nto functions. Python strings, lists, and tuples, and so problems using data represented in d lata.	statement and list and lve computational problems ictionaries and files handle
C111.1: Write E C111.2: Write E decompose a Py C111.3: Repress using them. C111.4: Solve exceptions while C111.5: Write E solve scientific Text Books 1. Allen B.	Python program Python program ython program is sent data using H computational j le dealing with c modules and pac problems.	as for solving problems using looping nto functions. Python strings, lists, and tuples, and so problems using data represented in d lata.	statement and list and lve computational problems ictionaries and files handle andas libraries in real time to
C111.1: Write E C111.2: Write E decompose a Py C111.3: Repress using them. C111.4: Solve exceptions while C111.5: Write E solve scientific Text Books 1. Allen B.	Python program Python program ython program is sent data using H computational le dealing with c modules and pac problems. Downey, "Thi , Shroff/O'Reilly	ns for solving problems using looping nto functions. Python strings, lists, and tuples, and so problems using data represented in d lata. ekages and Use Numpy, Seaborn and Pa	statement and list and lve computational problems ictionaries and files handle andas libraries in real time to
C111.1: Write I C111.2: Write I decompose a Py C111.3: Repress using them. C111.4: Solve exceptions white C111.5: Write I solve scientific Text Books 1. Allen B. Edition, Reference Boo	Python program Python program ython program is sent data using H computational le dealing with c modules and pac problems. Downey, "Thi , Shroff/O'Reilly ks	ns for solving problems using looping nto functions. Python strings, lists, and tuples, and so problems using data represented in d lata. ekages and Use Numpy, Seaborn and Pa	statement and list and lve computational problems ictionaries and files handle andas libraries in real time to omputer Scientist", Second

CO Vs PO Mapping and CO Vs PSO Mapping

C O	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PS O 1	PS O 2
1	2	2	2	1	1									
2	1	1	1	2	1									
3	2	2	1	1	1									
4	2	1	1	2	1									
5	1	1	1	2	1									

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	Lab Experiments	Model Lab	END SEM PRACTICA LEXAM
Remember	10	10			10
Understand	10	10			10
Apply	80	80	100	100	80
Analyze					
Evaluate					
Create					

COURSE LEVEL ASSESSMENT

QUESTIONSCOURSE OUTCOME 1:

- 1. Write a Python Program to read the unit of electricity consumed in a house and calculate the amount to be paid for the electricity consumed. The bill amount should be calculated as per the given specification:
 - a. For 0 to 100 units the per unit is $\gtrless 0/-$

- b. For 0 to 200 units, for the first 100 unit the per unit cost is zero and the next 100 units, the consumer shall pay ₹ 1.5 per unit.
- c. For 0 to 500 units, the consumer shall pay ₹ 0 for the first 100 units, for the next 100 units the consumer shall pay ₹ 2 per unit, for the next 300 units the unit cost is ₹3.00/- (Apply)

2. Explain in detail about the various conditional statements that are supported by Python.

(Understand) (Analyse)

(Understand)

3. Differentiate variables and constants.

COURSE OUTCOME 2:

- 1. Write a Python Program to Read a Number n and Compute n+nn+nnn. (Apply)
- 2. Differentiate break and continue. (Analyse)
- 3. Write a Python Program to read the unit of electricity consumed in a house and calculate the amount to be paid for the electricity consumed. The bill amount should be calculated as per the given specification:
 - a. For 0 to 100 units the per unit is $\gtrless 0/-$
 - b. For 0 to 200 units, for the first 100 unit the per unit cost is zero and the next 100 units, the consumer shall pay ₹ 1.5 per unit.
 - c. For 0 to 500 units, the consumer shall pay ₹ 0 for the first 100 units, for the next 100 units the consumer shall pay ₹ 2 per unit, for the next 300 units the unit cost is ₹3.00/- (Apply)

COURSE OUTCOME 3:

1. What is printed by the following statements? (Appy) s = "engineering"

```
r = ""
```

for item in s:

```
r = item.upper() + rprint(r)
```

2. Is string mutable. Justify your answer.

3. List out some compound data type that are supported by python.(Remember)

COURSE OUTCOME 4:

1. What happens if the file is not found in the following Python code? (Apply) a=False

while not a:

try:

Francis Xavier Engineering College/ Dept of Mechanical Engineering/ R2021/Curriculum and Syllabi $f_n = input("Enter$

file name")i_f = open(f_n, 'r')

except:

print("Input file not found")

- Write a Python Program that Reads a Text File and Counts the Number of Times a Certain Letter Appears in the Text File. (Apply)
- 3. How will you handle exception when it is raised? Explain. (Understand)

COURSE OUTCOME 5:

- 1. Write a Pandas program to create and display a one-dimensional arraylike object containing an array of data using Pandas module. (Apply)
- 2. Explain in detail about modules and packages in Python. (Understand)

		L	Τ	Р	(
21GE1512	Engineering Workshop	0	0	4	
Prerequisi	tes for the course		-I I		
Basi	c Science				
Objectives					
-	provide exposure to the students with hands on experience or		s basic e	engin	eeri
—	tices in Civil, Mechanical, Electrical and Electronics Engineerir	ng.			
S.No	List of Experiments		CO		
1	Study of joints in roofs		C112.	1	
2	Hands-on-practice: T joint		C112.	1	
3	Preparation of Butt joints, lap joints and T joints by shielded metal arc welding		C112.	2	
4	Forming and Bending - Model Making-Tray, Funnel, dust pan		C112.	2	
5	Study of pipeline joints, its locations and functions; valves, taps, couplings, unions, reducers, elbows in household fittings		C112.	3	
6	Hands-on-exercise: Basic pipe connections, mixed pipe material connections, pipe connections with different joining components		C112.	3	
7	Study of basic construction materials, masonry and concretes		C112.	3	
8	Residential house wiring using switches, fuse, indicator, lamp and energy meter		C112.4	4	
9	Fluorescent lamp wiring		C112.	4	
10	Earthing Techniques		C112.4	4	
11	Stair case wiring		C112.4	4	
12	Go down Wiring		C112.4	4	
13	Study of Electronic components and equipment's- Resistor Color Coding and CRO		C112.	5	
14	Study of logic gates AND, OR, EX-OR and NOT		C112.		
15	Soldering practice – Components Devices and Circuits – Using general purpose PCB		C112.	6	
S.No.	List of Projects		lated riment		CO
1.	Making a Switch Board			0	2112

C113.2	Use welding equipment's to join the str	uctures and shee	et metal works					
C113.1	Fabricate carpentry components							
	npletion of the course, the students wi	ll be able to:						
Outcome:	AB WITH PROJECT 20 MARKS							
	ERIMENTS 40 MARKS		40					
(60 Mark	ss)	(40 Marl	ks)					
Lab Comp	oonents Assessments	End Sem	iester Exams					
Suggestiv	e Assessment Methods							
15.	Anuroia basea elecurcar appliance contro.	1	Component Devices					
15.	Android based electrical appliance control	1		C117				
14.	GSM based House Monitoring Control Sy	GSM based House Monitoring Control System						
		Wiring	C112					
13.			 Staircase Wiring Go down Wiring Residential House 					
12. 13.	Grade of Concrete House Wiring	House Wiring						
11.	Construct of partition wall using Flemis	h bond	Masonry & Concrete					
10.	Fitting water pipeline to wash basin		Plumbing	C112				
9.	Fabrication of Tool Box			C112				
8.	Fabrication of Welding Chute			C112				
7.	Fabrication of Metal Box			Image: Contract of the second seco				
6.	Making a Sheet Metal Bending Machine		Welding	C112				
5.	Making a Welding Fixtures			C112				
4.	Fabrication of Footstep Pedastal			C112				
3.	Making a Table Drawer		Carpentry	C112				
				C112				

flexible pipes, couplings, unions, elbows, plugs and other fittings 2 Carpentry vice (fitted to work bench) 3 Standard woodworking tools 4 Models of industrial trusses, door joints, furniture joints 5 Power Tools: 2 Demolition Hammer 4 Hand Drilling Machine 2 Mechanical 1 Arc welding transformer with cables and holders							
C113.6	Elaborate on the components, gates, soldering practices						
aborat	ory Requirements						
	CIVIL						
1	flexible pipes, couplings, unions, elbows, plugs and other fittings	15 Set					
		15 No:					
		15 Set					
	Models of industrial trusses, door joints, furniture joints	5 Nos					
5		2 Nos					
		2 Nos					
		-					
		5 Nos					
		5 Nos					
3	Welding accessories like welding shield, chipping hammer, Wire brush, etc.,	5 Sets					
4	Power Tool: Angle Grinder	2 Nos					
5	Sheet metal working tools	15 Sets					
6	Standard working tools	15 set					
	ELECTRICAL						
1	Assorted electrical components for house wiring	15 Set					
2	Electrical Measuring Instruments	10 Set					
3	Study purpose items: Iron box, fan and regulator, emergency lamp	1 Each					
4	Megger (250V/500V)	1No.					
5	Power Tools: (a) Range Finder (b) Digital Live-wire detector ELECTRONICS	2 Nos					
1	Soldering guns	10 Nos					
2	Assorted electronic components for making circuits	50Nos					
3	Small PCBs	10 Nos					
4	Multimeters	10 Nos					
	ce Books						

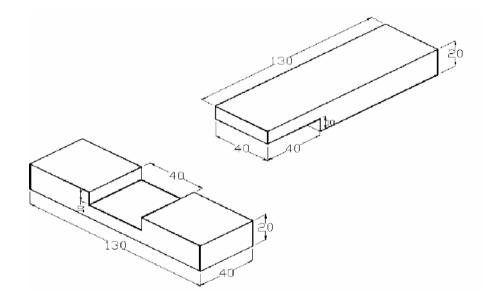
2. T.Jeyapoovan, M.Saravanapandian&S.Pranitha, "Engineering Practices Lab Manual", Vikas Publishing House Pvt. Ltd, (2006)

3. H.S. Bawa, "Workshop Practice", Tata McGraw – Hill Publishing Company Limited, (2007)

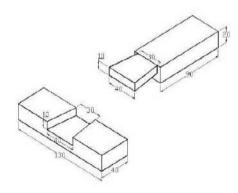
4. A.Rajendra Prasad & P.M.M.S. Sarma, "Workshop Practice", Sree Sai Publication, (2002).

Web Resources

https://mechanicalenotes.com/engineering-workshop/

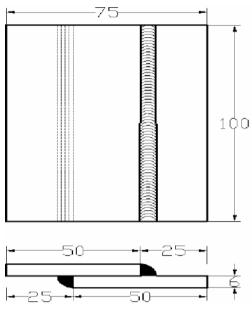

Francis Xavier Engineering College| Dept of Mechanical Engineering| R2021/Curriculum and Syllabi CO Vs PO Mapping and CO Vs PSO Mapping

CO	P01	P02	PO3	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2
1	3	2	2						1			1	3	
2	2	3	2						1			1	3	
3	3	3	1						1			1	3	
4	3	2	2						1			1	3	
5	2								1				1	
6	3	2							1				2	

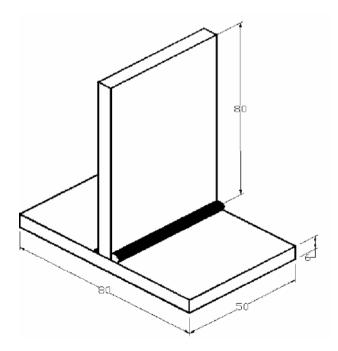

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Students will be able to fabricate carpentry components (Apply)

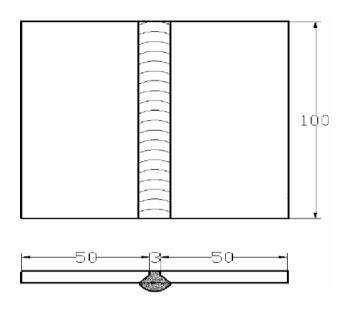
1) Make a T-lap joint from the given wood pieces as shown in the drawing.



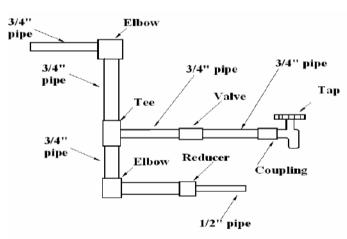
2) Make a dovetail joint from the given wooden work piece as per the drawing given below.



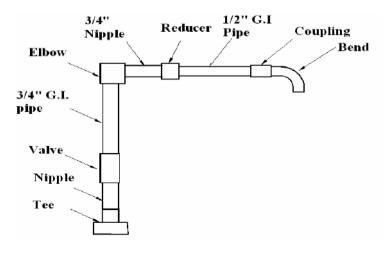
Francis Xavier Engineering College/ Dept of Mechanical Engineering/ R2021/Curriculum and Syllabi COURSE OUTCOME 2: Students will be able to Use welding equipment's to join the structures and sheet metal works (Apply)


1. Make a Lap joint from the given pieces using arc welding as shown in the drawing.

1. Prepare a 'T' joint from the given M.S. plates using arc welding as shown in the diagram



Francis Xavier Engineering College | Dept of Mechanical Engineering | R2021/Curriculum and Syllabi
2. Prepare a 'Butt' joint from the given M.S. plates using arc welding as shown in the diagram



COURSE OUTCOME 3: Students will be able to perform basic plumbing operations

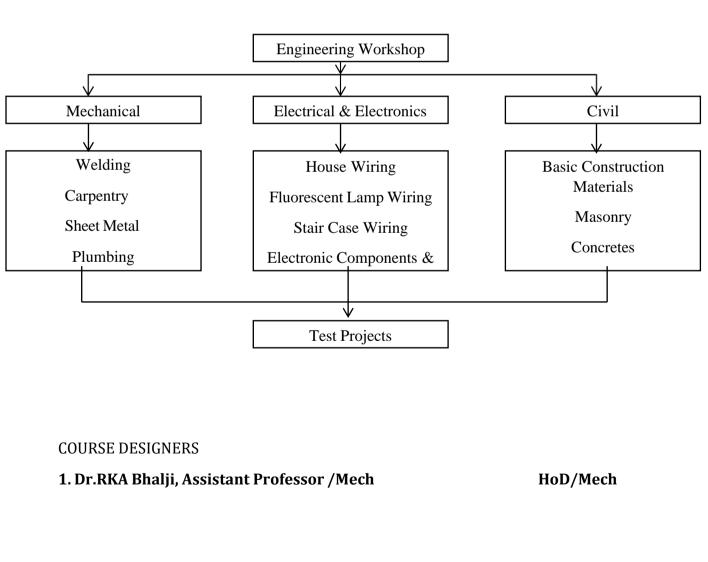
1. Make a pipe fitting connections from the given GI / PVC pipes and fittings as shown in the drawing.

2. Prepare the GI / PVC Pipe joint by using the given pipes and fittings as per the diagram given below.

Francis Xavier Engineering College | Dept of Mechanical Engineering | R2021/Curriculum and Syllabi
3. Study of basic construction materials, masonry and concretes

COURSE OUTCOME 4: Students will be able to carry out basic home electrical works and appliances.

1. Make an industrial illumination circuit wiring using switches, fuse, indicator, lamp and energy meter.


COURSE OUTCOME 5: Students will be able to measure the electrical and electronic parameters and quantities

1. Conduct an experiment using a starter to show the lamp will continue to glow even when starter is removed.

COURSE OUTCOME 6: Students will be able to elaborate on the components, gates,

soldering practices

1. To perform soldering and Desoldering of electronic components on PCB

Concept Mapping

Francis Xavier Engineering College/ Dept of Mechanical Engineering/ R2021/Curriculum and Syllabi

SEMESTER III

041440004		L	Т	Р	C
21MA3201	Probability and Statistical Analysis	3	1	0 atistic oblems ics pro- orem, a initial 9+3 I differ pson's tegrat 9+3 urth or method 9+3 mode	4
engineering st algorithms and include nume teaches studer	provides an introduction to numerical methods and engine rudents. The focus of numerical methods is translating engin d implementing them in a spreadsheet or programming lang rical interpolation, integration and differential equations. T hts basic probability theory, standard distribution, the central ting, confidence intervals and design of experiments.	eering juage. 'he st	g pro Top atist	oblem oics c ics p	ns int overe portio
Prerequisites	for the course				
Basic knowled	ge in probability theory.				
 To imple bounda To have To intro To fami 	ll enable learners: rove their ability in solving partial and ordinary differential equa ry conditions. e knowledge in simple integrals. oduce the basic concepts of probability. liarize with ANOVA y the concept of testing of hypothesis to Engineering problems	ations	witł	ı initi	al anc
UNIT I	Interpolation and Numerical Integration		(9+3	
interpolation f rule and Simps SUGGESTED E	EVALUATION METHODS:	zoidal	, Sim	ipson	's 1/3
• Tutoria	l Problems on Newton's forward and backward interpolation, Nu	umerio	cal in	itegra	tion.
UNIT II	Numerical Solution of Ordinary Differential Equations		ļ	9+3	
Runge-Kutta n solving first or	DE by Single step methods: Taylor's series method - Euler's me nethod for solving first order equations - Multi step methods der equations. EVALUATION METHODS:				
• Tutoria	l Problems on Taylor's series, Euler's method, Fourth order Run method	ge-Ku	itta r	nethc	od and
UNIT III	Probability and Distributions		(9+3	
	probability, sampling theorems, conditional probability; mear ation; Random variables, Binomial, Poisson and Normal distribu		lian,	mod	e and
	EVALUATION METHODS: l Problems on Probability, Random variables and distributions.				
UNIT IV	Testing of Hypothesis		Ģ	9+3	
Type I, Type II	ibutions and Standard Error - Small samples and large samples Errors - Large sample tests for mean –Small sample tests for me ution -Test of independence of attributes.				

 Tutorial Problems on Small 	sample tests for mean – t ,f test, Chi	- Square distribution.
UNIT V Design of Experim	nents	9+3
Basic principles of experimentati	on - Analysis of variance - One-wa	ay classification – Completel
RBD.	assification - Randomized Block Des	sign – Comparison of CRD an
• Tutorial Problems on ANOV	IODS: /A, Completely Randomized Design	
	Total Perio	ods 45 + 15 = 60 Periods
Suggestive Assessment Methods	<u> </u>	
Continuous Assessment Test	ntinuous Assessment Test (20 Marks)Formative Assessment Test (20 Marks)escriptive Questions 1 - 10 Marks1.Assignment 	
(20 Marks)	(20 Marks)	(60 Marks)
1. Descriptive Questions	1. Assignment	1. Descriptive Questions
CAT 1 – 10 Marks	2. Online Quizzes	
CAT 2 – 10 Marks		
Outcomes		
	3 1	
Text Books	ments in the new of agriculture (ring	
	we arised Matheda" New Age Interne	tional Dublichang Now
	umerical Methods" New Age Interna	uonai Publishers, New
Edition 2015. (CO1, CO2)		
	reund J., "Miller and Freund's Proba tion, Asia, 8th Edition, 2015. (CO3, C	5
Reference Books		
1. Burden, R.L and Faires, J.D,	"Numerical Analysis", 9th Edition, Co	engage Learning, 2016.
2. Devore. J.L., "Probability and	d Statistics for Engineering and the S	Sciences", Cengage Learning,
New Delhi, New Edition, 20)17.	
3. Gerald. C.F. and Wheatley. P	.0. "Applied Numerical Analysis" Pea	arson Education. Asia. New
Delhi, 2016.		· · ·
	, "Numerical Methods in Engineerin	g and Science ". 10th Edition.
Khanna Publishers, New De	C C	g
	hematics E. Kreyszig John Wiley & So	ons 10th Edition 2016
0 0	Srimanta Pal et al Oxford University	
n Fnoindaring Wraindmainer	minanta i al et al Oxioru University	1 1033 5 10 Euluon, 2010
6. Engineering Mathematics S		
Web Resources:		
Web Resources: 1. Numerical Integration	/content/storage/111/107/111107	105/MP4/mod01lec01.mp4
Web Resources: 1. Numerical Integration -https://archive.nptel.ac.in/		105/MP4/mod01lec01.mp4
Web Resources: 1. Numerical Integration -https://archive.nptel.ac.in/ https://youtu.be/YTHt4Sp8	<u>BHag</u>	105/MP4/mod01lec01.mp4
 Web Resources: Numerical Integration -https://archive.nptel.ac.in/ <u>https://youtu.be/YTHt4Sp8</u> Numerical Solution of Ordinal Solution of Ordinal Solution of Ordinal Solution of Ordinal Solution Soluting Soluting Solution Soluting Soluting Soluting Solution Solu	<u>BHag</u> hary Differential Equations	
 Web Resources: Numerical Integration -https://archive.nptel.ac.in/ <u>https://youtu.be/YTHt4Sp8</u> Numerical Solution of Ordin -https://archive.nptel.ac.in/ 	<u>BHag</u> hary Differential Equations /content/storage2/127/106/12710	
 Web Resources: 1. Numerical Integration https://archive.nptel.ac.in/ https://youtu.be/YTHt4Sp8 2. Numerical Solution of Ordin https://archive.nptel.ac.in/ https://youtu.be/m2p6hr0 	<u>BHag</u> hary Differential Equations /content/storage2/127/106/12710 DGaxQ	
 Web Resources: 1. Numerical Integration https://archive.nptel.ac.in/ https://youtu.be/YTHt4Spf 2. Numerical Solution of Ordin https://archive.nptel.ac.in/ https://youtu.be/m2p6hr() 3. Probability and distribution 	<u>BHag</u> hary Differential Equations /content/storage2/127/106/12710 <u>)GaxQ</u> hs - <u>https://youtu.be/cp7_ZF2kNi4</u>	
 Web Resources: 1. Numerical Integration https://archive.nptel.ac.in/ https://youtu.be/YTHt4Sp8 2. Numerical Solution of Ordin https://archive.nptel.ac.in/ https://youtu.be/m2p6hr0 	<u>BHag</u> hary Differential Equations /content/storage2/127/106/12710 DGaxQ hs - <u>https://youtu.be/cp7_ZF2kNi4</u> s://youtu.be/8oNGkvuRP60	

Francis Xavier Engineering College/ Dept of Mechanical Engineering/ R2021/Curriculum and Syllabi CO Vs PO Mapping and CO Vs PSO Mapping:

	ີເປ	7 V 5 F C	марр	ning an		5 F 30	mapp	ing.							
CO	P01		P03	P04	POS	P 06	P 07	DUB	POQ	PO	PO	PO	PSO	PSO	PSO
ιυ	101	102	105	104	105	100	107	100	109	10	11	12	1	2	3
1	3	2	1	1				1	1			1			
2	3	2	1	1				1	1			1			
3	3	2	1	1				1	1			1			
4	3	2	1	1				1	1			1			
5	3	2	1	1				1	1			1			

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2
1	3	2										2		
2	3	2												
3	3	2												
4	3	2										2		
5	3	2										2		

ASSESSMENT PATTERN :

BLOOM'S CATEGORY	I	ASSESSME	NT TESTS		END SEMESTER EXAMINATION
CATEGORI	CAT – 1	CAT -2	FAT - 1	FAT - 2	EAAMIINATION
REMEMBER	10	10	5	5	10
UNDERSTAND	30	10	10	10	10
APPLY	60	40	10	10	50
ANALYZE	0	40	0	0	30
EVALUATE	0	0	0	0	0
CREATE	0	0	0	0	0

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1 (CO 1) : (Apply)

1) (i) Find the y(3) in the following table using Lagrange's interpolation formula

Х	0	1	2	4
Y	1	3	9	81

- ii) By dividing the range into 10 equal parts evaluate $\pi_{ij} i nx dx$
- 2) Find y(0.1) using Runge-Kutta (R.K) method given that $\frac{dy}{dx} = y^2 + xy$; y(0)=1

COURSE OUTCOME 2 (CO 2) : (Apply)

Francis Xavier Engineering College/ Dept of Mechanical Engineering/ R2021/Curriculum and Syllabi

1) A random variable 'X' has the following probability function

Х	0	1	2	3	4	5	6	7	8
p(x)	а	3a	5a	7a	9a	11a	13a	15a	17a

(i) Determine the value of 'a'

(ii) Find P(X < 3), $P(X \ge 3)$, P(0 < X < 5)

(iii) Find the distribution function of X.

2) If X is a continuous random variable with probability density function

 $f(x) = \begin{cases} kx^2, -1 < x < 1 \\ 0 & c < x \\$

then find

(i)The value of k(ii)The mean and variance of X (iii) $P(\stackrel{1}{\leq} x < 4)$

- 1) Derive Mean and Variance of a Binomial distribution
- 2) The weekly wages of 1000 workmen are normally distributed around a mean of Rs. 70 with Standard Deviation of Rs. 5. Estimate the number of workers whose weekly wages will be (i) Between Rs. 69 and 72 (ii) less that Rs. 69 (iii) more than Rs 72.

COURSE OUTCOME 4 (CO 4) : (Analyze)

- 1. A random sample of 10 boys had the following I.Q.'s 70, 120, 110, 101, 88, 83, 95, 98, 107, 100. Do these data support the assumption of a population mean I.Q of 100 ? Find a reasonable range in which most of the mean I.Q values of samples of 10 boys lie.
- 2. To verify whether a course in accounting improved performance, a similar test was given to participant both before and after the course. The marks are

Before :													
After :	53	38	69	57	46	39	73	48	73	74	60	78	

What the course useful?

3. Two batches each of 12 animals are taken for test of inoculation. One batch was inoculated and the other batch was not inoculated. The numbers of dead and surving animals are given in the following table in the both cases. Can the inoculation be regarded as effective against the disease?

	Dead	Survived
Inoculated	15	85
Not inoculated	25	75

COURSE OUTCOME 5 (CO 5): (Analyze)

1. An experiment was designed to study the performance of 4 different detergents for cleaning fuel injectors. The following "cleanness "readings were obtained with specially designed equipment for 12 tanks of gas distributed over 3 different models of engines:

Francis Xavier Engineering College | Dept of Mechanical Engineering | R2021/Curriculum and Syllabi

	Engine 1	Engine 2	Engine 3	Total
Detergent A	45	43	51	139
Detergent B	47	46	52	145
Detergent C	48	50	55	153
Detergent D	42	37	49	128
Total	182	176	207	565

Perform the ANOVA and test at 0.01 level of significance whether there are differences in the detergents or in the engines.

2. A variable trial was conducted on wheat with 4 varieties in a Latin Square Design . The plan of the experiment and the per plot yield are given below.:

С	25	В	23	А	20	D	20
Α	19	D	19	С	21	В	18
В	19	А	14	D	17	С	20
D	17	С	20	В	21	Α	15

Analyze data and interpret the result.

Francis Xavier Engineering College/ Dept of Mechanical Engineering/ R2021/Curriculum and Syllabi 21ME3601 **ENGINEERING THERMODYNAMICS** Т L Ρ C 3 1 0 4 **Prerequisites for the course Engineering Physics and Engineering Chemistry Objectives** Impart knowledge on the basics and application of zeroth and first law of thermodynamics. Impart knowledge on the second law of thermodynamics in analysing the performance of thermal devices. Impart knowledge on availability and applications of second law of thermodynamics Teach the various properties of steam through steam tables and Mollier chart. Impart knowledge on the macroscopic properties of ideal and real gases. **BASICS, ZEROTH AND FIRST LAW** UNIT I 9+3 Basics: Thermodynamic system - types, surrounding, universe – state, path, process - Quasi-static, reversible and irreversible processes - Path and point functions - Intensive and extensive properties - total and specific quantities - Thermodynamic Equilibrium - Heat and work transfer sign convention, P-V diagram. Zeroth law – Concept of temperature and Temperature Scales. First law – application to closed and open systems – steady and unsteady flow processes. SECOND LAW AND ENTROPY **UNIT II** 9+3 Heat source and sink - Statements of second law and its corollaries - Carnot cycle, performance -Heat Engine - Reversed Carnot cycle - Refrigerator - Heat pump. Clausius inequality - Concept of entropy - T-s diagram - Entropy change for pure substance - principle of increase in entropy -Applications of II Law. Availability and Irreversibility for open and closed system. **PROPERTIES OF PURE SUBSTANCES** UNIT III 9+3 Formation of steam - P-v, T-s, h-s diagrams. Determination of properties of steam using Steam Table and Mollier Chart – Ideal and actual Rankine cycles, Cycle Efficiency Improvement Methods. **IDEAL AND REAL GASES, THERMODYNAMIC RELATIONS UNIT IV** 9+3 Properties of Ideal gas, real gas - comparison. Equations of state for ideal and real gases. vander Waal's relation - Reduced properties - Compressibility factor - Principle of Corresponding states -Generalized Compressibility Chart. Maxwell relations - Tds Equations - heat capacities relations -Energy equation, Joule-Thomson experiment - Clausius-Clapeyron equation. UNIT V **PSYCHROMETRY** 9+3 Dalton's Law - Psychrometric properties - Psychrometric chart - air-vapour mixture property

Dalton's Law - Psychrometric properties - Psychrometric chart – air-vapour mixture property calculations using chart and expressions - Psychrometric processes –sensible heating and cooling – humidification and dehumidification - evaporative cooling - adiabatic mixing. Simple applications

Total Periods

45+15 =60 Hours

Suggestive rissessment retrieves										
Formative Assessment Test	End Semester Exams									
(20 Marks)	(60 Marks)									
1. Assignment	1. Descriptive Questions									
2. Online Quizzes										
3. Problem-Solving Activities										
	Formative Assessment Test (20 Marks)1. Assignment2. Online Quizzes									

Course Outcomes

Upon completion of the course, the students will be able to:

C202.1: Understand the zeroth and first law of thermodynamics, temperature scales and calculate the property changes in closed and open engineering systems.

C202.2: Apply the second law of thermodynamics in analysing the performance of thermal devices through energy and entropy calculations.

C202.3: Evaluate various properties of steam and performance parameters of Rankine cycle.

C202.4: Understand the properties of gases and its thermodynamic relations.

C202.5: Analyse the properties of air-vapour mixtures and understand the various psychrometric processes.

Text Books

1. Nag.P.K., "Engineering Thermodynamics", 6th Edition, Tata McGraw Hill (2017), New Delhi

2. Natarajan, E., "Engineering Thermodynamics: Fundamentals and Applications", 2nd Edition (2014), Anuragam Publications, Chennai

Reference Books

1. Cengel, Y and M. Boles, Thermodynamics - An Engineering Approach, Tata McGraw Hill,8th Edition, 2015.

2. Chattopadhyay, P, "Engineering Thermodynamics", 2nd Edition Oxford University Press, 2016.

3. Rathakrishnan, E., "Fundamentals of Engineering Thermodynamics", 2nd Edition, Prentice Hall of India Pvt. Ltd, 2006.

4. Claus Borgnakke and Richard E. Sonntag, "Fundamentals of Thermodynamics", 7th Edition, Wiley Eastern, 2009.

5. Venkatesh. A, "Basic Engineering Thermodynamics", Universities Press (India) Limited, 2007.

Web Resources

1. https://archive.nptel.ac.in/courses/112/105/112105123/

CO Vs PO Mapping and CO Vs PSO Mapping

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2
C202.1	3		2	1										3
C202.2	3	2	1				1							3
C202.3	2	2	1	1			1							3
C202.4	3	2	1	1										3
C202.5	2	2	1	1			1							3

Francis Xavier Engineering College| Dept of Mechanical Engineering| R2021/Curriculum and Syllabi

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	10	10	5	5	10
UNDERSTAND	10	10	5	5	10
APPLY	30	30			30
ANALYZE	30	30	10	10	30
EVALUATE	20	20	5	5	20
CREATE					

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1 Understand the zeroth and first law of thermodynamics, temperature scales and calculate the property changes in closed and open engineering systems (Understand, Apply, Analyze, Evaluate)

1. A piston and cylinder machine contains a fluid system which passes through a complete cycle of four processes. During the cycle, the sum of all heat transfers is -170kJ. The system completes 100 cycles per minute. Complete the following table showing the method for each item, and compute the net rate of work input in kW. (An)

Process	Q (kJ/min)	W (kJ/min)	ΔE (kJ/min)
a-b	0	2,170	
b-c	21,000	0	
c-d	-2,100		-36,600
d-a			

Air flows steadily at the rate of 0.5 kg/s through an air compressor entering at 7m/s velocity, 100 kPa pressure and 0.95 m³/kg, volume and leaving at 5m/s, 700kPa and 0.19 m³/kg. The internal energy of the air leaving is 90 kJ/kg greater than that of the air entering. The cooling water in the compressor jackets absorbs heat from the air at the rate of 58 kW. (a). Compute the rate of shaft work input to the air in kW.

(b).Find the ratio of the inlet pipe diameter to the outlet pipe diameter.(E)

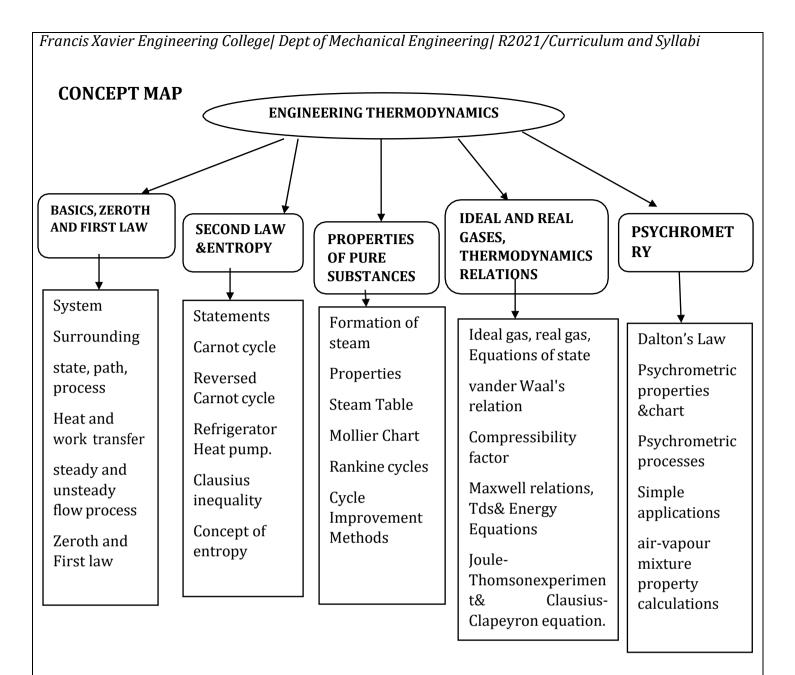
COURSE OUTCOME 2: Apply the second law of thermodynamics in analyzing the performance of thermal devices through energy and entropy calculations (Apply, Analyze, Evaluate)

1. A reversible heat engine operating between reservoirs at 900K and 300K drives a reversible refrigerator operating between reservoirs at 300K and 250K. The heat engine receives 1800kJ heat from 900K reservoir. The net output from the combined engine refrigerator is 360kJ. Find the heat transferred to the refrigerator and the net heat rejected to the reservoir at 300K. (An)

Francis Xavier Engineering College| Dept of Mechanical Engineering| R2021/Curriculum and Syllabi

- 2. Two kg of air at 500 kPa, 80°C expands adiabatically in a closed system until its volume is doubled and its temperature becomes equal to that of the surroundings which is at 100 kPa, 5°C. For this process, Determine:
 - (i) The maximum work
 - (ii) The change in availability
 - (iii) The irreversibility.(E)

COURSE OUTCOME 3: Calculate various properties of steam and performance parameters of Rankine cycle.(Remember, Apply, Analyze)


- 1. Explain the phase transformation that takes place when ice (solid) is heated continuously till superheated steam is obtained. Name the different states involved. Sketch the transformation on a 'temperature' Vs 'heat added' diagram. (R)
- In a Rankine cycle, the steam at inlet to turbine is saturated at a pressure of 35bar and the exhaust pressure is 0.2 bar. The flow rate of steam 9.5 kg/s. Determine (i)the pump work (ii)the turbine work (iii)Rankine efficiency (iv)Condenser heat flow (v)Work ratio (vi)Specific steam consumption. (An)

COURSE OUTCOME 4: Understand the properties of gases and its thermodynamic relations(Remember, Understand)

- 1. Derive Joule Thomson cooefficient and prove that joule Thomson coefficient for ideal gas is zero. (R)
- 2. Deduce the expression for various thermodynacic Tds relations of ideal and real gases. (U).

COURSE OUTCOME 5: Calculate the properties of air-vapour mixtures and understand the various psychrometric processes (Apply, Analyze, Evaluate)

- **1.** Air at 20°C,40% RH is mixed adiabatically with air at 40°C, 40% RH in the ratio of 1kg of the former with 2kg of the latter (on dry basis). Find the final condition of air.(An)
- An air water vapour mixture at 20°C and 50% relative humidity at a presence of 1.013 bar is heated at constant pressure to a temperature of 35°C. calculate a)The initial and final specific humidity b).Final relative humidity c).Dew point temperature d).Heat transferred per kg of dry air.(E)

21ME3602	FLUID MECHANICS AND MACHINERY	L	Τ	Р	С
		2	1	0	3
Prerequisites	s for the course				
Engine	eering physics				
Objectives					
ImpartConveyExpose	uce the properties of the fluid, behaviour of fluids under static c t basic knowledge of the dynamics of fluids and boundary layer of y the methods of dimensional analysis and model studies e to the basic principles of hydraulic machine (turbines) and to c arize with the working principle of pump along with construc FLUID PROPERTIES AND FLOW CHARACTERISTICS	conce desigr	pts. 1 Pelt of pe	ton w	
▲	fluids- Pressure Measurements-Buoyancy and floatation-Flov Lagrangian Principle of fluid flow– concept of control volume				S-
	nsportation theorem- continuity equation, energy equation and		-	Im	
Reynold's trar	nsportation theorem- continuity equation, energy equation and		ientu	im ′+2	
Reynold's trar equation-Appl UNIT II Reynold's exp Weisbach equ gradient –Pipe	nsportation theorem- continuity equation, energy equation and lications.	mom ular a Iydra	entu 7 annu ulic a	'+2 li – l and e	nergy
Reynold's trar equation-Appl UNIT II Reynold's exp Weisbach equ gradient –Pipe	nsportation theorem- continuity equation, energy equation and lications. FLOW THROUGH PIPES periment -Laminar flow through circular conduits and circulation – Friction factor and Moody diagram –Minor losses - Hes in series and parallel – loss of energy in pipes – Equivalent p	mom ular a Iydra	annu ulic Bour	'+2 li – l and e	nergy
Reynold's trar equation-Appl UNIT II Reynold's exp Weisbach equ gradient –Pipe concepts – typ UNIT III Fundamental	nsportation theorem- continuity equation, energy equation and lications. FLOW THROUGH PIPES periment -Laminar flow through circular conduits and circulation – Friction factor and Moody diagram –Minor losses - Hes in series and parallel – loss of energy in pipes – Equivalent poes of boundary layer thickness	mom ular a lydra bipes.	annu annu ulic Bour 5	7 +2 li – I and e ndary 5 +2	nergy layer
Reynold's trar equation-Appl UNIT II Reynold's exp Weisbach equ gradient –Pipe concepts – typ UNIT III Fundamental	nsportation theorem- continuity equation, energy equation and lications. FLOW THROUGH PIPES periment -Laminar flow through circular conduits and circulation – Friction factor and Moody diagram –Minor losses - Hes in series and parallel – loss of energy in pipes – Equivalent poes of boundary layer thickness DIMENSIONAL ANALYSIS AND MODEL STUDIES dimensions – Dimensional homogeneity – Rayleigh's method	mom ular a lydra bipes.	annu annu ulic a Bour 5 Buck	7 +2 li – I and e ndary 5 +2	nergy layer
Reynold's trar equation-Appl UNIT II Reynold's exp Weisbach equ gradient –Pipe concepts – typ UNIT III Fundamental theorem – Din UNIT IV Impact of jets Pelton wheel, Work done by	Ansportation theorem- continuity equation, energy equation and lications. FLOW THROUGH PIPES periment -Laminar flow through circular conduits and circulation – Friction factor and Moody diagram –Minor losses - Hes in series and parallel – loss of energy in pipes – Equivalent poes of boundary layer thickness DIMENSIONAL ANALYSIS AND MODEL STUDIES dimensions – Dimensional homogeneity – Rayleigh's method nensionless parameters – Similitude and model studies.	mom ular a lydra bipes. and ificati Work	annu ulic a Bour 5 Buck 8 on o	7+2 li – l and e ndary 5+2 cingha 5+2 f turb princi	ines – ples -
Reynold's trar equation-Appl UNIT II Reynold's exp Weisbach equ gradient –Pipe concepts – typ UNIT III Fundamental theorem – Din UNIT IV Impact of jets Pelton wheel, Work done by	Insportation theorem- continuity equation, energy equation and lications. FLOW THROUGH PIPES periment -Laminar flow through circular conduits and circulation – Friction factor and Moody diagram –Minor losses - Hes in series and parallel – loss of energy in pipes – Equivalent poes of boundary layer thickness DIMENSIONAL ANALYSIS AND MODEL STUDIES dimensions – Dimensional homogeneity – Rayleigh's method nensionless parameters – Similitude and model studies. HYDRAULIC TURBINES - Velocity triangles - Theory of roto-dynamic machines - Classis, Francis turbine (inward and outward) and Kaplan turbine-y water on the runner - Efficiencies – Draft tube - Specific s	mom ular a lydra bipes. and ificati Work	annu ulic a Bour 5 Buck 8 on o ting j - Po	7+2 li – l and e ndary 5+2 cingha 5+2 f turb princi	ines – ples -
Reynold's trar equation-Appl UNIT II Reynold's exp Weisbach equ gradient –Pipe concepts – typ UNIT III Fundamental theorem – Din UNIT IV Impact of jets Pelton wheel, Work done by curves for turk UNIT V Classification triangles- Wo	Insportation theorem- continuity equation, energy equation and lications. FLOW THROUGH PIPES periment -Laminar flow through circular conduits and circulation – Friction factor and Moody diagram –Minor losses - Hes in series and parallel – loss of energy in pipes – Equivalent poses of boundary layer thickness DIMENSIONAL ANALYSIS AND MODEL STUDIES dimensions – Dimensional homogeneity – Rayleigh's method nensionless parameters – Similitude and model studies. HYDRAULIC TURBINES - Velocity triangles - Theory of roto-dynamic machines - Classis, Francis turbine (inward and outward) and Kaplan turbine-y water on the runner - Efficiencies – Draft tube - Specific s bines – Governing of turbines.	mom ular a lydra bipes. and ificati Work speed efficient	annu ulic a Bour 5 Buck 8 on o ting j - Po 7 encie pum	7+2 li – I and e ndary 6+2 cingha cingha g+2 f turb princi erforr 7+2 es- Ve p wo	ines – ples – nance

Continuous Assessmer (20 Marks)	t Test Formative Assessment Test(20 Marks)	End Semester Exams (60Marks)
CAT 1 - 10 Marks	1.Descriptive type questions, and	1.Descriptive type
CAT 2 -10 Marks	2.Multiple choice questions,	questions.
DESCRIPTIVE QUESTION	IS	
Course Outcomes		
Upon completion of the	e course, the students will be able to:	
C203.1: Calculate the flui	d properties using continuity, energy and mor	entum equation.
C203 2. Estimate the ma	or loss in flow through pipes using Darcy W	aisbach aquation
		•
C203.3: Discover the rela phenomenon ar C203.4: Construct the per C203.5: Construct the ch	ationship among the parameters involved in d to predict the performances of prototype formance curves for both impulse and reaction aracteristic curves for centrifugal and recipr	a the given fluid by model studies. a turbines.
C203.3: Discover the rela phenomenon ar C203.4: Construct the per C203.5: Construct the ch empiricalrelation	ationship among the parameters involved in d to predict the performances of prototype formance curves for both impulse and reaction aracteristic curves for centrifugal and recipr	a the given fluid by model studies. a turbines.
C203.3: Discover the rela phenomenon ar C203.4: Construct the per C203.5: Construct the ch empiricalrelation Text Books	ationship among the parameters involved in d to predict the performances of prototype formance curves for both impulse and reaction aracteristic curves for centrifugal and recipr s.	a the given fluid by model studies. a turbines. rocating pumps using
C203.3: Discover the rela phenomenon ar C203.4: Construct the per C203.5: Construct the ch empiricalrelation Text Books 1. Modi P.N. and Set	ationship among the parameters involved in d to predict the performances of prototype formance curves for both impulse and reaction aracteristic curves for centrifugal and recipr	a the given fluid by model studies. a turbines. rocating pumps using
C203.3: Discover the rela phenomenon ar C203.4: Construct the per C203.5: Construct the ch empiricalrelation Text Books 1. Modi P.N. and Set (2017).	ationship among the parameters involved in d to predict the performances of prototype formance curves for both impulse and reaction aracteristic curves for centrifugal and recipr s.	n the given fluid by model studies. n turbines. rocating pumps using
C203.3: Discover the rela phenomenon ar C203.4: Construct the per C203.5: Construct the ch empiricalrelation Text Books 1. Modi P.N. and Set (2017). 2. Victor L.Streeter,	ationship among the parameters involved in d to predict the performances of prototype formance curves for both impulse and reaction aracteristic curves for centrifugal and recipr s.	a the given fluid by model studies. a turbines. rocating pumps using adard Book House, New Delhi "Fluid Mechanics",Tata
 C203.3: Discover the relaphenomenon ar C203.4: Construct the per C203.5: Construct the chempirical relation Text Books Modi P.N. and Set (2017). Victor L.Streeter, McGraw-Hill Pub 	ationship among the parameters involved in d to predict the performances of prototype formance curves for both impulse and reaction aracteristic curves for centrifugal and recipr s. h, S.M. Hydraulics and Fluid Mechanics, Star Wylie E. Benjamin and Bedford W. Keith W,	a the given fluid by model studies. a turbines. rocating pumps using adard Book House, New Delhi "Fluid Mechanics",Tata
 C203.3: Discover the relaphenomenon ar C203.4: Construct the per C203.5: Construct the chempirical relation Text Books Modi P.N. and Set (2017). Victor L.Streeter, McGraw-Hill Pub Reference Books 	ationship among the parameters involved in d to predict the performances of prototype formance curves for both impulse and reaction aracteristic curves for centrifugal and recipr s. h, S.M. Hydraulics and Fluid Mechanics, Star Wylie E. Benjamin and Bedford W. Keith W,	a the given fluid by model studies. a turbines. rocating pumps using adard Book House, New Delhi "Fluid Mechanics",Tata , 2017.
 C203.3: Discover the relation phenomenon ar phenomenon ar C203.4: Construct the per C203.5: Construct the characteristic constructeristic constructeris	ationship among the parameters involved in d to predict the performances of prototype formance curves for both impulse and reaction aracteristic curves for centrifugal and recipr s. h, S.M. Hydraulics and Fluid Mechanics, Star Wylie E. Benjamin and Bedford W. Keith W, ishing CompanyLtd, New Delhi, 9th Edition d Mechanics and Hydraulics Machines", Lay , 2013.	a the given fluid by model studies. a turbines. rocating pumps using adard Book House, New Delhi "Fluid Mechanics",Tata , 2017.
 C203.3: Discover the relaphenomenon ar C203.4: Construct the per C203.5: Construct the chempirical relation Text Books Modi P.N. and Set (2017). Victor L.Streeter, McGraw-Hill Pub Reference Books Bansal, R.K., "Fluid Delhi, 5th Edition White, F.M., "Fluid 	ationship among the parameters involved in d to predict the performances of prototype formance curves for both impulse and reaction aracteristic curves for centrifugal and recipr s. h, S.M. Hydraulics and Fluid Mechanics, Star Wylie E. Benjamin and Bedford W. Keith W, ishing CompanyLtd, New Delhi, 9th Edition d Mechanics and Hydraulics Machines", Lay	a the given fluid by model studies. a turbines. rocating pumps using adard Book House, New Delhi "Fluid Mechanics",Tata , 2017. cmi publications (P) Ltd, New 5th Edition, 2013.

Francis Xavier Engineering College/ Dept of Mechanical Engineering/ R2021/Curriculum and Syllabi CO Vs PO Mapping and CO Vs PSO Mapping

							•							
CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PS02
C203.1	3	2	2	-								1		3
C203.2	2	3	1											3
C203.3	2	3	1									1		3
C203.4	2	3	1											3
C203.5	2	3	1											3

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	20	20	5	5	20
UNDERSTAND	30	30	10	10	30
APPLY	50	50	10	10	50
ANALYZE					
EVALUATE					
CREATE					

COURSE LEVEL ASSESSMENT QUESTIONS

C203.1: List the various fluid properties and apply control volume concept to fluid mechanics problems – (Apply)

1. Define specific gravity and mention the specific gravity of Mercury. [R]

2. The temperature of lubricant circulated in the engine gets raised during working stroke. What happens to its viscosity? **[U]**

3. Water flows through a pipe AB 1.2 m diameter at 3 m/s and then passes through a pipe BC 1.5 m diameter. At C the pipe branches. Branch CD is 0.8 m in diameter and carries one – third of the flow in AB. The flow velocity in the branch CE is 2.5 m/s. Find the volume rate of flow at AB, the velocity in BC, the velocity in CD and the diameter of CE. **[Ap]**

Francis Xavier Engineering College/ Dept of Mechanical Engineering/ R2021/Curriculum and Syllabi C203.2:Estimate the major loss in flow through pipes using Darcy Weisbach equation. (Apply)

1. Enumerate the various losses that occur in the fluid flowing through the pipe. **[R]**

2. Mention the governing equation for minor losses that occur in a pipe having an obstacle formed due to scaling in boiler tubes. **[U]**

3. Three pipes of 400 mm, 200 mm and 300 mm diameters have lengths of 400 m, 200 m, and 300 m respectively. They are connected in series to make a compound pipe. The ends of this compound pipe are connected with two tanks whose difference of water levels is 16 m. if co-efficient of friction for these pipes is same and equal to 0.005, determine the discharge through the compound pipe neglecting first the minor losses and then including them. **[Ap]**

C2O3.3:Discover the relationship among the parameters involved in the given fluid phenomenon and to predict the performances of prototype by model studies. (Apply)

1. Name a few fluid properties and state its dimensions. [R]

2. Explain the term dimensional homogeneity. [U]

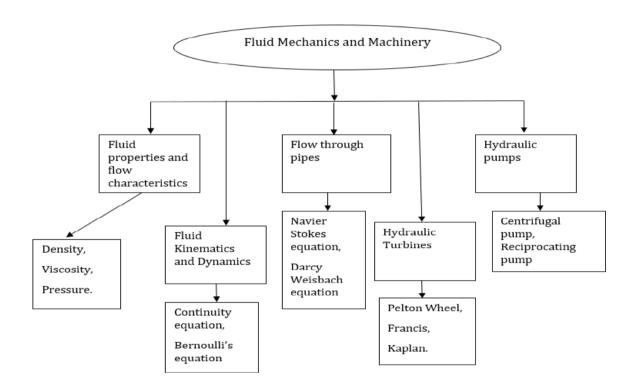
3. The resisting force R of a supersonic plane during flight can be considered as dependent upon the length of the aircraft l, velocity V, air viscosity μ , air density ρ and bulk modulus of air K. Express the functional relationship between these variables and the resisting force. **[Ap]**

C203.4: Describe the working principle and construct performance curves for both impulse and reaction turbines-(Apply)

1. With a neat sketch represent the velocity triangle for a hydraulic turbine. **[R]**

2. Explain the difference between the impulse and reaction turbines. **[U]**

3. Determine the power given by the jet of water to the runner of a Pelton wheel which is having tangential velocity as 20 m/s. the net head on the turbine is 50 m and discharge through the jet water is 0.03 m3/s. the side clearance angle is 15° and take Cv as 0.975. **[Ap]**


C203.5: Construct the characteristic curves for centrifugal and reciprocating pumps using empirical relations-(Apply)

1. Define manometric efficiency. [R]

Francis Xavier Engineering College/ Dept of Mechanical Engineering/ R2021/Curriculum and Syllabi
 What happens to overall efficiency when mechanical efficiency is doubled and manometric efficiency is halved? [U]

3. The internal and external diameters of the impeller of a centrifugal pump are 200 mm and 400 mm respectively. The pump is running at 1200 rpm. The vane angles of the impeller at inlet and outlet are 20 and 30 respectively. The water enters the impeller radially and velocity of flow is constant. Determine the work done by the impeller per unit weight of water. **[Ap]**

CONCEPT MAP

Francis Xavier Engineering College/ Dept of Mechanical Engineering/ R2021/Curriculum and Syllabi

21ME3501	ENGINEERING MATERIALS AND METALLURGY	L	T	Р	С
		3	0	0	3
Prerequisites	s for the course				
Engineering Pl	hysics				
Objectives					
 Diagran Classify Discuss Summative Select the 	y various types of Heat treatment process and its applications. The properties and applications of Ferrous and Nonferrous metals. The properties of Non-metallic materials and applications. The suitable materials for various Engineering applications.	bide E	Cquili		
UNIT I	ALLOYS AND PHASE DIAGRAMS			9	
Isomorphous, steel, Cast iron	of alloys – Solid solutions, substitutional and interstitial eutectic, eutectoid, peritectic, and peritectoid reactions, Stress st n ,plastic, glass and aluminium, Iron – carbon equilibrium diag	rain c	liagr	am fo	
Steel and cast i	Iron microstructure, properties and application				
UNIT II Definition – Fu	HEAT TREATMENT all annealing, stress relief, recrystallisation and spheroidising – n				
UNIT II Definition – Fu and tempering diagram CCR hardening, car	HEAT TREATMENT	supe narte nducti	rimp mpei on h	g, hard osed ring -	on I.T - case
UNIT II Definition – Fu and tempering diagram CCR hardening, car	HEAT TREATMENT all annealing, stress relief, recrystallisation and spheroidising – n g of steel. Isothermal transformation diagrams – cooling curves – Hardenability, Jominy end quench test – Austempering, n rburizing, Nitriding, cyaniding, carbonitriding – Flame and Ir	supe narte nducti	rimp mpei on h	g, hard osed ring -	on I.T - case
UNIT II Definition – Fu and tempering diagram CCR hardening, can Vacuum and P UNIT III Effect of alloyi steels – Cast In Brass, Bronze	HEAT TREATMENT all annealing, stress relief, recrystallisation and spheroidising – n g of steel. Isothermal transformation diagrams – cooling curves – Hardenability, Jominy end quench test – Austempering, n rburizing, Nitriding, cyaniding, carbonitriding – Flame and Ir lasma hardening. Surface treatment process – shot blasting – san	supe marte nducti d blas eels – er anc	rimp mper on h sting HSL	g, harcosed or ring - harden 9 A, Mar	on I.T - case ning - raging loys -
UNIT II Definition – Fu and tempering diagram CCR hardening, can Vacuum and P UNIT III Effect of alloyi steels – Cast In Brass, Bronze	HEAT TREATMENTHEAT TREATMENTall annealing, stress relief, recrystallisation and spheroidising – ng of steel. Isothermal transformation diagrams – cooling curves– Hardenability, Jominy end quench test – Austempering, nrburizing, Nitriding, cyaniding, carbonitriding – Flame and Irlasma hardening. Surface treatment process – shot blasting – sanFERROUS AND NON-FERROUS METALSing additions on steel- α and β stabilisers– stainless and tool steeron – Grey, white, malleable, spheroidal – alloy cast irons, Copperand Cupronickel – Aluminium and Al-Cu – precipitation stree	supe marte nducti d blas eels – er anc	rimp mper on h sting HSL	g, harcosed or ring - harden 9 A, Mar	on I.T. - case ning - raging lloys -
UNIT II Definition – Fu and tempering diagram CCR hardening, can Vacuum and P UNIT III Effect of alloyi steels – Cast In Brass, Bronze Bearing alloys, UNIT IV Polymers – typ various therm Polymers – Ur	HEAT TREATMENT all annealing, stress relief, recrystallisation and spheroidising – n g of steel. Isothermal transformation diagrams – cooling curves – Hardenability, Jominy end quench test – Austempering, n rburizing, Nitriding, cyaniding, carbonitriding – Flame and Ir lasma hardening. Surface treatment process – shot blasting – san FERROUS AND NON-FERROUS METALS ing additions on steel-α and β stabilisers– stainless and tool ster ron – Grey, white, malleable, spheroidal – alloy cast irons, Copper and Cupronickel – Aluminium and Al-Cu – precipitation strender , Mg–alloys, Ni–based super alloys and Titanium alloys NON-METALLIC MATERIALS pes of polymer, commodity and engineering polymers – Propertion osetting and thermoplastic polymers (PP, PS, PVC, PMMA, PET rea and Phenol formaldehydes) – Engineering Ceramics – Propertion Si ₃ N ₄ , PSZ and SIALON –Composites-Classifications – Meta	supe marte iducti d blas eels – er and gther es an c, PC, rties	rimp mper on h sting HSL l cop ling f d app PA, <i>H</i> and a	g, harco osed o ring - harden 9 A, Mai per al treatn 9 olicati ABS, F applic	on I.T - case ning - raging loys - nent - ons of PI, PAI ations
UNIT II Definition – Fu and tempering diagram CCR hardening, can Vacuum and Pl UNIT III Effect of alloyi steels – Cast In Brass, Bronze Bearing alloys, UNIT IV Polymers – typ various therm Polymers – Ur of Al ₂ O ₃ , SiC,	HEAT TREATMENT all annealing, stress relief, recrystallisation and spheroidising – n g of steel. Isothermal transformation diagrams – cooling curves – Hardenability, Jominy end quench test – Austempering, n rburizing, Nitriding, cyaniding, carbonitriding – Flame and Ir lasma hardening. Surface treatment process – shot blasting – san FERROUS AND NON-FERROUS METALS ing additions on steel-α and β stabilisers– stainless and tool ster ron – Grey, white, malleable, spheroidal – alloy cast irons, Copper and Cupronickel – Aluminium and Al-Cu – precipitation strender , Mg–alloys, Ni–based super alloys and Titanium alloys NON-METALLIC MATERIALS pes of polymer, commodity and engineering polymers – Propertion osetting and thermoplastic polymers (PP, PS, PVC, PMMA, PET rea and Phenol formaldehydes) – Engineering Ceramics – Propertion Si ₃ N ₄ , PSZ and SIALON –Composites-Classifications – Meta	supe marte iducti d blas eels – er and gther es an c, PC, rties	rimp mper on h sting HSL l cop ling f d app PA, <i>H</i> and a	g, harco osed o ring - harden 9 A, Mai per al treatn 9 olicati ABS, F applic	on I.T - case ning - raging loys - nent - ons of PI, PAI ations
UNIT II Definition – Fu and tempering diagram CCR hardening, can Vacuum and P UNIT III Effect of alloyi steels – Cast In Brass, Bronze Bearing alloys, UNIT IV Polymers – typ various therm Polymers – Ur of Al ₂ O ₃ , SiC, Applications o UNIT V Mechanisms o under tension,	HEAT TREATMENT all annealing, stress relief, recrystallisation and spheroidising – n g of steel. Isothermal transformation diagrams – cooling curves – Hardenability, Jominy end quench test – Austempering, n rburizing, Nitriding, cyaniding, carbonitriding – Flame and Ir lasma hardening. Surface treatment process – shot blasting – san FERROUS AND NON-FERROUS METALS ing additions on steel-α and β stabilisers– stainless and tool stee ron – Grey, white, malleable, spheroidal – alloy cast irons, Copperand Cupronickel – Aluminium and Al-Cu – precipitation strender , Mg-alloys, Ni-based super alloys and Titanium alloys NON-METALLIC MATERIALS pes of polymer, commodity and engineering polymers – Propertion rosetting and thermoplastic polymers (PP, PS, PVC, PMMA, PET rea and Phenol formaldehydes) – Engineering Ceramics – Propertion Si ₃ N ₄ , PSZ and SIALON –Composites-Classifications – Meta of Composites MECHANICAL PROPERTIES AND DEFORMATION	supe marte iducti d blas eels – er and gther es an r, PC, rties l Ma Testi and F	rimp mper on h sting HSL l cop ling f d app PA, A and a trix	g, harcosed oring - narder 9 A, Mai per al treatm 9 olicati ABS, F applic and 1 9 f mat	on I.T - case ning - raging loys - nent - ons of PI, PAI ations FRP -

Suggestive Assessment Method	S				
Continuous Assessment Test	Formative Assessment Test	End Semester Exams			
(20 Marks)	(20 Marks)	(60 Marks)			
CAT 1 – 10 Marks	1. Assignment	1. Descriptive Questions			
CAT 2 - 10 Marks	2. Online Quizzes	-			
Descriptive Questions	3. Problem-Solving Activities				
Course Outcomes					
Upon completion of the course,	the students will be able to:				
C204.1 Explain alloys and phase of	liagram, Iron-Iron carbon diagram	and steel classification for			
material development					
C204.2 Explain isothermal transfe	ormation, continuous cooling diagra	ams and different heat			
treatment processes for material	development				
C204.3Clarify the effect of alloyin	g elements on ferrous and non-ferr	ous metals.			
C204.4Summarize the properties	and applications of non metallic m	aterials.			
C204.5Explain/demonstrate the	testing of mechanical properties.				
Text Books					
1. Williams D Callister, "Mate Edition (2014)	erial Science and Engineering" Wild	ey India Pvt Ltd, Revised India			
	to Physical Metallurgy", McGraw Hil	ll Book Company, 2017.			
Reference Books					
1 Kenned CD dialized	Michael K. Budinski, "Engineering N	Aaterials", Prentice Hall of Ind			
Private Limited, (2010)					
Private Limited, (2010) 2. Raghavan.V, "Materials Sc	tience and Engineering", Prentice Ha				
Private Limited, (2010) 2. Raghavan.V, "Materials Sc 3. U.C.Jindal, "Engineering M	tience and Engineering", Prentice Ha Iaterials and Metallurgy", 1 st Editior	n, Dorling Kindersley, (2012)			
Private Limited, (2010) 2. Raghavan.V, "Materials Sc 3. U.C.Jindal, "Engineering M	tience and Engineering", Prentice Ha	n, Dorling Kindersley, (2012)			

https://nptel.ac.in/courses/113106032/

CO Vs PO Mapping and CO Vs PSO Mapping

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2
C204.1	3	3											2	3
C204.2	3	2	1	2									2	3
C204.3	3	2	1	2									2	3
C204.4	3	2											2	3
C204.5	3	2	1	1	1								2	3

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	30	20	10	10	20
UNDERSTAND	50	30	10	10	30
APPLY	20	50	5	5	50
ANALYZE					
EVALUATE					
CREATE					

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Explain alloys and phase diagram, Iron-Iron carbon diagram and steel classification for material development (Remember and Understand)

1.Construct the Iron-Carbon equilibrium phase diagram and discuss the different phase that takes place in it. (**U**)

2. Classify the types of steel and explain its micro structure properties and application (U)

COURSE OUTCOME 2: Explain isothermal transformation, continuous cooling diagrams and different heat treatment processes for material development (Remember, Understand and Apply)

1.Construct the TTT diagram and explain the following heat treatments applied to an eutectoid steel: Austempering, Martempering and Hardening (**U**)

2. Explain Case hardening Classified as nitriding, cyaniding and carbonitriding (A)

COURSE OUTCOME 3: Clarify the effect of alloying elements on ferrous and nonferrous metals(Remember and Understand)

1. Describe the stainless steels with respect to composition, properties and Applications. $\left(U \right)$

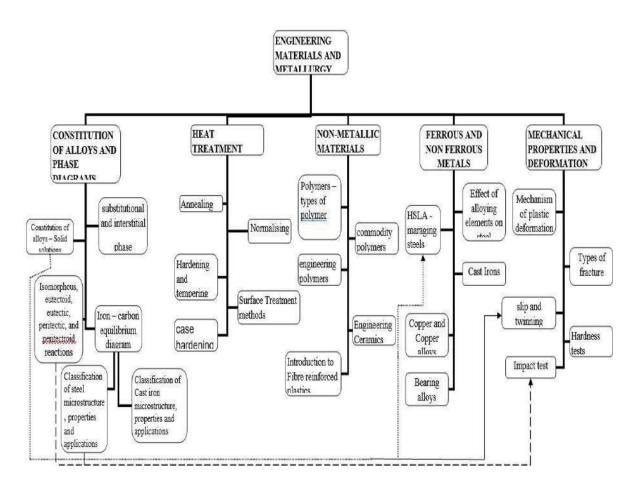
(ii)Write short notes on HSLA Steel. (U)

2. Discuss different types of copper alloys and their properties and applications. (R)

(ii)Write short notes on bearing alloys. (U)

COURSE OUTCOME 4: Summarize the properties and applications of non metallic materials. (Remember, Understand and Apply)

1. Describe the properties and applications of the following polymersi) PVC ii) PS iii) PET iv)PA.(R)


2. Explain the following Engineering Ceramics: a) AL_2O_3 b) SiC c) $Si_3N_4(U)$

COURSE OUTCOME 5: Explain/demonstrate the testing of mechanical properties. (Remember, Understand and Apply)

1. Explain Brinell hardness testing and its applications(U)

2. Write down the procedure for preparing Charpy and Izod specimens for impact testing and also explain how testing is performed? (**A**)

CONCEPT MAP

21ME3603	MAN	UFACTURING TECHNOLOGY		L 2	T	P	C 2
	for the course			3	0	0	3
Engineering pl							
Objectives	-						
-	oduce the concents	of basic manufacturing processes a	nd fabrica	tion	techr	ninue	s such
	-	ing, metal forming and powder me			leem	nques	s, suci
		and basic mechanics of metal cutt		ing of	f stan	dard	
machin			U.	U			
UNIT I	CAS	TING AND METAL JOINING		10			
			_			_	
	0	Different types of castings, design	•				
	0	in castings. Fusion welding proces					-
U	adhesive bonding.	elding, Friction Stir Welding, Weld	i defects,	PIIIIC	ipies		azing
soluci ing and	aunesive bonanig.						
UNIT II		FORMING PROCESS				9	
Plastic deform	ation and yield crit	eria; fundamentals of hot and cold	working	proce	esses	; load	
		ng, extrusion, drawing) and sheet					
		s; Powder metallurgy-production o	of metal po	owde	rs-sta	ages i	n
powder metall	lurgy					0	
		METAL CUTTING				8	
		metal cutting, merchant's circle, for					
	economics of machin	ools – tool geometry and materials, too	or wear, too	n me,	cutti	ng mu	lus and
	1	INE TOOLS AND OPERATIONS				9	
		, reciprocating machine tools: S	haper. Sl	otter	: Mil	ling:	Type
	•	lown milling, milling cutters, ope	-			-	
		g time calculations; Reaming, tappi					
UNIT V	ABRASIVE	PROCESSES AND GEAR CUTTING	Ĵ			9	
·	0	eel designation and selection; Typ	0	0	-		
2 0	0. 0	ling, centreless grinding; Honing, l	apping; G	ear ci	utting	g: For	ming,
generation, sh	aping and hobbing;	*	D 1				
Suggostivo As	accoment Method		Periods			45	
	ssessment Methods ssessment Test	Formative Assessment Test	End So	most	or Ex	ame	
(20 Mai		Formative Assessment Test (20 Marks) (60 Marks)					
CAT 1 – 10 MA		1. Assignment	1. Desci		e Qu	estio	ns
CAT 2 – 10 MA	ARKS	2. Online Quizzes		•	C ·		
DESCRIPTIVE	QUESTIONS	3. Problem-Solving Activities					

Course Outcomes
Upon completion of the course, the students will be able to:
C205.1 Identify the different metal casting processes, defects and different metal joining processes
C205.2 Define the various hot working , cold working methods of metals and sheet metal making
processes
C205.3 Depict the basic concepts of metal cutting and perform cutting force and tool life
calculations.
C205.4Demonstrate the operational features of the centre lathe CNC Machines and the working
principle of shaper, milling and drilling machine tools
C205.5 Identify various finishing processes and explain the working principle of gear cutting
machine tools
Text Books
1. Hajra Chouldhary S.K and Hajra Choudhury A.K., "Elements of workshop Technology",
Volume I, Media promoters and Publishers Private Limited, Mumbai, (2014)
2. Hajra Choudhury S.K and Hajra Choudhury A.K., "Elements of Workshop Technology",
Volume II, Media Promoters, (2014)
3. Rao P.N "Manufacturing Technology – Metal Cutting and Machine Tools", 3rd Edition, Tata
McGraw-Hill, New Delhi, (2013)
Reference Books
1. Sharma, P.C., "A Text book of production Technology", S.Chand and Co. Ltd., (2014)
2. Rajput R.K., "A Textbook of Manufacturing Technology", Laxmi puplication, NewDelhi,
(2014)
3. "Production Technology"HMT McGraw-Hill Education (India) Pvt Limited, 01-May-2001
Web Resources
1. https://nptel.ac.in/courses/112104195
2. https://nptel.ac.in/courses/112107144
2 https://pptol.ac.in/courses/112105127

3. <u>https://nptel.ac.in/courses/11210512/</u>

CO Vs PO Mapping and CO Vs PSO Mapping

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2
C205.1	2	2	1	1									3	3
C205.2	2	2	2										3	2
C205.3	2	2	1										3	
C205.4	2	2	2										3	
C205.5	2	2	2										3	2

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	20	20	5	5	20
UNDERSTAND	60	60	10	10	60
APPLY	20	20	10	10	20
ANALYZE					
EVALUATE					
CREATE					

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1 : Identify the different metal casting processes, defects and different metal joining processes (Remember, Understand)

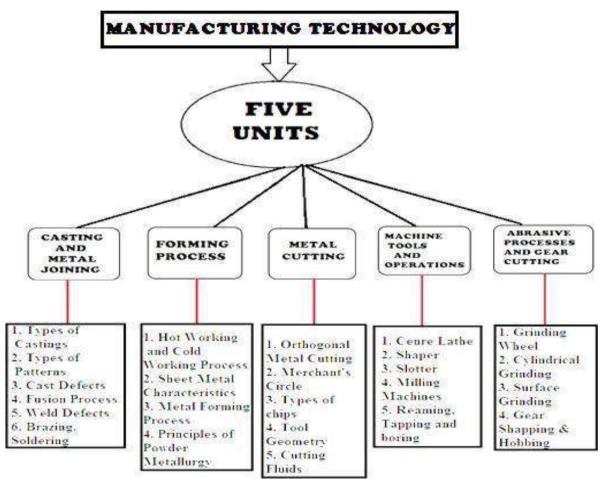
- 1. What is the principle of thermit welding? Explain the same with a neat diagram.(R)
- 2. Explain in detail the working principle of centrifugal casting. (U)
- 3. What are the Defects in Welding and Casting? (U)

COURSE OUTCOME 2 : Define the various hot working , cold working methods of metals and sheet metal making processes (Remember, Understand)

- 4. Explain the classifications of forging process based on the process used? (U)
- 5. Explain in detail with neat sketch. (i) Bending; (ii) Deep Drawing. (R)

COURSE OUTCOME 3 : Depict the basic concepts of metal cutting and perform cutting force and tool life calculations. (Remember, Understand, Apply)

- 6. What are the assumption made in drawing Merchant's circle. (R)
- 7. Discuss the purpose of cutting fluids. (R)


COURSE OUTCOME 4 : Demonstrate the operational features of the centre lathe CNC Machines and the working principle of shaper, milling and drilling machine tools (Remember, Understand, Apply)

- 8. Explain the different machining operations performed on lathe with sketches. (U)
- 9. Describe of crank and slatted link mechanism used in shaper with nearsketches. (U)

COURSE OUTCOME 5 : Identify various finishing processes and explain the working principle of gear cutting machine tools (Remember, Understand)

- 10. Explain the gear hobbing processes with sketches. (U)
- 11. Discuss the factors influencing the selection of grinaing wheel. (U)
- 12. Explain the centreless grinding operation with sketches. (U)

21PT3902	VERBAL ABILITY	L	Τ	Р	С		
211 15/02		0	0	2	1		
Preamble:							
commonly a p	developed to enhance the Verbal competency of the student art of the various competitive exams conducted. This course e of grammar and helps to enhance comprehensive abilities and	quips	s the	stude	nts ii		
Prerequisites	for the course						
 Foundation 	onal English						
Objectives							
read	help the student understand the importance of having his in the foreffective use.	-	-		-		
	provide a host of varied opportunities for the student to hone h Is basic components, namely, Grammar, Vocabulary, Spelling ar		•	0			
	Module I						
Articles, Tense	s, Voices, Preposition, Conjunctions, Subject-verb agreement, A	dver	bials				
	Module II			6			
_	ch, Simple, Complex & Compound Sentences, Direct & Indire grees of Comparison, Clauses.	ect Sp	beech	ı, Kin	ds of		
	Module III			6			
Reading Comp	rehension, Analogies, Synonyms & Antonyms, Idioms and Phra	ses.					
	Module IV			6			
Para-jumbles,	Phrasal verbs, Modifiers, Punctuations, Misspelled words.						
	Module V			6			
Verbal syllogis	m, figures of speech, Word completion, Sentence Completion, G	One v	vord	Subst	itute		
	Total Periods			30			
Suggested Ass	essment Activities:	<u> </u>					
• MCQ te	st through Google forms or other online test platforms.						

Continuous Assessment Test -1	Continuous Assessment Test -2	Model Exam
(30 Marks)	(30 Marks)	(40 Marks)
MULTIPLE CHOICE QUESTIONS	MULTIPLE CHOICE QUESTIONS	MULTIPLE CHOICE QUESTIONS
Outcomes		
Upon completion of the course	, the students will be able to:	
CO1: Identify the grammatical er	rors in a sentence.	
CO2: Frame sentences using the c	correct syntax.	
CO3: Understand the concepts reasoning.	stated in a sentence or paragraph a	nd analyze using verbal
CO4: Construct sentences logicall	y and make the texts semantically m	neaningful as a whole.
CO5: Interpret and analyze texts	on a deeper level.	
Text Books		
Composition. New Delhi: S	tha. (2018) English Language and	-
Reference Books		
Publishers	cal English Grammar & Composition rolyn Smith, Active Listening 3,3	
Web Resources:		
1. Indiabix : <u>https://www.ind</u>	diabix.com/online-test/verbal-abilit	<u>zy-test/</u>
x , , ,	ww.allindiaexams.in/online-test/or	line-verbal-ability-test/all
3. faceprep: <u>https://www.fac</u>		<i>.</i> ,

CO Vs PO Mapping

СО	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
1										3	1	
2										3	1	
3										3	1	
4										2		1
5										2		1

COURSE CONTENT AND SCHEDULE

S.NO	ΤΟΡΙϹ	NO OF HOURS REQUIRED					
	Module I						
1	Articles	1					
2	Tenses	1					
3	Voices	1					
4	Preposition	1					
5	Conjunctions	1					
6	Subject-verb agreement, Adverbials	1					
Module II							
7	Parts of Speech	1					
8	Simple, Complex & Compound Sentences	1					
9	Direct & Indirect Speech	1					
10	Kinds of Sentences	1					
11	Degrees of Comparison	1					
12	Clauses	1					
	Module III						
13	Reading Comprehension	1					
14	Analogies	1					
15	Synonyms	1					
16	Antonyms	1					
17	Idioms And Phrases	2					
	Module IV						
18	Para Jumbles	1					
19	Phrasal Verbs	2					
20	Modifiers	1					

21	Punctuations	1					
22	22Misspelled words1						
	Module V						
23	Verbal Syllogism	2					
24	Figures of Speech	1					
25	Word Completion	1					
26	Sentence Completion	1					
27	One word Substitutes	1					

21HS11	03	TAMIL HERITAGE	L	T	Р	С
			2	0	0	1
to Indian	se is cultu	offered to equip students to create awareness of the contributi re by highlighting the characteristics of Tamil language and lite nil culture through traditional arts such as performing arts and	eratu	re ar	-	ple
-	quis	f or the course: ite knowledge required to study this course is basic knowledge e.	in Ei	nglis	h and	
UNIT I	[LANGUAGE AND LITERATURE			6	
Literature Literature Nayanma Bharathiy	e in e Ma rs-Fo rar ar	nilies in India-Dravidian Languages –Tamil as Classical Tamil – Secular Nature of Sangam Literature –Distributive nagement Principles in Thirukural - Tamil Land Bakthi Lite orms of minor Poetry development of Modern literature in T nd Bharathidhasan.	e Jus ratur	tice e Az	in Sa hwar ributi	ngai s an
UNIT I	I	HERITAGE - ROCK ART PAINTINGS TO MODERN ART – SCULPTURE			6	
making- l Making o	Mass f mu	modern sculpture - Bronze icons - Tribes and their handicraf ive Terracotta sculptures, Village Deities, Thiruvalluvar Stat sical instruments - Mridangam, Parai, Veenai, Yazh and Nac cial and Economic Life of Tamils.	tue a	t Ka	nyaku	ımar
UNIT II		FOLK AND MARTIAL ARTS			6	
		Karakattam, Villu Pattu, Kaniyan Koothu, Oyillattam, /alari, Tiger dance-Sports and Games of Tamils.	Lea	ther	pup	petr
UNIT I	V	THINAI CONCEPT OF TAMILS			6	
Literature	e -Ara	una of Tamils & Agam and Puram Concept from Tholkap am Concept of Tamils - Education and Literacy during Sangam angam Age-Export and Import during Sangam Age-Overseas Co	n Age	- An	cient	Citie
UNIT V	/	CONTRIBUTION OF TAMILS TO INDIAN NATIONAL MOVEMENT AND INDIAN CULTURE			6	
other par	ts of	of Tamils to Indian Freedom Struggle-The Cultural Influence India – Self-Respect Movement – Role of Siddha Medicine in Ir riptions & Manuscripts–Print History of Tamil Books.				
		Total Periods			30	
urse Outcon CO1		widen the knowledge on the characteristics of Tamil language	and	litera	ature.	
CO2	То	explore the traditional Tamil fine arts and its techniques of Ta	mil H	erita	ge.	
CO3	То	evaluate the various types of performing arts and their cultura	l con	text.		
CO4	То	get an insight on the lifestyle and living techniques of Tamil an	cesto	rs.		
CO5	То	recognise and perceive the role played by Tamils in the unity a	ind de	evelo	pmen	t of

CO PO Mapping:

СО	PO 1	РО 2	РО 3	РО 4	РО 5	РО 6	РО 7	РО 8	РО 9	P0 10	P0 11	P01 2
CO 1								1	2	3	1	3
CO 2								1	3	2	3	2
CO 3								1	3	2	1	2
C O 4								3	2	2	3	2
CO 5								2	3	3	2	3

TEXT-CUM-REFERENCE BOOKS

- 1. Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL-(in print)
- 2. Social Life of the Tamils- The Classical Period (Dr.S.Singaravelu) (Published by: International Institute of Tamil Studies.
- 3. Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D.Thirunavukkarasu) (Published by: International Institute of Tamil Studies).
- 4. The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by: International Institute of Tamil Studies.)
- 5. Keeladi-'Sangam City Civilization on the banks of river Vaigai'(Jointly Published by:Department of Archaeology &TamilNadu Text Book and Educational Services Corporation, Tamil Nadu)
- 6. Studies in the History of India with Special Reference to TamilNadu (Dr.K.K.Pillay) (Published by: The Author)
- 7. Porunai Civilization(Jointly Published by:Department of Archaeology &TamilNadu Text Book and Educational Services Corporation,Tamil Nadu)
- 8. Journey of Civilization Industo Vaigai (R.Balakrishnan) (Published by: RMRL) Reference Book.

21HS1103	தமிழர் மரபு	L	T	Р	С
211151105		2	0	0	1
முன்னுரை(Pi	reamble)				
பருவத்திற்கு மரபுக் கவை பண்பாட்டை		ளை	எடு பாக	த்துன	மிழ்
பாடநெறிக்க	ான முன்நிபந்தனைகள்(Prerequisites for the course)				
தமிழ் மொழி	பில் எழுத படிக்க தெரிந்திருத்தல் அ வசிய ம் .				
அலகு I	மொழி மற்றும் இலக்கியம்			6	
செவ்விலக்கி பகிர்தல் அற சமண பௌத்	ழிக் குடும்பங்கள்- திராவிட மொழிகள் - தமிழ் ஒரு (பங்கள் - சங்க இலக்கியத்தின் சமய சார்பற்ற தன்மை - ச ம் - திருக்குறளில் மேலாண்மைக் கருத்துக்கள் - தமிழ் காப்பிட த சமயங்களின் தாக்கம் - சிற்றிலக்கியங்கள்- தமிழில் ந நமிழ் இலக்கிய வளர்ச்சியில் பாரதியார் மற்றும் பாரதித	சங்க பங்க வீன (இல ள் த இலச	க்கிய மிழக க்கிய	த்தில் த்தில் த்தில்
அலகு II	மரபு- பாறை ஓவியங்கள் முதல் நவீன ஓவியங்கள் வரை- சிற்பக்கலை			6	
தயாரிக்கும் சிற்பங்கள் - கருவிகள்- மி	நவீன சிற்பங்கள் வரை - ஐம்பொன் சிலைகள்- பழங்குடியில கைவினைப் பொருட்கள், பொம்மைகள்- தேர் செய்யுப் நாட்டுப்புறத் தெய்வங்கள்- குமரி முனையில் திருவள்ளுல ருதங்கம், பறை, வீணை, யாழ், நாதஸ்வரம் - தமிழர்களின் ாவில்களின் பங்கு	ம் க வர் சி	തல- 1തെ	சுடு - இ) மன் சை
அலகு III	நாட்டுப்புறக் கலைகள் மற்றும் வீர விளையாட்டுகள்			6	
	் கரகாட்டம், வில்லுப்பாட்டு, கணியான் கூத்து, ஒயிலாட் பாட்டம், வளரி, புலியாட்டம், தமிழர்களின் விளையாட்டுகள்	டம்,	தோ	ஸ்பா	തഖ
அலகு IV	தமிழர்களின் திணைக்கோட்பாடுகள்			6	
அகம் மற்றும் தமிழகத்தில்	தாவரங்களும், விலங்குகளும் - தொல்காப்பியம் மற்றும் ச புறக் கோட்பாடுகள் - தமிழர்கள் போற்றிய அறக்கோட்பா எழுத்தறிவும் , கல்வியும் - சங்க கால நகரங்களும் துறை ற்றுமதி மற்றும் இறக்குமதி - கடல் கடந்த நாடுகளில் சோழர்ச	டு - ச முகா	சங்க ங்கஞ	்கால நம் -	த்தி
ച്ചുഖക്ര V	இந்திய தேசிய இயக்கம் மற்றும் இந்திய பண்பாட்டிற்குத் தமிழர்களின் பங்களிப்பு			<u>6</u>	
				•	மிழ்
பண்பாட்டின்	தலைப்போரில் தமிழர்களின் பங்கு - இந்தியாவின் பிறப்ப தாக்கம் - சுயமரியாதை இயக்கம் - இந்திய மருத்துவத்தில் 8 வட்டுகள், கையெழுத்துப்படிகள் - தமிழ் புத்தகங்களின் அச்ச	சித்த	மருத		0-

எதிர்பார்க்கும் படிப்பின் முடிவுகள்

C01	மாணவர்கள் தமிழ் மொழி மற்றும் இலக்கியத்தின் தன்மைகள் குறித்து அறிந்து கொள்வார்.
CO2	தமிழ் மரபு சார்ந்த நுண்கலைகளையும் அதன் நுட்பங்களையும் புரிந்து கொள்வர்.
CO3	நிகழ்த்து கலைகளின் வகைகளையும் அதன் பண்பாட்டுச் சூழலையும் அறிந்து கொள்வர்.
CO4	பழந்தமிழரின் வாழ்க்கைச் சூழல்களை அறிந்து கொள்வர்.
CO5	இந்திய ஒருமைப்பாட்டிற்கும் வளர்ச்சிக்கும் தமிழர்கள் ஆற்றிய பங்கு குறித்து அறிவர்.

CO PO Mapping:

со	PO 1	РО 2	РО 3	РО 4	РО 5	РО 6	РО 7	РО 8	РО 9	РО 10	P0 11	P012
CO 1								1	2	3	1	3
CO 2								1	3	2	3	2
CO 3								1	3	2	1	2
CO 4								3	2	2	3	2
CO 5								2	3	3	2	3

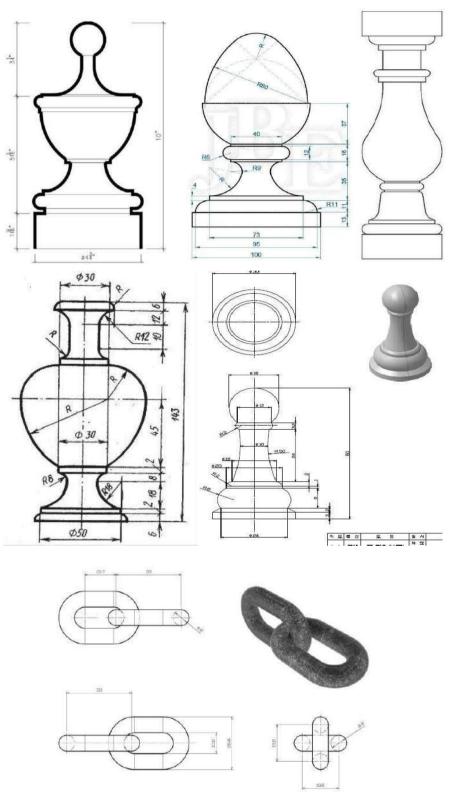
TEXT-CUM REFERENCE BOOKS

- தமிழக வரலாறு மக்களும் பண்பாடும் கே. கே பிள்ளை (வெளியீடு: தமிழ்நாடு பாடநூல் மற்றும் கல்வியியல் பணிகள் கழகம்).
- 2. கணினித்தமிழ் முனைவர் இல. சுந்தரம் (விகடன் பிரசுரம்).
- 3. கீழடி வைகை நதிக்கரையில் சங்க கால நகர நாகரிகம் (தொல்லியல் துறை வெளியீடு).
- 4. பொருநை ஆற்றங்கரை நாகரிகம் (தொல்லியல் துறை வெளியீடு)

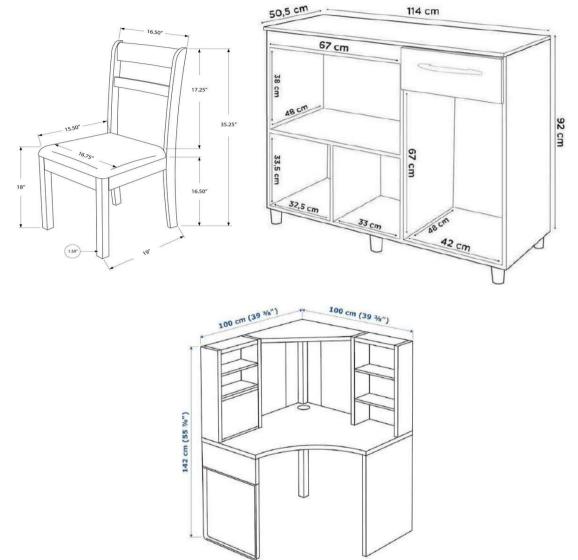
21ME361 1	1 Computer Aided Machine Drawing Laboratory	L	Τ	Р	
	i Gomputer muter muterine Druwing Luboratory	0	0	4	2
rerequis	ites for the course			1	
Computer A	Aided Engineering Graphics				
Objectives	5				
• App	ly Indian Standards in drawing practices of machine components.				
• Sho	w the limits, fits and tolerances in the production drawings of mach	ine co	mpon	ents.	
• Pre	pare assembly drawings using standard CAD packages.				
	Assembly Drawings				
Code of pr keys, faster ASSEMBLY studs, scre	STANDARDS (2) C207.1 ractice for Engineering Drawing, BIS specifications – Welding somers CONCEPTS: Assembly requirements, bill of materials; Methods of ws and pins; Methods of axial and radial retention of parts of an emphasis on assembly sequence and appropriate fits. (4) C207.2	of asse	mbly	-bolts,	, nut
uses, types	alculation of minimum and maximum clearances and allowances s of form and position tolerances, symbols, method of indicating g	s; Geor eomet	metric ric to	eranc	anc es o
uses, types part drawi	s of form and position tolerances, symbols, method of indicating g ings; Surface finish symbols - methods of indicating the surface ercises; Preparation of production drawing. (5) C207.3	s; Geor eomet	metric ric to mess;	toler toler	anc es o
uses, types part drawi reading exe S.No	s of form and position tolerances, symbols, method of indicating g ings; Surface finish symbols - methods of indicating the surface ercises; Preparation of production drawing. (5) C207.3 List of Experiments	s; Geor eomet	metric ric tol mess; C	toler eranc Blue 0	anco es o
uses, types part drawi reading exe	s of form and position tolerances, symbols, method of indicating g ings; Surface finish symbols - methods of indicating the surface ercises; Preparation of production drawing. (5) C207.3	s; Geor eomet	metric ric tol mess; C	toler eranc Blue	anco es o
uses, types part drawi reading exe S.No	s of form and position tolerances, symbols, method of indicating g ings; Surface finish symbols - methods of indicating the surface ercises; Preparation of production drawing. (5) C207.3 List of Experiments	s; Geor eomet	metric ric to iness; C C2(toler eranc Blue 0	anc es o
uses, types part drawi reading exe S.No 1	s of form and position tolerances, symbols, method of indicating g ings; Surface finish symbols - methods of indicating the surface ercises; Preparation of production drawing. (5) C207.3 List of Experiments Shaft couplings	s; Geor eomet	metric ric tol nness; C2(C2(toler leranc Blue 0 07.4	anc es o
uses, types part drawi reading exe S.No 1 2	s of form and position tolerances, symbols, method of indicating g ings; Surface finish symbols - methods of indicating the surface ercises; Preparation of production drawing. (5) C207.3 List of Experiments Shaft couplings Plummer block	s; Geor eomet	metric ric to iness; C2(C2(C2(toler eranc Blue 0 07.4 07.4	anc es o
uses, types part drawi reading exe S.No 1 2 3	s of form and position tolerances, symbols, method of indicating g ings; Surface finish symbols - methods of indicating the surface ercises; Preparation of production drawing. (5) C207.3 List of Experiments Shaft couplings Plummer block Sleeve and cotter joint	s; Geor eomet	metric ric to ness; C2(C2(C2(C2(toler eranc Blue 0 07.4 07.4 07.4 	anc es o
uses, types part drawi reading exe S.No 1 2 3 4	s of form and position tolerances, symbols, method of indicating g ings; Surface finish symbols - methods of indicating the surface ercises; Preparation of production drawing. (5) C207.3 List of Experiments Shaft couplings Plummer block Sleeve and cotter joint Screw jack	s; Geor eomet	metric ric to iness; C2(C2(C2(C2(C2(c toler leranc Blue 0 07.4 07.4 07.4	anc es o
uses, types part drawi reading exe S.No 1 2 3 4 5	s of form and position tolerances, symbols, method of indicating g ings; Surface finish symbols - methods of indicating the surface ercises; Preparation of production drawing. (5) C207.3 List of Experiments Shaft couplings Plummer block Sleeve and cotter joint Screw jack Universal Joint	s; Geor eomet	metric ric tol iness; C2(C2(C2(C2(C2(C2(C2(toler eranc Blue 0 07.4 07.4 07.4 07.4 07.4 	anc es o
uses, types part drawi reading exe S.No 1 2 3 4 5 6	s of form and position tolerances, symbols, method of indicating g ings; Surface finish symbols - methods of indicating the surface ercises; Preparation of production drawing. (5) C207.3 List of Experiments Shaft couplings Plummer block Sleeve and cotter joint Screw jack Universal Joint Machine Vice	s; Geor eomet	metric ric to iness; C20 C20 C20 C20 C20 C20 C20 C20 C20 C20	 toler eranc Blue 0 07.4 07.4 07.4 07.4 07.4 07.4 	anc es c
uses, types part drawi reading exe S.No 1 2 3 4 5 6 S.No.	s of form and position tolerances, symbols, method of indicating g ings; Surface finish symbols - methods of indicating the surface ercises; Preparation of production drawing. (5) C207.3 List of Experiments Shaft couplings Plummer block Sleeve and cotter joint Screw jack Universal Joint Machine Vice List of Projects	s; Geor eomet	metric ric tol iness; C20 C20 C20 C20 C20 C20 C20 C20 C20 C20	 toler eranc Blue 0 07.4 07.4 07.4 07.4 07.4 07.4 07.4 07.4 	anc es o

nubi		
	and 2 projects. – (level 3)	
Total p	eriods:45	
Sugges	tive Assessment Methods	
Lab Cor	nponents Assessments	End Semester Exams
(60 Ma	urks)	(40 Marks)
Lab exp	eriment - 40 Marks	Practical Exam
Model l	ab with project 20 Marks	
Course	Outcomes	
Upon c	completion of the course, the studen	ts will be able to:
C207.1	Apply the drawing standards in the	e part drawing
C207.2	Apply the part assembly guideline	s in creating the 3D Models.
C207.3	Analyze fits and tolerance and inte	erpret the production drawings.
C207.4	Design and develop assembly drav	wing for simple machine components.
C207.5	Design and develop the complete	assembly of product.
Labora	tory Requirements	
Hardwa	are:	
	ntel i5 core due processor with 4GB ra Laser Printer – 1 No. re:	m with 500GB hard disk – 30 Nos.
Drafting	g package – AutoCAD – Adequate licens	e (Open source)
Refere	nce Books	
	MACHINE DRAWING [IN FIRST-ANGLE PRO 2016.	JECTION METHOD] By N. D. Bhatt, V. M. Panchal 50th Edition:
2. I	K.L. Narayana, P. Kannaiam and K. Venł	xata Reddy," Machine Drawing", published
	oy New Age International Publishers,2 N. Siddeshwar, P. Kanniah, V.V.S. Sastri,	" Machine Drawing", published by McGrawHill, 2017
Web Re	esources	
	sterner / /matel a sin / sources / 112102	

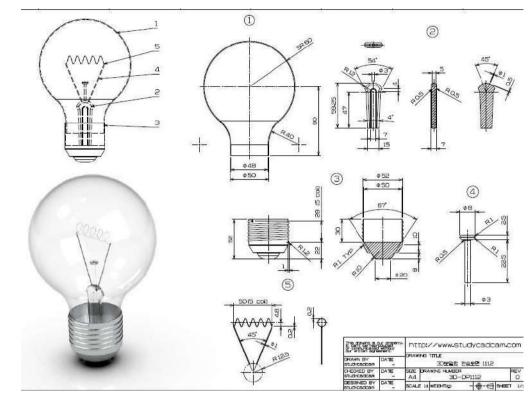
1. https://nptel.ac.in/courses/112102304

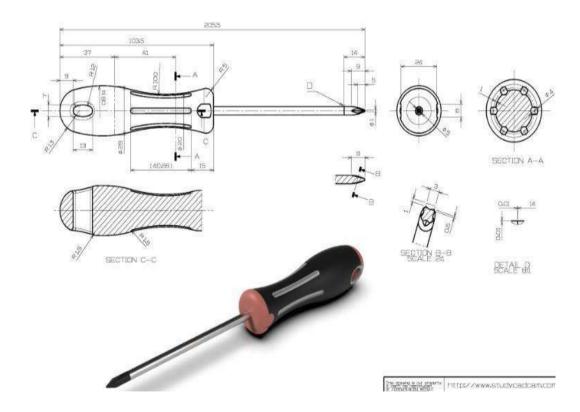

CO Vs PO Mapping and CO Vs PSO Mapping

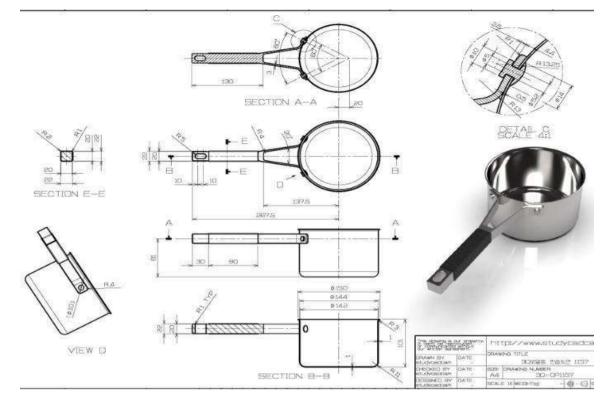
CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PS02
207.1	2	3											3	2
207.2	2	3											3	2
207.3	2	3											3	2
207.4	1	1	2		3				1				3	2
207.5	1	1	2		3				1				3	2


COURSE LEVEL ASSESSMENT QUESTIONS(LIST OF PROJECTS)

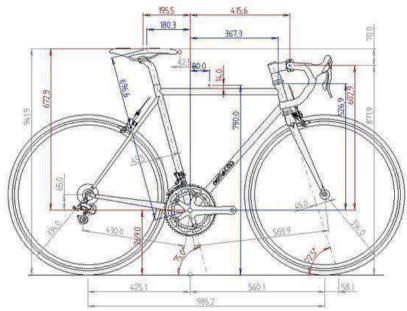
Level 1


1. Draw any one component as shown below with necessary comments (Assume suitable dimensions).




2. Draw the isometric view of any one component given below (Assume suitable dimensions).

3. Assemble the parts and draw views – any one (Assume suitable dimensions).

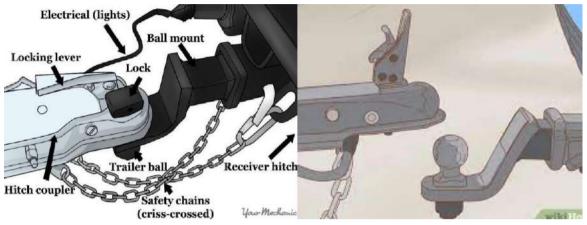


Level 2 (any one Project)

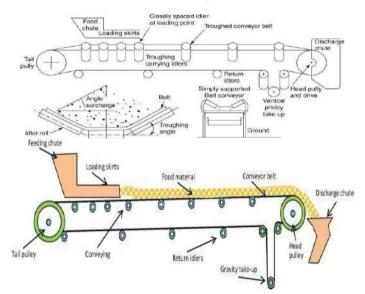
1. Design and drafting of Gear train

In this project-based course, Student will learn to develop a Gear train design assembly using AutoCAD software. By developing this project, the will learn to design: Gear Shafts, Spur Gears, Bearing Housing, Bearings and Assembly of a gear train.

2. Design and Drafting of Bi-Cycle as per the dimensions given


This project course introduces you to the concept of designing Mechanisms that can be applied in real-time.Mechanisms are the base of every design, from simple toys to vehicles to spaceships.

Level 3


Students are asked to do own projects (both CAD Model and Real Working Model) based on the outcome of the level 1 and 2 projects.

Example Projects:

1. Design and draw the mechanism for car towing.

2. Design and draw the model for material handling of lime stone or food materials

21ME3612	MANUFACTURING TECHNO	LOGY LABORATORY	L	T	P	C
			0	0	4	2
-	for the course					
	ctices Laboratory					
Objectives						
 To prae 	tice the moulding process and weld	ing operations.				
-	tice different types of sheet metal o	•				
-	form various machining operations	like facing, turning, knurling	, thre	ad cı	itting,	
	g, grinding, and milling.	_				
	in the knowledge of different gear n	<u> </u>				
S.No	List of Exper			(COs	
`1	Prepare a Mould by using Solid/Split/	Loose-piece Patterns			1	
2	Fabrication of Tray/Funnel in sheet m	etal			2	
3	Prepare a Tee joint by Gas Tungsten				3	
4	Step Turning, Knurling and Taper T parts using Centre Lathe.	urning Operations on circular			4	
5	External Thread Cutting Operation of Lathe.	n circular parts in Centre			4	
6	Shaping - Hexagonal head on circular	parts using shaper machine			4	
7	Grinding Components using Surface C				4	
8	Grinding Components using Cylindric	5			4	
9	Spur gear cutting using milling maching				4	
10	Measurement of cutting forces in Mi	5			4	
11	Generating gears using hobbing / Sh				5	
		Total Periods			45	
Suggestive As	sessment Methods					
Lab Compone	ents Assessments	End Semester Exams				
(60 Marks)		(40 Marks)				
ab experimen	t - 40 Marks	Practical				
-	n project 20 Marks					
Course Outco						

Upon completion of the course, the students will be able to:

C208.1. Make a mould using different types of patterns.

C208.2. Create objects using sheet metal.

C208.3. Perform the Welding Process for the given materials.

C208.4. Perform different machining processes in lathe, shaper, grinders and milling machines and Measure their Cutting forces.

C208.5. Perform different gear generating process based on requirements.

Laboratory Requirements

- 1.Moulding Table 12"X12"
- 2.Moulding Box
- 3. Various Patterns for Casting
- 4. Various Foundry Tools
- 5. Arc welding transformer with cables and holders 5 Nos.
- 6. Welding booth with exhaust facility 5 Nos.
- 7. Welding accessories like welding shield, chipping hammer, Wire brush, etc., 5 Sets
- 8. Anvil 1 No.
- 9. Sheet metal tools
- 10. Standard working tools 15 sets
- 11. Centre lathe 7 Nos.
- 12. Shaping machine 1 No
- 13. Horizontal Milling Machine 2 No
- 14. Vertical Milling Machine 1 No
- 15. Surface Grinding Machine 1 No
- 16. Cylindrical Grinding Machine 1 No
- 17. Lathe Tool Dynamometer 1 No
- 18. Milling Tool Dynamometer 1No
- 19. Gear Hobbing Machine 1 No
- 20.Tool Makers Microscope 1 No
- 21. Gear Shaping machine 1 No

Reference Books

1. Hajra Choudhury S.K., Hajra Choudhury A.K., Nirjhar Roy, "Elements of Workshop Technology -Vol. I", 14th Edition, MediaPromoters& Publishers Private Limited, Mumbai, 2008. 2. Hajra Choudhury S.K., Nirjhar Roy, "Elements of Workshop Technology-Volume-2", 15th Edition,

Media Promoters & PublishersPvt Ltd, Mumbai, 2010.

Web Resources

1. http://vlabs.iitkgp.ac.in/psac/newlabs2020/vlabiitkgpAM/#

CO Vs PO Mapping and CO Vs PSO Mapping

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2
C208.1	2	2								1			3	2
C208.2	2	2								1			3	
C208.3	2	2								1			3	2
C208.4	1	1	1	1						1			3	3
C208.5	2	2								1			3	

21ME3613	Fluid Mechanics and Machin	es Laboratory		T	P	
Droroquicit	as for the course		0	0	4	
	es for the course nics and Machinery					
Objectives						
•	Compute the rate of flow through pipes us Venturi meter, orifice meter and rotamete Discuss the performance characteristics of Demonstrate the basic principles of fluid machines	r. Fturbines and pumps.	-			a
S.No	List of Experimer	nts		(20	
1	Determination of the Coefficient of discha	rge of given Orifice meter		C2	09.1	
2	Determination of the Coefficient of disch meter.	arge of given Venturi		C2	09.1	
3.	Calculation of the rate of flow using Rotam	neter.		C2	09.1	
4	Determination of friction factor for a give	n set of pipes.		C 2	09.1	
5	Conducting experiments and drawing the centrifugal Pump	characteristic curves of		C2	09.2	
6	Conducting experiments and drawing the reciprocating pump.	e characteristic curves of		C2	09.3	
7	Conducting experiments and drawing the Gear pump.	e characteristic curves of		C2	09.2	
8	Conducting experiments and drawing the Pelton wheel.	e characteristic curves of		C2	09.4	
9	Conducting experiments and drawing the Francis turbine.	e characteristics curves of		C2	09.5	
10	Conducting experiments and drawing th curves of Kaplan turbine	e characteristic		C2	09.5	
]	Гota	l Per	riods	: 4
Suggestive A	ssessment Methods					
Lab Compor (60 Marks)	ents Assessments	End Semester Exam (40 Marks)	ns			
-	nt - 40 Marks th project 20 Marks	Practical Exam				
Course Outc	* *	I				
C209.1. Perfo C209.2. Draw C209.3. Anal C209.4. Perfo	the course, the students will be able to orm test on Orifice, Venturi and Rota meter to the characteristics of curve of Centrifugal ysis the performance of Reciprocating pump orm the test on impulse turbine (Pelton) and the characteristics curve for reaction turbi	and Gear pump) d draw its characteristics c	urve	!	arge	

Laboratory RequirementsFor a Batch of 30 Students

S.No.	NAME OF THE EQUIPMENT	Qty.
1	Orifice meter setup	1 No
2	Venturi meter setup	1 No
3	Rotameter setup	1 No.
4	Pipe Flow analysis setup	1 No.
5	Centrifugal pump	1 No
6	Reciprocating pump setup	1 No.
7	Gear pump setup	1 No.
8	Pelton wheel setup	1 No
9	Francis turbine setup	1 No
10	Kaplan turbine setup	1 No

Reference Books

1. Modi P.N. and Seth, S.M. "Hydraulics and Fluid Mechanics", Standard Book House, New Delhi 2019.

2. Bansal, R.K., "Fluid Mechanics and Hydraulic Machines", Laxmi Publications (P) Ltd., 2019.

Web Resources

1. https://fm-nitk.vlabs.ac.in/

2. https://me.iitp.ac.in/Virtual-Fluid-Laboratory/

CO Vs PO Mapping and CO Vs PSO Mapping

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2
C209.1	1	1	3	3			1					1	3	1
	1	T	5	5			1					1	5	1
C209.2	1	1	3	3			1					1	2	1
C209.3	1	1	3	3			1					1	2	1
C209.4	1	1	3	3			1					1	2	1
C209.5	1	1	3	3			1					1	2	1

SEMESTER IV

 Prepare si Illustrate t Make use UNIT I Design features, specified motor and lead screw, simulation of a tool rest UNIT II Part programming and I simple programming for and do loops, tool off set UNIT III Role of computer in automatication 	ology rate the construction and tooling of CNC machine. mple part programme for different operations. the interfacing of sensors and actuators with PC. of the Internet of things. CONSTRUCTIONAL DETAILS AND TOOLING cation Chart of CNC machines, use of slideways, balls, swarf removal, safety and guarding devices, various tool holder, different pallet systems and automatic to oom. PART PROGRAMMING basic concepts of part programming, NC words, part programming using canner ets, cutter radius compensation and wear compensation	cuttir tool c rogra	ng too hang	ols for ger sys 10	r CNC
 Manufacturing Techn Objectives Demonstr Prepare si Illustrate t Make use UNIT I Design features, specifier motor and lead screw, simulations, overview of management of a tool resumaning and lead screw, simulation of a tool resumaning for and do loops, tool off seeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee	ology rate the construction and tooling of CNC machine. mple part programme for different operations. the interfacing of sensors and actuators with PC. of the Internet of things. CONSTRUCTIONAL DETAILS AND TOOLING cation Chart of CNC machines, use of slideways, balls, swarf removal, safety and guarding devices, various tool holder, different pallet systems and automatic to oom. PART PROGRAMMING basic concepts of part programming, NC words, part programming using canner ets, cutter radius compensation and wear compensation	cuttir tool c rogra	ng too hang	nd coa ols foi ger sys 10	r CNC
Objectives • Demonstr • Prepare si • Illustrate t • Make use UNIT I Design features, specifier motor and lead screw, s machines, overview of management of a tool red UNIT II Part programming and I simple programming for and do loops, tool off se UNIT III Role of computer in auto	rate the construction and tooling of CNC machine. Imple part programme for different operations. the interfacing of sensors and actuators with PC. of the Internet of things. CONSTRUCTIONAL DETAILS AND TOOLING cation Chart of CNC machines, use of slideways, balls, swarf removal, safety and guarding devices, various tool holder, different pallet systems and automatic to oom. PART PROGRAMMING basic concepts of part programming, NC words, part programming using cannel ets, cutter radius compensation and wear compensation	cuttir tool c rogra	ng too hang	nd coa ols foi ger sys 10	r CNC
Demonstr Prepare si Illustrate t Make use UNIT I Design features, specifie motor and lead screw, i machines, overview of management of a tool re UNIT II Part programming and I simple programming for and do loops, tool off se UNIT III Role of computer in auto	Imple part programme for different operations. the interfacing of sensors and actuators with PC. of the Internet of things. CONSTRUCTIONAL DETAILS AND TOOLING cation Chart of CNC machines, use of slideways, balls, swarf removal, safety and guarding devices, various tool holder, different pallet systems and automatic toom. PART PROGRAMMING basic concepts of part programming, NC words, part programming using canneets, cutter radius compensation and wear compensation	cuttir tool c rogra	ng too hang	nd coa ols foi ger sys 10	r CNC
 Prepare si Illustrate t Make use UNIT I Design features, specified motor and lead screw, section machines, overview of a tool rest UNIT II Part programming and I simple programming for and do loops, tool off section UNIT III Role of computer in automatical 	Imple part programme for different operations. the interfacing of sensors and actuators with PC. of the Internet of things. CONSTRUCTIONAL DETAILS AND TOOLING cation Chart of CNC machines, use of slideways, balls, swarf removal, safety and guarding devices, various tool holder, different pallet systems and automatic toom. PART PROGRAMMING basic concepts of part programming, NC words, part programming using canneets, cutter radius compensation and wear compensation	cuttir tool c rogra	ng too hang mmin	nd coa ols foi ger sys 10	r CNC
Design features, specific motor and lead screw, s machines, overview of management of a tool re UNIT II Part programming and l simple programming for and do loops, tool off se UNIT III Role of computer in auto	cation Chart of CNC machines, use of slideways, balls, swarf removal, safety and guarding devices, various tool holder, different pallet systems and automatic t oom. PART PROGRAMMING basic concepts of part programming, NC words, part pr r rational components, part programming using canne	cuttir tool c rogra	ng too hang mmin	nd coa ols foi ger sys 10	r CNC
motor and lead screw, a machines, overview of management of a tool re UNIT II Part programming and l simple programming for and do loops, tool off se UNIT III Role of computer in auto	swarf removal, safety and guarding devices, various tool holder, different pallet systems and automatic t oom. PART PROGRAMMING basic concepts of part programming, NC words, part pr r rational components, part programming using canne ets, cutter radius compensation and wear compensation	cuttir tool c rogra	ng too hang mmin	ols for ger sys 10	r CNC
Part programming and l simple programming for and do loops, tool off se UNIT III Role of computer in auto	basic concepts of part programming, NC words, part pr r rational components, part programming using canne ets, cutter radius compensation and wear compensatio	ed cyc	mmi		
simple programming for and do loops, tool off se UNIT III Role of computer in auto	r rational components, part programming using canne ets, cutter radius compensation and wear compensation	ed cyc		ngfor	
UNIT III Role of computer in auto		JII.	100,0		
	AUTOMATION AND NC SYSTEM	9			
	omation, emerging trends in automation, automatic as nufacture of printed circuit boards, manufacture of p technology, CAD/CAM and CIM.				
UNIT IV	REAL TIME INTERFACING			9	
1 5	ns, virtual instrumentation, interfacing of sensors/actu Idaptive control, HMI and SCADA systems.	uator	s wit	h PC,	
UNIT V	INDUSTRIAL IOT			9	
	Architecture; Cloud: Types, edge analytics, fog comput ty, big data analytics, predictive analytics.	ting; /	Augn	nenteo	1
	Total Periods			45	

Continuous Assessment Test (20 Marks)Formative Assessment Test (20 Marks)End Semester Exa (60Marks)							
CAT 1 - 10 Marks	1. Descriptive type questions,	1. Descriptive type					
CAT 2 -10 Marks	arks 2. Multiple choice questions. questions.						
DESCRIPTIVE TYPE							
Course Outcomes							
Upon completion of the course	e, the students will be able to:						
C210.1: Construct a tool room for	appropriate function taking into acco	ount the safety and guarding					
devices.							
C210.2: Prepare a part programm	ning using canned cycles, subroutin	es and do loops.					
C210.3: Analyze the difference be	etween FMS, Group technology, CAD	/CAM and CIM					
C210.4: Complete the interfacing control, HMI and SCADA C210.5: Select the suitable IoT for		dition monitoring, adaptive					
Text Books							
International (P) Ltd., De	mation, Production Systems and Co						
Reference Books							
2. Sanjay Gupta and Joseph . Publications Co. Ltd, 2017	try 4.0: The Industrial Internet of Thin John, "Virtual instrumentation using 7. Satya Publications, New Delhi.						

СО	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO 10	PO 11	PO 12	PSO 1	PS 0 2
C210.1	3												3	
C210.2	2	3											3	
C210.3	2				3								3	
C210.4	2				3								3	
C210.5	2				3								3	

CO Vs PO Mapping and CO Vs PSO Mapping

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	20	20	5	5	20
UNDERSTAND	30	30	15	10	30
APPLY	50	30	5	5	30
ANALYZE		20		5	20
EVALUATE					
CREATE					

COURSE LEVEL ASSESSMENT QUESTIONS

C210.1: Construct a tool room for appropriate function taking into account the safety and guarding devices – Apply

- 1. Explain the usage of slideways, rollers and coating. [R]
- 2. Enumerate the different cutting tools for CNC machines. [U]
- 3. Sketch the specification chart of CNC machine. [Ap]

C210.2: Prepare a part programming using canned cycles, subroutines and do loops. (Apply)

1. Explain the basic concepts of part programming. [R]

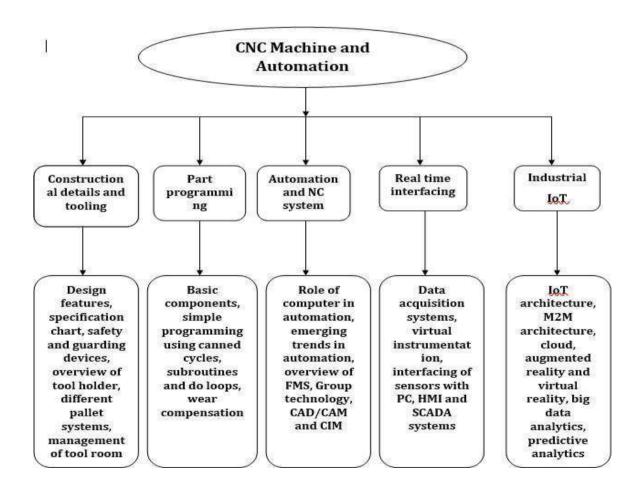
2. Summarize the simple programming for rational components. [U]

3. Construct the part programming using canned cycles, subroutines and do loops for automatic tool changer. **[Ap]**

C210.3: Analyze the difference between FMS, Group technology, CAD/CAM and CIM. (Analyze)

1. Mention the various FMS components. **[R]**

2. Enumerate the types of FMS in an automated industry. [U]


3. Compare and contrast FMS, Group technology and CAD/CAM. [Ap]

C210.4: Complete the interfacing of sensors/actuators with PC, condition monitoring, adaptive control, HMI and SCADA systems - Apply

- 1. Mention the components of data acquisition system. [R]
- 2. Paraphrase the interfacing procedure for sensors or actuators with PC. [U]
- 3. Sketch the adaptive control of automation system in a production system. [Ap]

C210.5: Select the suitable IoT for automation - Analyze

- 1. Describe the types of cloud in an Industrial IoT. [U]
- 2. Sketch the components of M2M architecture.[Ap]
- 3. Compare and contrast the AR and VR . [An]

21ME4602	STR	ENGTH OF MATERIALS		L	Т	Р	С	
				2	1	0	3	
Engineering N	s for the course							
Objectives	Mechanics							
•	n the concents of	stress, strain and deformation o	faolid	2				
-	•	d deformation induced in thin c			d cnh	arica	l cholle	
		nd deformation in circular shaft	•		-			
torsion		in deformation in circular share		incar 5	pring	uuei	.0	
		omponent dimensions and shap	e on sti	resses	and d	efori	nations.	
		IN AND DEFORMATION OF SO				7+		
Stability- Strength- Stiffness- Tensile- Compressive and Shear stresses - Strain – Poisson's ratio								
-	-	ompound bars – Relation betwe						
		al Loads - Gradually Applied Lo						
Impact Load.								
					[
UNIT II	ANALYSIS OF	STRESSES IN TWO DIMENSIO	DNS			7+	2	
 deformation of thin cylinders and shells. UNIT III TORSION IN SHAFTS AND SPRINGS 7+2 Analysis of torsion of circular bars – Bars of Solid and hollow circular section – Stepped shaft – Twist and torsion stiffness. Springs- Classification – Leaf springs, closed coil helical springs – Application of various springs – Maximum shear stress in spring – Deflection of helical coil 								
– Twist and to Application o	orsion stiffness. Sj f various springs	orings- Classification – Leaf spri	ings, clo	osed c	oil hel	ical s	ed shaft prings -	
– Twist and to	orsion stiffness. Sj f various springs r axial loads.	prings- Classification – Leaf spri – Maximum shear stress in sp	ings, clo	osed c	oil hel	ical s	ed shaft prings - ical coil	
– Twist and to Application o springs under UNIT IV	orsion stiffness. S _l f various springs r axial loads. BEAM	orings- Classification – Leaf spri – Maximum shear stress in sp S - LOADS AND STRESSES	ings, clo pring –	osed co Deflec	oil hel: ction o	ical s of hel 7+	ed shaft prings - ical coil 2	
- Twist and to Application o springs under UNIT IV Beams - typ distributed ar	orsion stiffness. Sp f various springs r axial loads. BEAM es of supports - nd uniformly vary	orings- Classification – Leaf spri – Maximum shear stress in sp S - LOADS AND STRESSES - simple and fixed, types of l ing load, combination of above l	ings, clo pring – oad – loading	osed co Deflec conce g. Benc	oil hel tion o ntrate ling m	ical s of hel 7+ ed, u	ed shaft prings - ical coil 2 niformly nt, shea	
- Twist and to Application o springs under UNIT IV Beams - typ distributed ar force diagram	orsion stiffness. Sp f various springs r axial loads. BEAM es of supports - nd uniformly vary n for simply supp	orings- Classification – Leaf spri – Maximum shear stress in sp S - LOADS AND STRESSES - simple and fixed, types of l ing load, combination of above l ported, cantilever and over ha	ings, clo pring – oad – loading	osed co Deflec conce g. Benc	oil hel tion o ntrate ling m	ical s of hel 7+ ed, u	ed shaft prings - ical coil 2 niformly nt, shea	
 Twist and to Application o springs under UNIT IV Beams – typ distributed ar force diagram flexure. Bendi 	orsion stiffness. Sp f various springs r axial loads. BEAM es of supports - nd uniformly vary n for simply supp ing and shear stre	orings- Classification – Leaf spri – Maximum shear stress in sp S - LOADS AND STRESSES - simple and fixed, types of l ing load, combination of above l ported, cantilever and over ha esses - concept of shear centre.	ings, clo pring – oad – loading inging	osed co Deflec conce g. Benc	oil hel tion o ntrate ling m	ical s of hel 7+ ed, u ome int c	ed shaft prings - ical coil 2 niformly nt, shea of contra	
 Twist and to Application o springs under UNIT IV Beams – typ distributed ar force diagram flexure. Bendi UNIT V 	orsion stiffness. Sp f various springs r axial loads. BEAM es of supports - nd uniformly vary n for simply supp ing and shear stree DEFLECTI	orings- Classification – Leaf spri – Maximum shear stress in sp S - LOADS AND STRESSES - simple and fixed, types of l ing load, combination of above l ported, cantilever and over ha esses - concept of shear centre. ON OF BEAMS AND COLUMNS	ings, clo pring – oad – loading inging	osed co Deflec conce g. Benc beams	oil hel: tion o ntrate ling m s – Po	ical s of hel 7+ ed, u ome int c 7+	ed shaft prings - ical coil 2 niformly nt, shea of contra 2	
 Twist and to Application o springs under UNIT IV Beams – typ distributed ar force diagram flexure. Bendi UNIT V Elastic Curve 	orsion stiffness. Sp f various springs r axial loads. BEAM es of supports - nd uniformly vary n for simply supp ing and shear stree DEFLECTI of Neutral Axis of	orings- Classification – Leaf spri – Maximum shear stress in sp S - LOADS AND STRESSES - simple and fixed, types of l ing load, combination of above l ported, cantilever and over ha esses - concept of shear centre. ON OF BEAMS AND COLUMNS the Beam Under Normal Loads -	ings, clo pring – oad – loading inging – Evalu	osed co Deflec conce g. Benc beams ation o	oil hel: ction o ntrate ling m s – Po of Bea	ical s of hel 7+ ed, u ome int c 7+ m De	ed shaft prings - ical coil 2 niformly nt, shea of contra 2 flection	
 Twist and to Application o springs under UNIT IV Beams – typ distributed ar force diagram flexure. Bendi UNIT V Elastic Curve and Slope - D 	orsion stiffness. Sp f various springs r axial loads. BEAM es of supports - nd uniformly vary n for simply supp ing and shear stree DEFLECTI of Neutral Axis of Double Integration	orings- Classification – Leaf spri – Maximum shear stress in sp S - LOADS AND STRESSES - simple and fixed, types of l ing load, combination of above l ported, cantilever and over ha esses - concept of shear centre. ON OF BEAMS AND COLUMNS the Beam Under Normal Loads - n Method and Macaulay's Meth	ings, clo pring – oad – loading inging – Evalu nod. Co	osed co Deflec conce g. Benc beams ation o lumns	oil hel: ction o ntrate ling m s – Po of Beau s: End	ical s of hel 7+ ed, u ome int c 7+ m De Con	ed shaft prings - ical coil 2 niformly nt, shea of contra 2 flection dition –	
 Twist and to Application of springs under UNIT IV Beams – typ distributed and force diagram flexure. Bendities UNIT V Elastic Curve and Slope - D Equivalent Letter (1998) 	orsion stiffness. Sp f various springs r axial loads. BEAM es of supports - nd uniformly vary n for simply supp ing and shear stree DEFLECTI of Neutral Axis of Double Integration	orings- Classification – Leaf spri – Maximum shear stress in sp S - LOADS AND STRESSES - simple and fixed, types of l ing load, combination of above l ported, cantilever and over ha esses - concept of shear centre. ON OF BEAMS AND COLUMNS the Beam Under Normal Loads -	ings, clo pring – oad – loading inging – Evalu nod. Co	osed co Deflec conce g. Benc beams ation o lumns	oil hel: ction o ntrate ling m s – Po of Beau s: End	ical s of hel 7+ ed, u ome int c 7+ m De Con	ed shaft prings - ical coil 2 niformly nt, sheat of contra 2 flection dition –	
- Twist and to Application o springs under UNIT IV Beams - typ distributed ar force diagram flexure. Bendi UNIT V Elastic Curve and Slope - D	orsion stiffness. Sp f various springs r axial loads. BEAM es of supports - nd uniformly vary n for simply supp ing and shear stree DEFLECTI of Neutral Axis of Double Integration	orings- Classification – Leaf spri – Maximum shear stress in sp S - LOADS AND STRESSES - simple and fixed, types of l ing load, combination of above l ported, cantilever and over ha esses - concept of shear centre. ON OF BEAMS AND COLUMNS the Beam Under Normal Loads - n Method and Macaulay's Meth Euler's Equation – Slenderness	ings, clo pring – oad – loading inging – Evalu nod. Co s Ratio	osed co Deflec conce g. Benc beams ation o lumns	oil hel: ction o ntrate ling m s – Po of Beau s: End kine's	ical s of hel 7+ ed, u ome int c 7+ m De Con Form	ed shaft prings - ical coil 2 niformly nt, sheat of contra 2 eflection dition – nula for	
 Twist and to Application of springs under UNIT IV Beams – typ distributed and force diagram flexure. Bendities UNIT V Elastic Curve and Slope - D Equivalent Letter (1996) 	orsion stiffness. Sp f various springs r axial loads. BEAM es of supports - nd uniformly vary n for simply supp ing and shear stree DEFLECTI of Neutral Axis of Double Integration	orings- Classification – Leaf spri – Maximum shear stress in sp S - LOADS AND STRESSES - simple and fixed, types of l ing load, combination of above l ported, cantilever and over ha esses - concept of shear centre. ON OF BEAMS AND COLUMNS the Beam Under Normal Loads - n Method and Macaulay's Meth	ings, clo pring – oad – loading inging – Evalu nod. Co s Ratio	osed co Deflec conce g. Benc beams ation o lumns	oil hel: ction o ntrate ling m s – Po of Beau s: End kine's	ical s of hel 7+ ed, u ome int c int c 7+ Torr Forr 5+1(ed shaft prings - ical coil 2 niformly nt, shear of contra 2 flection dition – nula for 0= 45	
 Twist and to Application o springs under UNIT IV Beams – typ distributed ar force diagram flexure. Bendi UNIT V Elastic Curve and Slope - D Equivalent Le Columns. 	orsion stiffness. Sp f various springs r axial loads. BEAM es of supports - nd uniformly vary n for simply supp ing and shear stree DEFLECTI of Neutral Axis of Double Integration ength of Column -	orings- Classification – Leaf spri – Maximum shear stress in sp S - LOADS AND STRESSES - simple and fixed, types of l ing load, combination of above l ported, cantilever and over ha esses - concept of shear centre. ON OF BEAMS AND COLUMNS the Beam Under Normal Loads - n Method and Macaulay's Meth Euler's Equation – Slenderness Total Pe	ings, clo pring – oad – loading inging – Evalu nod. Co s Ratio	osed co Deflec conce g. Benc beams ation o lumns	oil hel: ction o ntrate ling m s – Po of Beau s: End kine's	ical s of hel 7+ ed, u ome int c 7+ m De Con Form	ed shaft prings - ical coil 2 niformly nt, shear of contra 2 flection dition – nula for 0= 45	
 Twist and to Application of springs under UNIT IV Beams – typ distributed and force diagram flexure. Bendition of the second stributed and slope - D Equivalent Lee Columns. Sugge 	orsion stiffness. Sp f various springs r axial loads. BEAM es of supports - nd uniformly vary n for simply supp ing and shear stre DEFLECTI of Neutral Axis of Double Integration ength of Column -	orings- Classification – Leaf spri – Maximum shear stress in sp S - LOADS AND STRESSES - simple and fixed, types of l ing load, combination of above l ported, cantilever and over ha esses - concept of shear centre. ON OF BEAMS AND COLUMNS the Beam Under Normal Loads - n Method and Macaulay's Meth Euler's Equation – Slenderness Total Pe	ings, clo pring – oad – loading inging – Evalu nod. Co s Ratio	osed co Deflec conce g. Benc beams ation o lumns – Ran	oil hel: tion o ntrate ling m s – Po of Beau s: End kine's 3	ical s of hel 7+ ed, u ome int c int c 7+ M De Com Forr 5+1(Hou	ed shaft prings - ical coil 2 niformly nt, sheat of contra 2 flection dition – nula for 0= 45 Irs	
 Twist and to Application o springs under UNIT IV Beams – typ distributed ar force diagram flexure. Bendi UNIT V Elastic Curve and Slope - D Equivalent Le Columns. Sugge Continuous A 	orsion stiffness. Sp f various springs r axial loads. BEAM es of supports - nd uniformly vary n for simply supp ing and shear stre DEFLECTI of Neutral Axis of Double Integration ength of Column -	 brings- Classification – Leaf sprid – Maximum shear stress in sp S - LOADS AND STRESSES simple and fixed, types of ling load, combination of above liported, cantilever and over hatesses - concept of shear centre. ON OF BEAMS AND COLUMNS the Beam Under Normal Loads - In Method and Macaulay's Methods Euler's Equation – Slenderness Total Peant Total Peant 	ings, clo pring – oad – loading inging – Evalu nod. Co s Ratio	osed co Deflec conce g. Benc beams ation o lumns – Ran End So	oil hel: tion o ntrate ling m s – Po of Beau s: End kine's 3 emest	ical soft hele of hele 7+ ed, u ome int c 7+ m De Con Form 5+1(Hou	ed shaft prings - ical coil 2 niformly nt, sheat of contra 2 flection dition – nula for 0= 45 Irs	
 Twist and to Application o springs under UNIT IV Beams – typ distributed ar force diagram flexure. Bendi UNIT V Elastic Curve and Slope - D Equivalent Le Columns. Sugge 	orsion stiffness. Sp f various springs r axial loads. BEAM es of supports - nd uniformly vary n for simply supp ing and shear stree DEFLECTI of Neutral Axis of Double Integration ength of Column - estive Assessment Assessment	orings- Classification – Leaf spri – Maximum shear stress in sp S - LOADS AND STRESSES - simple and fixed, types of l ing load, combination of above l ported, cantilever and over ha esses - concept of shear centre. ON OF BEAMS AND COLUMNS the Beam Under Normal Loads - n Method and Macaulay's Meth Euler's Equation – Slenderness Total Pe	ings, clo pring – oad – loading inging – Evalu nod. Co s Ratio	osed co Deflec conce g. Benc beams ation o lumns – Ran End So	oil hel: tion o ntrate ling m s – Po of Beau s: End kine's 3	ical soft hele of hele 7+ ed, u ome int c 7+ m De Con Form 5+1(Hou	ed shaft prings - ical coil 2 niformly nt, shea of contra 2 flection dition – nula for 0= 45 Irs	
- Twist and to Application o springs under UNIT IV Beams - typ distributed ar force diagram flexure. Bendi UNIT V Elastic Curve and Slope - D Equivalent Le Columns. Sugge Continuous A Test	orsion stiffness. Sp f various springs r axial loads. BEAM es of supports - nd uniformly vary n for simply supp ing and shear stree DEFLECTI of Neutral Axis of Double Integration ength of Column - estive Assessment Assessment arks)	S- LOADS AND STRESSES - Maximum shear stress in sp S - LOADS AND STRESSES - simple and fixed, types of l ing load, combination of above l ported, cantilever and over ha esses - concept of shear centre. ON OF BEAMS AND COLUMNS the Beam Under Normal Loads - n Method and Macaulay's Meth - Euler's Equation – Slenderness Total Pe at Methods Formative Assessment Test	ings, clo pring – oad – loading inging – Evalu nod. Co s Ratio	osed co Deflec conce g. Benc beams ation o lumns – Ran End So (60 M	oil hel tion o ntrate ling m s – Po of Beau s: End kine's 3 emest arks)	ical soft hele of hele 7+ ed, u ome int c int c 7+ m De Con Form 5+1(Hou ter E	ed shaft prings - ical coil 2 niformly nt, sheat of contra 2 flection dition – nula for 0= 45 Irs	
- Twist and to Application o springs under UNIT IV Beams - typ distributed an force diagram flexure. Bendi UNIT V Elastic Curve and Slope - D Equivalent Le Columns. Sugge Continuous A Test (20 Ma	ersion stiffness. Sp f various springs r axial loads. BEAM es of supports - nd uniformly vary n for simply supp ing and shear stree DEFLECTI of Neutral Axis of Double Integration ength of Column - estive Assessment Assessment arks) ARKS	Section of the sectio	ings, clo pring – oad – loading inging – Evalu nod. Co s Ratio	osed co Deflec conce g. Benc beams ation o lumns – Ran End So (60 M	oil hel tion o ntrate ling m s – Po of Beau s: End kine's 3 emest arks)	ical soft hele of hele 7+ ed, u ome int c int c 7+ m De Con Form 5+1(Hou ter E	ed shaft prings - ical coil 2 niformly nt, shea of contra 2 eflection dition – nula for 0= 45 irs xams	

		3.Problem-Solving Activities							
Cours	e Outcomes	•		1					
Upon	completion of the cour	se, the students will be able	to:						
C211.1	Categorize the stresses conditions.	and strains for various engine	ering co	omponents with dif	ferent load	ding			
C211.2									
C211.3 Analyse pure torsion on solid and hollow circular shafts and Design of Leaf and closed coil helical springs.									
C211.4 Construct the shear force and bending moment diagrams for simply supported, cantilever and over hanging beams.									
C211.5 Evaluate slope and deflection of beams and buckling of columns using analytical methods									
Text E	looks								
1.	Rajput R.K. "Strength of	Materials". 7th Edition, S.Cha	nd & Co	o., New Delhi, 2018.					
 Bansal R.K., "A Text book of strength of material", Laxmi publication, New Delhi, (2014) 									
Refer	ence Books								
1. Popov E.P., "Engineering Mechanics of Solids", Prentice-Hall of India, New Delhi, (2010)									
2.	Beer F.P. and Johnston	R., "Mechanics of Materials", M	IcGraw ⁴	-Hill Book Co, (201	2)				
3.	 Timoshenko S.P. "Elements of Strength of Materials". 10th Edition, Tata McGraw Hill Publishing Company, New Delhi, 2010. 								
	and Sons Inc., (2008)	F. Riley and Leroy D. Sturges,			•	y			
5.	Hibbeler, R.C., "Mechan	ics of Materials", Pearson Edu	cation,	Low Price Edition,	(2013)				
Web F	lesources								
1.	https://nptel.ac.in/cou	<u>rses/112107146</u>							
2.	https://nptel.ac.in/cou	<u>rses/112106141</u>							

CO Vs PO Mapping and CO Vs PSO Mapping

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2
C211.1	2	2	2									1	3	2
C211.2	2	2	2									1	3	2
C211.3	2	2	2	1								1	3	2
C211.4	2	2	2		2							1	3	2
C211.5	2	2	2		2							1	3	2

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	10	10			10
UNDERSTAND	20	20	5	5	20
APPLY	50	50	15	15	50
ANALYZE	20	20	5	5	20
EVALUATE					
CREATE					

BLOOMS LEVEL ASSESSMENT PATTERN

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1 : Analyze the stresses in simple, compound bars, and thermal stresses (Analyze)

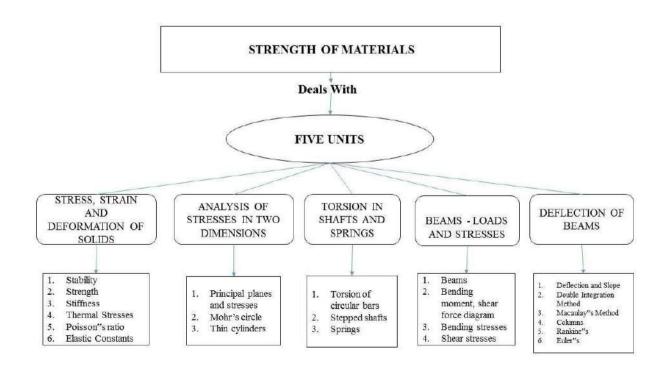
- 1. Define a composite bar. How will you find the stresses and load carried by each member of a composite bar? (A)
- 2. Find an expression for the total elongation of a bar due to its own weight, when the bar is fixed at its upper end and hanging freely at the lower end.(An)

COURSE OUTCOME 2 : Determine the effect of the two-dimensional stresses under various loading combinations on structural parts and thin cylinders. (Apply)

- 1. Show that in thin cylinder shells subjected to internal fluid pressure, the circumferential stress is twice the longitudinal stress. (A)
- 2. While resigning cylindrical vessel, which stress should be used for calculating the thickness of the cylindrical vessel? (A)
- 3. Find the maximum shear stress in a plane using morhs circle and principal plane method. (A)

COURSE OUTCOME 3 : Illustrate the deflection of shafts due to torsion and deformation of different types of springs (Apply)

1. Find an expression for the strain energy stored by the close-coiled helical spring when subjected to axial load W. (A)


2. A solid shaft of 20 cm diameter is used to transmit torque. Find the maximum torque transmitted by the shaft if the maximum shear stress induced in the shaft is 50 N/mm^2 . (A)

COURSE OUTCOME 4 : Determine shear force, bending moment and stress distribution of various types of beams with different support (APPLY)

- 1. How many points of contraflexure you will have for simply supported beam overhanging at one end only? (A)
- 2. Draw the shear force and bending moment diagrams for a simply supported beam of Length L which is subjected to a clockwise couple μ at the centre of the beam. (A)

COURSE OUTCOME 5 : Evaluate the deflection of beams and columns using various approaches (APPLY)

- 1. Determine: (i) slope at the left support (ii) deflection under the load and (iii) maximum deflection of a SSB of length 5 m, which is carrying a point load 5 kN at a distance of 3 m from the left end. Take $E = 2 \times 10^5 \text{ N/mm}^2$ and $I = 1 \times 10^8 \text{ mm}^4$. (A)
- 2. Calculate the safe load on a hollow cast iron (one end rigidly fixed and other hinged) of 15 cm external diameter, 10 cm internal diameter and 10 m in length. Use Euler's formula with a factor of safety of 5 and $E = 95 \text{ kN/mm}^2$. (A)

CONCEPT MAP

21ME4602		THEDMAL ENCINEEDING		L	T	Р	С
21ME4603	l	THERMAL ENGINEERING	-	2	1	0	3
Prerequisites	for the course				<u> </u>		
Engineering Ch	nemistry, Engineerir	ng Thermodynamics					
Objectives							
After undergoin	ng this course, the stu	dents will be able to:					
	-	ncepts on engines, nozzles, turbines, c	compressors	s, Refr	rigera	tion a	nd air
	ning systems	ork absorbing and work producing de	vices to calc	ulato	tho n	orform	nanco
UNIT I		GAS POWER CYCLES		uiate		7+2	lance
	al Bravton cycles Cal	culation of mean effective pressure, and	nd air stand	ard ef			
Comparison of c			nu an Stanu	aruci	merer	icy	
UNIT II	INTERNAL CON	ABUSTION ENGINE COMBUSTION	AND			9	
_		PERFORMANCE					
IC engine – Clas	ssification, working, c	omponents and their functions. Ideal	and actual	: Valv	e and	l port	timin
		& four stroke, and SI & CI engines. D					
	-	ameters and calculations. Morse and				-	
							$\pi v - n h$
		Direct Injection systems. Ignition					
		Direct Injection systems. Ignition stems. Concepts of Supercharging and					
	ication and Cooling sy				Emis		
Electronic. Lubr	ication and Cooling sy STE	stems. Concepts of Supercharging and	Turbochar	ging –	Emis	sion N 5 +3	orms
Electronic. Lubri UNIT III Types and shape with pressure r	ication and Cooling sy STE es of nozzles Flow of s ratio. Effect of friction	stems. Concepts of Supercharging and AM NOZZLE AND TURBINE steam through nozzles, Critical pressu n. Meta stable flow. Turbines: Types	Turbocharg re ratio, Var 5, Impulse a	ging – riatior	Emis 6 n of m eactio	sion N 5 +3 ass flo n prin	orms ow rat
Electronic. Lubri UNIT III Types and shape with pressure r Velocity diagram	ication and Cooling sy STE es of nozzles Flow of s ratio. Effect of friction	stems. Concepts of Supercharging and CAM NOZZLE AND TURBINE steam through nozzles, Critical pressu	Turbocharg re ratio, Var 5, Impulse a	ging – riatior	Emis 6 n of m eactio	sion N 5 +3 ass flo n prin	orms
Electronic. Lubri UNIT III Types and shape with pressure r	ication and Cooling sy STE es of nozzles Flow of s ratio. Effect of friction	stems. Concepts of Supercharging and AM NOZZLE AND TURBINE steam through nozzles, Critical pressu n. Meta stable flow. Turbines: Types	Turbocharg re ratio, Var 5, Impulse a	ging – riatior	Emis 6 n of m eactio	sion N 5 +3 ass flo n prin	orms
Electronic. Lubri UNIT III Types and shape with pressure r Velocity diagram governing	ication and Cooling sy STE es of nozzles Flow of s ratio. Effect of friction	stems. Concepts of Supercharging and AM NOZZLE AND TURBINE steam through nozzles, Critical pressu n. Meta stable flow. Turbines: Types ficiency – optimal operating condition	Turbocharg re ratio, Var 5, Impulse a	ging – riatior	Emis en of m eactio comp	sion N 5+3 ass flo n prin oundi	orms
Electronic. Lubri UNIT III Types and shape with pressure r Velocity diagram governing UNIT IV	ication and Cooling sy STE es of nozzles Flow of s ratio. Effect of friction ns, Work done and eff	stems. Concepts of Supercharging and CAM NOZZLE AND TURBINE steam through nozzles, Critical pressu n. Meta stable flow. Turbines: Types ficiency – optimal operating condition AIR COMPRESSOR	re ratio, Var s, Impulse a ns. Multi-sta	ging – riatior and re aging,	Emis eactio comp	sion N 5+3 ass flo n prin oundi 5+3	orms ow rate aciples ng and
Electronic. Lubri UNIT III Types and shape with pressure r Velocity diagram governing UNIT IV Classification at	ication and Cooling sy STE es of nozzles Flow of s ratio. Effect of friction ns, Work done and eff nd comparison, wor	stems. Concepts of Supercharging and CAM NOZZLE AND TURBINE steam through nozzles, Critical pressu n. Meta stable flow. Turbines: Types ficiency – optimal operating condition AIR COMPRESSOR king principle, work of compressio	re ratio, Var s, Impulse a ns. Multi-sta	ging – riatior and re aging, and w	Emis en of m eactio comp eaction comp	sion N 5+3 ass flo n prin oundi 5+3 at clea	orms ow rat iciples ng and
Electronic. Lubri UNIT III Types and shape with pressure r Velocity diagram governing UNIT IV Classification at Volumetric effi	ication and Cooling sy STE es of nozzles Flow of s ratio. Effect of friction ns, Work done and eff nd comparison, wor ciency, Isothermal e	stems. Concepts of Supercharging and CAM NOZZLE AND TURBINE steam through nozzles, Critical pressu n. Meta stable flow. Turbines: Types ficiency – optimal operating condition AIR COMPRESSOR	re ratio, Var s, Impulse a ns. Multi-sta n – with a Multistage	riatior and re aging, and we air	Emis en of m eactio comp eaction comp eaction comp	sion N 5+3 ass flo n prin boundi 5+3 it clea pressor	orms w raticiples ng and arance r with
Electronic. Lubri UNIT III Types and shape with pressure r Velocity diagram governing UNIT IV Classification at Volumetric effi	ication and Cooling sy STE es of nozzles Flow of s ratio. Effect of friction ns, Work done and eff nd comparison, wor ciency, Isothermal e	stems. Concepts of Supercharging and AM NOZZLE AND TURBINE steam through nozzles, Critical pressu n. Meta stable flow. Turbines: Types ficiency – optimal operating condition AIR COMPRESSOR king principle, work of compressio efficiency and Isentropic efficiency.	re ratio, Var s, Impulse a ns. Multi-sta n – with a Multistage	riatior and re aging, and we air	Emis en of m eactio comp eaction comp eaction comp	sion N 5+3 ass flo n prin boundi 5+3 it clea pressor	orms w rat iciples ng and arance r wit
Electronic. Lubri UNIT III Types and shape with pressure r Velocity diagram governing UNIT IV Classification at Volumetric effi	ication and Cooling sy STE es of nozzles Flow of s ratio. Effect of friction ns, Work done and eff nd comparison, wor ciency, Isothermal e orking principle and c	stems. Concepts of Supercharging and AM NOZZLE AND TURBINE steam through nozzles, Critical pressu n. Meta stable flow. Turbines: Types ficiency – optimal operating condition AIR COMPRESSOR king principle, work of compressio efficiency and Isentropic efficiency.	re ratio, Var s, Impulse a ns. Multi-sta n – with a Multistage	riatior and re aging, and we air	Emis en of m eactio comp eaction comp r com	sion N 5+3 ass flo n prin boundi 5+3 it clea pressor	orms w raticiples ng and arance r with
Electronic. Lubri UNIT III Types and shape with pressure r Velocity diagram governing UNIT IV Classification at Volumetric effi Intercooling. Wo	ication and Cooling sy STE es of nozzles Flow of s ratio. Effect of friction ns, Work done and eff nd comparison, wor ciency, Isothermal e orking principle and co REFRIGE	stems. Concepts of Supercharging and CAM NOZZLE AND TURBINE steam through nozzles, Critical pressu n. Meta stable flow. Turbines: Types ficiency – optimal operating condition AIR COMPRESSOR king principle, work of compression officiency and Isentropic efficiency. omparison of rotary compressors with	re ratio, Var s, Impulse a ns. Multi-sta on – with a Multistage n reciprocat	riatior and re aging, and we air ing ai	Emis eactio comp eactio comp eactio comp r com 7	sion N 5+3 ass flo n prin boundi 5+3 at clea presso presso 7+2	orms w rat aciples ng and arance r with ors
Electronic. Lubri UNIT III Types and shape with pressure r Velocity diagram governing UNIT IV Classification at Volumetric effi Intercooling. Wo UNIT V Vapour compre working princip	ication and Cooling sy STE es of nozzles Flow of s ratio. Effect of friction ns, Work done and eff nd comparison, wor ciency, Isothermal e orking principle and co REFRIGE ession refrigeration co ole of air cycle, vapou	stems. Concepts of Supercharging and AM NOZZLE AND TURBINE steam through nozzles, Critical pressu n. Meta stable flow. Turbines: Types ficiency – optimal operating condition AIR COMPRESSOR king principle, work of compression officiency and Isentropic efficiency. omparison of rotary compressors with RATION AND AIR – CONDITIONING cycle, Effect of Superheat and Sub- r absorption system, and thermoeled	re ratio, Var re ratio, Var s, Impulse a ns. Multi-sta on – with a Multistage n reciprocat	ging – riatior and re aging, and we air ing ai	Emis en of m eactio comp eactio comp r com 7 ance	sion N 5+3 ass flo n primoundi 5+3 at clea presso presso 7+2 calcul	orms ow rat aciples ng and arance r with ors ations
Electronic. Lubri UNIT III Types and shape with pressure r Velocity diagram governing UNIT IV Classification at Volumetric effi Intercooling. Wo UNIT V Vapour compre working princip	ication and Cooling sy STE es of nozzles Flow of s ratio. Effect of friction ns, Work done and eff nd comparison, wor ciency, Isothermal e orking principle and co REFRIGE ession refrigeration co ole of air cycle, vapou	stems. Concepts of Supercharging and CAM NOZZLE AND TURBINE steam through nozzles, Critical pressu n. Meta stable flow. Turbines: Types ficiency – optimal operating condition AIR COMPRESSOR king principle, work of compression efficiency and Isentropic efficiency. omparison of rotary compressors with RATION AND AIR – CONDITIONING cycle, Effect of Superheat and Sub-	re ratio, Var re ratio, Var s, Impulse a ns. Multi-sta on – with a Multistage n reciprocat	ging – riatior and re aging, and we air ing ai	Emis en of m eactio comp eactio comp r com 7 ance	sion N 5+3 ass flo n primoundi 5+3 at clea presso presso 7+2 calcul	orms ow rat aciples ng an arance r wit ors ations
Electronic. Lubri UNIT III Types and shape with pressure r Velocity diagram governing UNIT IV Classification at Volumetric effi Intercooling. Wo UNIT V Vapour compre working princip	ication and Cooling sy STE es of nozzles Flow of s ratio. Effect of friction ns, Work done and eff nd comparison, wor ciency, Isothermal e orking principle and co REFRIGE ession refrigeration co ole of air cycle, vapou	stems. Concepts of Supercharging and CAM NOZZLE AND TURBINE steam through nozzles, Critical pressu n. Meta stable flow. Turbines: Types ficiency – optimal operating condition AIR COMPRESSOR king principle, work of compression officiency and Isentropic efficiency. omparison of rotary compressors with RATION AND AIR – CONDITIONING cycle, Effect of Superheat and Sub-or r absorption system, and thermoeled ESHF, Cooling load calculations.	re ratio, Var re ratio, Var s, Impulse a ns. Multi-sta m – with a Multistage n reciprocat	riatior and re aging, and w air ing ai rform ration	Emis en of m eactio comp eactio comp r com 7 ance Air	sion N 5+3 ass flo n prin boundi 5+3 at clea presson presson 7+2 calcul condit	arance r with ors ations
Electronic. Lubri UNIT III Types and shape with pressure r Velocity diagram governing UNIT IV Classification an Volumetric effi- Intercooling. Wo UNIT V Vapour compre working princip systems, concep	ication and Cooling sy STE es of nozzles Flow of s ratio. Effect of friction ns, Work done and effect nd comparison, wor ciency, Isothermal e orking principle and co REFRIGE ession refrigeration of ole of air cycle, vapou ot of RSHF, GSHF and F	stems. Concepts of Supercharging and AM NOZZLE AND TURBINE steam through nozzles, Critical pressu n. Meta stable flow. Turbines: Types ficiency – optimal operating condition AIR COMPRESSOR king principle, work of compressio officiency and Isentropic efficiency. omparison of rotary compressors with RATION AND AIR – CONDITIONING cycle, Effect of Superheat and Sub- r absorption system, and thermoeled ESHF, Cooling load calculations. Total	re ratio, Var re ratio, Var s, Impulse a ns. Multi-sta on – with a Multistage n reciprocat	riatior and re aging, and w air ing ai rform ration	Emis en of m eactio comp eactio comp r com 7 ance Air	sion N 5+3 ass flo n primoundi 5+3 at clea presso presso 7+2 calcul	arance r with ors ations
Electronic. Lubri UNIT III Types and shape with pressure r Velocity diagram governing UNIT IV Classification at Volumetric effi Intercooling. Wo UNIT V Vapour compre working princip systems, concep	ication and Cooling sy STE es of nozzles Flow of s ratio. Effect of friction ns, Work done and eff nd comparison, wor ciency, Isothermal e orking principle and co REFRIGE ession refrigeration c ole of air cycle, vapou ot of RSHF, GSHF and F seessment Methods	stems. Concepts of Supercharging and AM NOZZLE AND TURBINE steam through nozzles, Critical pressu n. Meta stable flow. Turbines: Types ficiency – optimal operating condition AIR COMPRESSOR king principle, work of compression officiency and Isentropic efficiency. omparison of rotary compressors with RATION AND AIR – CONDITIONING cycle, Effect of Superheat and Sub- r absorption system, and thermoeled ESHF, Cooling load calculations. Total	re ratio, Var re ratio, Var s, Impulse a ns. Multi-sta on – with a Multistage n reciprocat cooling, Per ctric refrige	riatior and re aging, and we air ing air rform ration 35 -	Emis en of m eactio comp comp r com r com 7 ance Air +10 =	sion N 5+3 ass flo n prin oundi 5+3 at clea presson presson 7+2 calcul condit 545 H	arance r with ors ations
Electronic. Lubri UNIT III Types and shape with pressure r Velocity diagram governing UNIT IV Classification an Volumetric effi- Intercooling. Wo UNIT V Vapour compre working princip systems, concep Suggestive As Continuous As	ication and Cooling sy STE es of nozzles Flow of s ratio. Effect of friction ns, Work done and eff nd comparison, wor ciency, Isothermal e orking principle and co REFRIGE ession refrigeration c ole of air cycle, vapou ot of RSHF, GSHF and E ssessment Methods ssessment Test	Stems. Concepts of Supercharging and AM NOZZLE AND TURBINE Steam through nozzles, Critical pressu n. Meta stable flow. Turbines: Types ficiency – optimal operating condition AIR COMPRESSOR king principle, work of compression officiency and Isentropic efficiency. omparison of rotary compressors with RATION AND AIR – CONDITIONING cycle, Effect of Superheat and Sub- r absorption system, and thermoeled ESHF, Cooling load calculations. Total Formative Assessment Test	re ratio, Var s, Impulse a ns. Multi-sta on – with a Multistage n reciprocat cooling, Per ctric refriger I Periods	riatior and reaging, and we air ing ai rform ration 35- meste	Emis en of m eactio comp comp r com r com 7 ance Air +10 =	sion N 5+3 ass flo n prin oundi 5+3 at clea presson presson 7+2 calcul condit 545 H	orms w rat iciples ng an arance r wit ors ations
Electronic. Lubri UNIT III Types and shape with pressure r Velocity diagram governing UNIT IV Classification at Volumetric effi Intercooling. Wo UNIT V Vapour compre working princip systems, concep Suggestive As Continuous As (20 Mar	ication and Cooling sy STE es of nozzles Flow of s ratio. Effect of friction ns, Work done and eff nd comparison, wor ciency, Isothermal e orking principle and co REFRIGE ession refrigeration co ble of air cycle, vapou ot of RSHF, GSHF and E ssessment Methods ssessment Test 'ks)	stems. Concepts of Supercharging and AM NOZZLE AND TURBINE steam through nozzles, Critical pressu n. Meta stable flow. Turbines: Types ficiency – optimal operating condition AIR COMPRESSOR king principle, work of compression officiency and Isentropic efficiency. omparison of rotary compressors with RATION AND AIR – CONDITIONING cycle, Effect of Superheat and Sub- r absorption system, and thermoeled SHF, Cooling load calculations. Total Formative Assessment Test (20 Marks)	re ratio, Var re ratio, Var s, Impulse a ns. Multi-sta m – with a Multistage n reciprocat cooling, Per ctric refrige I Periods	riatior and re aging, and we air ing ai rform ration 35- mesto rks)	Emis en of m eactio comp comp r com r com 7 ance Air +10 = er Ex	sion N 5+3 ass flo n prin boundi 5+3 at clea presso presso 7+2 calcul condit =45 H	orms w rat aciples ng and arance r with ors ations ionin ours
Electronic. Lubri UNIT III Types and shape with pressure r Velocity diagram governing UNIT IV Classification an Volumetric effi Intercooling. Wo UNIT V Vapour compre working princip systems, concep Suggestive As Continuous As (20 Mar CAT 1 – 10 Mar	ication and Cooling sy STE es of nozzles Flow of s ratio. Effect of friction ns, Work done and eff nd comparison, wor ciency, Isothermal e orking principle and co REFRIGE ession refrigeration c ole of air cycle, vapou ot of RSHF, GSHF and E sessment Methods ssessment Test ·ks) rks	stems. Concepts of Supercharging and AM NOZZLE AND TURBINE steam through nozzles, Critical pressu n. Meta stable flow. Turbines: Types ficiency – optimal operating condition AIR COMPRESSOR king principle, work of compressio officiency and Isentropic efficiency. omparison of rotary compressors with RATION AND AIR – CONDITIONING cycle, Effect of Superheat and Sub- r absorption system, and thermoeled SHF, Cooling load calculations. Total Formative Assessment Test (20 Marks) 1. Assignment	re ratio, Var s, Impulse a ns. Multi-sta on – with a Multistage n reciprocat cooling, Per ctric refriger I Periods	riatior and re aging, and we air ing ai rform ration 35- mesto rks)	Emis en of m eactio comp comp r com r com 7 ance Air +10 = er Ex	sion N 5+3 ass flo n prin boundi 5+3 at clea presso presso 7+2 calcul condit =45 H	orms w rat aciples ng and arance r with ors ations ionin ours
Electronic. Lubri UNIT III Types and shape with pressure r Velocity diagram governing UNIT IV Classification at Volumetric effi Intercooling. Wo UNIT V Vapour compre working princip systems, concep Suggestive As Continuous As (20 Mar	ication and Cooling sy STE es of nozzles Flow of s ratio. Effect of friction ns, Work done and effect nd comparison, wor ciency, Isothermal e orking principle and co REFRIGE ession refrigeration co ole of air cycle, vapou ot of RSHF, GSHF and E seessment Methods ssessment Test 'ks) rks rks	stems. Concepts of Supercharging and AM NOZZLE AND TURBINE steam through nozzles, Critical pressu n. Meta stable flow. Turbines: Types ficiency – optimal operating condition AIR COMPRESSOR king principle, work of compression officiency and Isentropic efficiency. omparison of rotary compressors with RATION AND AIR – CONDITIONING cycle, Effect of Superheat and Sub- r absorption system, and thermoeled SHF, Cooling load calculations. Total Formative Assessment Test (20 Marks)	re ratio, Var re ratio, Var s, Impulse a ns. Multi-sta m – with a Multistage n reciprocat cooling, Per ctric refrige I Periods	riatior and re aging, and we air ing ai rform ration 35- mesto rks)	Emis en of m eactio comp comp r com r com 7 ance Air +10 = er Ex	sion N 5+3 ass flo n prin boundi 5+3 at clea presso presso 7+2 calcul condit =45 H	orms w rat aciples ng and arance r with ors ations ionin ours

Course Outcomes Upon completion of the course, the students will be able to: **C212.1** State and compare the processes and performances of different gas power cycles. **C212.2** Explain the functioning and features of IC engines, components and auxiliaries and to calculate the performance parameters of IC Engines **C212.3** Calculate the velocity and design parameters in steam nozzles and to carry out performance analysis on steam turbines **C212.4** Understand the types and working of compressors and to solve problems in single stage and multi stage air. **C212.5** Solve problems in refrigeration and air conditioning system C212.6 Execute the thermodynamics principles to different thermal devices and to arrive at the design parameters. **Text Books** 1. Khurmi R.S., Gupta J.K. "A Text Book on Thermal Engineering", S.Chand 15th Edition, (2018) 2. Rajput R.K., "Thermal Engineering", S. Chand Publishers, (2017) **Reference Books** 1. Nag.P.K., "Engineering Thermodynamics", 5th Edition, Tata McGraw-Hill, New Delhi, (2013) 2. Ganesan V., "Internal Combustion Engines", Tata McGraw Hill Publishing Co., New York, (2012)3. Ballaney P.L. "Thermal Engineering", Khanna publishers, 24th Edition, (2012) 4. Mahesh M.Rathore, "Thermal Engineering", 1st edition, Tata Mc Graw Hill Publications, (2010)5. Sarkar B.K. "Thermal Engineering", Tata Mc Graw Hill Publishers, (2007) 6. Rudramoorthy R, "Thermal Engineering", Tata Mc Graw Hill, New Delhi, (2003) Web Resources 1. https://nptel.ac.in/courses/112106133

CO Vs PO Mapping and CO Vs PSO Mapping

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2
C212.1	3	2	1	1										3
C212.2	3	2	1				1							3
C212.3	2	1	1	1			1							3
C212.4	2	2	1	1										3
C212.5	2	2	1	1			1							3
C212.6	2	1	1	1										3

BLOOM'S CATEGORY	FORMAT ASSESSM	IVE ENT TEST	CONTINUOUS ASSESSMENT	END SEMESTER EXAMINATION	
	FAT1	FAT2	CAT – 1	CAT -2	
Remember	5	5	30	20	20
Understand	15	10	50	40	30
Apply	5	10	20	40	40
Analyze					10
Evaluate					
Create					
Total	25	25	100	100	100

BLOOOMS LEVEL ASSESSMENT PATTERN

ASSESSMENT QUESTIONS – SAMPLE

COURSE OUTCOME 1: State and compare the processes and performances of different gas power cycles. (**Remember, Understand, Apply**)

1. Define Compression ratio

2. State the effect of increase in cut off ratio on the efficiency of Diesel Engine.

3. Determination of efficiency, work done, mean effective pressure of gas power cycle.(Numerical Problem)

COURSE OUTCOME 2: Explain the functioning and features of IC engines, components and auxiliaries and to calculate the performance parameters of IC Engines (**Remember, Understand, Apply**)

1. State the primary difference in two stroke and four stroke engine.

2.What is meant by value overlapping

3.Numerical problems to determine the performance parameters from the test data of an internal combustion engine.

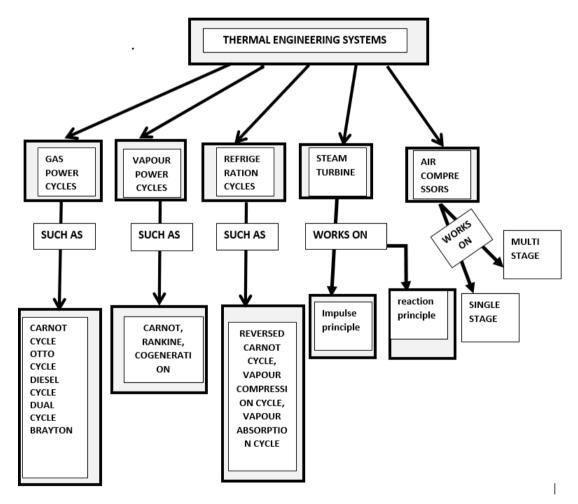
COURSE OUTCOME 3: Calculate the velocity and design parameters in steam nozzles and to carry out performance analysis on steam turbines **(Remember, Understand, Apply)**

1. Define Critical Pressure ratio.

2. What is the effect of friction on the quality of steam?

3. Determination of area ratio or mass flow rate from the given steam condition.

COURSE OUTCOME 4: Understand the types and working of compressors and to solve problems in single stage and multi stage air. **(Remember, Understand, Apply)**


1. Define isothermal efficiency of a reciprocating compressor.

2. Why clearance volume doesn't have any effect on the volumetric efficiency of an air compressor?

3. Calculation of the energy required to compress air for a given pressure ratio, stages and air outlet condition.

COURSE OUTCOME 5: Solve problems in refrigeration and air conditioning system **(Remember, Understand, Apply)**

- 1. Define Ton of Refrigeration
- 2. What is the effect of super heat on the COP of a refrigerator
- 3. Numerical Calculation on determining the COP of refrigeration system for various cases.

Image: state in the courseImage: state in the coursePrerequisites for the courseEngineering MechanicsObjectives• To impart students' knowledge about forces acting on machine parts. • To enable students to understand the fundamental concepts of machines. • To facilitate students to understand the functions of cams, gears and fly wheels. • To make students to get an insight into balancing of rotations and reciprocating masses and the concepts of vibration.UNIT IANALYSIS OF BASIC MECHANISMS9+3Introduction - Terminologies, Degree of Freedom - Study of planar mechanisms and their inversions. Displacement, velocity and acceleration analysis of plane mechanisms.10+3UNIT IIKINEMATICS OF CAMS, GEARS AND GEAR TRAINS10+3Cams with different Follower Motion, Gear terminologies - Law of gearing - Interference and undercutting - Epicyclic gear train.10+3D'Alembert's Principle, Dynamic Analysis of planar Mechanism. Turning Moment Diagrams - Fly Wheels. Static and Dynamic Balancing of Rotating Masses, Balancing of Reciprocating Masses.10+3	21ME4604		THEORY OF MACHINES		L	T	Р	C
Engineering Mechanics Objectives • To impart students' knowledge about forces acting on machine parts. • To enable students to understand the fundamental concepts of machines. • To facilitate students to understand the functions of cams, gears and fly wheels. • To make students to get an insight into balancing of rotations and reciprocating masses and the concepts of vibration. UNIT I ANALYSIS OF BASIC MECHANISMS 9+3 Introduction - Terminologies, Degree of Freedom - Study of planar mechanisms and their inversions. Displacement, velocity and acceleration analysis of plane mechanisms. 10+3 Cams with different Follower Motion, Gear terminologies - Law of gearing - Interference and undercutting - Epicyclic gear train. 10+3 D'Alembert's Principle, Dynamic Analysis of planar Mechanism. Turning Moment Diagrams - Fly Wheels . Static and Dynamic Balancing of Rotating Masses, Balancing of Reciprocating Masses. 10+3 D'Alembert's Principle, Dynamic Analysis of planar Mechanism. Turning Moment Diagrams - Fly Wheels . Static and Dynamic Balancing of Rotating Masses, Balancing of Reciprocating Masses. 10+3 D'Alembert's Principle, Dynamic Knalysis of planar Mechanism. Turning Moment Diagrams - Fly Wheels . Static and Dynamic Balancing of Rotating Masses, Belancing of Reciprocating Masses. 10+3 Drive vibration of single degree of freedom systems, effect of damping, Equations of motion, resonance, critical speeds of shafts. Forced vibration, Harmonic Forcing, Transmissibility,					3	1	0	4
Objectives • To impart students' knowledge about forces acting on machine parts. • To enable students to understand the fundamental concepts of machines. • To facilitate students to understand the functions of cams, gears and fly wheels. • To make students to get an insight into balancing of rotations and reciprocating masses and the concepts of vibration. UNIT I ANALYSIS OF BASIC MECHANISMS 9+3 Introduction - Terminologies, Degree of Freedom - Study of planar mechanisms and their inversions. Displacement, velocity and acceleration analysis of plane mechanisms. 10+3 Cans with different Follower Motion, Gear terminologies - Law of gearing - Interference and undercutting - Epicyclic gear train. 10+3 UNIT II FORCE ANALYSIS AND BALANCING 10+3 D'Alembert's Principle, Dynamic Analysis of planar Mechanism. Turning Moment Diagrams - Fly Wheels . Static and Dynamic Balancing of Rotating Masses, Balancing of Reciprocating Masses. 10+3 Free vibration of single degree of freedom systems, effect of damping, Equations of motion, resonance, critical speeds of shafts. Forced vibration, Harmonic Forcing, Transmissibility, vibration isolation. 10+3 UNIT V MECHANISMS FOR CONTROL & GYROSCOPE 6+3 Governors- types and its characteristics, Gyroscopic Effects on the Movement of Air Planes and Ships - Gyroscope Stabilization. Formative Assessment Test (20 Marks) End Semester Exams (60 Marks) <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	-							
 To impart students' knowledge about forces acting on machine parts. To enable students to understand the fundamental concepts of machines. To facilitate students to get an insight into balancing of rotations and reciprocating masses and the concepts of vibration. UNIT I ANALYSIS OF BASIC MECHANISMS 9+3 Introduction - Terminologies, Degree of Freedom - Study of planar mechanisms and their inversions. Displacement, velocity and acceleration analysis of plane mechanisms. UNIT II KINEMATICS OF CAMS, GEARS AND GEAR TRAINS 10+3 Cams with different Follower Motion, Gear terminologies - Law of gearing - Interference and undercutting - Epicyclic gear train. UNIT III FORCE ANALYSIS AND BALANCING 10+3 D'Alembert's Principle, Dynamic Analysis of planar Mechanism. Turning Moment Diagrams - Fly Wheels . Static and Dynamic Balancing of Rotating Masses, Balancing of Reciprocating Masses. UNIT IV VIBRATIONS 10+3 Free vibration of single degree of freedom systems, effect of damping. Equations of motion, resonance, critical speeds of shafts. Forced vibration, Harmonic Forcing, Transmissibility, vibration isolation. UNIT V MECHANISMS FOR CONTROL & GYROSCOPE 6+3 Governors- types and its characteristics, Gyroscopic Effects on the Movement of Air Planes and Ships - Gyroscope Stabilization. Total Periods 45+15 Suggestive Assessment Methods CAT 1 - 10 MARKS 1. Assignment (20 Marks) CAT 1 - 10 MARKS 2. Online Quizzes 	Lingineering M	lechames						
 To enable students to understand the functions of cams, gears and fly wheels. To facilitate students to get an insight into balancing of rotations and reciprocating masses and the concepts of vibration. UNIT I ANALYSIS OF BASIC MECHANISMS 9+3 Introduction - Terminologies, Degree of Freedom - Study of planar mechanisms and their inversions. Displacement, velocity and acceleration analysis of plane mechanisms. UNIT I KINEMATICS OF CAMS, GEARS AND GEAR TRAINS 10+3 Cams with different Follower Motion, Gear terminologies - Law of gearing - Interference and undercutting - Epicyclic gear train. UNIT III FORCE ANALYSIS AND BALANCING 10+3 D'Alembert's Principle, Dynamic Analysis of planar Mechanism. Turning Moment Diagrams - Fly Wheels . Static and Dynamic Balancing of Rotating Masses, Balancing of Reciprocating Masses. UNIT IV VIBRATIONS 10+3 Free vibration of single degree of freedom systems, effect of damping, Equations of motion, resonance, critical speeds of shafts. Forced vibration, Harmonic Forcing, Transmissibility, vibration isolation. UNIT V MECHANISMS FOR CONTROL & GYROSCOPE 6+3 Governors- types and its characteristics, Gyroscopic Effects on the Movement of Air Planes and Ships - Gyroscope Stabilization. Total Periods 45+15 Suggestive Assessment Methods Continuous Assessment Test (20 Marks) CAT 1 - 10 MARKS 2. Online Quizzes 	Objectives							
Introduction - Terminologies, Degree of Freedom - Study of planar mechanisms and their inversions. Displacement, velocity and acceleration analysis of plane mechanisms.UNIT IIKINEMATICS OF CAMS, GEARS AND GEAR TRAINS10+3Cams with different Follower Motion, Gear terminologies - Law of gearing - Interference and undercutting - Epicyclic gear train.10+3UNIT IIFORCE ANALYSIS AND BALANCING10+3D'Alembert's Principle, Dynamic Analysis of planar Mechanism. Turning Moment Diagrams - Fly Wheels . Static and Dynamic Balancing of Rotating Masses, Balancing of Reciprocating Masses.10+3UNIT IVVIBRATIONS10+3Free vibration of single degree of freedom systems, effect of damping, Equations of motion, resonance, critical speeds of shafts. Forced vibration, Harmonic Forcing, Transmissibility, vibration isolation.6+3Governors- types and its characteristics, Gyroscopic Effects on the Movement of Air Planes and Ships - Gyroscope Stabilization.Total Periods45+15Suggestive Assessment Methods (20 Marks)Continuous Assessment Test (20 Marks)End Semester Exams (60 Marks)1. Descriptive QuestionsCAT 1 - 10 MARKS1. Assignment 2. Online Quizzes1. Descriptive Questions1.	To enalTo facilTo make	ble students to under itate students to unc se students to get an	rstand the fundamental concepts of lerstand the functions of cams, gear	machine s and fly	whee		nasse	s and
Displacement, velocity and acceleration analysis of plane mechanisms. UNIT II KINEMATICS OF CAMS, GEARS AND GEAR TRAINS 10+3 Cams with different Follower Motion, Gear terminologies - Law of gearing - Interference and undercutting - Epicyclic gear train. 10+3 UNIT III FORCE ANALYSIS AND BALANCING 10+3 D'Alembert's Principle, Dynamic Analysis of planar Mechanism. Turning Moment Diagrams - Fly Wheels . Static and Dynamic Balancing of Rotating Masses, Balancing of Reciprocating Masses. 10+3 UNIT IV VIBRATIONS 10+3 Free vibration of single degree of freedom systems, effect of damping, Equations of motion, resonance, critical speeds of shafts. Forced vibration, Harmonic Forcing, Transmissibility, vibration isolation. 10HT V UNIT V MECHANISMS FOR CONTROL & GYROSCOPE 6+3 Governors- types and its characteristics, Gyroscopic Effects on the Movement of Air Planes and Ships – Gyroscope Stabilization. Total Periods 45+15 Suggestive Assessment Methods Continuous Assessment Test (20 Marks) End Semester Exams (60 Marks) (60 Marks) CAT 1 - 10 MARKS 1. Assignment 2. Online Quizzes 1. Descriptive Questions 1. Descriptive Questions	UNIT I	ANAL	YSIS OF BASIC MECHANISMS			9)+3	
Cams with different Follower Motion, Gear terminologies - Law of gearing - Interference and undercutting - Epicyclic gear train.UNIT IIIFORCE ANALYSIS AND BALANCING10+3D'Alembert's Principle, Dynamic Analysis of planar Mechanism. Turning Moment Diagrams - Fly Wheels . Static and Dynamic Balancing of Rotating Masses, Balancing of Reciprocating Masses.10+3UNIT IVVIBRATIONS10+3Free vibration of single degree of freedom systems, effect of damping, Equations of motion, resonance, critical speeds of shafts. Forced vibration, Harmonic Forcing, Transmissibility, vibration isolation.10+3UNIT VMECHANISMS FOR CONTROL & GYROSCOPE6+3Governors- types and its characteristics, Gyroscopic Effects on the Movement of Air Planes and Ships - Gyroscope Stabilization.Total Periods45+15Suggestive Assessment MethodsContinuous Assessment Test (20 Marks)End Semester Exams (60 Marks)1. Descriptive QuestionsCAT 1 - 10 MARKS CAT 2 - 10 MARKS1. Assignment 2. Online Quizzes1. Descriptive Questions		0			and t	heir	inver	sions.
undercutting - Epicyclic gear train.UNIT IIIFORCE ANALYSIS AND BALANCING10+3D'Alembert's Principle, Dynamic Analysis of planar Mechanism. Turning Moment Diagrams - Fly Wheels . Static and Dynamic Balancing of Rotating Masses, Balancing of Reciprocating Masses.10+3UNIT IVVIBRATIONS10+3Free vibration of single degree of freedom systems, effect of damping, Equations of motion, resonance, critical speeds of shafts. Forced vibration, Harmonic Forcing, Transmissibility, vibration isolation.6+3UNIT VMECHANISMS FOR CONTROL & GYROSCOPE6+3Governors- types and its characteristics, Gyroscopic Effects on the Movement of Air Planes and Ships - Gyroscope Stabilization.Total Periods45+15Suggestive Assessment MethodsEnd Semester Exams (60 Marks)Continuous Assessment Test (20 Marks)1. Assignment 2. Online Quizzes1. Descriptive Questions	UNIT II	KINEMATICS	OF CAMS, GEARS AND GEAR TRA	INS		1	0+3	
D'Alembert's Principle, Dynamic Analysis of planar Mechanism. Turning Moment Diagrams - Fly Wheels . Static and Dynamic Balancing of Rotating Masses, Balancing of Reciprocating Masses.UNIT IVVIBRATIONS10+3Free vibration of single degree of freedom systems, effect of damping, Equations of motion, resonance, critical speeds of shafts. Forced vibration, Harmonic Forcing, Transmissibility, vibration isolation.10+3UNIT VMECHANISMS FOR CONTROL & GYROSCOPE6+3Governors- types and its characteristics, Gyroscopic Effects on the Movement of Air Planes and Ships – Gyroscope Stabilization.Total Periods45+15Suggestive Assessment MethodsContinuous Assessment Test (20 Marks)End Semester Exams (60 Marks)60 Marks)CAT 1 – 10 MARKS1. Assignment 2. Online Quizzes1. Descriptive Questions			6	aring - Int	terfer	ence	and	
Wheels . Static and Dynamic Balancing of Rotating Masses, Balancing of Reciprocating Masses.UNIT IVVIBRATIONS10+3Free vibration of single degree of freedom systems, effect of damping, Equations of motion, resonance, critical speeds of shafts. Forced vibration, Harmonic Forcing, Transmissibility, vibration isolation.Equations of motion, resonance, critical speeds of shafts. Forced vibration, Harmonic Forcing, Transmissibility, vibration isolation.UNIT VMECHANISMS FOR CONTROL & GYROSCOPE6+3Governors- types and its characteristics, Gyroscopic Effects on the Movement of Air Planes and Ships - Gyroscope Stabilization.Total Periods45+15Suggestive Assessment MethodsFormative Assessment Test (20 Marks)End Semester Exams (60 Marks)CAT 1 – 10 MARKS CAT 2 – 10 MARKS1. Assignment 2. Online Quizzes1. Descriptive Questions	UNIT III	FORC	E ANALYSIS AND BALANCING			1	0+3	
Free vibration of single degree of freedom systems, effect of damping, Equations of motion, resonance, critical speeds of shafts. Forced vibration, Harmonic Forcing, Transmissibility, vibration isolation.UNIT V MECHANISMS FOR CONTROL & GYROSCOPE6+3Governors- types and its characteristics, Gyroscopic Effects on the Movement of Air Planes and Ships – Gyroscope Stabilization.Total Periods45+15Suggestive Assessment MethodsContinuous Assessment Test (20 Marks)Formative Assessment Test (20 Marks)End Semester Exams (60 Marks)CAT 1 – 10 MARKS1. Assignment 2. Online Quizzes1. Descriptive Questions				-		-		ly
resonance, critical speeds of shafts. Forced vibration, Harmonic Forcing, Transmissibility, vibration isolation. UNIT V MECHANISMS FOR CONTROL & GYROSCOPE 6+3 Governors- types and its characteristics, Gyroscopic Effects on the Movement of Air Planes and Ships - Gyroscope Stabilization. 6+3 Suggestive Assessment Methods Total Periods 45+15 Continuous Assessment Test (20 Marks) Formative Assessment Test (20 Marks) End Semester Exams (60 Marks) CAT 1 – 10 MARKS 1. Assignment 2. Online Quizzes 1. Descriptive Questions	UNIT IV		VIBRATIONS			1	0+3	
Governors- types and its characteristics, Gyroscopic Effects on the Movement of Air Planes and Ships - Gyroscope Stabilization. Total Periods 45+15 Suggestive Assessment Methods 45+15 Continuous Assessment Test (20 Marks) Formative Assessment Test (20 Marks) End Semester Exams (60 Marks) CAT 1 – 10 MARKS 1. Assignment 1. Descriptive Questions CAT 2 – 10 MARKS 2. Online Quizzes 1. Descriptive Questions	resonance, cri		-		-			
 – Gyroscope Stabilization. Total Periods 45+15 Suggestive Assessment Methods Continuous Assessment Test (20 Marks) CAT 1 – 10 MARKS 1. Assignment CAT 2 – 10 MARKS 2. Online Quizzes 	UNIT V	MECHANIS	SMS FOR CONTROL & GYROSCOPE			6	+3	
Suggestive Assessment MethodsContinuous Assessment Test (20 Marks)Formative Assessment Test (20 Marks)End Semester Exams (60 Marks)CAT 1 – 10 MARKS CAT 2 – 10 MARKS1. Assignment 2. Online Quizzes1. Descriptive Questions			istics, Gyroscopic Effects on the Mov	vement of	f Air P	lane	s and	Ships
Continuous Assessment Test (20 Marks)Formative Assessment Test (20 Marks)End Semester Exams (60 Marks)CAT 1 – 10 MARKS 			Total	Periods		45	5+15	
(20 Marks)(20 Marks)(60 Marks)CAT 1 - 10 MARKS1. Assignment1. Descriptive QuestionsCAT 2 - 10 MARKS2. Online Quizzes1. Descriptive Questions								
CAT 1 – 10 MARKS1. Assignment1. Descriptive QuestionsCAT 2 – 10 MARKS2. Online Quizzes1. Descriptive Questions						er Ex	ams	
	CAT 2 – 10 MA	ARKS	2. Online Quizzes			e Qu	estior	15
				<u>.</u>				

Upon completion of the course, the students will be able to:

C213.1 Apply different mechanisms for designing machines and Compute velocity, acceleration of various planar mechanisms.

C213.2 Apply the principles for analysing cams, gears and gear trains.

C213.3 Analyse dynamic forces acting on mechanism and Balance rotating and reciprocating masses **C213.4** Analyse free, forced and damped vibrations of mechanical systems.

C213.5 Analyse and characterize the effects of governor and gyroscopic effects on aeroplanes, ships.

Text Books

- 1. S. S. Rattan, "Theory of Machines", Tata McGraw Hill, 2015
- 2. Uicker, J.J., Pennock G.R and Shigley, J.E., "Theory of Machines and Mechanisms", Oxford University Press, 2017.

Reference Books

- 1. Joseph Edward Shigley and John Jospeh Uicker JR, Theory of Machines and Mechanisms SI Edition, Oxford University Press, 2014
- 2. R L Norton, Kinematics and Dynamics of Machinery, McGraw-Hill Education, 2017.
- 3. R L Norton, Design of Machinery: An Introduction to the Synthesis and Analysis of Mechanisms and Machines, McGraw-Hill Higher Education, 2011.
- 4. Khurmi R.S., "Theory of Machines", 14th Edition, S Chand Publications, (2005)

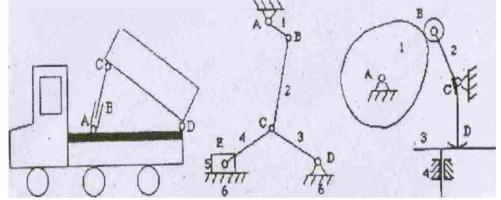
Web Resources

- 1. https://nptel.ac.in/courses/112106270
- 2. https://nptel.ac.in/courses/112104121
- 3. https://onlinecourses.nptel.ac.in/noc20_me21/preview
- 4. https://nptel.ac.in/courses/112101096

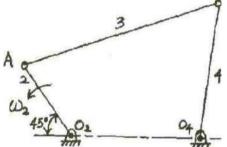
CO Vs PO Mapping and CO Vs PSO Mapping

СО	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2
C213.1	2	2	2									1	3	
C213.2	2	2	2									1	3	
C213.3	1	2	2	1								1	3	2
C213.4	2	2	2		2							1	3	2
C213.5	1	2	3										3	

BLOOMS LEVEL ASSESSMENT PATTERN

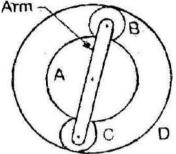

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	10	10			20
UNDERSTAND	20	10	5	5	20
APPLY	60	50	10	5	40

ANALYZE	10	30	10	15	20
EVALUATE					
CREATE					


COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1; Apply different mechanisms for designing machines and Compute velocity, acceleration of various planer mechanisms. (Apply)

1. Determine the degree of freedom for following linkages. (A)


2. For the four-bar linkage shown below examine the acceleration of A and B and the angular acceleration of links 3 and 4, Crank 2 has a constant angular velocity, $\omega_2 = 200$ rad/s counter clockwise direction. The linkage A0₂ = 150 mm; BA = 450 mm, B0₄ = 300 mm, 0₄0₂ = 200 mm. (An)

COURSE OUTCOME 2 : Apply the principles for analysing cams, gears and gear trains. (Apply)

1. A cam operates on offset roller follower. The least radius of the cam is 50 mm, roller diameter is 30 mm, and offset is 20 mm, the cam rotates at 360 rpm. The angle of ascent is 48°, angle of dwell is 42° and angle of descent is 60°. The motion is to be SHM during ascent and uniform acceleration and deceleration during decent. Construct the cam profile. **(A)**

- 2. State and prove law of gearing and thus derive expression for velocity of sliding. (A)
- **3.** An epicyclic gear train is shown in the below figure. How many revolutions do the arm makes? (a). When A makes one revolution in CW and D makes 1/2 revolution in the opposite sense, (b). When A makes one revolution in CW and D remains stationary, (c). The number of teeth in gears A and D are 40 and 90 respectively. **(An)**

COURSE OUTCOME 3: Analyse dynamic forces acting on mechanism and Balance rotating and reciprocating masses (Analyse)

- 1. List the uses of turning moment diagrams? (R)
- **2.** A multi-cylinder engine is to run at a speed of 600 r.p.m. On drawing the turning moment diagram to a scale of 1mm=250 N-m and 1mm=30, the areas above and below the mean torque line in mm2 are: +160, -172, +168, -191, +197, -162. The speed is to be kept within ± 1% of the mean speed of the engine. Calculate the necessary moment of inertia of the flywheel. Determine the suitable dimensions of a rectangular flywheel rim if the breadth is twice its thickness. The density of the cast iron is 7250 kg/m3 and its hoop stress is 6 MPa. Assume that the rim contributes 92% of the flywheel effect. **(A)**
- **3.** Four masses A, B, C and D revolve at equal radii and are equally spaced along a shaft. The mass B is 7 kg and the radii of C and D make angles of 90° and 240° respectively with the radius of B. Examine the magnitude of the masses A, C and D and the angular position of A so that the system may be completely balanced. **(An)**

COURSE OUTCOME 4 : Analyse free, forced and damped vibrations of mechanical systems. (Analyse)

- **1.** A machine of weighs 18 kg and is supported on springs and dashpots. The total stiffness of the springs is 12 N/mm and damping is 0.2 N/mm/s the system is initially at rest and a velocity of 120 mm/s is imparted to the mass. Determine (1) the displacement and velocity of mass as a function of time (2) the displacement and velocity after 0.4s. (b) Describe the types of vibrations with simple sketch. **(A)**
- A shaft of 100 mm diameter and 1 m long is fixed at one end and other end carries a flywheel of mass 1 tonne. Taking young's modulus for the shaft material as 200 GN/m². Examine the natural frequency of longitudinal and transverse vibrations. (An)
- **3.** A vertical shaft 25 mm diameter and 0.75 m long, is mounted in long bearings and carries a pulley of mass 10 kg midway between the bearings. The centre of the pulley is 0.5 mm from the axis of the shaft. Solve (a) the Whirling Speed (b) the bending stress in the shaft, when it is rotating at 1700 rpm. **(A)**

COURSE OUTCOME 5: Analyse and characterize the effects of governor and gyroscopic effects on aeroplanes, ships. (Analyse)

- A ship is propelled by a turbine rotor which has a mass of 5 tonnes and a speed of 2100 rpm. The rotor has a radius of gyration of 0.5 m and rotates in a clockwise direction when viewed from the stern. Examine the gyroscopic effect in the following conditions: (i) the ship sails at a speed of 30 km/hr and steers to the left in curve having 60 m radius; (ii) the ship pitches 6° above and 6° below the horizontal position. The bow is descending with its maximum velocity. the motion due to pitching is simple harmonic and a periodic time is 20 seconds.(iii) the ship rolls and at a certain instant it has an angular velocity of 0.03 rad/sec clockwise when viewed from stern. (An)
- 2. In a spring controlled governor, the curve of the controlling force is a straight line. When balls are 400 mm apart, the controlling force is 1200 N and when 200 mm apart, the controlling force is 450 N.at what speed will the governor run when the balls are 250 mm apart? What initial tension on the spring would be required for isochronism and what would then be the speed? Take masses of each ball to be 10 kg. (A)
- 3. Define Stability of a governor. (R)

CONCEPT MAP

21GE2M02	ENVIRONMENTAL AND SUSTAINABLE ENGINEERING	L	Т	Р	С
		2	0	0	0

Preamble

To inculcate knowledge on the environment and all sorts of biotic and abiotic components related to its ecosystem, climate changes and challenges faced due to global warming and the importance of renewable sources of energy. Inspire students to find ways in contributing personally and professionally thereby rectifying environmental and social problems.

Prerequisites for the course

Basic theoretical concepts of biological science in higher secondary level.

Basic theoretical concepts of Engineering Chemistry.

Objectives

- To make the students conversant with the interdisciplinary and holistic nature of the environment.
- To make the students understand the impacts of environmental degradation and to minimise vulnerability to future disasters.
- To enrich the students with the significance of natural resources and environment on the quality of life.
- To have an increased awareness among students to create a quest on issues in areas of sustainability.
- To have a thorough understanding of the concepts of sustainable habitat.

UNIT I ENVIRONMENT, ECOSYSTEMS AND BIODIVERSITY

Environment: Definition, Scope and Importance of environment studies. Ecosystem: Structure and function of an ecosystem - Producers - Consumers – Decomposers- Types – Characteristic features: Forest ecosystem - Desert ecosystem - Pond ecosystem-Ocean ecosystem.

Biodiversity - Value of biodiversity - Hot-spots of biodiversity- Threats to biodiversity - Endangered and Endemic species - Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity.

Field study of common plants, insects, birds; Field study of simple ecosystems – pond, river, hill slopes, etc.

UNIT II ENVIRONMENTAL POLLUTION & DISASTER MANAGEMENT

6

6

7

Pollution: Definition - Causes - Effects - Control measures of air pollution - Water pollution: (Sewage water treatment by activated sludge and trickling filter process) - Marine pollution - Noise pollution.

Disaster management: Causes - Effects - Control measures of Floods - Earthquake - Cyclone.

Field study of local polluted sites – Urban / Rural / Industrial / Agricultural.

UNIT III NATURAL RESOURCES

Forest resources: Use - Overexploitation - Deforestation - case studies. Water resources: Use - Overutilization of surface and groundwater - Water conservation: Rainwater harvesting- Conflicts over water. Mineral resources: Use - Exploitation -Environmental effects of extracting and using

mineral resources - Case studies. Food resources: Effects of Modern Agriculture - Fertilizer-Pesticide problems (Eutrophication, Blue baby syndrome, Biomagnification) - Water logging - Salinity - case studies. Energy resources: Renewable (Solar, Wind) - Non renewable energy sources.

Introduction, Need and concept of sustainability, Social- Environmental and Economic Sustainability Concepts, Sustainable Development, Challenges for Sustainable Development. Environmental legislations in India - Water Act, Air Act.

UNIT V SUSTAINABLE HABITAT

SUSTAINABILITY

UNIT IV

Basic concepts of sustainable habitat, Environment Impact Assessment (EIA) - Procedures of EIA in India, Green Engineering, Social and technological change, Industrial Processes: Pollution Prevention, Industrial Ecology.

	Total Periods	30
Suggestive Assessment Methods		

Co Te	ntinuous Assessment st	Formative Assessment Test	End Semester Exams
	(100 Marks)		
	WRITTEN TEST CAT 1 50 MARKS AND CAT 2 50 MARKS	NA	NA
Ou	tcomes		
Up	on completion of the course,	the students will be able to:	
1	Extract the knowledge on t	he interdisciplinary and holistic	nature of the environment. (Understand)
2	Discover the problems rel	ated to environmental degradati	on. (Apply)
3	Sketch the significance of	natural resources on the quality o	of life. (Apply)
4	Solve the issues in areas o	f sustainability.	(Apply)
5	Articulate knowledge on t	he concepts of sustainable habita	at (Apply)
Те	xt Books		
1. 2.		ntal Science and Engineering', Ta uction to Environmental Enginee	ta McGraw-Hill, New Delhi, 2006. ring and Science', 2nd edition,
Re	ference Books		
	Nibin Chang, Systems Analys Hill Professional.	is for Sustainable Engineering: T	heory and Applications, McGraw-
	G. Tyler Miller and Scott E. Sp Delhi, 2014.	oolman, "Environmental Science"	', Cengage Learning India PVT, LTD,

6

5

Web Resources

NPTEL Lecture: <u>https://www.youtube.com/watch?v=hihFHam_wNE</u>

NPTEL Lecture: <u>https://www.youtube.com/watch?v=DNUYxyaYh3g</u>

CO Vs PO Mapping and CO Vs PSO Mapping

60	DO1	DOD	DOD	DOA	DOF	DOC	D07	DOG	DOG	PO	PO	PO	PSO	PSO
CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	10	11	12	1	2
1	2	1				2	3					2		
2	3	2				2	3					2		
3	3		1	1		2	3					2		
4	3	2	1	1		2	3					2		
5	3	2	1	1		2	3					2		

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1 Students will be able to demonstrate the knowledge on the interdisciplinary and holistic nature of the environment. (Remember)

- 1. Describe the Multidisciplinary nature of Tirunelveli District.
- 2. Demonstrate the regulation of Ecosystem

COURSE OUTCOME 2: Students will be able to identify the problems related to environmental degradation. (Understand)

1. Demonstrate the control measures of Air and water Pollution

2. Account the problem and suitable remedial measures for floods in the rainy season. COURSE OUTCOME 3: Students will be able to understand the significance of natural resources on the quality of life. (Understand)

- 1. Highlight the control and effects of deforestation.
- 2. Label the role of individual in conservation of natural resources

COURSE OUTCOME 4: Students will be able to identify the issues in areas of sustainability. (Remember)

- 1. Outline the term "sustainable development"
- 2. Compare the major limitations of the Air act, 1972 and Water act, 1980.

COURSE OUTCOME 5: Students will be able to acquire knowledge on the concepts of sustainable habitat. (Remember)

1. Narrate the concept and procedure for Environment Impact Assessment. Elucidate the prevention of pollution from various industries.

21PT3901		APTITUDE - I		L	Т	Р	С
			-	0	0	2	1
Prerequisites	s for the course						
• Basic Ma	aths						
Objectives							
•	methods and practi Expose the undergr	aduate students to understand and stical, and quantitative information	d make de			vith	fferent
UNIT I		MODULE I				6	
	m, Number series, H	ICF and LCM of Numbers, Factors a	nd Decin	nals.			
UNIT II		MODULE II				6	
Square roots a ages and num		ices and surds, Simplification and	approxin	natio	n, Pr	oblen	ns on
		MODULE III				6	
	rofit, loss and discou	int, Average, Ratio and Proportion.				•	
UNIT IV		MODULE IV				6	
Partnership a	nd share, Alligation	and mixtures, Chain rule, Mensurat	tion.				
UNIT V		MODULE V				6	
Pipes and cist	erns, simple interes	t, Compound interest, Growth and o	depreciat	ion.			
		Total	Periods			30	
Suggestive As	ssessment Method	S					
		Continuous Assessment Test -2					
	/	(30 Marks) MULTIPLE CHOICE QUESTIONS	(40 Ma MULTI		וחשי	CE	
MOLTHECI	IOICE QUESTIONS	MOLTH LE CHOICE QUESTIONS	QUEST			CL	
Outcomes			-				
Upon comple	tion of the course,	the students will be able to:					
		mber systems and their technique	s in solvii	ng the	e HC	F, LCN	И,
Factors and D		discount of roal time situations and	solvo the	1 11/01		ratio	and
proportion pr	-	liscount of real time situations and	Solve tile	e avel	age,	1 a t 10	anu
		Square roots, cube roots, Indices, s	urds, Sim	plific	catio	n and	
approximation							
	-	ership, share, Alligation, mixtures, and cisterns, simple interest, Com					
depreciation.	e problems on ripes	and cisterns, simple interest, com		leres	ι, uπ		anu

Text Books

1. Dr. R S Aggarwal, A Modern Approach to Verbal and Non Verbal Reasoning, Revised Edition, S Chand Publications.

2. Abhijit Guha, Quantitative Aptitude for Competitive Examinations, Fourth Edition, Mc Graw Hill Publications.

Reference Books

1. U. Mohan Rao, Quantitative Aptitude for Competitive Examinations, Scitech Publications Pvt Ltd, India.

2. Dinesh Khattar, The Pearson Guide to Quantitative Aptitude for Competitive Examinations, Third Edition, Pearson Education Pvt Ltd, India, 2016.

3. Arun Sharma, How to prepare for Logical Reasoning for CAT & other Management Exams, Fifth Edition, Mc Graw Hill Publications.

4. Jaikishan and Premkishan, How to Crack Test of Reasoning in all Competitive Examinations, Revised Edition, Arihant Publications.

Web Resources

1. https://pdf.bankexamstoday.com/raman_files/Quant%20Formula.pdf

- 2. https://ugcportal.com/raman-files/QT-TRICKS.pdf
- 3. <u>https://www.javatpoint.com/aptitude/quantitative#speed-and-distance</u>
- 4. https://www.indiabix.com/aptitude/questions-and-answers/

CO Vs PO Mapping

		_										
CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
1	2	1										2
2	2	1										2
3	3	1										2
4	3	1										2
5	2	1										3

COURSE CONTENT AND SCHEDULE

S.NO	ΤΟΡΙϹ	NO OF HOURS REQUIRED
	UNIT I – MODULE I	
1	Number system	2
2	Number series	1
3	HCF of Numbers	1
4	LCM of Numbers	1
5	Factors and Decimals	1
	UNIT II – MODULE II	
1	Square roots	1
2	Cube roots	1
3	Indices and Surds	2
4	Simplification and Approximation	2

5	Problems on ages and numbers	1
	UNIT-III MODULE III	
1	Percentage	1
2	Profit, loss and discount	2
3	Average	1
4	Ratio and Proportion	2
	UNIT-IV MODULE IV	
1	Partnership and share	2
2	Alligation and mixtures	2
3	Chain rule	1
4	Mensuration	1
	UNIT-V MODULE V	
1	Pipes and cisterns	1
2	Simple interest	2
3	Compound interest	1
4	Growth and depreciation	2

21HS2103	TECHNOLOGY IN TAMIL CULTURE	L	Т	Р	C
211152105		2	0	0	1
Preamble:			11		
This course is	offered to develop technical thinking based on Tamil tradition a	and t	o acc	luaint	
students with	the fundamentals of various technologies through Tamil cultur	e and	l hist	ory.	
Prerequisite: English and Ta	The prerequisite knowledge required to study this course is ba amil Heritage.	asic k	now	ledge	in
UNIT I	WEAVING AND CERAMIC TECHNOLOGY			6	
Weaving Indu – Graffition Po	stry during Sangam Age–Ceramic technology–Black and Red W otteries	Vare I	Potte	ries (I	BRV
UNIT II	DESIGN AND CONSTRUCTION TECHNOLOGY			6	
Designing and	l Structural construction House & Designs in household mate	rials	duri	ng Sa	nga
Age – Buildin	g materials and Hero Stones of Sangam Age- Details of Sta	age C	onst	ructio	ns
Silapathikarar	n - Sculptures and Temples of Mamallapuram - Great Temples	of C	holas	s and	oth
	es - Temples of Nayaka Period - Type study (Madurai M				
	es - Temples of Navaka Periou - Type sludy imadulal n	vieen	aksii	і теп	IDIE
					-
Thirumalai Na	ayakar Mahal -Chetti Nadu Houses, Indo –Saracenic architectu				-
	ayakar Mahal -Chetti Nadu Houses, Indo –Saracenic architectu				-
Thirumalai Na British Period UNIT III	ayakar Mahal -Chetti Nadu Houses, Indo –Saracenic architectu MANUFACTURING TECHNOLOGY	ire at	Мас	lras d <mark>6</mark>	luri
Thirumalai Na British Period UNIT III Art of Ship Bu	ayakar Mahal -Chetti Nadu Houses, Indo –Saracenic architectu MANUFACTURING TECHNOLOGY ilding - Metallurgical studies- Jewells making - Iron industry -	ire at Iron	: Mac smel	lras d 6 ting, s	luri stee
Thirumalai Na British Period UNIT III Art of Ship Bu Copper and go	ayakar Mahal -Chetti Nadu Houses, Indo –Saracenic architectu MANUFACTURING TECHNOLOGY ilding - Metallurgical studies- Jewells making - Iron industry - old- Coins as source of history - Minting of Coins – Beads mak	ire at Iron ting-i	Mac smel ndus	lras d 6 ting, s tries	luri stee Sto
Thirumalai Na British Period UNIT III Art of Ship Bu Copper and go beads -Glass	ayakar Mahal -Chetti Nadu Houses, Indo –Saracenic architectu MANUFACTURING TECHNOLOGY ilding - Metallurgical studies- Jewells making - Iron industry - old- Coins as source of history - Minting of Coins – Beads mak beads -Terracotta beads -Shell beads/ bone beats - Arche	ire at Iron ting-i	Mac smel ndus	lras d 6 ting, s tries	lurin stee Stoi
Thirumalai Na British Period UNIT III Art of Ship Bu Copper and go beads -Glass	ayakar Mahal -Chetti Nadu Houses, Indo –Saracenic architectu MANUFACTURING TECHNOLOGY ilding - Metallurgical studies- Jewells making - Iron industry - old- Coins as source of history - Minting of Coins – Beads mak	ire at Iron ting-i	Mac smel ndus	lras d 6 ting, s tries	luri stee Sto
Thirumalai Na British Period UNIT III Art of Ship Bu Copper and go beads -Glass Gemstone type UNIT IV	Ayakar Mahal -Chetti Nadu Houses, Indo –Saracenic architectu MANUFACTURING TECHNOLOGY ilding - Metallurgical studies- Jewells making - Iron industry - old- Coins as source of history - Minting of Coins – Beads mak beads -Terracotta beads -Shell beads/ bone beats - Archeves es described in Silapathikaram AGRICULTURE AND IRRIGATION TECHNOLOGY	Iron ting-i ologi	smel ndus cal e	lras d 6 ting, s tries evider 6	stee Sto nces
Thirumalai Na British Period UNIT III Art of Ship Bu Copper and go beads -Glass Gemstone type UNIT IV Dam, Tank, po	Ayakar Mahal -Chetti Nadu Houses, Indo –Saracenic architectu MANUFACTURING TECHNOLOGY ilding - Metallurgical studies- Jewells making - Iron industry - old- Coins as source of history - Minting of Coins – Beads mak beads -Terracotta beads -Shell beads/ bone beats - Arche es described in Silapathikaram AGRICULTURE AND IRRIGATION TECHNOLOGY onds, Sluice, Significance of Kumizhi Thoompu of Chola Period,	Iron king-i ologi Anin	: Mac smel ndus cal e nal H	lras d 6 ting, s tries evider 6 usbar	stee Sto nces
Thirumalai Na British Period UNIT III Art of Ship Bu Copper and go beads -Glass Gemstone type UNIT IV Dam, Tank, po Wells designe	Ayakar Mahal -Chetti Nadu Houses, Indo –Saracenic architectu MANUFACTURING TECHNOLOGY ilding - Metallurgical studies- Jewells making - Iron industry - old- Coins as source of history - Minting of Coins – Beads mak beads -Terracotta beads -Shell beads/ bone beats - Arche es described in Silapathikaram AGRICULTURE AND IRRIGATION TECHNOLOGY onds, Sluice, Significance of Kumizhi Thoompu of Chola Period, d for cattle use - Agriculture and Agro Processing - Knowledge	Iron king-i ologi Anin	: Mac smel ndus cal e nal H	lras d 6 ting, s tries evider 6 usbar	stee Sto nces
Thirumalai Na British Period UNIT III Art of Ship Bu Copper and go beads -Glass Gemstone type UNIT IV Dam, Tank, po Wells designe	Ayakar Mahal -Chetti Nadu Houses, Indo –Saracenic architectu MANUFACTURING TECHNOLOGY ilding - Metallurgical studies- Jewells making - Iron industry - old- Coins as source of history - Minting of Coins – Beads mak beads -Terracotta beads -Shell beads/ bone beats - Arche es described in Silapathikaram AGRICULTURE AND IRRIGATION TECHNOLOGY onds, Sluice, Significance of Kumizhi Thoompu of Chola Period,	Iron king-i ologi Anin	: Mac smel ndus cal e nal H	lras d 6 ting, s tries evider 6 usbar	stee Stor nces
Thirumalai Na British Period UNIT III Art of Ship Bu Copper and go beads -Glass Gemstone type UNIT IV Dam, Tank, po Wells designe Pearl-Conceiv UNIT V	Ayakar Mahal -Chetti Nadu Houses, Indo –Saracenic architectu MANUFACTURING TECHNOLOGY ilding - Metallurgical studies- Jewells making - Iron industry - old- Coins as source of history - Minting of Coins – Beads mak beads -Terracotta beads -Shell beads/ bone beats - Arche es described in Silapathikaram AGRICULTURE AND IRRIGATION TECHNOLOGY onds, Sluice, Significance of Kumizhi Thoompu of Chola Period, d for cattle use - Agriculture and Agro Processing - Knowledge ing-Ancient Knowledge of Ocean-Knowledge Specific Society. SCIENTIFIC TAMIL & TAMIL COMPUTING	Iron king-i ologi Anin e of S	smel ndus cal e nal H ea –	lras d 6 ting, s tries evider 6 usbar Fishe 6	stee Sto nces
Thirumalai Na British Period UNIT III Art of Ship Bu Copper and go beads -Glass Gemstone type UNIT IV Dam, Tank, po Wells designe Pearl-Conceiv UNIT V Development	Ayakar Mahal -Chetti Nadu Houses, Indo –Saracenic architectu MANUFACTURING TECHNOLOGY ilding - Metallurgical studies- Jewells making - Iron industry - old- Coins as source of history - Minting of Coins – Beads mak beads -Terracotta beads -Shell beads/ bone beats - Archer es described in Silapathikaram AGRICULTURE AND IRRIGATION TECHNOLOGY onds, Sluice, Significance of Kumizhi Thoompu of Chola Period, d for cattle use - Agriculture and Agro Processing - Knowledge ing-Ancient Knowledge of Ocean-Knowledge Specific Society. SCIENTIFIC TAMIL & TAMIL COMPUTING of Scientific Tamil – Tamil computing–Digitalization of Tamil	Iron sing-i ologi Anin e of S Book	Mac smel ndus cal e nal H ea –	lras d 6 ting, s tries evider 6 usbar Fishe 6 evelop	stee Sto nces ndry ries
Thirumalai Na British Period UNIT III Art of Ship Bu Copper and go beads -Glass Gemstone type UNIT IV Dam, Tank, po Wells designe Pearl-Conceiv UNIT V Development	Ayakar Mahal -Chetti Nadu Houses, Indo –Saracenic architectu MANUFACTURING TECHNOLOGY ilding - Metallurgical studies- Jewells making - Iron industry - old- Coins as source of history - Minting of Coins – Beads mak beads -Terracotta beads -Shell beads/ bone beats - Arche es described in Silapathikaram AGRICULTURE AND IRRIGATION TECHNOLOGY onds, Sluice, Significance of Kumizhi Thoompu of Chola Period, d for cattle use - Agriculture and Agro Processing - Knowledge ing-Ancient Knowledge of Ocean-Knowledge Specific Society. SCIENTIFIC TAMIL & TAMIL COMPUTING	Iron sing-i ologi Anin e of S Book	Mac smel ndus cal e nal H ea –	lras d 6 ting, s tries evider 6 usbar Fishe 6 evelop	stee Stop nces ndry ries

At the end of the course the students will be able to

CO1	To learn the techniques adopted in Industries of ancient Tamil culture.
CO2	To assess the technical competence of ancient Tamil.
CO3	To achieve the ability to think about various production technologies in Tamil Culture.
CO4	To explore the recovery and development of agricultural and water management technical skills of Tamil culture.
CO5	To enumerate the technical development that Tamil has achieved in the field of science and computer.

со	PO 1	P0 2	РО 3	РО 4	РО 5	РО 6	P0 7	РО 8	РО 9	PO 10	PO 11	P012
co 1								1	2	3	1	3
co 2								1	3	2	3	2
co 3								1	3	2	1	2
co 4								3	2	2	3	2
co 5								2	3	3	2	3

TEXT-CUM-REFERENCEBOOKS

- 1. Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL-(in print)
- 2. Social Life of the Tamils The Classical Period (Dr.S.Singaravelu) (Published by: International Institute of Tamil Studies.
- 3. Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu) (Published by: International Institute of Tamil Studies).
- 4. The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by: International Institute of Tamil Studies.)
- 5. Keeladi-'Sangam City Civilization on the bank of river Vaigai'(Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 6. Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay) (Published By: TheAuthor)
- Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu) Journey of Civilization Industo Vaigai (R.Balakrishnan) (Published by:RMRL)–Reference Book

041100400		L	T	Р	(
21HS2103	தமிழரும் தொழில்நுட்பமும்	2	0	0	
முன்னுரை	Preamble)	-	U	U	
பருவத்திற்கு தொழில்நுட்ப	திட்டம் பொறியியல் பயிலும் முதலாம் ஆண்டு மாணவர்க ியது. தமிழ் மரபு சார்ந்த தொழில்நுட்பசிந்தனையை வளர்த் ங்களின் அடிப்படை கூறுகளைத் தமிழரின் பண்பாடு மற்றுட எவர்களை அறியச் செய்தல்.	ந்து ட	ၪၹၳၒ	வறு	
-	கான முன்நிபந்தனைகள்(Prerequisites for the course)				
	பில் எழுத படிக்க தெரிந்திருத்தல் அவசியம்				
அலகு I	நெசவு மற்றும் பானைத் தொழில்நுட்பம்			6	
	ில் நெசவுத்தொழில் - பானைத் தொழில்நட்பம் - கருப்பு சில ல் கீறல் குறியீடுகள்	லப்பு	ШП6	ன்டங்	கை
அலகு II	வடிவமைப்பு மற்றும் கட்டிடத் தொழில்நுட்பம்			6	
பொருட்களில் சிலப்பதிகார கோவில்களுப	் வடிவமைப்பு - சங்க காலத்தில் கட்டுமான பொருட்சு த்தில் மேடை அமைப்பு பற்றிய விவரங்கள் - மாமல்ல b - சோழர் காலத்து பெருங்கோயில்கள் மற்றும் பிற வழ	புரச் ிபாட்	்ந(சி ட்டுத்	் நபங்ச தலங்	் எரு கள்
பொருட்களில் சிலப்பதிகாரத கோவில்களுப் நாயக்கர் கால அம்மன் ஆலா காலத்தில் செ	் வடிவமைப்பு - சங்க காலத்தில் கட்டுமான பொருட்சு த்தில் மேடை அமைப்பு பற்றிய விவரங்கள் - மாமல்ல ம் - சோழர் காலத்து பெருங்கோயில்கள் மற்றும் பிற வழ லக் கோயில்கள் - மாதிரி கட்டமைப்புகள் பற்றி அறிதல் யம் மற்றும் திருமலை நாயக்கர் மஹால் - செட்டிநாட்டு ன்னையில் இந்தோ - சாரோசெனிக் கட்டிடக்கலை	ளும் புரச் ிபாப் , ம	ந் நட துற துறை	ற்பங்ச தலங் ர மீன - பிரி၊	லும் 5ளு 1கள் ராட்
பொருட்களில் சிலப்பதிகாரத கோவில்களுப் நாயக்கர் கால அம்மன் ஆல காலத்தில் செ அலகு III	் வடிவமைப்பு - சங்க காலத்தில் கட்டுமான பொருட்க த்தில் மேடை அமைப்பு பற்றிய விவரங்கள் - மாமல்ல ம் - சோழர் காலத்து பெருங்கோயில்கள் மற்றும் பிற வழ லக் கோயில்கள் - மாதிரி கட்டமைப்புகள் பற்றி அறிதல் யம் மற்றும் திருமலை நாயக்கர் மஹால் - செட்டிநாட்டு ன்னையில் இந்தோ - சாரோசெனிக் கட்டிடக்கலை உற்பத்தித் தொழில் நுட்பம்	sளும் புரச் பிபாப் , ம _ł வீடுச	ந ந(சி டகுத் துரை கள்	ற்பங்ச தலங் ர மீன - பிரி। 6	லும் 5ளு 1கள் ராட்
பொருட்களில் சிலப்பதிகார கோவில்களுப் நாயக்கர் கால அம்மன் ஆல காலத்தில் செ அலகு III கப்பல் கட்டுட இரும்பை உரு நாணயங்கள் மணிகள் - சு() வடிவமைப்பு - சங்க காலத்தில் கட்டுமான பொருட்சு த்தில் மேடை அமைப்பு பற்றிய விவரங்கள் - மாமல்ல ம் - சோழர் காலத்து பெருங்கோயில்கள் மற்றும் பிற வழி லக் கோயில்கள் - மாதிரி கட்டமைப்புகள் பற்றி அறிதல் யம் மற்றும் திருமலை நாயக்கர் மஹால் - செட்டிநாட்டு ன்னையில் இந்தோ - சாரோசெனிக் கட்டிடக்கலை உற்பத்தித் தொழில் நுட்பம் ம் கலை - உலோகவியல் - நகை த் தொழில்நுட்பம் - இரும் நக்குதல், எஃகு - வரலாற்று சான்றுகளாக செம்பு மற்றும் த அச்சடித்தல் - மணி உருவாக்கும் தொழிற்சாலைகள் - கல்ம நிமண் மணிகள் - சங்கு மணிகள் - எலும்பு துண்டுகள் - தொஞ த்தில் மணிகளின் வகைகள்	களும் பெரச் பிபாப் வீடுச வீடுச வீடுச வீடுச வீடுச விடுச விடுச	நட தி தி தி தி தி தி தி தி தி தி தி தி தி	ற்பங்ச தலங் ர மீன - பிரி। 6 ற்ற்சா னயங் கண்	லும் 5ளு பக்னோ பக்னை பக்னை
பொருட்களில் சிலப்பதிகாரத கோவில்களுப் நாயக்கர் கால அம்மன் ஆல காலத்தில் செ அலகு III கப்பல் கட்டுட இரும்பை உரு நாணயங்கள் மணிகள் - சு(சிலப்பதிகாரத	் வடிவமைப்பு - சங்க காலத்தில் கட்டுமான பொருட்சு த்தில் மேடை அமைப்பு பற்றிய விவரங்கள் - மாமல்ல ம் - சோழர் காலத்து பெருங்கோயில்கள் மற்றும் பிற வழ லக் கோயில்கள் - மாதிரி கட்டமைப்புகள் பற்றி அறிதல் யம் மற்றும் திருமலை நாயக்கர் மஹால் - செட்டிநாட்டு ன்னையில் இந்தோ - சாரோசெனிக் கட்டிடக்கலை உற்பத்தித் தொழில் நுட்பம் ம் கலை - உலோகவியல் - நகை த் தொழில்நுட்பம் - இரும் நக்குதல், எஃகு - வரலாற்று சான்றுகளாக செம்பு மற்றும் த அச்சடித்தல் - மணி உருவாக்கும் தொழிற்சாலைகள் - கல்ம நமண் மணிகள் - சங்கு மணிகள் - எலும்பு துண்டுகள் - தொஞ த்தில் மணிகளின் வகைகள் வேளாண்மை மற்றும் நீர் பாசன தொழில்நுட்பம்	எரும் வரச பிபாப , மழ வீடுச வர நங்க வனிச ல்லிய	ந ந(சிட துரை கள் தாழ நான கள் பல் ச	ற்பங்ச தலங் ர மீன பிரிட விற்சா னயங் கண் சான்ற 6	லும் 5ளு பகள ாப் ட்டி கை வகை
பொருட்களில் சிலப்பதிகார கோவில்களுப் நாயக்கர் கால அம்மன் ஆல காலத்தில் செ அலகு III கப்பல் கட்டுட இரும்பை உரு நாணயங்கள் மணிகள் - சு(சிலப்பதிகார அலகு IV அணை , ஏரி, பராமரிப்பு - வ வேளாண்மை) வடிவமைப்பு - சங்க காலத்தில் கட்டுமான பொருட்சு த்தில் மேடை அமைப்பு பற்றிய விவரங்கள் - மாமல்ல ம் - சோழர் காலத்து பெருங்கோயில்கள் மற்றும் பிற வழ லக் கோயில்கள் - மாதிரி கட்டமைப்புகள் பற்றி அறிதல் யம் மற்றும் திருமலை நாயக்கர் மஹால் - செட்டிநாட்டு ன்னையில் இந்தோ - சாரோசெனிக் கட்டிடக்கலை உற்பத்தித் தொழில் நுட்பம் ம் கலை - உலோகவியல் - நகை த் தொழில்நுட்பம் - இரும் நக்குதல், எஃகு - வரலாற்று சான்றுகளாக செம்பு மற்றும் த அச்சடித்தல் - மணி உருவாக்கும் தொழிற்சாலைகள் - கல்ம நமண் மணிகள் - சங்கு மணிகள் - எலும்பு துண்டுகள் - தொஞ த்தில் மணிகளின் வகைகள் வளாண்மை மற்றும் நீர் பாசன தொழில்துட்பம் குளங்கள், மதகு - சோழர்காலக் குமிழித் தாம்பின் முக்கிய கால்நடைகளுக்காக வடிவமைக்கப்பட்ட கிணறுகள் - தேே ச் சார்ந்த செயல்பாடுகள் - கடல்சார் அறிவு - மீன்வளம் - மு பருங்கடல் குறித்த பண்டைய அறிவு - அறிவுசார் சமூகம்	எரும் புரச் பிபாப் பிபாப் பிபாப் வீடுச வீடுச வருச வை வை பத்துர வளா	ந ந(திழ – டுத் துரை கள் தாழ தான கள் பல் ச வம் ண்ன	ற்பங்ச தலங் ர மீன - பிரி। 6 - கான்று 6 - கால் மை ம	லும் கள பகவ ாப் ட்டி வை வகவ றா
பொருட்களில் சிலப்பதிகார கோவில்களுப் நாயக்கர் கால அம்மன் ஆல காலத்தில் செ அலகு III கப்பல் கட்டுட இரும்பை உர நாணயங்கள் மணிகள் - சு(சிலப்பதிகார அலகு IV அணை , ஏரி, பராமரிப்பு வேளாண்மை குளித்தல் - பெ அலகு V) வடிவமைப்பு - சங்க காலத்தில் கட்டுமான பொருட்சு த்தில் மேடை அமைப்பு பற்றிய விவரங்கள் - மாமல்ல ம் - சோழர் காலத்து பெருங்கோயில்கள் மற்றும் பிற வழ லக் கோயில்கள் - மாதிரி கட்டமைப்புகள் பற்றி அறிதல் யம் மற்றும் திருமலை நாயக்கர் மஹால் - செட்டிநாட்டு ன்னையில் இந்தோ - சாரோசெனிக் கட்டிடக்கலை உற்பத்தித் தொழில் நுட்பம் ம் கலை - உலோகவியல் - நகை த் தொழில்நுட்பம் - இரும் நக்குதல், எஃகு - வரலாற்று சான்றுகளாக செம்பு மற்றும் த அச்சடித்தல் - மணி உருவாக்கும் தொழிற்சாலைகள் - கல்ம நமண் மணிகள் - சங்கு மணிகள் - எலும்பு துண்டுகள் - தொ த்தில் மணிகளின் வகைகள் வேளாண்மை மற்றும் நீர் பாசன தொழில்நுட்பம் கால்நடைகளுக்காக வடிவமைக்கப்பட்ட கிணறுகள் - சே சால்நடைகளுக்காக வடிவமைக்கப்பட்ட கிணறுகள் - சே சார்ந்த செயல்பாடுகள் - கடல்சார் அறிவு - மீன்வளம் - மு பருங்கடல் குறித்த பண்டைய அறிவு - அறிவுசார் சமூகம் அறிவியல் தமிழ் மற்றும் கணினித் தமிழ்	எரும் புரச் பிபாப் , மழ வீடுச வர வர வர வர வளா வத்து	ந ந(திழ துனை கள் தாழ தாழ தாழ தாழ தாழ தாழ தாழ தாழ தாழ தாழ	ற்பங்ச தலங் ர மீன - பிரி। 6 இற்சா கண் சான்ற 6 - கால் நம ம றும் (6	லும் 5 ராப் ந ை ந ல ற்ற
பொருட்களில் சிலப்பதிகாரத கோவில்களுப் நாயக்கர் கால அம்மன் ஆலா காலத்தில் செ அலகு III கப்பல் கட்டுட இரும்பை உரு நாணயங்கள் மணிகள் - சு(சிலப்பதிகாரத அலகு IV அணை , ஏரி, பராமரிப்பு - ப வேளாண்மை குளித்தல் - பெ அறிவியல் தட செய்தல் - தப) வடிவமைப்பு - சங்க காலத்தில் கட்டுமான பொருட்சு த்தில் மேடை அமைப்பு பற்றிய விவரங்கள் - மாமல்ல ம் - சோழர் காலத்து பெருங்கோயில்கள் மற்றும் பிற வழ லக் கோயில்கள் - மாதிரி கட்டமைப்புகள் பற்றி அறிதல் யம் மற்றும் திருமலை நாயக்கர் மஹால் - செட்டிநாட்டு ன்னையில் இந்தோ - சாரோசெனிக் கட்டிடக்கலை உற்பத்தித் தொழில் நுட்பம் ம் கலை - உலோகவியல் - நகை த் தொழில்நுட்பம் - இரும் நக்குதல், எஃகு - வரலாற்று சான்றுகளாக செம்பு மற்றும் த அச்சடித்தல் - மணி உருவாக்கும் தொழிற்சாலைகள் - கல்ம நமண் மணிகள் - சங்கு மணிகள் - எலும்பு துண்டுகள் - தொஞ த்தில் மணிகளின் வகைகள் வளாண்மை மற்றும் நீர் பாசன தொழில்துட்பம் குளங்கள், மதகு - சோழர்காலக் குமிழித் தாம்பின் முக்கிய கால்நடைகளுக்காக வடிவமைக்கப்பட்ட கிணறுகள் - தேே ச் சார்ந்த செயல்பாடுகள் - கடல்சார் அறிவு - மீன்வளம் - மு பருங்கடல் குறித்த பண்டைய அறிவு - அறிவுசார் சமூகம்	னும் பரச் பரச் பரச் பரச வீடுச வீடுச வர வர வர வர வர வர வர வர வர வர வர வர வர	ை ந(சிட –டுத் துரை கள் தாழ தாழ தாழ வம் வம் வம் வை	ற்பங்ச தலங் ர மீன - பிரி। 6 ிற்சா னயங் கண் ை ான்ற 6 - கால் மை ம றும் (6 டிின்ப	லும் களு களாட் ட்டி கை பக பக ந க ற்ற

Francis Xavier Engineering College| Dept of Mechanical Engineering| R2021/Curriculum and Syllabi எதிர்பார்க்கும் படிப்பின் முடிவுகள்:

C01	மாணவர்கள் பண்டைத் தமிழரின் தொழில்நுட்பங்களை அறிந்து கொள்வர்.
CO2	பண்டைத் தமிழரின் தொழில்நுட்பத் திறனை மதிப்பிடுதல்.
CO3	தாய் மொழியில் பல்வேறு உற்பத்தி தொழில்நுட்பங்களைக் குறித்து சிந்திக்கும் திறனை அடைவார்
C04	தமிழரின் வேளாண்மை மற்றும் நீர் மேலாண்மை தொழில்நுட்ப திறன்களை மீட்டு உருவாக்கம் செய்தல் குறித்து அறிதல்.
C05	அறிவியல் மற்றும் கணினி துறையில் தமிழ்ப் பெற்றுள்ள தொழில் நுட்ப வளர்ச்சியை அறிதல்.

CO PO Mapping:

со	PO 1	РО 2	РО 3	РО 4	РО 5	РО 6	РО 7	РО 8	РО 9	PO 10	РО 11	P012
co 1		1			1		1	1	2	1		3
co 2		2	2		2	1	3	2	1	2		2
со 3		2	3	1	2	1	1	1	2	1		2
co 4			2				2	1	2	2		2
co 5			2				1	2	1	3		1

TEXT-CUM-REFERENCEBOOKS

- தமிழக வரலாறு மக்களும் பண்பாடும் கே. கே பிள்ளை (வெளியீடு: தமிழ்நாடு பாடநால் மற்றும் கல்வியியல் பணிகள் கழகம்).
- 2. கணினித்தமிழ் முனைவர் இல. சுந்தரம்(விகடன் பிரசுரம்).
- 3. கீழடி வைகை நதிக்கரையில் சங்க கால நகர நாகரிகம் (தொல்லியல் துறை வெளியீடு).
- 4. பொருநை ஆற்றங்கரை நாகரிகம் (தொல்லியல் துறை வெளியீடு)

21ME4605	METROLOGY AND INSTRUMENTATION	L	T	Р	С
		3	0	2	4
Prerequisite	es for the course				
Manufacturin	ng Technology I and II				
Objectives					
dimer 2. Acqui	re knowledge on various Metrological equipments availansion of the components. The knowledge on the correct procedure to be adopted to not be adopted to not be adopted to not be adopted to n				
3. Under inspec	rstand different measurement equipments and their use ction.	in ind	dust	ry foi	quality
UNIT I	BASICS OF MEASUREMENT SYSTEM				9
generalized instruments,	metrology, accuracy, precision and sensitivity, Abbe' measurement system, mechanical loading, factors commonly used terms, uncertainity, traceability, error ror. – Reliability and Calibration – Readability and Relial	cons r ana	ider alysi	ed in	n selection of
UNIT II	LINEAR AND ANGULAR MEASUREMENT				9
selective asse	uring Instruments – Types – Classification – concept embly – Angular measuring instruments – Types – Bevel par – Angle alignment telescope – Autocollimator – Appli	prot	racto		
UNIT III	COMPARATORS AND GEOMETRICAL MEASUREMENT				9
design of pl Measuremen	- mechanical, electrical, optical and pneumatic; Roundne ug gauge, Taylor's principle, three basic types of lin t, Components of surface texture: Roughness, lay, wa eter – Basics of GD & T	mit g	gaug	es; F	Pitch and Gear
UNIT IV	ADVANCES IN METROLOGY				9
Applications	ot of lasers– laser Interferometers – types – DC and – Straightness – Alignment. Basic concept of CMM – Ty robes – Applications – Basic concepts of Machine V	pes c	of CM	1M -	Constructiona
UNIT V	INDUSTRIAL MEASUREMENTS				9
instrument; detector, the	sors: Potentiometer, LVDT; Proximity sensors- types; Torque sensors; Strain gauges; Temperature senso rmistor, thermocouples, and thermopiles, optical pyrom ducers, pressure cell, bulk modulus pressure gauge l	rs: F eter;	Resis Pres	stanc ssure	e temperature Measurement

	List of Experiments	CO
1	Measurement of linear dimensions using Comparators, angle measurement using bevel protractor and sine bar	C216.2
2	Calibration and use of measuring instruments – Vernier caliper, micrometer, Vernier height gauge – using gauge blocks	C216.2
3	Measurement of gear parameters – disc micrometers, gear tooth vernier caliper	C216.3
4	Non-contact (Optical) measurement using Toolmaker's microscope / Profile projector	C216.3
5	Measurement of force and torque	C216.5
6	Machine tool metrology -Testing of straightness of a machine tool guide way using Autocollimator	C216.2
	Total Periods	45 Theory +1 Lab
	Laboratory Requirements	
	(For a batch of 30 Students)	
1.	(For a batch of 30 Students) Micrometer	
2.	Micrometer	
2. 3.	Micrometer Vernier Caliper	
2. 3. 4.	Micrometer Vernier Caliper Vernier Height Gauge	
2. 3. 4. 5.	Micrometer Vernier Caliper Vernier Height Gauge Vernier depth Gauge	
 2. 3. 4. 5. 6. 	Micrometer Vernier Caliper Vernier Height Gauge Vernier depth Gauge Slip Gauge Set	
 2. 3. 4. 5. 6. 7. 	Micrometer Vernier Caliper Vernier Height Gauge Vernier depth Gauge Slip Gauge Set Gear Tooth Vernier	
 2. 3. 4. 5. 6. 7. 8. 	Micrometer Vernier Caliper Vernier Height Gauge Vernier depth Gauge Slip Gauge Set Gear Tooth Vernier Sine Bar	
 2. 3. 4. 5. 6. 7. 8. 9. 	Micrometer Vernier Caliper Vernier Height Gauge Vernier depth Gauge Slip Gauge Set Gear Tooth Vernier Sine Bar Profile Projector / Tool Makers Microscope	

Continuous Assessment Test	Lab Components Assessments	End Semester Exams
(20Marks)	(20 Marks)	(60 Marks)
Descriptive Questions	Model practical with	Descriptive Questions
CAT 1 – 10 MARKS	project (10 Marks) and LabExperiment (20	
CAT 2 – 10 MARKS	Marks)	
Course Outcomes		
Upon completion of the course	, the students will be able to:	
	comparators and geometrical meas	
C216.5: Discuss various measurin Text Books 1. Gupta I C , "A text book of 2018.	ng techniques of mechanical proper ng instruments for measuring the ind Engineering Metrology", Dhanpat R ngoni, John H Lienhard , "Mechanica	dustrial components.
 C216.4 :Discuss advance measuri C216.5: Discuss various measuri Text Books Gupta I C , "A text book of 2018. Beckwith T G, Roy D, Maraget 	ng instruments for measuring the ind Engineering Metrology", Dhanpat R	dustrial components.
 C216.4 :Discuss advance measuri C216.5: Discuss various measurin Text Books Gupta I C , "A text book of 2018. Beckwith T G, Roy D, Maran Hall, 2007. Reference Books Alan S Morris, Reza Langa Application", Academic Pr Venkateshan S P , "Mecha 3. Holman J P , "Experimenta Limited, 2011. Web Resources 	ri , "Measurement and Instrumentations", John H Lienhard , "Mechanica ngoni, John H Lienhard , "Mechanica ri , "Measurement and Instrumentations", 2015. nical Measurements", John Wiley & S al Methods for Engineers", Tata McC	dustrial components. Lai Publications, New Delhi, al Measurements", Prentice
 C216.4 :Discuss advance measuri C216.5: Discuss various measurin Text Books Gupta I C , "A text book of 2018. Beckwith T G, Roy D, Maran Hall, 2007. Reference Books Alan S Morris, Reza Langa Application", Academic Pr Venkateshan S P , "Mecha 3. Holman J P , "Experimenta Limited, 2011. Web Resources https://nptel.ac.in/course 	ri , "Measurement and Instrumentations", John H Lienhard , "Mechanica ngoni, John H Lienhard , "Mechanica ri , "Measurement and Instrumentations", 2015. nical Measurements", John Wiley & S al Methods for Engineers", Tata McC	dustrial components.

со	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C216.1	3	1	1			2						1	3	2
C216.2	3	1	1			2						1	3	2
C216.3	3	1	1			2						1	3	2
C216.4	3	1	1		2	2						1	3	2
C216.5	3	1	1		2	2						1	3	2

CO Vs PO Mapping and CO Vs PSO Mapping

BLOOMS LEVEL ASSESSMENT PATTERN

BLOOMS CATEGORY	CAT 1	CAT 2	FAT 1	FAT 2	END SEM EXAM
REMEMBER	40	30	5	5	30
UNDERSTAND	40	50	10	10	50
APPLY	20	20	10	10	20
ANALYZE					
EVALUATE					
CREATE					

COURSE LEVEL ASSESSMENT QUESTIONS

Course Outcome 1 Describe the concepts of measurements to apply in various metrological instruments. – (Remember, Understand)

1. What are the factors affecting the measuring system?(R)

- 2. What is the difference between allowance and tolerance?(U)
- 3. Explain the classification of various measuring methods. (U)

Course Outcome 2 : Outline the principles of linear and angular measurement tools used for industrial applications – (Remember, Understand)

1. Give a brief note on slip gauges and what are the safety precaution to be followed in the use of slip gauge blocks and also explain the type of limit gauge with neat sketches (U)

2. Explain the working principle of SINE BAR. (U)

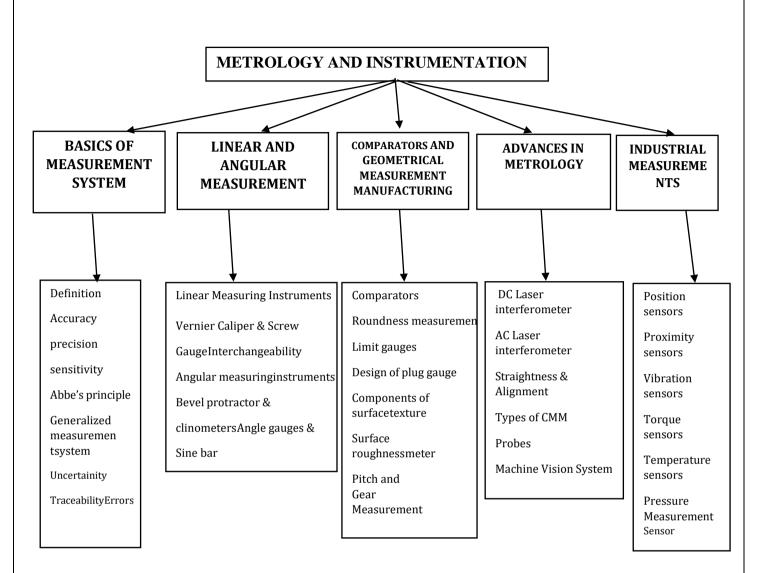
3. Explain the classification of linear measuring instruments. (U)

Course Outcome 3 : Explain the principles of comparators and geometrical measurement tools used for industrial applications. (Remember, Understand)

1. Define straightness of a line in two planes (U)

2. List out the reasons for the occurrence of progressive errors in screw threads.(U)

3. Explain the various methods by which roundness is measured. (U)


Course Outcome 4 Discuss advance measuring techniques of mechanical properties in industrial applications (Remember, Understand)

1. Explain the working principle of DC Laser interferometer with neat diagram.(U)

- **2.** With a neat sketch explain the dimensional measurements using laser gauge.(U)
- **3.** Discuss the need, types and constructional features of coordinate measuring machine.(U)

Course Outcome 5 :Discuss various measuring instruments for measuring the industrial components. (Remember, Understand)

- 1. Explain the method of measuring force using strain gauge load cell. (U)
- **2.** With neat sketch explain how metallic strips are used for temperature measurements. (U)
- Explain with neat diagram the purpose and operating principle of a venturi meter.
 (U)

21ME4611	THERMAL ENGINEERING LABO	L 0	T 0	P 4	2		
Prerequisite	s for the course		U	0	Т	4	
Thermal Eng	ineering						
Objectives							
	actical exposure to fuel properties, measure ds of internal combustion engines and reci				esting	5	
Sl.No	List of Experiments		CO				
1	Valve Timing and Port Timing diagrams			C2	17.1		
2	Performance Test on 4 – stroke Diesel En	igine		C2	17.2		
3	Heat Balance Test on 4 – stroke Diesel En	igine		C 2	17.2		
4	Morse Test on Multi-cylinder Petrol Engir	ne		C2	17.2		
5	Retardation Test on a Diesel Engine			C2	17.2		
6	Determination of Flash Point and Fire Poin lubricants	nt of various fuels /		C2	17.3		
7	Study on a Steam Generator			C2	17.4		
8	Study on steam Turbine			C2	17.4		
9	Performance test on a reciprocating air co	ompressor	C217.5				
10	Determination of COP of a refrigeration sy	ystem	C217.6				
11	Experiments on Psychrometric processes			C2	17.6		
Fotal Period Suggestive A	s :45 ssessment Methods						
Lab Compon (50 Marks)		End Semester Exam 50 Marks)	S				
Model Lab Experimenta	30 Marks P Il Marks 20 Marks	Practical					
Course Outco	omes						
C217.1: Draw C217.2: Evalu C217.3 : Dete	etion of the course, the students will be a the valve timing and port diagram using fo ate the performance of IC engine with vario rmine the thermal properties of fuels and lu uct test to evaluate the performance of stea uct test to evaluate the performance of reci	ur stroke and two str ous type of loading bricants am generator and tur	bine		ie mo	del	

Laboratory Requirements

- I.C Engine 2 stroke and 4 stroke model
- 4-stroke Diesel Engine with mechanical loading
- 4-stroke Diesel Engine with hydraulic loading
- 4-stroke Diesel Engine with electrical loading
- Multi-cylinder Petrol Engine
- Apparatus for Flash and Fire Point
- Steam Boiler with turbine setup
- Single/two stage reciprocating air compressor
- Refrigeration test rig
- Air-conditioning test rig

Reference Books

1. Nag.P.K., "Engineering Thermodynamics", 5th Edition, Tata McGraw-Hill, New Delhi, (2013) 2. Ganesan V., "Internal Combustion Engines", Tata McGraw Hill Publishing Co., New York, (2012)

3. Ballaney P.L. "Thermal Engineering", Khanna publishers, 24th Edition, (2012)

Web Resources

1. https://nptel.ac.in/courses/112106133

CO Vs PO Mapping and CO Vs PSO Mapping

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2
C217.1	2		2									3	3	2
C217.2	2	2	2									1	2	3
C217.3	2	3											2	3
C217.4	2		2									2	2	3
C217.5	2	3											2	3
C217.6	2		2									2	2	3

21ME4612	STRENGTH OF MATERIALS LABORATORY	L	Т	Р	С
		0	0	4	2
Prerequisite	es for the course				

Prerequisites for the course Strength of materials

Objectives

- Determine experimental data include universal testing machines and torsion equipment.
- Determine experimental data for spring testing machine, compression testing machine, impact tester, hardness tester.
- Determine deflection of a beam.

S.No	List of Experimen	its	СО
1	Izod Impact Test		C218.1
2	Charpy Impact Test		C218.1
3.	Direct Shear Test on Mild Steel Rod		C218.2
4	Direct Shear Test on Aluminium Rod		C218.2
5	Brinell Hardness Test		C218.3
6	Rockwell Hardness Test		C218.3
7	Tensile Test on Mild Steel		C218.4
8	Tensile Test on Cast Iron		C218.4
9	Compression Test on Mild Steel		C218.4
10	Compression Test on Cast Iron		C218.4
11	Torsion Test on Mild Steel		C218.5
12	Deflection test on beams		C218.5
13	Compression test on helical springs		C218.5
14	Microscopic Examination of (i) Hardened samples and (ii) Hardened and tempered samples.		C218.5
	(-)		Total Periods : 45
Suggestive	Assessment Methods		
Lab Compo (60 Marks	onents Assessments)	End Semester Exam (40 Marks)	ms
	NTATION –40 Marks n with project – 20 Marks	Practical Exam	
Course Out	comes	I	
	lation of the course the students will be a	11 .	

Upon completion of the course, the students will be able to:

- **C218.1**. Compute impact strength for given specimen
- **C218.2.** Compute shear strength for given specimen
- C218.3. Examine the hardness for various metal specimen
- **C218.4**. Conduct performance study for Mechanical Properties and Performance of Materials such as tensile , compression strength
- **C218. 5.** Examine the Mechanical Properties for beams, springs and tempered.

Laboratory Requirements

- 1. Universal Tensile Testing machine with double shear attachment 40 Ton Capacity -1 No
- 2. Torsion Testing Machine (60 NM Capacity) 1 Nos
- 3. Impact Testing Machine (300 J Capacity) 1 Nos
- 4. Brinell Hardness Testing Machine 1 Nos
- 5. Rockwell Hardness Testing Machine 1 Nos
- 6. Spring Testing Machine for tensile and compressive loads (2500 N) 1 Nos
- 7. Metallurgical Microscopes 3 Nos
- 8. Muffle Furnace (800 °C) 1 Nos
- 9. Deflection of beams 1 Nos

Reference Books

- 1. Ramamrutham S., "Strength of Materials", Dhanpatrai Publishing company, (2012)
- 2. Bansal R.K., "A Text book of strength of material", Laxmi publication, New Delhi, (2014)McGraw-Hill, (2014)

Web Resources

- 1. <u>https://sm-nitk.vlabs.ac.in/</u>
- 2. https://nptel.ac.in/courses/112107146

CO Vs PO Mapping and CO Vs PSO Mapping

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2
C218.1	2	2	1	2								1	3	
C218.2	2	2	1	2								1	3	
C218.3	2	2	1	2								1	3	
C218.4	2	2	1	1								1	3	
C218.5	2	2	1	1								1	3	

21ME4613

KINEMATICS AND DYNAMICS LABORATORY

Prerequisites for the course

Theory of machines

Objectives

Interpret the practical knowledge of mechanism behind the various dynamics systems including balancing of masses, governors, cams, gyroscopes, gear trains and speed reducers.
Interpret the knowledge on the spring mass vibration systems and compound pendulum.

S.No	List of Experiments	СО
1	 a) Study of gear parameters. b) Experimental study of velocity ratios of simple, compound, Epicyclic and differential gear trains 	C219.1
2	a) Kinematics of Four Bar, Slider Crank, Crank Rocker, Double crank, Double rocker, Oscillating cylinder Mechanisms. b) Kinematics of single and double universal joints.	C219.1
3.	Determination of Mass moment of inertia of Fly wheel and Axle system.	C219.2
4	Determination of Mass Moment of Inertia using bifilar suspension and compound pendulum.	C219.2
5	Determination of Mass Moment of Inertia of axisymmetric bodies using Turn Table apparatus.	C219.2
6	Motorized gyroscope – Study of gyroscopic effect and couple	C219.3
7	Governor - Determination of range sensitivity, effort etc., for Watts, Porter, Proell, and Hartnell Governors.	C219.3
8	Cams – Cam profile drawing, Motion curves and study of jump phenomenon	C219.3
9	Single degree of freedom Spring Mass System – Determination of natural Frequency and verification of Laws of spring – Damping coefficient determination	C219.4
10	Transverse vibration of Free-Free beam – with and without concentrated masses.	C219.4
11	Determination of transmissibility ratio using vibrating table.	C219.4
12	Whirling of shafts – Determination of critical speeds of shafts with concentrated loads.	C219.5
13	Determination of torsional natural frequency of single and Double Rotor systems Undamped and Damped Natural frequencies.	C219.5
14	Balancing of rotating masses and Balancing of reciprocating masses.	C219.5
		'otal Periods · 45

Suggestive Assessment Methods	
Lab Components Assessments (60 Marks)	End Semester Exams (40 Marks)
EXPERIMENTATION –40 Marks Model Exam with project – 20 Marks	Practical Exam
Outcomes	
gyroscope and to study cam jump phenomen C219.4. Compute frequency for free vibration, da C219.5. Compute torsional frequency, critical spe reciprocating masses.	isymmetric bodies and mechanical elements. control mechanisms like governor and motorise on amping coefficient and transmissibility ratio.
Laboratory Requirements Cam follower setup	
Motorised gyroscope.	
Governor apparatus - Hartnell governors.	
Whirling of shaft apparatus	
Dynamic balancing machine.	
Torsional Vibration of single rotor and two rotors	system setup.
Spring mass vibration system.	
Turn table apparatus.	
Compound pendulum setup	
Transverse vibration setup of a) cantilever	
Gear Models	
Kinematic Models to study various mechanisms.	

Reference Books

1. F.B.Sayyad, "Dynamics of Machinery", McMillan Publishers India Ltd., Tech-Max Educational resources, (2011)

2. Rattan, S.S, "Theory of Machines", 4th Edition, Tata McGraw-Hill, (2014)

Web Resources

1.: https://nptel.ac.in/courses/112104114/

2.: https://www.youtube.com/watch?v=GGIYpsUpWL0

СО	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2
C219.1		2	2	2		2						1	3	
C219.2		2	2	2		2						1	3	
C219.3		2	2	2		2						1	3	
C219.4		2	2	2		2						1	3	
C219.5		2	2	2		2						1	3	

CO Vs PO Mapping and CO Vs PSO Mapping

SEMESTER V

21ME5601		EAT AND MASS TRANSFER		L	Τ	Р	C	
		HMT data book & Steam tables perm	nitted)	2	1	0	3	
-	s for the course							
Engineering Ph	sysics and Engineering	ng Thermodynamics						
Objectives								
 To und To lear 	erstand the concep	nisms of heat transfer under steady ts of heat transfer through extende ysis and sizing of heat exchangers a	d surface	s.				
UNIT I		CONDUCTION				9		
General Differential equation of Heat Conduction – Cartesian and Polar Coordinates – One Dimensional Steady State Heat Conduction in simple geometries – plane wall, cylindrical and spherical shells – Conduction with Internal Heat Generation – Extended Surfaces – Unsteady Heat Conduction – Lumped Heat Capacity Analysis – Semi Infinite and Infinite bodies – Chart Solutions.								
UNIT II	CONVECTION 9							
	onvection during ex	onvection - Hydrodynamic and Th ternal flow over Plates, Cylinders a			-	•		
UNIT III		ANGE HEAT TRANSFER AND HEA'	Г			9		
0		EXCHANGERS	-			-		
Introductory of	concepts of Boiling	& Condensation – Regimes of boilin	ıg. Heat E	Exchai	nger	s – Ty	pes &	
-		LMTD – Effectiveness – NTU met	-		-	-	-	
Coefficient – F								
UNIT IV								
		RADIATION				9		
		ody & Grey Body – Radiation from	real sur	faces	– vi	-	ctor –	
			real sur	faces	– vi	-	ctor –	
Electrical Anal UNIT V	ogy – Radiation thr	ody & Grey Body – Radiation from ough shields & gases. MASS TRANSFER				ew fa 9		
Electrical Anal UNIT V Introduction t	logy – Radiation thr o mass transfer – I · in Convection – M	ody & Grey Body – Radiation from ough shields & gases.	on – Fick	's Lav	v of	ew fa 9 Diffus	sion –	
Electrical Anal UNIT V Introduction t Mass Transfer	logy – Radiation thr o mass transfer – I · in Convection – M	ody & Grey Body – Radiation from ough shields & gases. MASS TRANSFER Mass transfer by molecular diffusio lass transfer coefficient, numerical	on – Fick	's Lav	v of Analo	ew fa 9 Diffus	sion –	
Electrical Anal UNIT V Introduction t Mass Transfer and Mass Tran	logy – Radiation thr o mass transfer – I · in Convection – M	ody & Grey Body – Radiation from ough shields & gases. MASS TRANSFER Mass transfer by molecular diffusio fass transfer coefficient, numerical Total I	on – Fick problen	's Lav	v of Analo	ew fa 9 Diffus ogy of	sion –	
Electrical Anal UNIT V Introduction t Mass Transfer and Mass Trar Suggestive As	logy – Radiation thr o mass transfer – I [.] in Convection – M nsfer.	ody & Grey Body – Radiation from ough shields & gases. MASS TRANSFER Mass transfer by molecular diffusio fass transfer coefficient, numerical Total I	on – Fick problen	's Lav 1s – A	v of Analo	ew fa 9 Diffus ogy of 45	sion – f Heat	
Electrical Anal UNIT V Introduction t Mass Transfer and Mass Trar Suggestive As	logy – Radiation thr o mass transfer – I · in Convection – M sfer. sessment Method ssessment Test	ody & Grey Body – Radiation from ough shields & gases. MASS TRANSFER Mass transfer by molecular diffusion fass transfer coefficient, numerical Total I	on – Fick problen Periods	's Lav 1s – A meste	v of Analo	ew fa 9 Diffus ogy of 45	sion – f Heat	
Electrical Anal UNIT V Introduction t Mass Transfer and Mass Trar Suggestive As Continuous A	logy – Radiation thr o mass transfer – I • in Convection – M nsfer. ssessment Method ssessment Test rks)	ody & Grey Body – Radiation from ough shields & gases. MASS TRANSFER Mass transfer by molecular diffusion fass transfer coefficient, numerical Total I Is Formative Assessment Test	on – Fick problen Periods End Se	's Lav ns – A mesto rks)	v of Analo er Ex	ew fa 9 Diffus ogy of 45 xams	sion – f Heat	
Electrical Anal UNIT V Introduction t Mass Transfer and Mass Tran Suggestive As Continuous A (20 Man	logy – Radiation thr o mass transfer – I • in Convection – M nsfer. ssessment Method ssessment Test rks)	ody & Grey Body – Radiation from ough shields & gases. MASS TRANSFER Mass transfer by molecular diffusion fass transfer coefficient, numerical Total I s Formative Assessment Test (20 Marks)	on – Fick problen Periods End Se (60 Ma	's Lav ns – A meste rks) iptive	v of Analo er Ex	ew fa 9 Diffus ogy of 45 xams	sion – f Heat	

Cours	e Outcomes
Upon	completion of the course, the students will be able to:
CO1: A	Apply heat conduction equations to different surface configurations under steady state and
t	ransient conditions to solve problems (Apply)
	Apply free and forced convective heat transfer correlations to internal and external flows hrough/over various surface configurations and solve problems (Apply)
CO3: I	llustrate the phenomena of boiling and condensation, apply LMTD and NTU methods of
t	hermal analysis to different types of heat exchanger configurations and solve problems
(Apply)
CO4: I	nterpret the basic laws for radiation and apply these principles to radiative heat transfer
ł	between different types of surfaces to solve problems (Apply)
CO5 : <i>A</i>	Apply diffusive and convective mass transfer equations and correlations to solve mass
t	ransfer problems (Apply)
Text B	Books
1.	Holman, J.P., "Heat and Mass Transfer", Tata McGraw Hill, (2010)
2.	YunusA. Cengel, "Heat Transfer A Practical Approach", Tata McGraw Hill, 5th Edition (2015)
Refere	ence Books
1.	Frank P. Incropera and David P. Dewitt, "Fundamentals of Heat and Mass Transfer", John Wiley & Sons, 7th Edition, (2014)
2.	Kothandaraman, C.P., "Fundamentals of Heat and Mass Transfer", New Age International, New Delhi, (2012)
	Nag, P.K., "Heat Transfer", Tata McGraw Hill, New Delhi, (2011)
	Ozisik, M.N., "Heat Transfer", McGraw Hill Book Co., (2020)
5.	R.C.Sachdeva, "Fundamentals of Engineering Heat & Mass transfer", New Age International Publishers, (2009)
6.	S.P. Venkateshan, "Heat Transfer", Ane Books, New Delhi, 2014
Web R	Resources
1.	https://nptel.ac.in/courses/112101097/
2.	.https://www.udemy.com/course/heat-and-mass-transfer/

CO Vs PO Mapping and CO Vs PSO Mapping

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P01	P012	PSO 1	PSO2
CO1	3	3		1									2	3
CO2	3	3											2	3
CO3	3	3	2	1									2	3
CO4	3	3		1										2
CO5	3	3											2	

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Apply heat conduction equations to different surface configurations under steady state and transient conditions to solve problems (Apply)

1. Define Fourier's Law of conduction (R)

2. State few practical examples for transient heat conduction(U)

3. A long rod is exposed to air at 298°C. It is heated at one end. At steady state conditions, the temperatures at two points along the rod separated by 120 mm are found to be 130° C and 110° C respectively. The diameter of the rod is 25 mm OD and its thermal conductivity is 116 W/m°C. Calculate the heat transfer coefficient at the surface of the rod and also the heat transfer rate. (A)

COURSE OUTCOME 2: Apply free and forced convective heat transfer correlations to internal and external flows through/over various surface configurations and solve problems. (Apply)

- **1.** Define Newton's Law of cooling (R)
- 2. Differentiate viscous sub layer and buffer layer (U)
- Air at 27°C and 1 atmospheric pressure flow over a flat plate at a speed of 2 m/s.
 Calculate boundary layer thickness at distance 40 cm from leading edge of the plate (A)

COURSE OUTCOME 3: Explain the phenomena of boiling and condensation, apply LMTD and NTU methods of thermal analysis to different types of heat exchanger configurations and solve problems. (Apply)

- **1.** Define LMTD (R)
- 2. Distinguish pool boiling from forced convection boiling (U)
- **3.** Sketch and plot the LMTD distribution graph for condensers & evaporators (A)

COURSE OUTCOME 4: Explain basic laws for radiation and apply these principles to radiative heat transfer between different types of surfaces to solve problems. (Apply)

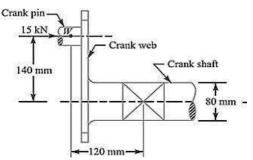
- **1.** Define Planck's distribution law (R)
- **2.** What are the required radiation properties of materials used as radiation Shield (U)
- **3.** Calculate the maximum emissive power for an industrial furnace in the form of black body and emitting radiation at 2500°C (A)

COURSE OUTCOME 5: Apply diffusive and convective mass transfer equations and correlations to solve mass transfer problems (Apply)

- **1.** Define Molar concentration (R)
- 2. Indicate the heat and mass transfer analogy (U)
- **3.** Air at 1 atm and 25oC containing small quantities of iodine, flows with a velocity of 6.2 m/s inside a 35 mm diameter tube. Calculate the mass transfer coefficient for iodine. The thermo physical properties of air are: V=15.5 x 10-6 m²/s; D=0.82 x 10-5 m²/s (A)

24 MEE (02	Design o	of Machine Elements and Joints		L	Т	Р	C
21ME5602	(Use	of Databook is permitted)		2	1	0	3
Prerequisites	for the course						
Engineering M	echanics, Strength o	f Materials					
Objectives							
• To fa	miliarize the variou	s steps involved in the Design Proce	SS				
• To u	nderstand the princ	iples involved in evaluating the sha	pe and d	limen	sion	s of a	
com	ponent to satisfy fu	nctional and strength requirements.					
• To le	arn to use standard	practices and standard data					
		s and standard machine component	S				
UNIT I		CHINE DESIGN CONCEPTS				10	
Introduction t	o Machine Design -	- General Considerations in Machin	neelemer	nts De	esign	– Ma	achine
		tion of Materialsbased on mecha			-		
tolerances, Sta	ndardization – Pre	ferred Numbers- Determination of	Loads, T	ypes	of S	tresse	es and
		- crane hook & C frame – Factor of s					
Theories of Fa	ilure- Design for Flu	uctuating loads – Fatigue failure th	eories –	Good	man	equa	tion –
Soderberg equ	ation.						
UNIT II	SE	IAFTS AND COUPLINGS				8	
Design of Shat	fts – combined twis	ting moment and bending moment	-combir	ned ty	vistii	ng mo	oment,
bending mome	ent and axial loads. I	Design of Keys and splines. Design of	Couplin	gs– R	igid a	and Fl	exible
Couplings.							
UNIT III		DESIGN OF JOINTS				9	
Design of Wel	ded joints – Lap and	Butt joints - Welded joints subject	ed totrar	isver	se an	d ecc	entric
loads. Riveted	Joints – Design of di	fferent types of riveted joints –Press	sure vess	els – S	Struc	tural	Joints
- Riveted join	ts subjected to ecce	entric loads. Design of Threaded Joi	ints – Bo	lted	Joint	s in s	imple
Tension and S	hear – Eccentrically	Loaded Bolted Joints. Design of Cott	er Joints	and K	Inuck	de Joi	nts
UNIT IV	ENE	RGY STORING ELEMENTS				9	
Design of Heli	cal Coil Springs - '	Tension and Compression springs	subjected	d to a	axial	loads	s and
eccentric load	s- Design of paralle	and concentric springs subjected	toaxial lo	oads	- Des	sign o	f Leaf
Springs - Desig	gn of Flywheels for I	C engines and Punching presses.					
UNIT V	IC ENGIN	E COMPONENTS & BEARINGS				9	
Design of Pisto	on, Connecting Rod	& Crank shafts – Sideand Centre Cr	ank. Desi	ign of	Slid	ing Co	ontact
-	_	rodynamic journal bearings, Somm		-		-	
	Selection of Rolling (
		Total I	Periods			45	
Suggestive As	sessment Methods						
	ssessment Test	Formative Assessment Test	End Ser		er Ex	ams	
(20 Mar	·ks)	(20 Marks)	(60 Ma	rks)			

Continuous Assessment Test (20 Marks)	Formative Assessment Test (20 Marks)	End Semester Exams (60 Marks)
CAT – I (10 Marks)	Assignment, Multiple Choice	Descriptive type questions
CAT – II (10 Marks)	Questions	
Descriptive Questions		


Course Outcomes
Upon completion of the course, the students will be able to:
CO1: Apply the concepts of Design of simple machine elements subjected to static and fatigue
Loading. (Apply)
CO2: Apply the concepts of Design of shafts, keys and couplings under different loading conditions
for mechanical applications(Apply)
CO3: Apply the concepts of Design of welded joints, riveted joints and threaded joints subjected to
different loading conditions(Apply)
CO4: Apply the concepts of Design of helical coil springs, leaf springs and flywheels for mechanical
applications(Apply)
CO5: Apply the concepts of Design of piston, connecting rod and crank shaft for an
automobileengine and sliding contact bearings and anti-friction bearings(Apply)
Text Books
1.V.B. Bhandari, "Design of Machine Elements", Fourth Edition, McGraw Hill Education India
Pvt. Ltd., 2017.
2. R.S. Khurmi, J.K. Gupta, "Machine Design", Eurasia Publishing House (Pvt.) Ltd, Ram Nagar,
New Delhi-110 055, 2005
Reference Books
1. Alfred Hall, Halowenko, A and Laughlin, H., "Machine Design", Tata McGraw-Hill
BookCo.(Schaum's Outline), 2010
2. Ansel C. Ugural, "Mechanical Design of Machine Components", Second Edition, CRC
Press, 2015.
3. Sundararajamoorthy T. V. Shanmugam .N, "Machine Design", Anuradha Publications,
Chennai, 2015.
4. Alfred Hall, Alfred Holowenko, Herman Laughlin and S Somani, "Schaum's Outline -Machine
Design", McGraw Hill Education India Pvt. Ltd., 2017.
5. Robert C. Juvinall and Kurt M. Marshek, "Machine Component Design", Wiley India
Edition,2016.
6. PSG College, "Design Data: Data Book of Engineers", Kalaikathir Achchagam, 2019
Web Resources
1. <u>https://nptel.ac.in/courses/112/105/112105125/</u>
2. <u>https://nptel.ac.in/courses/112/105/112105124/</u>
CO Vs PO Mapping and CO Vs PSO Mapping
CO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
1	2	1	3	1					1				3	
2	2	1	3	1					1	1			3	
3	2	1	3	1					1	1			3	
4	2	1	3	1					1	1			3	
5	2	1	3						1	1			3	

Francis Xavier Engineering College| Dept of Mechanical Engineering| R2021/Curriculum and Syllabi COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Apply the concepts of Design of simple machine elements subjected to static and fatigue Loading. (Apply)

1. An overhang crank with pin and shaft is shown in figure. A tangential load of 15 kN acts on the crank pin. Determine the maximum principal stress and the maximum shear stress at the centre of the crankshaft bearing.(A)

2. Determine the diameter of a circular rod made of ductile material with a fatigue strength (complete stress reversal), σ -1 = 265 MPa and a tensile yield strength of 350 MPa. The member is subjected to a varying axial load from Wmin = -300×103 N to $W_{max} = 700 \times 103$ N and has a stress concentration factor = 1.8. Use factor of safety as 2.0.(A)

3. The load on a bolt consists of an axial pull of 10 kN together with a transverse Shear force of 5 kN. Find the diameter of bolt required according to,

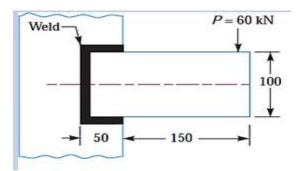
• Maximum principal stress theory.

(A)

- Maximum shear stress theory.
- Maximum principal strain theory.
- Maximum strain energy theory.
- Maximum distortion energy theory.

COURSE OUTCOME 2: Apply the concepts of Design of shafts, keys and couplings under different loading conditions for mechanical applications (Apply)

1. A hollow shaft of 0.5 m outside diameter and 0.3 m inside diameter is used to drive a propeller of a marine vessel. The shaft is mounted on bearings 6 metre apart and it transmits 5600 kW at 150 r.p.m. The maximum axial propeller thrust is 500 kN and the shaft weighs 70 kN. Determine: The maximum shear stress developed in the shaft, and the angular twist between the bearings. (A)


2. Design a bushed-pin type flexible coupling for connecting a motor shaft to a pump shaft for the following service conditions: Power to be transmitted = 40 kW; speed of the motor shaft = 1000 r.p.m.; diameter of the motor shaft = 50 mm; diameter of the pump shaft = 45 mm. The bearing pressure in the rubber bush and allowable stress in the pins are to be limited to 0.45 N/mm2 and 25 MPa respectively.(A)

3. Design a shaft and flange for a Diesel engine in which protected type of flange coupling is to be adopted for power transmission. The following data is available for design: Power of engine = 75 kW; speed of engine = 200 r.p.m.; maximum permissible stress in shaft = 40 MPa; maximum permissible twist in shaft = 1° in length of shaft equal to 30 times the diameter of shaft; maximum torque = $1.25 \times$ mean torque; pitch circle diameter of bolts = $3 \times$ diameter of shaft; maximum permissible stress in bolts = 20 MPa.

Find out: 1. Diameter of shaft, 2. number of bolts, and 3. diameter of bolts. (A)

COURSE OUTCOME 3: Apply the concepts of Design of welded joints, riveted joints and threaded joints subjected to different loading conditions (Apply)

1. A rectangular steel plate is welded as a cantilever to a vertical column and supports a single concentrated load P, as shown in Figure. Determine the weld size if shear stress in the same is not to exceed 140 MPa. (A)

2. A steam engine cylinder of size 300 mm × 400 mm operates at 1.5 N/mm2 pressure. The cylinder head is connected by means of 8 bolts having yield point stress of 350 MPa and endurance limit of 240 MPa. The bolts are tightened with an initial preload of 1.8 times the steam lead. The joint is made leak-proof by using soft copper gasket which renders the effect of external load to be half. Determine the size of bolts, if factor of safety is 2 and stress concentration factor is 3. (A)

3. A pressure vessel has an internal diameter of 1 m and is to be subjected to an internal pressure of 2.75 N/mm2 above the atmospheric pressure. Considering it as a thin cylinder and assuming efficiency of its riveted joint to be 79%, calculate the plate thickness if the tensile stress in the material is not to exceed 88 MPa. Design a longitudinal double riveted double strap butt joint with equal straps for this vessel. The pitch of the rivets in the outer row is to be double the pitch in the inner row and zig-zag riveting is proposed. The maximum allowable shear stress in the rivets is 64 MPa. You may assume that the rivets in double shear are 1.8 times stronger than in single shear and the joint does not fail by crushing. Make a sketch of the joint showing all calculated values. Calculate the efficiency of the joint. (A)

COURSE OUTCOME 4: Apply the concepts of Design of helical coil springs, leaf springs and flywheels for mechanical applications (Apply)

1. Design a close coiled helical compression spring for a service load ranging from 2250 N to 2750 N. The axial deflection of the spring for the load range is 6 mm. Assume a spring index of 5. The permissible shear stress intensity is 420 MPa and modulus of rigidity, $G = 84 \text{ kN/mm}^2$.Neglect the effect of stress concentration. (A)

2. A truck spring has 12 numbers of leaves, two of which are full length leaves. The spring supports are 1.05 m apart and the central band is 85 mm wide. The central load is to be 5.4 kN with a permissible stress of 280 MPa. Determine the thickness and width of the steel spring leaves. The ratio of the total depth to the width of the spring is 3. Also determine the deflection of the spring. (A)

3. A multi-cylinder engine is to run at a speed of 500 r.p.m. On drawing the crank effort diagram to scale 1 mm = 2500 N-m and 1 mm = 3° , the areas above and below the mean

torque line is in mm2 as below: + 160, - 172, + 168, - 191, + 197, - 162. The speed is to be kept within $\pm 1\%$ of the mean speed of the engine. Design a suitable rim type C.I. flywheel for the above engine. Assume rim width as twice the thickness and the overhang of the flywheel from the centre of the nearest bearing as 1.2 metres. The permissible stresses for the rim in tension are 6 MPa and those for shaft and key in shear are 42 MPa. The allowable stress for the arm is 14 MPa. (A)

COURSE OUTCOME 5: Apply the concepts of Design of piston, connecting rod and crank shaft for an automobile engine and sliding contact bearings and anti-friction bearings. (Apply)

1. Determine the dimensions of an I-section connecting rod for a petrol engine from the following data: Diameter of the piston = 110 mm; Mass of the reciprocating parts = 2 kg; Length of the connecting rod from centre to centre = 325 mm; Stroke length = 150 mm; R.P.M. = 1500 with possible over speed of 2500; Compression ratio = 4: 1; Maximum explosion pressure = 2.5 N/mm2. (A)

2. Design a side crankshaft for a 500 mm × 600 mm gas engine. The weight of the flywheel is 80 kN and the explosion pressure is 2.5 N/mm2. The gas pressure at maximum torque is 0.9 N/mm2 when the crank angle is 30° . The connecting rod is 4.5 times the crank radius. (A)

3. Design a cast iron piston for a single acting four stroke engine for the following data: Cylinder bore = 100 mm; Stroke = 125 mm; Maximum gas pressure = 5 N/mm2; Indicated mean effective pressure = 0.75 N/mm2; Mechanical efficiency = 80%; Fuel consumption = 0.15 kg per brake power per hour; Higher calorific value of fuel = $42 \times 103 \text{ kJ/kg}$; Speed = 2000 r.p.m. Any other data required for the design may be assumed. (A)

4. Design a suitable journal bearing for a centrifugal pump from the following available data: Load on the bearing = 13.5 kN; Diameter of the journal = 80 mm; Speed = 1440 r.p.m.; Bearing characteristic number at the working temperature (75° C) = 30; Permissible bearing pressure intensity = 0.7 N/mm2 to 1.4 N/mm2; Average atmospheric temperature = 30° C. Calculate the cooling requirements, if any. (A)

5. A ball bearing subjected to a radial load of 4000 N is expected to have a satisfactory life of 12 000 hours at 720 r.p.m. with a reliability of 95%. Calculate the dynamic load carrying capacity of the bearing, so that it can be selected from manufacturer's catalogue based on 90% reliability. If there are four such bearings each with a reliability of 95% in a system, what is the reliability of the complete system? (A)

21ME5603	AU	TOMOBILE ENGINEERING		L	T	P	C
	for the course			3	0	0	3
Thermal Engin							
Objectives	leering						
	. 1.1 .			C			• 1
	e the practice for	ction and working principle of var assembling and dismantling of e					
UNIT I	VEHIC	LE STRUCTURE AND ENGINES				9	
aerodynamics		struction and different layouts, ch es and moments involved), IC eng ng (VVT).					
UNIT II	ENG	GINE AUXILIARY SYSTEMS				9	
Electronically	controlled gasoline	injection system for SI engines, I	Electronic	ally co	ontr	olled	dies
system), Elect ignition system	ronic ignition syst	vstem, Rotary distributor type and tem (Transistorized coil ignition s (WGT, VGT), Engine emission c s (Euro and BS).	system,	capac	itive	e diso	charg
UNIT III	Т	RANSMISSION SYSTEMS				9	
Differential an	d rear axle, Hotchk	l, torque converter, propeller sha iss Drive and Torque Tube Drive.		ints, u	inive		joint
UNIT IV		RAKES AND SUSPENSION SYSTE				9	
Suspension Sy	stems, Pneumatic a	teering gear box– Power Steering and Hydraulic Braking Systems, A n (EBD) and Traction Control.				-	-
UNIT V	ALTE	RNATIVE ENERGY SOURCES				9	
Automobiles– Characteristics Cell Note: Practica	Engine modificates of SI and CI engine	troleum Gas, Bio-diesel, Bio-etha ations required –Performance, es with these alternate fuels – Ele mantling and assembling of Eng udents	Combust ctric and l	tion Hybrio	and d Ve	Em	nissio s, Fu
eyecenie eneur			Periods			45	
Suggestive As	sessment Method						
00	ssessment Test	Formative Assessment Test (20 Marks)	End Sei (60 Ma		er Ex	kams	;
CAT – I 10 Mar		Slip Test, Assignment, Case	Descrip		Jues	tions	
CAT – II 10 Ma	rks	study etc			-		
	lestions						
Descriptive Qu		I					
Descriptive Qu Course Outco							

CO1: Recognize the various parts of the automobile and their functions and materials (**Remember**)

CO2: Describe the engine auxiliary systems and engine emission control (**Understand**)

CO3: Distinguish the working of different types of transmission systems (**Apply**)

CO4: Enumerate the Steering, Brakes and Suspension Systems (Apply)

CO5: Predict possible alternate sources of energy for IC Engines (**Understand**)

Text Books

- 1. 1. Jain K.K. and Asthana R.B, "Automobile Engineering" Tata McGraw Hill Publishers, New Delhi, (2002)
- Kirpal Singh, "Automobile Engineering", Vol 1 & 2, Seventh Edition, Standard Publishers, New Delhi, 13thEdition (2014)

Reference Books

- 1. Ganesan V. "Internal Combustion Engines", Third Edition, Tata McGraw-Hill, (2012)
- 2. Heinz Heisler, "Advanced Engine Technology," SAE International Publications USA, (1998)
- 3. Joseph Heitner, "Automotive Mechanics," Second Edition, East-West Press, (1999)
- 4. Martin W, Stockel and Martin T Stockle, "Automotive Mechanics Fundamentals," The Good heart Will Cox Company Inc, USA, (1978)
- 5. Newton, Steeds and Garet, "Motor Vehicles", Butterworth Publishers, (1989).

Web Resources

1. https://nptel.ac.in/courses/107/106/107106088/

CO Vs PO Mapping and CO Vs PSO Mapping

	er e														
СО	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
1	3	1	1	1			1					1		3	
2	3	1	1	1			1					1		3	
3	3	1	1	1			1					1		3	
4	3	1	1	1			1					1		3	
5	3	1	1	1			1					1		3	

COURSE LEVEL QUESTIONS

1.COURSE OUTCOME 1: Recognize the various parts of the automobile and their functions and materials (**Remember**)

1. List major types of automobiles according to the fuel used. (R)

2. Point out the stresses to which the frame members are subjected to? (R)

2.COURSE OUTCOME 2: Describe the engine auxiliary systems and engine emission control (Understand)

1.Explain with a sketch the working of a Unit injector system (Understand)2.Describe the construction and operation of a Simple Carburetor.(Understand)

3.COURSE OUTCOME 3: Distinguish the working of different types of transmission systems (Apply)

1.Illustrate how does the front axle differ from a rear axle. Explain with sketches. (Apply)

2.Compare hydraulic, mechanical, electrical and vaccum method of operating clutches (Understand)

4.COURSE OUTCOME 4: Enumerate the Steering, Brakes and Suspension Systems (**Apply**)

- 1. Explain the principle of operation of a power steering system with a neat sketch. (Understand)
- 2. Examine the operation of antilock braking systems. (Apply)

5.COURSE OUTCOME 5: Predict possible alternate sources of energy for IC Engines (Understand)

- 1. Explain the reasons for using alternate fuels in IC Engines. (Understand)
- 2. Explain the two methods by which hydrogen can be used in IC engine. (Understand)

21PT3904		REASONING		L	T	P	C
Prerequisite	s for the course			0	0	2	1
	ional English						
 Verbal A 	U U						
Objectives							
	the interpersonal skills al interactions	and branding it to social network b	y the o	effec	tive u	ise of	social
UNIT I		nterpersonal Skill				6	
Interpersonal	Communication, Peer (Communication, Image Building an	d Pers	onal	Brar	ding	,
Delegation an	d compliance, Respons	ibility, Creation of accountability				-	
UNIT II		Social Media				6	
Effective use of	of social media, Types o	f social media, Moderating persona	al info	mat	ion, S	ocial	media fo
Job/Professio	n, Networking on socia	l media, Maximizing network with	social	med	ia		
UNIT III	Social	Interaction				6	
Event manage	ment, Event managem	ent methods, Effective techniques f	or bet	ter e	vent	mana	agement,
Influencing sk	till, Building relationshi	ps, Persistence and resilience					
UNIT IV	Non V	erbal Communication				6	
	pes of Proximecs, Rapp ution, Styles of conflict i	oort building, Negotiation Skill, Effe resolution	ective	negot	tiatio	n str	ategies.
UNIT V	F	Reasoning Ability				6	
Analytical Rea	soning Data Arrangem	ent (Linear and circular & Cross Va	riable	Rela	tion	ship)	,
-	king/grouping, Selectio	-				2.5	
		Total Per	iods			3	
						0	
Suggestive As	ssessment Methods						
	ssessment Methods s Assessment Test-1 (30 Marks)	Continuous Assessment Test-2 (30 Marks)				Exa Exa	
Continuous	s Assessment Test-1	(30 Marks)	1. DES	(40 M	larks	

Outcomes

Upon completion of the course, the students will be able to:

CO1: Improve their interpersonal skills through proper communication.

CO2: Acquire wide knowledge on social Media and its interaction

CO3:Understanding the various strategies for building relationships among peers

CO4:Improve negotiation skills in academic and social contexts

CO5: Interpret the analytic data in decision table.

Text Books

- 1. ETHNUS, Apti mithra, 2013, First Edition, McGraw-Hill Education Pvt. Ltd.
- 2. Mark G. Frank, David Matsumoto, Hyi Sung Hwang, Nonverbal Communication: Science and Applications, 2012, 1 st Edition, Sage Publications, New York.

Reference Books

- 1. Kerry Patterson, Joseph Grenny, Ron McMillan, Al Switzler, Crucial Conversations: Tools for Talking When Stakes are High, 2001,1st edition McGraw Hill Contemporary, Bangalore.
- 2. Dale Carnegie, How to Win Friends and Influence People, Latest Edition,2016. Gallery Books, New York

Web Resources

- 1. https://www.fresherslive.com/online-test/logical-reasoning-test/questions-and-answers
- 2. https://www.indiabix.com/non-verbal-reasoning/questions-and-answers/
- 3. https://www.indiabix.com/logical-reasoning/questions-and-answers/

CO Vs PO Mapping and CO Vs PSO Mapping

		<u> </u>				<u> </u>		-				
CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
1	1	2	2									
2		2		2		2			1		3	
3	1			1	1		2			1	2	2
4	1	2	2		3			3	2			
5	2		2	2		2			2		1	

COURSE CONTENT AND LECTURE SCHEDULE

S.NO	ΤΟΡΙϹ	NO OF HOURS REQUIRED
	UNIT I Interpersonal Skill	
1	Interpersonal Communication	1
2	Peer Communication	1
3	Image Building and Personal Branding	1
4	Delegation and compliance	1
5	Responsibility	1
6	Creation of accountability	1
	UNIT II Social Media	
1	Effective use of social media	1

2	Types of social media	1
3	Moderating personal information	1
4	Social media for Job/Profession	1
5	Networking on social media	1
6	Maximizing network with social media	1
	UNIT III Social Interaction	
1	Event management	1
2	Event management methods	1
3	Effective techniques for better event management	1
4	Influencing skill	1
5	Building relationships	1
6	Persistence and resilience	1
	UNIT-IV Non Verbal Communication	
1	Proximecs, Types of proximecs	1
2	Rapport building	1
3	Negotiation Skill	1
4	Effective negotiation strategies	1
5	Conflict resolution	1
6	Styles of conflict resolution	1
	UNIT-V Reasoning Ability	
1	Analytical Reasoning Data Arrangement (Linear and circular & Cross Variable Relationship),	2
2	Ordering/ranking/grouping,	2
3	Selection Decision table	2

21ME5604	MECHATR	ONICS AND INTERNET OF THING	S	L	T	P	C
	s for the course			3	0	2	4
-		Fundamentals of Electrical and Ele	ctronics	Scion	<u></u>		
Objectives	i moti umentations,	Fundamentals of Lietti ital and Lie		Julen			
	art knowledge abo	ut the elements and techniques in	wolvod i	n Mo	chat	ronic	
•	6	uch essential to understand the em					
UNIT I	INTRODUCTIO	ON TO MECHATRONICS SYSTEM	И			9	
Mechanical A	ctuation System-H ol system – Sensor	chatronics approach – Elements ydraulic & Pneumatic Actuation - measurement of Displacement -	System,	Eleo	ctrica	al Ac	tuatior
UNIT II	MICRO PROCE	SSOR AND INTERFACING CIRC	CUITS			9	
8051 – I/O Pir	ns Ports and Circuit gic operations -Appl oller.	g Modes – Instruction Set – Simple s- Programming in Embedded C: Da lications LED, ADC/DAC and steppe	ata types er motor	, Cont	trol l	oops	- time
UNIT III	PROGRAMMAI	BLE LOGIC CONTROLLER & S	CADA			9	
Timers, count Applications.	ers, and internal re	Input and output processing – I lays – Data handling – Selection of	PLC. Inti			to S(
UNIT IV		CTION TO INTERNET OF THINGS				9	
		oT, Logical Design of IoT, Functiona					ign
		nd case studies- Home Automation	, Agricul	ture,	Indu	-	
UNIT V	MEC	HATRONIC SYSTEM DESIGN				9	
Engine Mana	gement system –	Case studies of Mechatronics syste Automatic car park barrier- Au l health monitoring system					
	•		Periods			45	
	ssessment Method	S					
Suggestive As			End So	mest	er E	xams	6
	ssessment Test rks)	Lab components (30 Marks)	(50 Ma	rks)			
Continuous A	rks)				Ques	tions	
Continuous A (20 Mar CAT – I 10 Ma CAT – II 10 Ma Descriptive Qu	r ks) rks urks uestions	Marks)	(50 Ma		Ques	tions	
Continuous A (20 Mai CAT – I 10 Ma CAT – II 10 Ma	r ks) rks urks uestions	Marks) Model Lab – 10 Marks	(50 Ma		Ques	tions	
Continuous A (20 Mar CAT – I 10 Ma CAT – II 10 Ma Descriptive Qu Course Outco	rks) rks urks uestions mes	Marks) Model Lab – 10 Marks	(50 Ma		Ques	tions	
Continuous A (20 Mar CAT – I 10 Ma CAT – II 10 Ma Descriptive Qu Course Outco Upon comple CO1: Interpre and fluid	rks) rks uestions mes tion of the course, t the interdisciplina l systems. (Apply)	Marks) Model Lab – 10 Marks Experiment Marks – 10 Marks the students will be able to: ary applications of Electronics, Ele	(50 Ma Descrip	tive (nical	, Con	nputer
Continuous A (20 Mar CAT – I 10 Ma CAT – II 10 Ma Descriptive Qu Course Outco Upon comple CO1: Interpre and fluic CO2: Explore Interface	rks) rks urks uestions mes tion of the course, t the interdisciplina I systems. (Apply) the architecture of e and various interfa- the application of p	Marks) Model Lab – 10 Marks Experiment Marks – 10 Marks the students will be able to:	(50 Ma Descrip ctrical, M nd Progr	echan echan	nical	, Con Perij	nputer pheral

Text Books

- 1. Bolton, "Mechatronics Electronic Control Systems in Mechanical and Electrical Engineering", Pearson Education Limited, 2015.
- 2. Ramesh Gaonkar "Microprocessor Architecture, Programming, and Applications with the 8085" Penram International Publishing, 2017
- 3. Sudip Misra, Anandarup Mukherjee, Arijit Roy Introduction to IoT 9th Edition, Cambridge University Press, 2016

Reference Books

- 1. Bradley D.A, Dawson D, Buru N.C and Loader A.J, "Mechatronics", Chapman and Hall, 1993.
- 2. Clarence W, de Silva, "Mechatronics" CRC Press, First Indian Re-print, 2013
- 3. K. P. Ramachandran, G. K.Vijayaraghavan, and M.S.Bala-Sundram, "Mechatronics: Integrated Mechanical Electronic Systems", Wiley India Pvt. Ltd., New Delhi 2008.
- 4. Dr Kamlesh Lakhwani ,Kumar Gianey, Joseph Kofi Wireko , Kamal Kant Hiran "Internet of Things (IoT): Principles, Paradigms and Applications of IoT, BPB Publications, 2015

Web Resources

- 1. <u>https://nptel.ac.in/courses/112103174/</u> (Mechatronics and IoT)
- 2. https://nptel.ac.in/courses/112/107/112107298/ (Mechatronics and IoT)

CO Vs PO Mapping and CO Vs PSO Mapping

СО	PO1	PO2		PO4	PO5	PO6	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
1	1	1	3	2	1	1					1	3	
2	1	1	3	2	1	1					1	3	
3	1	1	3	2	1	1					1	3	
4	1	1	3	2	1	1					1	3	
5	1	1	3	2	1	1					1	3	

S.No	List of Experiments	СО
1	Measurement of displacement, temperature, and speed	C01
2	Design and demonstration of simple automation system using hydraulic/Pneumatics system	C01
3	Assembly language programming of 8085 – Addition – Subtraction – Multiplication – Division – Sorting (any two operations)	CO2
4	I/O port programming in 8051 using embedded C.	CO2
5	PLC programming to control a valve	CO3
6	To interface LED/Buzzer with Arduino/Raspberry Pi and write a Program to turn ON LED for 1 sec after every 2 seconds	CO4
7	Design of home/industrial automation system using Node MCU or ESP32	CO5

	Tatal Duad	ical Davia da	20	
	l otal Praci	tical Periods	30	
Sl. No.	NAME OF THE EQUIPMENT		Qty.	
1	Pagia Droumatia Trainar Vit with manual and			

1	Basic Pneumatic Trainer Kit with manual and electrical controls/ PLC Control each	1 No.
2	Basic Hydraulic Trainer Kit	1 No
3	Hydraulics and Pneumatics Systems Simulation Software	10 No
4	8051 - Microcontroller	5 Nos
6	Ardino UNO	10 Nos
7	ESP 32	10 Nos
8	Data Cables for Ardino UNO + ESP 32	20 Nos
9	DHT Sensors	5 No
10	PIR Sensors	5 No
11	IR Sensors	5 Pair

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1 Interpret the interdisciplinary applications of Electronics, Electrical, Mechanical, Computer and fluid systems **(Apply)**

- 1. Explain the working principles of stepper motor. (U)
- 2. Is Washing machine working under a closed loop System? Justify your answer (A)

COURSE OUTCOME 2: Explore the architecture of Microprocessor, Microcontroller and programming for simple applications. **(Apply)**

- 1. Explain the instruction set of 8085 Microprocessor (Understand)
- 2. Explain how 8051 microcontrollers can be used to display a four-digit number in seven segment LEDs with minimum power (Apply)

COURSE OUTCOME 3: Utilize the application of programmable logic controllers and SCADA to the industries. **(Apply)**

Create a ladder diagram for the following application:

 A pneumatic system with double solenoid valve controls two double acting cylinders
 A and B. The sequence of cylinder operations are as follows: Cylinder A extends
 followed by cylinder B extending, then cylinder B retracts and finally the cycle is

completed by the cylinder A retracting. Explain the logic of the PLC circuit used (Apply)

2.Draw the ladder diagram and PLC program for the following logic gate. a) AND b) OR c) NAND d) NOT e) XOR (f) XNOR (Remember)

COURSE OUTCOME 4: Explain the basic concepts of IoT (Apply)

- 1. With Suitable example, explain in detail about IoT levels and deployment templates. (Apply)
- 2. Discuss the steps involved in IoT design methodology (Understand)

COURSE OUTCOME 5: Apply engineering design of automation to assembly, inspection and monitoring process. **(Apply)**

- 1. Develop an automation system for a pick and place robot (Apply)
- 2. Mention the applications of IoT in health care domain (Understand)

21ME5611	HEAT AND MASS TRANSFER LABORATORY	L 0	T 0	P 4	C 2		
Prerequisites for	the course		U	U	4		
*		eering Thermodynamics					
Objectives	5 9						
	heat transfer n	henomena to estimate the relevant coefficient.					
		erformance of refrigeration systems.					
-		- · ·	СО				
S.No		List of Experiments					
1	Thermal co	onductivity measurement using guarded plate	C01				
1	apparatus.				/1		
2		onductivity measurement of pipe insulation using		CC)1		
_		e apparatus.	<u> </u>		-		
3		tion of heat transfer coefficient under natural		CC)2		
		from a vertical cylinder.					
4		tion of heat transfer coefficient under forced from a tube.		CC)2		
_			<u> </u>				
5	Determina	tion of Thermal conductivity of composite wall.		CC)1		
6	Determina	tion of Thermal conductivity of insulating powder.		CC)1		
	Heat trans	fer from pin-fin apparatus (natural & forced					
7	convection			CC)2		
8	Determina	tion of Stefan – Boltzmann constant.		CC)3		
9	Determina	tion of emissivity of a grey surface.		CO3			
10		ess of Parallel / counter flow heat exchanger.	C04				
11		ce test in a Fluidized Bed cooling tower		C05			
		e regimes of pool boiling and determination of					
12	critical hea	• • •	CO4				
10		eat conduction in Cartesian & Cylindrical			1		
13	coordinate	-		CC)1		
14	Study of el	ectrical analogy for Thermal Radiation Systems		СС)3		
15	Experimen	t on convective heat transfer through flat plate		<u> </u>	12		
15	solar collec	÷ .		CC)2		
Total Periods :45							
Suggestive Assess	ment Methods						
Continuous Asse	essment	End Semester Exams (40 Mar)	ks)				
(60 Marks)							
ab experiment 40.		Practical Exam					
Aodel lab with pro	oject -20						
<u>Aarks</u>							
Course Outcomes	C 11						
		the students will be able to:	ao		or		
experimental setup	-	unsfer parameters by conducting experiments on	cond	iucu	011		
		fer parameters by conducting experiments on natu	ral ar	nd for	rcod		
convection apparat	-	ier parameters by conducting experiments off flatu	i ai ai	10 10	ittu		
		fer parameters by conducting experiments on radia	tion :	apna	ratu	S.	
	•	fer parameters by conducting experiments on heat					
J = = = = = = = = = = = = = = = = = = =		ensation.		0,			

5. Analyse and interpret heat transfer parameters by conducting experiments on a Fluidized Bed Cooling Tower & Study of Mass Transfer

Laboratory Requirements

(Requirements for a batch of 30students) Heat and Mass Transfer Laboratory

S.N o.	Description of Equipment	Quantity Required (R)			
1.	Guarded plate apparatus	1			
2.	Lagged pipe apparatus	1			
3.	Natural convection-vertical cylinder apparatus	1			
4.	Forced convection inside tube apparatus	1			
5.	Composite wall apparatus	1			
6.	Thermal conductivity of insulating powder apparatus	1			
7.	Pin-fin apparatus	1			
8.	Stefan-Boltzmann apparatus	1			
9.	Emissivity measurement apparatus	1			
10.	Parallel/counter flow heat exchanger apparatus	1			
11	Fluidized Bed Cooling Tower	1			
12	Flat Plate Solar Collector	1			

Reference Books

- 1. Frank P. Incropera and David P. Dewitt, "Fundamentals of Heat and Mass Transfer", John Wiley & Sons, 7th Edition, (2014)
- 2. Kothandaraman, C.P., "Fundamentals of Heat and Mass Transfer", New Age International, New Delhi, (2012)
- 3. Nag, P.K., "Heat Transfer", Tata McGraw Hill, New Delhi, (2002)

Web Resources

1. http://htv-au.vlabs.ac.in/

CO Vs PO Mapping and CO Vs PSO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	3				1				1		3
CO2	3	3	3	3				1				1		3
CO3	3	3	3	3				1				1		3
CO4	3	3	3	3				1				1		3
CO5	3	3	3	3				1				1		3

21ME5612	CAD / CAM LABORATORY	L	Т	Р	C						
21ME3012	CAD / CAM LADORATORI	0	0	4	2						
Prerequisites	s for the course										
Engineering G	Engineering Graphics, Computer Aided Machine Drawing										
Objectives											
1. To gain	1. To gain practical experience in handling 3D modelling and assembling using modelling										
software systems.											
2. To stud	y the features of CNC Machine Tool.		2. To study the features of CNC Machine Tool.								

- 3. To expose students to modern control systems (Fanuc, Siemens etc.,)
- 4. To know the application of various CNC machines like CNC lathe, CNC Vertical Machining center, CNC EDM and CNC wire-cut and studying of Rapid prototyping and tooling.

S.No	Experiments	СО
	3D GEOMETRIC MODELLING (27)	
1	Introduction of 3D Modelling Software	CO 1
2	Design of 3D Assembly Model of I.C. Engine Connecting rods.	CO 2
3	Design of 3D Assembly Model of Footstep bearing.	CO 2
4	Design of 3D Assembly Model of Screw Jack.	CO 2
5	Design of 3D Assembly Model of Machine Vice.	CO 2
6	Design of 3D Assembly Model of Universal Joint	CO 2
7	Design of 3D Assembly Model of Flange Coupling	CO 2
8	Design of 3D Assembly Model of Plummer Block	CO 2
9	Design of 3D Assembly Model of Lathe Tailstock	CO 2
	MANUAL PART PROGRAMMING (15)	
1	Part Programming – CNC Machining Center (8)	
	a) Linear Cutting	
	b) Circular Cutting	CO3
	c) Cutter Radius Compensation.	
	d) Canned Cycle Operations.	
2	Part Programming CNC Turning Center (7)	
	a) Straight, Taper and Radius Turning	
	b) Thread Cutting	CO4
	c) Rough and Finish Turning Cycle	
	d) Drilling and Tapping Cycle	
3	a) Study of CNC EDM and CNC wire-cut	
	b) Study of Rapid prototyping and tooling	C05
S.No.	List of Projects	Related Experiment
	CAD	
1.	LEVEL 1	CAD
	Industrial based 3D modelling components	EXERCISES CO2

2.	CAD	con		
	Production based assembly modelling		EXERCISES	CO2
	CAN	И		
1.	CAM	<u> </u>		
	EXERCISES	CO3		
2.	LEVEL 2	CAM	C04	
	Industrial based CNC programming for CN	C Milling machine	EXERCISES	604
Projec	ts from both CAD and CAM is mandatory.			
Sugge	estive Assessment Methods			
Con	tinuous Assessment(60 Marks)	End Semester Exams	(40 Marl	ks)
		-		
	xperiment 40 Marks	Practical Exam		
	lab with project -20 Marks se Outcomes			
	completion of the course, the students w	ill he able to:		
-				
001		r Aided Design which will equ	uin them to	nurs
higher		r Aided Design which will equ	uip them to	purs
U	r studies		uip them to	purs
CO2: I	r studies Illustrate any solid part modelling by using n		uip them to	purs
CO2: I CO3: V	r studies Illustrate any solid part modelling by using n Write the part programming of CNC milling		up them to	purs
CO2: I CO3: V CO4: V	r studies Illustrate any solid part modelling by using n	nodelling software package	-	purs
CO2: I CO3: V CO4: V CO5: I	r studies Illustrate any solid part modelling by using n Write the part programming of CNC milling Write the part programming of CNC lathe	nodelling software package	-	purs
CO2: I CO3: V CO4: V CO5: I Text I	r studies Illustrate any solid part modelling by using n Write the part programming of CNC milling Write the part programming of CNC lathe Interpret the fundamentals of EDM, wire-cut	nodelling software package and Rapid prototyping and too	oling	purs
CO2: I CO3: V CO4: V CO5: I Text I	r studies Illustrate any solid part modelling by using n Write the part programming of CNC milling Write the part programming of CNC lathe Interpret the fundamentals of EDM, wire-cut Books Ibrahim Zeid, "Mastering CAD/CAM", Tata	nodelling software package and Rapid prototyping and too McGraw- Hill Inc., New Delhi, 2	oling 2008	
CO2: I CO3: V CO4: V CO5: I Text I 1.	r studies Illustrate any solid part modelling by using n Write the part programming of CNC milling Write the part programming of CNC lathe Interpret the fundamentals of EDM, wire-cut Books Ibrahim Zeid, "Mastering CAD/CAM", Tata	nodelling software package and Rapid prototyping and too McGraw- Hill Inc., New Delhi, 2	oling 2008	
CO2: I CO3: V CO4: V CO5: I Text I 1. 2. Refer	r studies Illustrate any solid part modelling by using m Write the part programming of CNC milling Write the part programming of CNC lathe Interpret the fundamentals of EDM, wire-cut Books Ibrahim Zeid, "Mastering CAD/CAM", Tata Radhakrishnan P and Subramanyan S, –CA 2008	nodelling software package and Rapid prototyping and too McGraw- Hill Inc., New Delhi, 2 D/CAM/CIM , New Age Intern	oling 2008 national (P) I	
CO2: I CO3: V CO4: V CO5: I Text I 1. 2. Refer	r studies Illustrate any solid part modelling by using m Write the part programming of CNC milling Write the part programming of CNC lathe Interpret the fundamentals of EDM, wire-cut Books Ibrahim Zeid, "Mastering CAD/CAM", Tata Radhakrishnan P and Subramanyan S, —CA 2008	nodelling software package and Rapid prototyping and too McGraw- Hill Inc., New Delhi, 2 D/CAM/CIM , New Age Intern	oling 2008 national (P) I	
CO2: I CO3: V CO4: V CO5: I Text I 1. 2. Refer 1.	r studies Illustrate any solid part modelling by using m Write the part programming of CNC milling Write the part programming of CNC lathe Interpret the fundamentals of EDM, wire-cut Books Ibrahim Zeid, "Mastering CAD/CAM", Tata Radhakrishnan P and Subramanyan S, –CA 2008 Pence Books PN RAO, "CAD/CAM: Principles and Applica D.Evangeline, S.Anitha,"Computer Graphics	nodelling software package and Rapid prototyping and too McGraw- Hill Inc., New Delhi, 2 D/CAM/CIM , New Age Intern ations", Tata McGraw Hill, 2004 s and Multimedia Insights, Mat	oling 2008 national (P) I	.td.,
CO2: I CO3: V CO4: V CO5: I Text I 1. 2. Refer 1.	r studies Illustrate any solid part modelling by using m Write the part programming of CNC milling Write the part programming of CNC lathe Interpret the fundamentals of EDM, wire-cut Books Ibrahim Zeid, "Mastering CAD/CAM", Tata Radhakrishnan P and Subramanyan S, —CA 2008 Tence Books PN RAO, "CAD/CAM: Principles and Applica D.Evangeline, S.Anitha,"Computer Graphics and Programming Paradigms" PHI publica	nodelling software package and Rapid prototyping and too McGraw- Hill Inc., New Delhi, 2 AD/CAM/CIM , New Age Intern ations", Tata McGraw Hill, 2004 s and Multimedia Insights, Mathe	oling 2008 hational (P) I 4 hematical M	.td., odels
CO2: I CO3: V CO4: V CO5: I Text I 1. 2. Refer 1.	r studies Illustrate any solid part modelling by using m Write the part programming of CNC milling Write the part programming of CNC lathe Interpret the fundamentals of EDM, wire-cut Books Ibrahim Zeid, "Mastering CAD/CAM", Tata Radhakrishnan P and Subramanyan S, –CA 2008 rence Books PN RAO, "CAD/CAM: Principles and Applica D.Evangeline, S.Anitha,"Computer Graphics and Programming Paradigms" PHI publica	nodelling software package and Rapid prototyping and too McGraw- Hill Inc., New Delhi, 2 AD/CAM/CIM , New Age Intern ations", Tata McGraw Hill, 2004 s and Multimedia Insights, Mathe	oling 2008 hational (P) I 4 hematical M	.td., odels
CO2: I CO3: V CO4: V CO5: I Text I 1. 2. Refer 1. 2. 3.	r studies Illustrate any solid part modelling by using m Write the part programming of CNC milling Write the part programming of CNC lathe Interpret the fundamentals of EDM, wire-cut Books Ibrahim Zeid, "Mastering CAD/CAM", Tata Radhakrishnan P and Subramanyan S, —CA 2008 Tence Books PN RAO, "CAD/CAM: Principles and Applica D.Evangeline, S.Anitha,"Computer Graphics and Programming Paradigms" PHI publica	nodelling software package and Rapid prototyping and too McGraw- Hill Inc., New Delhi, 2 AD/CAM/CIM , New Age Intern ations", Tata McGraw Hill, 2004 s and Multimedia Insights, Mathe	oling 2008 hational (P) I 4 hematical M	.td., odels
CO2: I CO3: V CO4: V CO5: I Text I 1. 2. Refer 1. 2. 3. Web I	r studies Illustrate any solid part modelling by using m Write the part programming of CNC milling Write the part programming of CNC lathe Interpret the fundamentals of EDM, wire-cut Books Ibrahim Zeid, "Mastering CAD/CAM", Tata Radhakrishnan P and Subramanyan S, –CA 2008 PN RAO, "CAD/CAM: Principles and Applica D.Evangeline, S.Anitha,"Computer Graphics and Programming Paradigms" PHI publica Zhuming Bi, Xiaoquin Wang, "Computer Aid	nodelling software package and Rapid prototyping and too McGraw- Hill Inc., New Delhi, 2 MD/CAM/CIM , New Age Intern ations", Tata McGraw Hill, 2004 s and Multimedia Insights, Math tions 2016 ded Design and Manufacturing'	oling 2008 hational (P) I 4 hematical M	.td., odels

HARD	WARE	
1.	Computer Server	1
2.	Computer nodes or systems (High end CPU with at least 1 GB main memory) networked to the server	30
3.	A3 size plotter	1
4.	Laser Printer	1
5.	CNC Lathe	1
6.	CNC milling machine	1
SOFT	VARE	
7.	Any High end integrated modeling and manufacturing CAD/ CAM software	15 licenses

	8.	(CNC	CAM Software for machining centre and turning centre CNC Programming and tool path simulation for FANUC / Sinumeric and Heidenhain controller)											
	9.	Licens	ed oper	ating sy	stem								Adeq	uate
CO V	's PO N	lappin	g and (CO Vs I	PSO Ma	apping								
CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2
1	2	2	2	1	1			1					3	
2	2	2	3	2	1			1					3	
3	2	2	2	1	1			1					3	

SEMESTER VI

	D	m of Tuonamiasion Sustains	[L	Т	Р	0
21ME6601		gn of Transmission Systems PSG Design Data Book permitted)	-	<u> </u>	1	<u>г</u>	3
Prerequisites for th		6 F F F F F F F F F F F F F F F F F F F			1	-	
Strength of Materials		Elements.					
Objectives							
components.To understand the		nd procedure for the design of Mecha available for Design of Transmission ogues	_				
UNIT I	INTRODUC	CTION, BELTS & CHAIN DRIVES	S		9		
		ents of Transmission system - Typ		Classi	ificat	ions	of
Transmission systems	- Specification of	a Transmission Element - Design o Transmission chains and Sprockets.					
UNIT II		ARALLEL AXIS GEARS			9		
Factor of safety – Gear	r materials – Design Pressure angle in th	alysis – Tooth stresses – Dynamic e of straight tooth spur & amp; helical g ne normal and transverse plane – Eq	gears base	ed on	stren	igth a	and
UNIT III		NCLINED AXIS GEARS			9		
capacity, materials – fe helical: Terminology – UNIT IV Geometric progression gear box – Design of	brces and stresses, eff -helix angles – Estima n – Standard step rat multi speed gear bo	 worm Gear: Merits and demerits – ficiency, estimating the size of the work ating the size of the pair of cross helice GEARBOXES io – Ray diagram, kinematics layout ox for machine tool applications – Gar box, Fluid Couplings, Torque Gar box 	orm gear j cal gears. t – Design Constant	pair. n of s mesh	Cros 9 slidir 1 gea	s ig m r bož	x –
UNIT V	CI	LUTCHES AND BRAKES			9		
U		 cone clutches – internal expandir brakes – external shoe brakes – Intern 	0			orake	».
		Total P	Periods		45	5	
Suggestive Assessm							
Continuous Assessn (20 Marks)	nent Test	Formative Assessment Test (20 Marks)	End Sei (60 Mai		er E	xam	S
CAT 1 & CAT 2 e Descriptive typ		Assignment, MCQ	,	cripti	ve T	ype	
Course Outcomes							
Upon completion of	the course, the stu	idents will be able to:					
V belt drives & Pulley CO2: Calculate power CO3: Interpret trans helical gears. (Apply)	vs and chain drives. r transmission betw smission between i)	and design of power transmission (Apply) reen parallel shaft and design spur ntersecting shafts and design the tural arrangement of the gear boxe	& helical bevel, v	gear vorm	s. (A	pply	')

Text	: Boo	oks												
1	. Bł	nandar	i V, "D	esign	of Mac	hine E	lemen	nts", 4t	h Edit	ion, Tat	a McGr	aw-Hill	Book C	lo, 201
2		Joseph Shigley, Charles Mischke, Richard Budynas and Keith Nisbett "Mechanical												
		Engineering Design", 9th Edition, Tata McGraw-Hill, 2011.												
		e Boo												
1							0	in, H.,	"Macl	hine De	sign", [Гata Мо	cGraw-F	Hill
		ookCo.(•					_						
2		_			nical I	Design	– An I	Integra	al App	roach",	1st Edi	tion, Ta	ita McC	iraw-H
~		ook Co,			— • • • •			NT (() -		D .	<i></i>		11	
3			rajamo	oorthy	T. V. S	shanm	ugam	.N, "M	achine	e Desigr	ı", Anui	radha P	ublicati	ons, C
	-)15.	XA7 (()	<i>x</i> 1.	C			• "т	·	11.1.1.	<i>c c</i>			
			•					0 . ,		ıblishin ıni Offse	0	,	າດດາ	
				0) Ltd, R	am Na
0		ew Dell		•			DUSIE	п, Lu	1 4314 1	ublishi	iig iiou	30 (1 vt.	J 110, R	
Web		ource												
		https:/		el.ac.in	/cours	ses/11	2106	137/						
		WWW.a	· ·		•									
	3.	https:/	//npte	l.ac.in	/cours	ses/11	2/105	5/112	10512	4/				
CO	Vs P	О Мар	ping a	nd CO	Vs PS	О Мар	ping							
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
.0		+	2	1									3	
1	2	1	3	1										
	2 2	1	3	1									3	
1			-	_									3 3	
1 2	2	1	3	1									-	

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Interpret basic concepts, selection and design of power transmission systems such as flat belt, V belt drives & Pulleys and chain drives. **(Apply)**

- 1. Design a flat belt drive for a fan running at 360rpm which is driven by a 10 KW at1440 rpm motor. The belt drive is open type and the distance between the pulley Centres is 2000 mm. The diameter of a driven pulley is 1 m. (A)
- 2. Design a V-belt drive to transmit 10kW at 400 rpm. The speed ratio is 3. Centre distance between the pulleys is 600 mm and the drive is crusher. (A)
- 3. A truck equipped with 9.5 KW engine uses a roller chain of the final drive to the rear axle. The driving sprocket runs at 900 rpm and driven sprocket at 400 rpm with a center distance of approximately 600 mm. select a suitable the roller chain. (A)

COURSE OUTCOME 2: Calculate power transmission between parallel shaft and design spur & helical gears. **(Apply)**

- 1. Design a pair of straight spur gear drive for a stone crusher, the gears are made of C40 steel. The pinion is to transmit 30 KW at 1200 rpm. The gear ratio is 3. The gear is to work 8 hours/day 6days in a week for 3 years. (A)
- 2. A helical gear with 30-degree helix angle has to transmit 35kW at 1500 rpm with a speed reduction ratio 2.5. If the pinion has 24 teeth determine the necessary module, pitch diameter and face width for 20-degree full depth teeth. Assume 15Ni 2Cr 1 Mo15 material for both pinion and wheel. (A)
- 3. For intermittent duty of an elevator, two cylindrical gears made of alloys steel 40 Ni 2 Cr 1 Mo 28 and have to transmit12.5 kw at a pinion speed of 1200 rpm. Design a gear pair for the following specifications: Gear ratio: 3.5, pressure angle 20°, involute full depth, helix angle 15°. Gears are expected to work 6 hrs a day for 10 years. Minimum number of teeth on pinion can be taken as 20 and IS quality 8. (A)

COURSE OUTCOME 3: Interpret transmission between intersecting shafts and design the bevel, worm and cross helical gears. **(Apply)**

- 1. Design a Bevel gear drive to transmit 4 KW. Speed ratio = 4. driving shaft speed 225 rpm. The drive is non-reversible. Assume a life of 25000 hours. (A)
- 2. Design a bevel gear to transmit 3.5 KW with driving shaft speed is 200 rpm. Speed ratio requires is 4. The drive is non-reversible. Pinion is made of steel and wheel made of CI. Assume a life of 25,000 Hrs. (A)
- 3. Design the worm gear drive and determine the power loss by heat generation of Hardened steel worm rotates at 1440 rpm and transmits 12 KW to a phosphor bronze gear with gear ratio of 16. (A)

COURSE OUTCOME 4: Prepare kinematic layout and structural arrangement of the gear boxes. **(Apply)**

- 1. Design a 9-speed gear box for the following data. Minimum speed: 180rpm, Maximum speed: 1800rpm. Using standard step ratio, draw the speed diagram, kinematic layout. Also find the number of teeth on each gear. (A)
- 2. Design 12 speed gear box for a minimum speed of 160 rpm and a maximum speed of 2000 rpm. The input speed of motor is 1600 rpm. Draw the speed diagram, kinematic diagram and indicate the number of teeth on each gear. (A)
- 3. In a milling machine, 18 different speeds in the range of 35 rpm and 650 rpm are required. Design a three-stage gear box with a standard step ratio. Sketch the layout of the gear box, indicating the number of teeth n each gear. The gear box receives 3.6 kW from an electric motor running at 1,440 rpm. Sketch also the speed diagram. (A)

COURSE OUTCOME 5: Design the clutches and brakes. (Apply)

1. A plate clutch with maximum diameter 60mm has maximum lining pressure of 0.35 MPa. The power to be transmitted at 400 rpm is 135 KW and μ =0.3. Find inside diameter and spring force required to engage the clutch. Springs with spring index 6 and material spring steel with safe shear stress 600 MPa are used. Find the diameters

if 6 spring are used. (A)

- 2. A multi disc wet clutch is to be designed for a machine tool driven by an electric motor of 12.5 KW running at 1440 rpm. Space restrictions limit the outside disc diameter to 100mm. Determine the appropriate value of inside diameter, total number of discs and clamping force. (A)
- 3. Design a differential band for a winch lifting a load of 20 KN through a steel wire rope wound around a barrel of 600 mm dm. The brake drum, keyed to barrel shaft is 800 mm diameter and the angle of lap of the band over the drum is about 240 degrees. Operating arms of the brake are 50 mm and 250 mm. The length of operating level is 1.6m. (A)

21ME6602	21ME6602 FINITE ELEMENT ANALYSIS							
		2	1	0				
Prerequisites for the		N/ 1:						
Mass Transfer.	ed Calculus, Strength of Materials, Fluid Mechanics and	Machiner	у, не	eat ai	10			
Objectives								
• To introduce Finite Eleme	the concepts of solving of engineering problems and to ent Analysis.	o apprecia	ate th	ie us	e of			
UNIT I	STATIC ANALYSIS USING ONE DIMENSIONAL SPAR 12 ELEMENTS							
	ling of Field Problems in Engineering, Approxima							
	asic concepts of FEM, General procedure of FEM,discre							
	ormulation of element stiffness matrices and load ve							
	nts, plane truss element, treatment of boundary cond	litions and	d ten	nper	ature	Ģ		
effects;Solution of pro								
UNIT II	STATIC ANALYSIS USING ONE DIMENSIONAL BI ELEMENTS	EAM		8				
Room alamant · Harm	ite shape functions, formulation of element stiffness m	natrix and			tore			
	indation; Problems using one dimensional beameleme		l IUau	i vec	1015,			
Deallis on clastic lou	indation; Problems using one unitensional beameleme	ent.						
UNIT III	STATIC ANALYSIS USING TWO DIMENSION ELEMENTS	NAL		9				
UNIT III Isoparametric formula load vectors, plane str	STATIC ANALYSIS USING TWO DIMENSION ELEMENTS ation, 2D triangular and quadrilateral elements, eleme ress and plane strain, Temperature effects; problems us	NAL ent stiffne		atric	ces a	.10		
UNIT III Isoparametric formula load vectors, plane str elements; Introductio	STATIC ANALYSIS USING TWO DIMENSION ELEMENTS ation, 2D triangular and quadrilateral elements, eleme ress and plane strain, Temperature effects; problems us n to higher order elements.	NAL ent stiffne		atric nsioi	ces an nal	<u> </u>		
UNIT III Isoparametric formula load vectors, plane str elements; Introductio UNIT IV	STATIC ANALYSIS USING TWO DIMENSION ELEMENTS ation, 2D triangular and quadrilateral elements, eleme ress and plane strain, Temperature effects; problems us n to higher order elements. DYNAMIC ANALYSIS	NAL ent stiffne sing two c	dimei	atric nsion 8	ces an nal			
UNIT III Isoparametric formula load vectors, plane str elements; Introductio UNIT IV Equations of motion elements, formulation	STATIC ANALYSIS USING TWO DIMENSION ELEMENTS ation, 2D triangular and quadrilateral elements, eleme ress and plane strain, Temperature effects; problems us n to higher order elements.	NAL ent stiffne sing two c spar, tru Natural	dimer uss a freq	atric nsion 8 Ind	ces an nal bea	ar		
UNIT III Isoparametric formula load vectors, plane str elements; Introductio UNIT IV Equations of motion elements, formulation	STATIC ANALYSIS USING TWO DIMENSION ELEMENTS ation, 2D triangular and quadrilateral elements, elements ation, 2D triangular and quadrilateral elements, elements ress and plane strain, Temperature effects; problems us n to higher order elements. DYNAMIC ANALYSIS n for dynamic problems using one dimensional on of consistent and lumped mass matrices,	NAL ent stiffne sing two o spar, tru Natural of beam.	dimer uss a freq	atric nsion 8 Ind	ces an nal bea cies	an		
UNIT III Isoparametric formula load vectors, plane str elements; Introduction UNIT IV Equations of motion elements, formulation longitudinal vibration UNIT V Basic equations of he	STATIC ANALYSIS USING TWO DIMENSION ELEMENTS ation, 2D triangular and quadrilateral elements, elements ation, 2D triangular and quadrilateral elements, elements ress and plane strain, Temperature effects; problems us in to higher order elements. DYNAMIC ANALYSIS n for dynamic problems using one dimensional on of consistent and lumped mass matrices, in and mode shapes, Transverse Natural frequencies HEAT TRANSFER AND FLUID FLOW ANALYSIS eat transfer, finite element formulation and solution	NAL ent stiffne sing two o spar, tru Natural of beam. IS of one-di	dimen uss a freq imen	atric nsion 8 und uenc 8 sion	ces an nal bea cies	ar		
UNIT III Isoparametric formula load vectors, plane str elements; Introduction UNIT IV Equations of motion elements, formulation longitudinal vibration UNIT V Basic equations of he transfer problems in fluid flow, finite element	STATIC ANALYSIS USING TWO DIMENSION ELEMENTS ation, 2D triangular and quadrilateral elements, elements ation, 2D triangular and quadrilateral elements, elements ress and plane strain, Temperature effects; problems us in to higher order elements. DYNAMIC ANALYSIS n for dynamic problems using one dimensional on of consistent and lumped mass matrices, n and mode shapes, Transverse Natural frequencies HEAT TRANSFER AND FLUID FLOW ANALYSI	NAL ent stiffne sing two o spar, tru Natural of beam. IS of one-di ion. Bas	limen iss a freq imen	atric nsion 8 und uenc 8 sion juat	ces an nal bea cies al he ions	ar c ea		
UNIT III Isoparametric formula load vectors, plane str elements; Introduction UNIT IV Equations of motion elements, formulation longitudinal vibration UNIT V Basic equations of he transfer problems in fluid flow, finite element	STATIC ANALYSIS USING TWO DIMENSION ELEMENTS ation, 2D triangular and quadrilateral elements, elements ation, 2D triangular and quadrilateral elements, element ress and plane strain, Temperature effects; problems us n to higher order elements. DYNAMIC ANALYSIS n for dynamic problems using one dimensional on of consistent and lumped mass matrices, n and mode shapes, Transverse Natural frequencies HEAT TRANSFER AND FLUID FLOW ANALYSI eat transfer, finite element formulation and solution nvolving steady state heat conduction and convect ement formulation of one-dimensional flow throu rough pipes, Network flow analysis	NAL ent stiffne sing two o spar, tru Natural of beam. IS of one-di ion. Bas	limen iss a freq imen	atric nsion 8 und uenc 8 sion juat	ces an nal bea cies al he ions a a	ar c ea		
UNIT III Isoparametric formula load vectors, plane str elements; Introduction UNIT IV Equations of motion elements, formulation longitudinal vibration UNIT V Basic equations of he transfer problems in fluid flow, finite ele Inviscid fluid flow the	STATIC ANALYSIS USING TWO DIMENSION ELEMENTS ation, 2D triangular and quadrilateral elements, element ation, 2D triangular and quadrilateral elements, element ress and plane strain, Temperature effects; problems us in to higher order elements. DYNAMIC ANALYSIS n to dynamic problems using one dimensional on of consistent and lumped mass matrices, n and mode shapes, Transverse Natural frequencies HEAT TRANSFER AND FLUID FLOW ANALYSIS eat transfer, finite element formulation and solution nvolving steady state heat conduction and convect ement formulation of one-dimensional flow throu rough pipes, Network flow analysis Total H	VAL ent stiffne sing two o spar, tru Natural of beam. IS of one-di ion. Bas igh poro	limen iss a freq imen	atric nsion 8 uend uend sion juati nedia	ces an nal bea cies al he ions a a			
UNIT III Isoparametric formula load vectors, plane str elements; Introduction UNIT IV Equations of motion elements, formulation longitudinal vibration UNIT V Basic equations of he transfer problems in fluid flow, finite ele Inviscid fluid flow the Suggestive Assessme	STATIC ANALYSIS USING TWO DIMENSION ELEMENTS ation, 2D triangular and quadrilateral elements, elements ation, 2D triangular and quadrilateral elements, elements order elements. DYNAMIC ANALYSIS n to higher order elements. DYNAMIC ANALYSIS n for dynamic problems using one dimensional on of consistent and lumped mass matrices, n and mode shapes, Transverse Natural frequencies HEAT TRANSFER AND FLUID FLOW ANALYSI eat transfer, finite element formulation and solution nvolving steady state heat conduction and convect ement formulation of one-dimensional flow throu rough pipes, Network flow analysis Total Heat Methods	VAL ent stiffne sing two o spar, tru Natural of beam. IS of one-di ion. Bas igh poro	limen sic ec us m	atric nsion 8 and uend sion juati nedia 45	ces an nal bea cies al he ions a a			
UNIT III Isoparametric formula load vectors, plane str elements; Introduction UNIT IV Equations of motion elements, formulation longitudinal vibration UNIT V Basic equations of he transfer problems in fluid flow, finite ele Inviscid fluid flow the Suggestive Assessme (20 Marks)	STATIC ANALYSIS USING TWO DIMENSION ELEMENTS ation, 2D triangular and quadrilateral elements, elements ress and plane strain, Temperature effects; problems us n to higher order elements. DYNAMIC ANALYSIS n for dynamic problems using one dimensional on of consistent and lumped mass matrices, n and mode shapes, Transverse Natural frequencies HEAT TRANSFER AND FLUID FLOW ANALYSIS Tatasverse Natural frequencies HEAT TRANSFER AND FLUID FLOW ANALYSIS Total formulation and solution novolving steady state heat conduction and convect ement formulation of one-dimensional flow throu rough pipes, Network flow analysis Total Heat Methods Ent Methods Formative Assessment Test	VAL ent stiffne sing two of spar, tru Natural of beam. IS of one-di ion. Bas of poro Periods End Ser	limen isc ec us m nest rks)	atric nsion 8 und uenc 8 sion juati nedia 45 er Ex	ces an nal bea cies al he ions a a			
UNIT III Isoparametric formula load vectors, plane str elements; Introduction UNIT IV Equations of motion elements, formulation Iongitudinal vibration UNIT V Basic equations of he transfer problems in fluid flow, finite ele Inviscid fluid flow the Suggestive Assessme Continuous Assessme	STATIC ANALYSIS USING TWO DIMENSION ELEMENTS ation, 2D triangular and quadrilateral elements, elements ress and plane strain, Temperature effects; problems us n to higher order elements. DYNAMIC ANALYSIS n for dynamic problems using one dimensional on of consistent and lumped mass matrices, n and mode shapes, Transverse Natural frequencies HEAT TRANSFER AND FLUID FLOW ANALYSI eat transfer, finite element formulation and solution nvolving steady state heat conduction and convect ement formulation of one-dimensional flow throu rough pipes, Network flow analysis Total Heat Methods ent Methods Formative Assessment Test (20 Marks) Assignment, MCQ, Case Studies	VAL ent stiffne sing two of spar, tru Natural of beam. IS of one-di ion. Bas igh poro Periods Periods End Ser (60 Mar	limen imen sic ec us m nest rks) tive t	atric nsion 8 und uenc 8 sion juati nedia 45 er Ex	ces an nal bea cies al he ions a a			

Course Outcomes

Upon completion of the course, the students will be able to:

CO1: Apply one dimensional spar elements to solve field problems. **(Apply)**

CO2: Exercise the one-dimensional beam elements to field problems. (Apply)

CO3: Apply the two-dimensional elements to solve the field problems. **(Apply)**

CO4: Explore the applications of one-dimensional elements to solve dynamics problems. **(Apply)**

CO5: Analyze the applications of one-dimensional element for heat transfer and fluid flow problems

(Analyze)

Text Books

- 1. Seshu P., "Text Book of Finite Element Analysis", Prentice-Hall of India Pvt. Ltd. NewDelhi, (2013)
- 2. Reddy J.N., "An Introduction to the Finite Element Method", McGraw-Hill Edition, (2018)

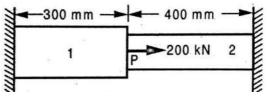
Reference Books

- 1. Bhavikatti S.S., "Finite Element Analysis", New Age International Publishers, (2015)
- 2. TirupathiR.Chandrupatla, Ashok D.Belegundu, "Introduction to Finite Elements in Engineering", Cambridge University Press (2021)
- 3. Daryl L. Logan, "A First Course in the Finite Element Method." Cengage Learning (2016)
- 4. S.S Rao," The Finite Element Method in Engineering", Elsevier Science, (2011)
- 5. Robert D. Cook, Malkus, Plesha, Witt, "Concepts And Applications Of Finite Element Analysis",4th Edition 2007

Web Resources

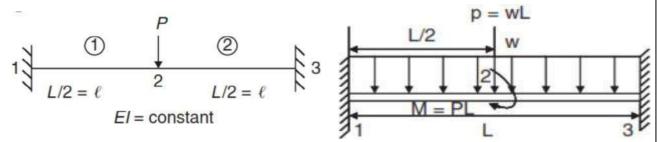
- 1. <u>https://nptel.ac.in/courses/112/103/112103295/</u>
- 2. <u>https://nptel.ac.in/courses/112/104/112104193/</u>
- 3. <u>https://nptel.ac.in/courses/112/106/112106135/</u>

CO Vs PO Mapping and CO Vs PSO Mapping


СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
1	3	2	1	1									2	1
2	3	3	1	1									2	1
3	3	3	1	1									2	1
4	3	3	1	1									2	1
5	3	3	2	1									2	1

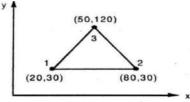
COURSE LEVEL ASSESSMENT QUESTIONS

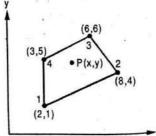
COURSE OUTCOME 1: Apply one dimensional spar elements to solve field problems. (Apply)


1. Explain the steps involved in finite element analysis. (U)

2. Consider a bar as shown in Fig. An axial load of 200KN is applied at point p. Take A1=2400mm2, $E_1=70x10^9N/mm^2$, $A_2=600mm^2$, $E_2=200X10^9N/mm^2$. Calculate the following, (i) nodal displacement at point p, (ii) stress in each element (iii) reaction force (A)

COURSE OUTCOME 2: Exercise the one dimensional beam elements to field problems (Apply)

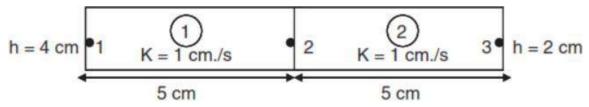

1. Analyze the beam shown in fig using FEM (A)


COURSE OUTCOME 3: Apply the two dimensional elements to solve the field problems

(Apply)

1. Determine the stiffness matrix for the CST element shown in Fig. The co-ordinates are given in mm. Assume plane strain conditions. E=210GPa,v=0.25 and t=10mm.(A)

2. For the isoparametric quadrilateral element as shown in fig., the Cartesian coordinates of point P are (6,4). The loads 10KN and 12KN are acting in x and y direction on that point P. Evaluate the nodal forces. (A)


COURSE OUTCOME 4: Explore the applications of one dimensional elements to solve dynamics problems (Apply)

1. Determine the natural frequencies of transverse vibration for a beam fixed at both ends. The beam may be modelled by two elements, each of length L and cross-sectional area A. The use of symmetry boundary condition is optional. (A)

2. Set up the system of equations governing the free transverse vibrations of a simply supported beam modeled by two finite elements. Determine the natural frequency of the system.(A)

COURSE OUTCOME 5: Analyze the heat transfer and fluid flow problems using one dimensional elements (Analyze)

1. Analyse the one-dimensional flow through porous media over the section shown in the figure by using finite element method. (An)

2. Find the flow rates in each of the elements (pipes) in the network as shown in Figure 6.35. The diameters of the pipe are 10, 10, 10, 10, 10, 10, 12, 12, 12 mm, respectively. The lengths are 1,000, 1,000, 1,000, 1,000, 1,000, 1,000, 1,500, 1,500, 1,500 mm, respectively. The flow rates at each node out of the network are [+125, -25, -25, -25, -25, -25] cubic cm/min. The liquid flowing is water. If the pressure head at node 1 is 2 m expressed in terms of the height of liquid that is flowing, find the pressure heads, (H), at each of the remaining nodes and the flow rates in the pipe. The friction factor may be taken as 0.02.(A)

		L	Т	Р	C
21HS3101	ETHICS AND VALUES	3	0	0	3
Preamble:					
0	with the purpose of helping students in developing a holistic p	-			ut
	for the student to explore his/her role (value) in all aspects of l	living	– as	an	
	er of a family, as a part of the society and as a unit in nature.				
Prerequisites for the	course				
Nil					
Objectives					
	tinguish between values and skills.				
-	ntify what they 'really want to be' in their life and profession.				
	derstand the meaning of happiness and prosperity for a human		-		
4. To facilitate the stu accordingly.	dents to understand harmony at all the levels of human living	g, and	live		
	lents in applying the understanding of harmony in existence in	n thei	r pro	ofessi	ion
and lead an ethical l			•		
MODULE I	Course Introduction - Need, Basic Guidelines, Content		9		
	and Process for				
	Value Education				
	eed, basic guidelines, content and process for Value Education				
	at is it? - its content and process; 'Natural Acceptance' and Exp	erien	tial		
	hanism for self-exploration				
	ess and Prosperity- A look at basic Human Aspirations				
	, Relationship and Physical Facilities- the basic requirements f	or ful	fillm	ent	
	human being with their correct priority				
	piness and Prosperity correctly- A critical appraisal of the curre				
levels	above human aspirations: understanding and living in harmon	y at v	ariot	IS	
Suggested Activities:					
66	ns to discuss natural acceptance in human being as the innate a	occent	ance		
•	ibility (living in relationship, harmony and co-existence) rathe	-			
U 1	based on liking-disliking	i ulai	1 45		
MODULE II	Understanding Harmony in the Human Being - Harmony in Myself		9		
1. Understanding hum	an being as a co-existence of the sentient 'I' and the material 'Bo	odv'			
	leeds of Self ('I') and 'Body'-Sukh and Suvidha (happiness and p		al fac	rilitv`)
	Body as an instrument of 'I' (I being the doer, seer and enjoyer)			,	,
6	haracteristics and activities of 'I' and harmony in 'I'				
	armony of I with the Body: Sanyam(control) and Swasthya (He	ealth)	;		
	ysical needs, meaning of Prosperity in detail	-			
6. Programs to ensure					
Suggested Activities:					
-	ns to discuss the role others have played in making material go				
	fying from one's own life. Differentiate between prosperity and				
	programs for ensuring health vs dealing with disease.	-			
MODULE III	Understanding Harmony in the Family and Society-		9		
	Harmony in Human-Human Relationship				

	rmony in the Family- the basic unit of human interaction									
	es in human-human relationship; meaning of Nyaya (justice) an	d								
program for its fulfillm	ent to ensure Ubhay-tripti (mutual happiness)									
3. Trust (Vishwas) and Respect (Samman) as the foundational values of relationship										
4. Understanding the meaning of Vishwas; Difference between intention and competence										
5. Understanding the meaning of Samman (respect), Difference between respect and										
differentiation; the oth	er salient values in relationship									
6. Understanding the h	armony in the society (society being an extension of family):									
Samadhan, Samridhi, A	bhay, Sah-astitva (Resolution, Prosperity, fearlessness, co-exis	tence)								
as comprehensive Hun	nan Goals									
Suggested Activities:										
Include practice sessio	ns to reflect on relationships in family, hostel and institute as e	xtended								
family, real life exampl	es, teacher-student relationship, goal of education etc. Gratitud	e as a								
universal value in relat	ionships. Discuss scenarios. Elicit examples from students' live	s. Pay a								
visit to the old age hon	ne / orphanage / physically & mentally challenged asylum and s	support								
them in catering their	needs to ensure mutual happiness									
MODULE IV	Understanding Harmony in the Nature and Existence –	9								
	Whole existence as Coexistence									
1. Understanding the	harmony in the Nature									
2. Interconnectedness	s and mutual fulfillment among the four orders of nature- re-	cyclability								
and self-regulation in	nature									
3. Understanding Ex	istence as Coexistence (Sah-astitva) of mutually interacting	units in								
allpervasive space										
4. Holistic perception	of harmony at all levels of existence									
Suggested Activities	:									
	ons to discuss human beings as cause of imbalance in nature									
can be used), pollutio	n, depletion of resources and role of technology etc. Submit a	a video								
documentary highligh	iting the ways of humans creating an imbalance in nature an	d ways to								
prevent it.										
MODULE V	Implications of the above Holistic Understanding of	9								
	Harmony on Professional Ethics									
1. Natural acceptance										
2. Definitiveness of Et										
	c Education, Humanistic Constitution and Humanistic Unive	rsal Order								
4. Competence in Prot										
	e professional competence for augmenting universal human									
	he scope and characteristics of people-friendly and eco-frien	ndly								
	echnologies and management models									
	cal holistic technologies, management models and productio	on systems								
	on from the present state to Universal Human Order									
Suggested Activities										
-	n session on identifying human inventions that are non ecofi	-								
brainstorming to com	e up with ecofriendly production systems or ecofriendly alte									
	Total Periods	45								
Suggestive Assessme	nt Method FAT (20 Marks) ESE (6	0 Marks)								
CAT (30 Marks)		-								
L										

Written Assessment	Activity / Presentation in the classroom /	Written Examination
MCQ / written exam	on or off campus activities	

Course Outcomes

Upon completion of the course, the students will be able to:

CO1 - Understand the significance of value inputs in a classroom and start applying them in their life and profession

 ${\bf CO2}$ - Distinguish between values and skills, happiness and accumulation of physical

facilities, the Self and the Body, Intention and Competence of an individual, etc.

CO3 - Understand the value of harmonious relationship based on trust and respect in their life and profession

CO4 - Understand the role of a human being in ensuring harmony in society and nature.

CO5 - Distinguish between ethical and unethical practices, and start working out the strategy

to actualize a harmonious environment wherever they work.

Text Books

1. R R Gaur, R Sangal, G P Bagaria, 2009, A Foundation Course in Human Values and Professional Ethics.

Reference Books

1. Ivan Illich, 1974, Energy & Equity, The Trinity Press, Worcester, and Harper Collins, USA

2. E.F. Schumacher, 1973, Small is Beautiful: a study of economics as if people mattered, Blond & Briggs, Britain.

3. Sussan George, 1976, How the Other Half Dies, Penguin Press. Reprinted 1986, 1991

4. Donella H. Meadows, Dennis L. Meadows, Jorgen Randers, William W. Behrens III, 1972, Limits to Growth – Club of Rome's report, Universe Books.

5. A Nagraj, 1998, JeevanVidyaEkParichay, Divya Path Sansthan, Amarkantak

PSO1 PSO2 CO PO1 PO2 PO3 **PO4** PO5 **PO6 PO7 PO8 PO9 PO10** PO11 PO12 3 1 2 3 3 3 3 4 2 5 3 2

CO Vs PO Mapping and CO Vs PSO Mapping

SUGGESTED COURSE LEVEL ASSESSMENT QUESTIONS:

COURSE OUTCOME 1 (CO 1) : Need, Basic Guidelines, Content and Process for Value Education

1) Explain the process of value education.

2) Illustrate the content of value education.

3) What should be the content of value education to make it complete? How do values relate to our day to day living?

4) Explain the content of self – exploration?

5) "Mutual fulfilment in human relationships is something we want, we aspire for." Explain

6) What is value education? Why is there a need for value education?

7) How does value education help in fulfilling one's aspirations?

8) What are the basic guidelines for value education?

9) Write a short note on the need for value education in today's scenario.

10)Values and skill complement each other. Elaborate.

COURSE OUTCOME 2 (CO 2) : Understanding Harmony in the Human Being -Harmony in Myself

1) Distinguish between Sukh and Suvidha in detail taking needs of yourself as an example

2) How can we ensure harmony in self ('I')?

3) The needs of the self are qualitative. Illustrate.

4) 'The need for physical facilities is temporary' – explain the meaning of this statement with any two examples.

5) Do you think that human beings are a sum-total of sentiments and physical aspects, the 'self' and the 'body'? Explain your answer using examples.

6) 'Human being is the co-existence of the Self and the Body' – elaborate on this statement.

7) Explain how activities in 'I' are continuous.

8) "I am the seer, doer and enjoyer. The body is my instrument" – Explain.

9) Explain the relation between the self and the body. What is the responsibility of the self towards the body?

10)Define Sanyam and Swasthya. How are they helpful in keeping harmony between self and body?

COURSE OUTCOME 3 (CO 3) :Understanding Harmony in the Family and Society-Harmony in Human-Human Relationship

1) Define trust. or How is 'trust' the foundation value of relationships?

2) Define 'affection'. or How does affection lead to harmony in the family?

3) How can you say that love is the complete value?

4) What is the meaning of justice in human relationships? How does it follow from family to world family?

5) 'Discrimination leads to acrimony in relationships'. Explain. What problems are created when we discriminate?

6) What values are necessary in human relationships? Explain each briefly.

7) What is the basis of 'respect' for a human being? Do you see that other human beings are also similar to you? Explain.

8) Explain the comprehensive human goal. How does fearlessness follow from right understanding and prosperity?

9) Critically examine the state of society today in terms of fulfillment of comprehensive human goals.

10)What is the comprehensive human goal? Explain how this is conducive to sustainable happiness and prosperity for all.

COURSE OUTCOME 4 (CO 4) : Understanding Harmony in the Nature and Existence – Whole existence as Coexistence

1) What is sanskaar? Explain its effects or the conformance of the human order.

2) Explain the harmony in nature

3) Define harmony in nature and how you will create it. Explain with examples.

4) What are the four orders of nature? Briefly explain them.

5) Present the difference and similarity between a human being and an animal. Give examples to support your answer.

6) "Other than human order, the three orders are mutually fulfilling to each other". Explain with examples.

7) 'Existence is coexistence'. Give your opinion.

8) How is the activity in human order different from that of animal and plant order?

9) Explain the concept of holistic perception of harmony in existence.

10)Explain how there is recyclability and self regulation in nature.

COURSE OUTCOME 5 (CO 5) : Implications of the above Holistic Understanding of Harmony on Professional Ethics.

1) How does right understanding provide the basis for ethical human conduct? Give two examples.

2) What is ethical human conduct? Explain in terms of values, policies and character with appropriate examples.

3) What do you understand about the definitiveness of ethical human conduct? Why is this definiteness desirable?

4) Describe briefly the criteria for evaluation of holistic technology. Support your answer with an example.

5) Give a critical review of the current management models in the profession.

6) Elaborate on the meaning of swatwa (innateness), swatantrata (self organization) and swarajya (self expression). How are they related?

7) What do you mean by professional ethics?

8) What do you understand by competence in professional ethics? Give two examples of its implications in industry.

9) What are the implications of value based living at all four levels of living? Explain.

10)What is utility value and artistic value? How are both important in human life? Explain with example

21PT3903	903 SOFT SKILLS- APTITUDE II		L	Т	Р	С		
						1		
	es for the course							
Basic M	laths							
Objectives								
practic • Expose	es. the undergraduate	students to solve aptitude problems u students to critique and evaluate quant stical, and quantitative information.	-					
UNIT I	,	MODULE I			6			
	nd distance, Time a	nd work, Problems on Trains			-			
UNIT II		MODULE II			6			
_	Relations. Number 1	Puzzles, Logical Puzzles.			<u> </u>			
UNIT III	_,	MODULE III			6			
	u Svllogisms. Problem	is involving Coding and Decoding meth	nods Elen		-	ora.		
Progression.					,8	,		
UNIT IV		MODULE IV			6			
Permutation	and combination, F	Probability, Geometry, Calendar						
UNIT V	,	MODULE V		6				
Boats and St	reams, Races. Data	interpretation, Data sufficiency.						
	·	• •			-			
		Total Perio	ods	3	80			
	ssessment Metho			.				
		Continuous Assessment Test -2	Model E	larks)				
	(30 Marks)	(30 Marks) MULTIPLE CHOICE QUESTIONS	MULTIF		OICE			
MULTIFLE CH	UICE QUESTIONS	MOLTIFLE CHOICE QUESTIONS	QUESTI		UICE			
Outcomes								
Upon complet	ion of the course, t	he students will be able to:						
CO2: Analyse the CO3: Analyse Elementary alg CO4: Solve the DCO5: Solve the	ne problems on Cloc the Concepts on ebra and Progressio problems on Permu	ne, Speed and distance, Time and work a ks, Blood Relations, Number Puzzles, Lo Syllogisms, Problems involving Codin on tation and combination, Probability, Ge and Streams, Races. Data interpretation	ogical Puz 1g and I ometry a	zzles. Decodi nd Cale	ng me endar			
Text Books								
Chand Publicat 2. Abhijit Guha Publications.	ions. 1, Quantitative Apti	pproach to Verbal and Non Verbal Re tude for Competitive Examinations, Fo	_					
Reference Boo		titudo for Compositivo Francisco di c	aita ah D	hl:'	one D	-н Т ь- ^ј		
I. U. Mohan Ra India.	ao, Quantitative Ap	titude for Competitive Examinations, S	citech Pt	idiicati	ons Pi	it Ltd,		
	tar, The Pearson G	uide to Quantitative Aptitude for Comp	etitive E	xamina	ations.	Third		

Edition, Pearson Education Pvt Ltd, India, 2016.

3. Arun Sharma, How to prepare for Logical Reasoning for CAT & other Management Exams, Fifth Edition, Mc Graw Hill Publications.

4. Jaikishan and Premkishan, How to Crack Test of Reasoning in all Competitive Examinations, Revised Edition, Arihant Publications.

Web Resources

1. https://pdf.bankexamstoday.com/raman_files/Quant%20Formula.pdf

2. https://ugcportal.com/raman-files/QT-TRICKS.pdf

3. https://www.javatpoint.com/aptitude/quantitative#speed-and-distance

4. https://www.indiabix.com/aptitude/questions-and-answers/

CO Vs PO Mapping

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
1	2	1										2
2	2	1										2
3	3	1										2
4	3	1										2
5	2	1										3

COURSE CONTENT AND SCHEDULE

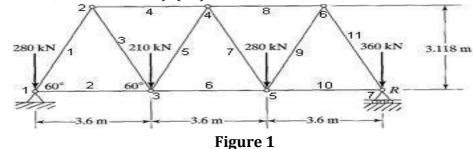
S.NO	ΤΟΡΙϹ	NO OF HOURS REQUIRED										
	UNIT I – MODULE I											
1	Time, Speed and distance	2										
2	Time and work	2										
3	Problems on Trains	2										
	UNIT II – MODULE II											
1	Clocks	2										
2	Blood Relations	1										
3	Number Puzzles	2										
4	Logical Puzzles	1										
	UNIT-III MODULE III											
1	Concepts on Syllogisms	2										
2	Problems involving Coding methods	1										
3	Problems involving Decoding methods	1										
4	Elementary algebra	1										
5	Progression	1										
	UNIT-IV MODULE IV											
1	Permutation and combination	2										
2	Probability	1										

3	Geometry	1
4	Calendar	2
	UNIT-V MODULI	E V
1	Boats and Streams	1
2	Races	1
3	Data interpretation	2
4	Data sufficiency	2

21ME6611	FINITE ELEMENT ANALYSIS LABORATORY	L	Τ	Р	С
		0	0	4	2
	s for the course				
	lge in Design the component in CAD software.				
Objectives	lge in Strength of materials, Engineering Mechanics, Thermody	nami	cs.		
 To give Analyz Analyz Analyz Analyz Analyz Analyz 	e exposure to software tools needed to analyze engineering pro ing the force, stress, deflection in mechanical components. ing thermal stress and heat transfer in mechanical component ing the vibration behaviour for mechanical components. ing the modal, harmonic, and transient concepts in mechanical	S.		nts.	
	ing the fluid flow parameters for pipes, nozzle, etc.				
S. NO	LIST OF EXPERIMENTS			CO	
	STATIC STRUCTURAL ANALYSIS			204	
1.	Force and Stress analysis of Trusses		(201	
2.	Stress and deflection analysis in beams with different support conditions.		(CO1	
3.	Stress analysis of flat plates with a circular hole.		(201	
4.	Stress analysis of axi – symmetric components I section, Pressure vessel.		(201	
5.	Stress analysis of a bicycle frame		(201	
6.	Buckling analysis of columns		(201	
	MODAL ANALYSIS				
7.	Modal analysis of Beams		(202	
8.	Modal analysis of a Centrifugal pump base frame		(202	
	THERMALANALYSIS				
9.	Thermal stress analysis of cylindrical shells.		(203	
10.	Thermal stress analysis of a Plate.		(203	
11.	Conductive Heat Transfer Analysis of a plate		(203	
12.	Convective Heat Transfer Analysis of a plate		(203	
	VIBRATION ANALYSIS				
13.	Vibration analysis of spring-mass systems.		(204	
14.	Harmonic analysis of simple systems.		(204	
15.	Transient analysis of simple systems.		(204	
	FLUID FLOW ANALYSIS				
16.	Fluid flow analysis of pipes		(205	
		1			

17.	Fluid flow analysis of	nozzle		C05
18.	Fluid flow analysis of	diffuser		C05
19.	Couple-field analysis			C05
		Total Pe	eriods	45
Suggestive	Assessment Methods	100011		10
	s Assessment Methods		End Semes	ster Exams
	(60 Marks)		(40 M	arks)
Lab Experi	ments 40	PF	RACTICAL EX.	AM
	B WITH PROJECT 20			
Course Out	tcomes			
Upon comp	oletion of the course, th	e students will be able to:		
		tion in mechanical components.	• • •	
		mechanical components. (Analy		
		t transfer in mechanical compon	ents. (Analyz	e)
		nical components. (Analyze)		
CO5: Analy:	ze the fluid flow for mech	anical components. (Analyze)		
Laboratory	/ Requirements for a ba	tch of 30 students		
Finite Elem	ent Analysis Software, Co	mputers with necessary accessor	ries.	
	ded FEA software: FEMA			
Computers	Requirements:			
1. Intel i5 co	ore due processor with 40	GB ram with 500GB hard disk – 3	0 Nos.	
2. Laser Pri				
	_			
Text Books	nter – 1 No			
Text Books	nter – 1 No S	e Element Analysis 2008, Finite T		
Text Books	nter – 1 No 5 S.Gokhale, Practical Finit	re Element Analysis 2008, Finite T		
Text Books 1. Nitin Web Resou	nter – 1 No 5 S.Gokhale, Practical Finit I rces	e Element Analysis 2008, Finite T .edu/courses-and-programs/intr	To Infinite	nd-ansvs-

2. https://www.femto.eu/stories/femap-intro-videos/


CO Vs PO Mapping and CO Vs PSO Mapping

	r		r	1		r	1	r						
со	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
1	2			2	1					1	1	1	2	1
2	2			2	1					1	1	1	2	1
3	2			2	1					1	1	1	2	1
4	2			2	1					1	1	1	2	1
5	2			2	1					1	1	1	2	1

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Analyze the force, stress, deflection in mechanical components. (Analyze)

1. Determine the nodal deflections, reaction forces, and stress for the truss system shown in figure 1 (E = 200 GPa, A = 3250 mm2). (An)

2. Determine the nodal deflections, reaction forces, and stress for the cantilever beam shown in Figure 2 and find the maximum deflection. Assume rectangular c/s area of 0.2 m * 0.3 m, Young's modulus of 210 GPa, Poisson's ratio 0.27.(An)

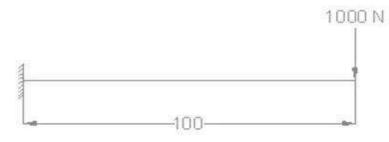


Figure 2

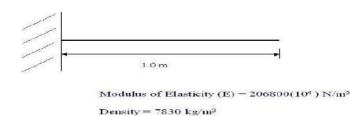
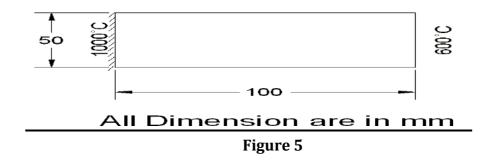
COURSE OUTCOME 2: Modal analysis is performed on mechanical components. (Analyze)

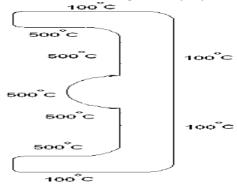
1. To determine the amplitude and frequency of a given 2D components as shown in Figure 3.(An)

All Dimension are in mm Figure 3

2.

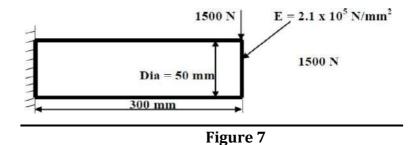
To determine the amplitude and frequency of a given beam components as shown in (Figure 4) using Finite Element Analysis based ANSYS/FEMAP software. Take Young's modulus 2.068e11, Poisson's Ratio: 0.3. (An)


Figure 4

COURSE OUTCOME 3: Analyze thermal stress and heat transfer in mechanical components. (Analyze)

1. To determine the Thermal deformations at various points of a 2D component due to the Temperature load applied over it is shown below in figure 5..(An)


2. To determine the thermal deformations at various points of a shell component due to the temperature load applied it. It is shown below in Figure 6. (An)

COURSE OUTCOME 4: Analyze the vibration of mechanical components. (Analyze)

Consider the bar shown in the Figure 7 below. Conduct a harmonic response test by applying a cyclic load (harmonic) at the end of the bar. The frequency of the load will be varied from 1 - 100 Hz. Modulus of elasticity = 200 GPa, Poisson's ratio = 0.3, Density = 7800 Kg/m³. .(An)

COURSE OUTCOME 5: Analyze the fluid flow for mechanical components. (Analyze)

1. The problem to be considered is shown schematically in Figure 8. A cold fluid at 293.15 K flows into the pipe through a large inlet, and mixes with a warmer fluid at 313.15 K that enters through a smaller inlet located at the elbow. The pipe dimensions, the fluid properties and boundary conditions are given in SI units. **Note:** Since the geometry of the mixing elbow is symmetric, only half of the elbow needs to be modeled. (An)

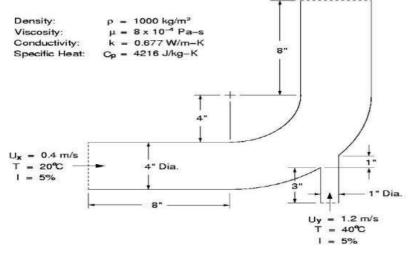


Figure 8

21ME6612	Design and Fabrication Project	L	Т	Р	С
		0	0	4	2
Prerequisite	s for the course	v	v	-	
All courses					
Objectives					
-	evelop skills to formulate a technical project.				
	se new tools, algorithms and techniques required to carry ou	t the	nroie	rte	
	evelop prototype/model/simulation relevant to the study.		, projet		
	OR REVIEW AND EVALUATION				
comprehensiv the supervisor review comm at the end of	s / prototype design / modeling and simulation or a core project report should be prepared after completing the work. The progress of the project is evaluated based on a minimulate may be constituted by the Head of the Department. A pathe semester. The developed work is evaluated based on or t jointly by external and internal examiners constituted Total Periods	ork t im of rojec ral pi	o the s f three t repor resenta y the	atisfac reviev rt is re ation a	tion of vs. The quired nd the
Course Outco				1 2	
	tion of the course, the students will be able to:				
	n innovate or creative idea / concept / solution to a problem	(Ap	nlv)		
-	letailed literature survey related to concept / idea (Underst	· ·			
	nt basic prototype to demonstrate the concept. (Analyse)	,			
	nd evaluate the functionality of the developed mechanism (A	-	yse)		
	rate the project work in the form of oral presentation, report	and			
technical/pate	nt/paper publications. (Apply)				
CO Vs PO Maj	oping and CO Vs PSO Mapping				

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	2	2	2	1	1	1	1	1	1	1	1	3	3	3
CO 2	2	2	2	1	1	1	1	1	1	1	1	3	3	3
CO 3	2	2	2	1	1	1	1	1	1	1	1	3	3	3
CO 4	2	2	2	1	1	1	1	1	1	1	1	3	3	3
CO 5	2	2	2	1	1	1	1	1	1	1	1	3	3	3

SEMESTER VII

ncis Xavier Engi	neering College Dept of Mechanical Engineering R2021/Curriculum a 	_	T	Р	С
21HS7101	TOTAL QUALITY MANAGEMENT	L			
Preamble		3	0	0	3
This course is c and collaborati satisfaction, an	rucial for engineering students. It promotes excellence, continu on, which strive to integrate technical skills with quality princi d organizational effectiveness. TQM prepares the students for in	ples, o	custo	omer	
•	for the course				
	uality concepts, communication abilities, and a commitment to	cont	inuo	us lea	rning
Objectives					
• To unde	rstand the need for quality and its evolution over time.				
• To und	erstand the quality principles and its performance.				
• To equip	with a thorough understanding of quality management tools a	and te	echn	iques.	
	le them to effectively implement these tools and techniques to nent practices.	optin	nize	qualit	У
To unde	rstand the standards, and benefits of ISO registration, and prov red standards.	ride a	n ov	erviev	v of
UNIT I	INTRODUCTION			9	
Crosby - Barrie complaints, Cus UNIT II Leadership - involvement -	llity - Basic concepts of TQM - TQM Framework - Contributions rs to TQM - Customer focus - Customer orientation, Customer s tomer retention. TQM PRINCIPLES Quality Statements, Strategic quality planning, Quality O Motivation, Empowerment, Team and Teamwork, Recog praisal - Continuous process improvement - PDCA cycle, 5S, Ka	satisf Counc gnitio	actic cils n a	on, Cus 9 - Em	tome ploye
UNIT III	TQM TOOLS AND TECHNIQUES I			9	
	itional tools of quality - New management tools - Six sigma: Co	ncen	ts. N	-	امامع
applications to	manufacturing, service sector including IT - Bench marking - R process - FMEA - Stages, Types.	•			0.
UNIT IV	TQM TOOLS AND TECHNIQUES II			8	
	· Cost of Quality - Quality Function Deployment (QFD) - Taguch	i qua	lity	loss fu	nctio
	ts, improvement needs - Performance measures.	-			
	ts, improvement needs - Performance measures. QUALITY MANAGEMENT SYSTEM			10	
- TPM - Concep UNIT V	-	ı—IS			ries (
- TPM - Concep UNIT V Introduction—	QUALITY MANAGEMENT SYSTEM		0 90	00 Se	
- TPM - Concep UNIT V Introduction— Standards - I	QUALITY MANAGEMENT SYSTEM How are standards developed? - Benefits of ISO Registration	n—In	0 90 Itern	00 Se al Au	dits-
- TPM - Concep UNIT V Introduction— Standards - I Registration. E 14001 - Benef	QUALITY MANAGEMENT SYSTEM How are standards developed? - Benefits of ISO Registration SO 9001 Requirements—Implementation— Documentation nvironmental Management System: ISO 14000 Series Standa its of EMS. ISO 45001 and related standards — Occupation	n—In rds— nal he	0 90 Itern -Con ealth	00 Se al Au cepts and	dits- of IS safet
- TPM - Concep UNIT V Introduction— Standards - I Registration. E 14001 - Benef ISO/IEC 27000	QUALITY MANAGEMENT SYSTEM How are standards developed? - Benefits of ISO Registration SO 9001 Requirements—Implementation— Documentation nvironmental Management System: ISO 14000 Series Standa its of EMS. ISO 45001 and related standards — Occupation family — Information security management - ISO 31000 - Ri	n—In rds— nal he	0 90 Itern -Con ealth	00 Se al Au cepts and	dits- of IS safet
- TPM - Concep UNIT V Introduction— Standards - I Registration. E 14001 - Benef ISO/IEC 27000	QUALITY MANAGEMENT SYSTEM How are standards developed? - Benefits of ISO Registration SO 9001 Requirements—Implementation— Documentation nvironmental Management System: ISO 14000 Series Standa its of EMS. ISO 45001 and related standards — Occupation family — Information security management - ISO 31000 - Ri- responsibility - ISO 20121 - Sustainable events	n—In rds— nal he isk m	0 90 Itern -Con ealth anag	00 Se al Au cepts and gemen	dits- of IS safet
- TPM - Concep UNIT V Introduction— Standards - I Registration. E 14001 - Benef ISO/IEC 27000 26000 - Social 1	QUALITY MANAGEMENT SYSTEM How are standards developed? - Benefits of ISO Registration SO 9001 Requirements—Implementation— Documentation nvironmental Management System: ISO 14000 Series Standa its of EMS. ISO 45001 and related standards — Occupation family — Information security management - ISO 31000 - Ri	n—In rds— nal he isk m	0 90 Itern -Con ealth anag	00 Se al Au cepts and	dits– of IS safet <u>y</u>

1.ASSIGNMENT 2. ONLINE QUIZZES 3.PROBLEM-SOLVING ACTIVITIES WRITTEN TEST

-	_
Course	Outcomes

WRITTEN TEST

Upon completion of the course, the students will be able to:

1 Familiarized with the basic concept and framework of Total Quality management.

2 Understand the contribution of Quality Gurus in TQM Journey

- **3** Provide a comprehensive understanding of the traditional tools and equipping with the knowledge and skills to drive quality improvement initiatives effectively.
- **4** Explain the various types of Techniques and foster their ability to drive organizational improvement and enhance quality management practices.
- **5** Apply various Quality Systems and Auditing on implementation of TQM.

Text Books

- Dale H.Besterfiled, Carol B.Michna,Glen H. Besterfield,Mary B.Sacre,Hemant Urdhwareshe and Rashmi Urdhwareshe, "Total Quality Management", Pearson Education Asia, Revised Third Edition, Indian Reprint, Sixth Impression, 2013.
- 2. Poornima M., Pearson publication, rd Edition, Total Quality Management 2017

Reference Books

- 1. Subburaj Ramasamy, Total Quality Management, Mc Graw Hill Publications
- Sunil Luthra, Dixit Garg, Ashish Agarwal, Sachin K. Mangla, Total Quality Management (TQM): Principles, Methods, and Applications, Publisher: CRC Press, 2020; ISBN 1000194493,
- 3. D.R. Kiran, Total Quality Management: Key Concepts and Case Studies, Publisher Butterworth-Heinemann, 2016, ISBN 0128110368,
- W. Edwards Deming, The Essential Deming: Leadership Principles from the Father of Quality, Editors Joyce Orsini, Diana Deming Cahill, Publisher: McGraw Hill Professional, 2012, ISBN: 0071790217, 9780071790215

Web Resources

- 1. <u>NPTEL :: Management NOC: Total Quality Management I</u>
- 2. http://www.notesengine.com/dept/cse/7sem/anna-university-7-sem-cse-notes.html
- 3. <u>http://www.vidyarthiplus.com/vp/Thread-GE2022-Total-Quality-Management-Lecture-</u> Notes- Lonely-Edition
- 4. http://freshupdates.in/lecture-notes/anna-university-total-quality-management-lecture-notes/
- 5. http://www.iannauniversity.com/2012/06/ge2022-total-quality-management-lecture.html
- 6. https://www.iso.org/popular-standards.html

Francis Xavier Engineering College| Dept of Mechanical Engineering| R2021/Curriculum and Syllabi CO Vs PO Mapping and CO Vs PSO Mapping

		F F	-8 unu				8							
со	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
C01		3		2					3					3
CO2						3			3	2	3			3
CO3	3	3		3		2								3
CO4		3		3						2				3
C05	1	3		3		3		2	3	3	3	3		3

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Students will be able to familiarized with the basic concept and framework of Total Quality management.

- 1. Describe Deming's philosophy for quality management.
- 2. Elaborate on TQM framework and importance of each element.

COURSE OUTCOME 2: Students will be able to Understand the contribution of Quality Gurus in TQM Journey

- 1. Briefly explain about recognition and reward system along with its effects.
- 2. Enumerate the Japanese 5S as applicable to services and manufacturing company.

COURSE OUTCOME 3: Students will be able to provide a comprehensive understanding of the traditional tools and equipping with the knowledge and skills to drive quality improvement initiatives effectively.

- 1. Evaluate the purpose and methodology of construction of an Ishikawa diagram with an example.
- 2. Analyze the three main types of benchmarking. In what circumstances would each type be more appropriate?

COURSE OUTCOME 4: Students will be able to explain the various types of Techniques and foster their ability to drive organizational improvement and enhance quality management practices.

- 1. Draw the house of quality for a product of your choice and describe the QFD methodology.
- 2. List and explain the various measures of performance in evaluating the success of an organization.

COURSE OUTCOME 5: Students will be able to apply various Quality Systems and Auditing on implementation of TQM.

- 1. Discuss the various elements of ISO 9000-2000 quality system.
- 2. Estimate the role of audit checklist for quality management system.

21ME7911	Technical Comprehension	L	Т	Р	С
	-	0	0	4	2
Prerequisites	for the course				
All Courses					
Objectives					
	ourage the students to comprehend the knowledge acquired from Semester of B.E. Degree Course through periodic exercise	om th	e firs	st Sen	nester

Suggestive Assessment Methods

Students will be assessed 100% internally through weekly test with objective type questions on all the subject related topics

Outcomes

Upon completion of the course, the students will be able to:

CO1: Recollect the knowledge acquired during the earlier semesters **(Remember)**

CO2: Apply fundamental principle of mechanical engineering concepts to solve real life problems. **(Apply)**

CO3: Present technical topics and discuss about them. (Understand)

CO4: Interpret experimental data with relevance **(Apply)**

CO5: Simplify the decision-making skills **(Understand)**

CO Vs PO Mapping and CO Vs PSO Mapping

CO	PO	P01	P01	P01	PSO	PSO								
CO	1	2	3	4	5	6	7	8	9	0	1	2	1	2
C01	3	3	3			2						1		3
CO2	3	3	3			2						1		3
CO3	2					2				3		1		3
CO4	3		2	2										3
CO5	3							2						3

SEMESTER VIII

0 e real tin cal and	e real	l tim		
al and				ect.
al and				ect.
al and				ect.
al and				ect.
	cal a	ind	experi	
				menta
(l)				
1 1				
the dep	the d	lepa	rtment	: unde
e Fabric	e Fab	brica	ated pr	oduct
'he proc	'he p	orodu	uct sho	ould b
oncept.	oncer	pt. It	t shoul	d hav
be. The j	be. Th	he pi	rogres	s of th
w comr		_	-	
ed at t	ed a	it th	e end	of th
e projec	e proj	ject	report	jointl
ent.	ent.			
eriment	erime	enta	tion (C	reate
in the s	ain th	ne so	olution	of th
	_	_		
alyze)		-		
				et an
IIIalion	man	1011,	repor	t all
PO1	PC	01	PSO	PSC
2	7	2	1	2
-	4	4	1	4
3			3	3
	3	3		
3	3	3 3	3	3
3	3	3 3 3	3 3	3
erin iin alyz uct	erin ain alyz uct	n tl	nenta the so ze) (Ana	nentation (C the solution

PROFESSIONAL ELECTIVE I

21ME5701							
Dronoquicitor	for the course	HYDRAULICS AND PNEUMATICS		3	0	0	3
	for the course						
	cs and Machinery						
Objectives						<u> </u>	
-	rovide the knowled nufacturing Indust	lge on the application of fluid powe ries.	er in proc	ess, c	onst	ructio	n
	evelop a measurab on of fluid power c	le degree of competence in the dest ircuits	ign, const	tructi	on ai	nd	
UNIT I FUNDAMENTALS OFFLUID POWER SYSTEMS 9							
its Application	– Losses in Pipes	vantages and Applications– Fluid 1 – Valves and Fittings– Pumping T - Pump Performance – Characteris	heory – I	Pump	Clas	sifica	tion –
UNIT II	HYDRAULI	C ACTUATORS AND COMPONENT	'S			9	
Hydraulic Act	Actuators: Cylinders - Single acting, Double acting special cylinders like tander						inden,
-	, Telescopic, Cushioning mechanism–Direction control, Flow control and Pressure contro						
valves-Types,	Construction and (Operation-Applications –Reservoir	s, Accum	nulato	rs, I	ntens	ifiers,
Pressure Switc	hes-Classification	and functions- Applications–Fluid F	Power AN	ISI Sy	mbo	l.	
UNIT III							
Industrial hydr	raulic circuits- Reg	enerative, Pump Unloading, Doubl	e-pump,	Press	sure	Inten	sifier,
Air- over oil,Se	equence, Reciproca	ation, Synchronization, Fail-safe, S	peed con	trol,	Hydr	ostat	ic
		ervo system, Mechanical Hydraulic	-		-		
UNIT IV		FIC SYSTEMS AND COMPONENTS	_			9	
Pneumatic Cor		ties of air – Compressors – Filter		tor. L	ubri	cator	– Air
		ves, pneumatic actuators. Design o					
	•	ree Cylinder Circuits) – Electro Pn					
-		Fluid Logic Devices and pneumatic		-			
UNIT V		SHOOTING AND APPLICATIONS				9	
		ce, Trouble Shooting and Remedie	s in Hvdi	raulic	and	Pneu	matic
		cuits for Drilling, Planning, Shaping	-				
	-	neumatic circuits for Pick and Plac	-	-	-		
	-	ow-costAutomation – Hydraulic an					25
			Periods	utic p		45	
Suggestive Ac	sessment Method		critus			10	
	ssessment Test	Formative Assessment Test	End Se	mest	er F	zame	
(20 Mar		(20 Marks)	(60 Ma		L/		
CAT 1 – 10 MA	2	1.Assignment	1. Desci		ρ () ι ι	estion	15
CAT 2 – 10 MA		2. Online Quizzes	1. Dest	ipuv	c qu	5001	13
$\Delta m = 10 MA$		3.Problem-Solving Activities					
DESCRIPTIVE	OUFSTIONS	2 Problem-Solving Activities					

Upon completion of the course, the students will be able to:

CO1 Describe the basics of fluid power system and its applications in industry (Understand)CO2 Identify appropriate actuators and control valves for fluid power applications (Understand)CO3 Illustrate a hydraulic circuit for real time applications (Apply)

CO4 Demonstrate the concepts of pneumatic system and its logic circuits (**Apply**)

CO5 Examine the troubleshooting of fluid power circuits for engineering applications (**Apply**)

Text Books

- 1. Anthony Esposito, "Fluid Power with Applications", 7th Edition, Pearson Higher Education, New York, 2015.
- 2. Majumdar S. R, "Pneumatic Systems Principles and Maintenance", 2nd Edition, Tata McGraw-Hill, New Delhi, 2015.

Reference Books

- 1. Majumdar, S.R , "Oil Hydraulic Systems: Principles and Maintenance", 28thEdition,McGraw-Hill, 2017.
- 2. James R.Daines, Hydraulics and Pneumatics, 2ndEdition, The Goodheart-Willcox Company,Inc., 2013.
- 3. Srinivasan. R, "Hydraulic and Pneumatic Control", IInd Edition, Tata McGraw Hill Education, 2012.

Web Resources

- 1. https://nptel.ac.in/courses/112106300
- 2. https://nptel.ac.in/courses/112105046

CO Vs PO Mapping and CO Vs PSO Mapping

С	PO	PO	PO	PO	PO	РО	PO	РО	PO	РО	РО	РО	PSO	PSO
0	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	2	2	2	2									3	
2	2	2	2	2									3	
3	2	2	2	2									3	
4	2	2	2	2									3	
5	2	2	2	2									3	

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Describe the basics of fluid power system and its applications in industry (Understand)

- 1. Differentiate between hydraulics and pneumatics. (R)
- 2. Explain the construction and working principle of radial piston pump with neat sketch. (U)

COURSE OUTCOME 2: Identify appropriate actuators and control valves for fluid power applications (Understand)

- 1. List the significance of directional control valves. (R)
- 2. Describe single acting cylinder and cylinder cushioning with a neat sketch (U)

COURSE OUTCOME 3: Illustrate a hydraulic circuit for real time applications (Apply)

- Differentiate between electro hydraulic servo valve and mechanical servo valves (R)
- 2. Discuss the hydrostatic transmission with suitable sketches and applications. (U)
- 3. Examine a hydraulic circuit for synchronizing two cylinder with flow control valves (A)

COURSE OUTCOME 4: Demonstrate the concepts of pneumatic system and its logic circuits (Apply)

- 1. List the basic components of pneumatic system. (R)
- 2. Explain the graphical symbol and Explain the construction and working principle of FRL Unit (U)
- 3. Examine a pneumatic circuit for the following sequence using cascade method A+B+B-A- where the + cylinder extraction and cylinder retraction (A)

COURSE OUTCOME 5: Examine the troubleshooting of fluid power circuits for engineering applications (Apply)

- 1. List the problems caused by the contaminants in the hydraulic system. (R)
- 2. Describe hydraulic and pneumatic power packs with suitable sketches and illustrations (U)
- 3. Examine a pneumatic circuit to actuate a shaping machine ram. Incorporate the following features in the circuit. (a) rapid tool approach (b) slow cutting (c) rapid tool retraction / return (A)

21ME5702	MECHANI	CAL BEHAVIOUR OF MATERIALS		L	Τ	Р	С
21ME3702	MECHANI	CAL BEHAVIOUR OF MATERIALS		3	0	0	3
Prerequisites	s for the course						
Engineering P	hysics, Engineering	Materials and Metallurgy					
Objectives							
• To	know the mechanic	cal behavior of both metallic and non-r	metalli	c mat	eria	ls un	der
diff	erent loading and to	emperature conditions.					
UNIT I	BASIC CON	ONCEPTS OF MATERIAL BEHAVIOR 9					
Elasticity in m	etals and polymers	– Strengthening mechanisms, work ha	ardenii	ıg, so	lid s	oluti	oning,
-		fect of temperature, strain and strain		-			-
-		v– Ductile, brittle transition in steel – H		-			
creep – Larson	n Miller parameter -	- Deformation and fracture mechanism	n maps				
UNIT II	BEHAV	IOUR UNDER DYNAMIC LOADS				9	
Stress intensi	ty factor and fractu	ıre toughness – Fatigue, low and hig	h cycle	e fatig	gue	test,	crack
initiation and	propagation mecha	gation mechanisms and Paris law Safe life, Stress life, strain-life and					
safe design ap	proaches -Effect of	surface and metallurgical parameters	on fati	gue.			
UNIT III	SE	SELECTION OF MATERIALS 9					
Motivation fo	or selection, cost	basis and service requirements -	Select	ion f	or	mech	anical
properties, str	rength, toughness, f	atigue and creep – Selection for surfac	ce dura	bility	v cor	rosic	n and
wear resistan						10510	manu
	ce – Relationship	between materials selection and pro	cessin	g - C			
materials sele		between materials selection and pro e to aero, auto, marine, machinery and		-	lase	stud	ies in
materials sele	ction with relevance			-	lase	stud	ies in
UNIT IV	ction with relevance MOD	e to aero, auto, marine, machinery and	nuclea	ar app	ase olica	stud tions 9	ies in s.
UNIT IV Dual phase ste	ction with relevance MOD eels, High strength l	e to aero, auto, marine, machinery and ERN METALLIC MATERIALS	nuclea	ar app ced pl	ase olica asti	stud tions 9 city (ies in s. TRIP)
UNIT IV Dual phase ste Steel, Maragir	ction with relevance MOD eels, High strength l ng steel, Nitrogen s	e to aero, auto, marine, machinery and ERN METALLIC MATERIALS ow alloy (HSLA) steel, Transformation	nuclea	ar app ced pl	ase olica asti	stud tions 9 city (ies in s. TRIP)
UNIT IV Dual phase ste Steel, Maragir	ction with relevance MOD eels, High strength l ng steel, Nitrogen s y alloys – Metallic gl	e to aero, auto, marine, machinery and ERN METALLIC MATERIALS ow alloy (HSLA) steel, Transformation steel – Intermetallics, Ni and Ti alum	nuclea	ar app ced pl	ase olica asti	stud tions 9 city (ies in s. TRIP)
UNIT IV Dual phase ste Steel, Maragir shape memory UNIT V	ction with relevance MOD eels, High strength l ng steel, Nitrogen s y alloys – Metallic gl CREE	e to aero, auto, marine, machinery and ERN METALLIC MATERIALS ow alloy (HSLA) steel, Transformation steel – Intermetallics, Ni and Ti alum lass and nano crystalline materials.	nuclea n induc	ed pl – sn	ase olica asti nart	stud tions 9 city (mate 9	ies in s. TRIP) erials,
UNIT IV Dual phase ste Steel, Maragir shape memory UNIT V Creep curve,	ction with relevance MOD eels, High strength l ng steel, Nitrogen s y alloys – Metallic gl CREE stages in creep cu	e to aero, auto, marine, machinery and ERN METALLIC MATERIALS ow alloy (HSLA) steel, Transformation steel – Intermetallics, Ni and Ti alum lass and nano crystalline materials. P BEHAVIOUR AND TESTING	nuclea n induc ninides	er app ed pl – sn	ase olica asti- nart g cr	stud tions 9 city (mate 9 reep,	ies in s. TRIP) erials, creep
UNIT IV Dual phase ste Steel, Maragir shape memory UNIT V Creep curve, mechanisms, r	ction with relevance MOD eels, High strength l ng steel, Nitrogen s y alloys – Metallic gl CREE stages in creep cu metallurgical factor	e to aero, auto, marine, machinery and ERN METALLIC MATERIALS ow alloy (HSLA) steel, Transformation steel – Intermetallics, Ni and Ti alum lass and nano crystalline materials. P BEHAVIOUR AND TESTING urve and explanation, structural cha	nuclea n induc ninides nges o oys, st	er app ed pl – sn during ress r	ase olica asti- nart g cr	stud tions 9 city (mate 9 eep, ure te	ies in s. TRIP) erials, creep esting,
UNIT IV Dual phase ste Steel, Maragir shape memory UNIT V Creep curve, mechanisms, r	ction with relevance MOD eels, High strength l ng steel, Nitrogen s y alloys – Metallic gl CREE stages in creep cu metallurgical factor machines, paramet	e to aero, auto, marine, machinery and ERN METALLIC MATERIALS ow alloy (HSLA) steel, Transformation steel – Intermetallics, Ni and Ti alum lass and nano crystalline materials. P BEHAVIOUR AND TESTING urve and explanation, structural cha s affecting creep, high temperature all	nuclea n induc ninides nges o oys, st	er app ed pl – sn during ress r	ase olica asti- nart g cr	stud tions 9 city (mate 9 eep, ure te	ies in s. TRIP) erials, creep esting,
UNIT IV Dual phase ste Steel, Maragin shape memory UNIT V Creep curve, mechanisms, n creep testing	ction with relevance MOD eels, High strength l ng steel, Nitrogen s y alloys – Metallic gl CREE stages in creep cu metallurgical factor machines, paramet	e to aero, auto, marine, machinery and ERN METALLIC MATERIALS ow alloy (HSLA) steel, Transformation steel – Intermetallics, Ni and Ti alum lass and nano crystalline materials. P BEHAVIOUR AND TESTING urve and explanation, structural cha s affecting creep, high temperature all	n induction n induction ninides nges of oys, str rmatio	er app ed pl – sn during ress r	ase blica asti nart g cr rupt cha	stud tions 9 city (mate 9 eep, ure te	ies in s. TRIP) erials, creep esting,
UNIT IV Dual phase ste Steel, Maragir shape memory UNIT V Creep curve, mechanisms, r creep testing according to F	ction with relevance MOD eels, High strength l ng steel, Nitrogen s y alloys – Metallic gl CREE stages in creep cu metallurgical factor machines, paramet	e to aero, auto, marine, machinery and ERN METALLIC MATERIALS ow alloy (HSLA) steel, Transformation steel – Intermetallics, Ni and Ti alum lass and nano crystalline materials. P BEHAVIOUR AND TESTING urve and explanation, structural cha s affecting creep, high temperature all setric methods of extrapolation. Defor	n induction n induction ninides nges of oys, str rmatio	er app ed pl – sn during ress r	ase blica asti nart g cr rupt cha	stud tions 9 city (mate 9 eep, ure te nism	ies in s. TRIP) erials, creep esting,
UNIT IV Dual phase ster Steel, Maragin shape memory UNIT V Creep curve, mechanisms, n creep testing according to F Suggestive As	ction with relevance MOD eels, High strength l ng steel, Nitrogen s y alloys – Metallic gl CREE stages in creep cu metallurgical factor machines, paramet rost/Ashby.	e to aero, auto, marine, machinery and ERN METALLIC MATERIALS ow alloy (HSLA) steel, Transformation steel – Intermetallics, Ni and Ti alum lass and nano crystalline materials. P BEHAVIOUR AND TESTING urve and explanation, structural cha s affecting creep, high temperature all setric methods of extrapolation. Defor Total Person S	n induction n induction ninides nges of oys, str rmatio	ar app ced pl – sn during ress r n Me	ase blica asti- nart g cr rupt char	stud tions 9 city (mate 9 reep, ure te nism 45	ies in s. TRIP) erials, creep esting, Maps
UNIT IV Dual phase ster Steel, Maragin shape memory UNIT V Creep curve, mechanisms, n creep testing according to F Suggestive As	ction with relevance MOD eels, High strength l ng steel, Nitrogen s y alloys – Metallic gl CREE stages in creep cu metallurgical factor machines, paramet rost/Ashby.	e to aero, auto, marine, machinery and ERN METALLIC MATERIALS ow alloy (HSLA) steel, Transformation steel – Intermetallics, Ni and Ti alum lass and nano crystalline materials. P BEHAVIOUR AND TESTING urve and explanation, structural cha s affecting creep, high temperature all tetric methods of extrapolation. Defor Total Person S Formative Assessment Test	induction n induction ninides ninges of oys, str rmatio	ar app ed pl - sn during ress r n Me	ase blica asti- nart g cr rupt char	stud tions 9 city (mate 9 reep, ure te nism 45	ies in s. TRIP) erials, creep esting, Maps
UNIT IV Dual phase ste Steel, Maragir shape memory UNIT V Creep curve, mechanisms, r creep testing according to F Suggestive As Continuous A	ction with relevance MOD eels, High strength I ng steel, Nitrogen s y alloys – Metallic gl CREE stages in creep cu metallurgical factor machines, paramet crost/Ashby. ssessment Method ssessment Test rks)	e to aero, auto, marine, machinery and ERN METALLIC MATERIALS ow alloy (HSLA) steel, Transformation steel – Intermetallics, Ni and Ti alum lass and nano crystalline materials. P BEHAVIOUR AND TESTING arve and explanation, structural cha s affecting creep, high temperature all cetric methods of extrapolation. Deformation Total Persons Formative Assessment Test (20 Marks) (6)	n induction n induction ninides noges of oys, str rmation iods nd Sen	ar app ced pl - sn during ress r n Me neste ks)	ase blica asti- nart g cr rupt char rupt	stud tions 9 city (mate 9 reep, ure te nism 45 cams	ies in s. TRIP) erials, creep esting, Maps
UNIT IV Dual phase ste Steel, Maragin shape memory UNIT V Creep curve, mechanisms, n creep testing according to F Suggestive As Continuous A (20 Mar	ction with relevance MOD eels, High strength I ng steel, Nitrogen s y alloys – Metallic gl CREE stages in creep cu metallurgical factor machines, paramet rost/Ashby. ssessment Method ssessment Test rks) ARKS	e to aero, auto, marine, machinery and ERN METALLIC MATERIALS ow alloy (HSLA) steel, Transformation steel – Intermetallics, Ni and Ti alum lass and nano crystalline materials. P BEHAVIOUR AND TESTING arve and explanation, structural cha s affecting creep, high temperature all cetric methods of extrapolation. Deformation Total Persons Formative Assessment Test (20 Marks) (6)	induction inides inges oys, str iods iods iod Sen	ar app ced pl - sn during ress r n Me neste ks)	ase blica asti- nart g cr rupt char rupt	stud tions 9 city (mate 9 reep, ure te nism 45 cams	ies in s. TRIP) erials, creep esting, Maps

Outcomes

Upon completion of the course, the students will be able to:

CO1 Define the mechanisms involved in elastic and plastic behavior of materials. (Understand)
CO2 Explain the components under different loading by considering the fracture. (Understand)
CO3 Discuss the materials usage for the design of engineering structures. (Understand)
CO4 Examine the usage of modern materials in real time applications. (Apply)
CO5 Predict the different testing techniques in alloys. (Apply)

Text Books

- 1. George E.Dieter, Mechanical Metallurgy, (12th edition), McGraw Hill, 2012
- 2. Thomas H. Courtney, Mechanical Behavior of Materials, (7th edition), McGraw Hill, 2015
- 3. Charles, J.A., Crane, F.A.A. and Fumess, J.A.G., Selection and use of engineering materials, (34th edition), Butterworth-Heiremann, 2013.

Reference Books

- 1. Ashby M.F., materials selection in Mechanical Design 2nd Edition, Butter worth 1999
- 2. Flinn, R.A., and Trojan, P.K., Engineering Materials and their Applications, (8th Edition) Jaico, 2013.
- 3. Metals Hand book, Vol.10, Failure Analysis and Prevention, (10th Edition), Jaico, 1999

Web Resources

- 1. <u>https://onlinecourses.nptel.ac.in/noc22_mm04/preview</u>
- 2. <u>https://onlinecourses.nptel.ac.in/noc22_mm25/preview</u>

CO Vs PO Mapping and CO Vs PSO Mapping

С	РО	РО	РО	PO	РО	РО	PO	РО	PO	РО	PO	РО	PSO	PSO
0	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	2	2	2										3	
2	2	2	2										3	
3	2	2	2										3	
4	2	2	2										3	
5	2	2	2										3	

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Define the mechanisms involved in elastic and plastic behavior of materials. (Understand)

- 1. What is Larsen-Miller parameter? (R)
- 2. Explain the Griffith's theory of brittle fracture with relevant diagram. (U)

COURSE OUTCOME 2: Explain the components under different loading by considering the fracture. (Understand)

- 1. State Paris law. (R)
- 2. Write short notes on Fracture toughness. (U)

COURSE OUTCOME 3: Discuss the materials usage for the design of engineering structures. (Understand)

- 1. Mention the properties to be considered while selecting materials for auto components (R)
- 2. Explain the method of selection of materials on the basis of service requirements. (U)
- 3. With a case study explain the selection of materials for aero applications. (A)

COURSE OUTCOME 4: Examine the usage of modern materials in real time applications. (Apply)

- 1. Name any two materials which exhibit shape memory effect. (R)
- 2. Write short notes on TRIP steel. (U)
- 3. Explain the strengthening mechanism used in Maraging steel (A)

COURSE OUTCOME 5: Predict the different testing techniques in alloys. (Apply)

- 1. Draw the different levels of creep. (R)
- 2. Explain structural metallurgical aspects of creep failure mechanism. (U)

21ME5703	A	DVANCED I.C. ENGINES		L	Т	Р	С
				3	0	0	3
Prerequisites	s for the course						
Thermal Engir	neering						
Objectives							
compo	nents.	ring principles of operation of diffe		_	esan	d	
UNIT I		PARK IGNITION ENGINES				9	
Mixture requi	irements – Fuel in	jection systems –Monopoint, Mul	tipoint &	& Dii	ect	inject	tion –
-		nd Abnormal combustion – Knocl	-			-	
Combustion cl						-	
UNIT II	СОМР	RESSION IGNITION ENGINES				9	
Diesel Fuel Inj	ection Systems – St	ns – Stages of combustion – Knocking – Factors affecting knock –Dir					
and Indirect in	t injection systems – Combustion chambers – Fuel Spray behavior – Spray structure						icture
and spray pen	etration – Air motio	n – Introduction to Turbocharging.					
UNIT III	POLLUTA	NT FORMATION AND CONTROL				9	
Pollutant – So	urces – Formation	of Carbon Monoxide, Unburnt hydi	rocarbon	, Oxi	des o	of Nit	rogen,
		lethods of controlling Emissions –(-				
-		ate Traps – Methods of measure	ement –E	Emiss	ion	norm	s and
Driving cycles							
UNIT IV		ALTERNATE FUELS				9	
Alcohol, Hydro	ogen, Compressed N	latural Gas, Liquefied Petroleum Ga	is and Bio	o Die	sel –	Prope	erties,
Suitability, Me	rits and Demerits –	Engine Modifications.					
UNIT V		RECENT TRENDS				9	
Air assisted Co	ombustion, Homoge	neous charge compression ignition	engines	-Var	iable	e Geor	metry
turbochargers	– Common Rail D	irect Injection Systems – Hybrid	Electric	Vehio	cles	-NOx	
Adsorbers – O	rs – Onboard Diagnostics.						
		Total P	Periods			45	
Suggestive As	ssessment Method	S					
Continuous A	ssessment Test	Formative Assessment Test	End Ser	nest	er Ex	kams	
(20 Mai	-	(20 Marks)	(60 Ma)	rks)			
CAT 1 – 10 MA CAT 2 – 10 MA QUESTIONS	ARKS ARKS DESCRIPTIVE	VE Assignment, Multiple Choice Descriptive questions Questions					

Upon completion of the course, the students will be able to:

CO1: Discuss the basic fundamentals of SI engines **(Understand)**

CO2: Describe the basic fundamentals of CI engines **(Understand)**

CO3: Describe the various forms of pollutants and various emission control methods in IC

Engines (Understand)

CO4: Interpret the various forms of alternative fuel **(Apply)**

CO5: Predict the recent technologies implemented in Automobiles (Apply)

Text Books

1. Kirpal Singh, "Automobile Engineering Vol.2", Standard Publishers, New Delhi, (2014) 2. Ganesan V., "Internal Combustion Engines", Tata McGraw Hill, (2012)

Reference Books

1. Heinz Heisler, "Advanced Engine Technology", SAE International Publications, USA, (2005)

2. John B. Heywood, "Internal Combustion Engine Fundamentals", Tata McGraw-Hill, (1988)

3. Gupta H.N., "Fundamentals of Internal Combustion Engines", Prentice Hall of India, (2006)

4. Ultrich Adler, "Automotive Electric/Electronic Systems", Published by Robert Bosh GmbH, (1995)

5. Mathur. R.B. and R.P. Sharma, "Internal Combustion Engines", Dhanpat Rai & Sons (2007)

Web Resources

https://nptel.ac.in/content/storage2/nptel data3/html/mhrd/ict/text/102104057/lec29 .pdf

CO Vs PO Mapping and CO Vs PSO Mapping

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
1	1	2		1		2	2						2	3
2	1	1	1			2	2						2	3
3	1					2	2					2	2	3
4	1					2	2					2	2	3
5	1		1			2	2					1	2	3

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1 Discuss the basic fundamentals of SI engines (Understand)

- Explain the stages of combustion in SI engines elaborating the flame front propagation. .
 (U)
- 2. Explain briefly the various factors that influence the flame speed in S.I engines. (U)

3. Describe the requirements of an S.I engine combustion chamber and explain the various types of combustion chambers. (R)

COURSE OUTCOME 2: Describe the basic fundamentals of CI engines (Understand)

1. Explain with the aid of a schematic diagram, explain the combustion process in a C.I engine. . (U)

2. Explain the factors affecting the delay period in C.I engines and summarize them. . (U)

COURSE OUTCOME 3: Describe the various forms of pollutants and various emission control methods in IC Engines (Understand)

1.Explain the functioning of a three way catalytic converter, with a sketch. Mention the limitations of a catalytic converter. (U)

2. What is a driving cycle? Discuss its significance with regard to emissions. . (U)

3. What are the methods to reduce particulate matter emissions? (U)

COURSE OUTCOME 4: Interpret the various forms of alternative fuel (Apply)

1. Compare the properties of gasoline, methanol and ethanol as engine fuels and explain how they influence combustion and emission characteristics of engine. (A)

2. Write on the following: (A)

(i) Production of biodiesel from non-edible oil (ii) Production of Ethanol from Sugarcane

COURSE OUTCOME 5: Predict the recent technologies implemented in Automobiles (Apply)

1. Describe the features of homogenous charge compression ignition engine and common rail direct injection engine with neat sketches. (U)

2. Examine the necessity of pressure pick, charge amplifier in an IC engine. (A)

21ME5704	ALTERNATIVE FUELS	L	Т	Р	С
		3	0	0	3
-	s for the course				
Thermal Engir	neering				
Objectives					
To undeTo teacemission	n about the types of alternative fuels and energy sources for IC erstand different sources of alternative fuels, production and stora h the alternative fuels used in internal combustion engines and t on characteristics. vide the knowledge of zero emission vehicles using newest tech	age m heir p	etho erfo		ce and
UNIT I	ALCOHOL AS FUELS			9	
	o alternative fuels – Need for alternative fuels – Availability of	f diffe	rent	alter	native
	nd CI engines. Alcohols as fuels. Production methods of al				
alcohols as fu	els. Methods of using alcohols in CI and SI engines.Flex-fuel	l, Ble	ndin	g, dua	al fuel
operation, sur	face ignition and oxygenated additives.Nano additives for SI a	and C	I en	gines,	
Performance e	emission and combustion characteristics in CI and SI engines.				
UNIT II	BIODIESEL AS FUEL			9	
Vegetable oils engines.	ending, Pyrolysis process, preheating Transesterification at s –Biodiesel– Performance, Emission and Combustion Char			s in	
UNIT III	HYDROGEN AS ENGINE FUEL			9	
	ethods of hydrogen. Combustive properties of hydrogen. Prob				
	fuel and solutions. Different methods of using hydrogen ir				-
	emission and combustion analysis in engines. Hydrogen stora	ge - s	afety	y aspe	ects of
hydrogen.Rece	ent development of hydrogen technologies.				
UNIT IV	BIOGAS, NATURAL GAS AND LPG AS FUELS			9	
CO_2 and H2S s	ethods of Biogas – Natural gas and LPG – processing and usag crubbing in Biogas, Modification required to use in SI and CI E characteristics of Biogas, NG and LPG in SI and CI engines.		-		
UNIT V	ELECTRIC, HYBRID AND FUEL CELL			9	
	VEHICLES				
	tric vehicle and Hybrid vehicles – Advantages and drawbacks				
	em components, Electronic control system – Different conf				
	er split device. High energy and power density batteries –Hyp	perloo	op te	chno	logy –
Basics of Fuel					
	Total Periods			45	

Continuous Assessment Test	Formative Assessment Test	End Semester Exams
(20 Marks)	(20 Marks)	(60 Marks)
CAT 1 – 10 MARKS	Assignment, Multiple Choice	Descriptive Questions
CAT 2 – 10 MARKS DESCRIPTIVE QUESTIONS	Questions	
Outcomes		
Upon completion of the course,	the students will be able to:	
C O1: Interpret the various alterna	ative fuels available (Apply)	
CO2: Examine the different metho	ods of vegetable oils (Apply)	
CO3: Describe the production me	thods of hydrogen fuel in IC Engir	nes (Understand)
CO4: Discuss the production meth	nods of biogas, natural gas etc. (U	nderstand)
CO5: Examine the recent types of	vehicles in Automobiles (Apply)	
Text Books		
House, 2010.	ls: Concepts, Technologies and Dev	
2. Devaradjane. Dr. G., Kumare	san. Dr. M., "Automobile Engineeri	ng", AMK Publishers, (2013)
3. Gerhard Knothe, Jürgen Kra Press and AOCS Press (2010	hl, Jon Gerpen, The Biodiesel Hand))	book, 2nd Edition,Academic
Reference Books		
Technologies, 2nd edition, CI		
Sons, Ltd, 2012.	r, Electric Vehicle Technology Expla	· · · · · ·
	tion Engines, McGraw-Hill Educati	
4. Michael F. Hordeski, Alterna	tive Fuels: The Future of Hydroger	n, The Fairmont Press, Inc, 2013

- 1. https://www.coursera.org/lecture/planet-earth/5-e-2-alternative-energy-resourcesmUwAL
- 2. https://nptel.ac.in/

CO Vs PO Mapping and CO Vs PSO Mapping

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
1	1	2				2	2						2	3
2	1	2				2	2					1	2	3
3	1	2	1			2	2						2	3
4	1	2				2	2				1	1	2	3
5	1	1	1			2	2						2	3

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1 Interpret the various alternative fuels available (Apply)

- 1. Evaluate the Performance emission and combustion characteristics in CI and SI engines.(A)
- 2. With a schematic layout explain the production methods of methanol. (U)

COURSE OUTCOME 2: Examine the different methods of vegetable oils (Apply)

- 1. Draw and explain the pyrolysis process for producing plastic oil (U)
- 2. Illustrate the transesterification process for biodiesel production for non-edible oil.(A)

COURSE OUTCOME 3: Describe the production methods of hydrogen fuel in IC Engines (Understand)

1. How the hydrogen energy is useful to run the engine? (U)

2. What are the merits and demerits of using hydrogen as a fuel? (R)

COURSE OUTCOME 4: Discuss the production methods of biogas, natural gas etc. (Understand)

1. Name three methods generally employed for extracting energy from Biomass and explain any two in detail(R)

2. Explain the concept of H₂S scrubbing in bio gas:(U)

COURSE OUTCOME 5: Examine the recent types of vehicle in Automobiles (Apply)

1. Predict the modifications required for LPG usage in a gasoline car. Also explain how the LPG system works?(A)

2.Explain briefly the working principle of fuel cells(R)

21ME5705	MAIN	TENANCE ENGINEERING		L	Т	Р	C		
			·						
Prereauisites	for the course			J	U	U	3		
-		lachines and automation, Metrolog	gy and Ins	strum	nenta	ation.			
-									
Objectives									
		nderstand the principles, functions management of maintenance activ	-	tices	adap	oted i	n		
-	ain the different ma ring and repair of n	aintenance categories like Preventi nachine elements.	ive maint	enano	ce co	nditi	on		
3. To illus	trate some of the si	mple instruments used for conditi	on monite	oring	in in	dust	ry.		
UNIT I	PRINCIPLES	AND PRACTICES OF MAINTENAM	ICE			9			
		PLANNING							
_		ce planning – Objectives and principles of planned maintena							
activity – Imp	ortance and bene	fits of sound Maintenance syster	-						
availability –	MTBF, MTTR and	MWT - Factors of availability	–Mainten	ance	org	aniza	tion		
Maintenance e	economics.								
UNIT II	MAINTENANCE F	POLICIES – PREVENTIVE MAINTE	NANCE			9			
Maintenance of	categories – Compa	rative merits of each category –	Preventiv	e ma	inte	nance	, د		
maintenance s	chedules, repairs c	ycle - Principles and methods of lu	brication	– TPI	М.				
UNIT III	C	ONDITION MONITORING				9			
Condition Mo	nitoring – Cost com	nparison with and without CM -	- On-load	test	ing a	and c	offload		
testing - Meth	ods and instrument	ts for CM – Temperature sensitive	tapes – Pi	istol t	herr	nome	eters -		
wear-debris a	nalysis								
UNIT IV	REPAIR METH	ODS FOR BASIC MACHINE ELEMI	ENTS			9			
Repair method	ls for beds, slidewa	ys, spindles, gears, lead screws and	d bearing	s – Fa	ailur	e ana	lysis -		
Failures and th	neir development –	Logical fault location methods – Se	equential	fault	locat	tion			
UNIT V	REPAIR ME	THODS FOR MATERIAL HANDLIN	NG			9			
		EQUIPMENT		,					
Repair method	ls for Material hand	lling equipment - Equipment recor	ds –lob o	lob order systems -Use					
computers in 1			,		5				
		Total	Periods			45			
Suggestive As	sessment Method								
	ssessment Test	Formative Assessment Test	End Se	mest	er E	xams	;		
(20 Mai		(20 Marks)	(60 Ma						
CAT – I 10 Mai	-	MCQ	Descrip		ype				
CAT – II 10 Ma		Assignment	P	•	J F -				
DESCRIPTIVE		Slip Test							
DESCRIPTIVE	QUESTIONS	Sub rest							

Outcomes
Upon completion of the course, the students will be able to:
CO1: Summarize the industrial maintenance concepts. (Understand)
CO2: Compare the maintenance engineering approaches employed in all fields of industries.
(Understand)
CO3: Identify the different maintenance categories Preventive maintenance condition monitoring
and repair of machine elements.(Understand)
CO4: Interpret the various instruments used for condition monitoring in industry. (Apply)
CO5: Construct the safety norms and concepts of industries. (Apply)
Text Books
1. Srivastava S.K., "Industrial Maintenance Management", S. Chand and Co., (2022)
 Venkataraman .K "Maintancence Engineering and Management", PHI Learning, Pvt. Ltd., (2007)
Reference Books
1. Bhattacharya S.N., "Installation, Servicing and Maintenance", S. Chand and Co., (2013)
2. White E.N., "Maintenance Planning", I Documentation, Gower Press, (2022)
3. Garg M.R., "Industrial Maintenance", S. Chand & Co., (2022)
4. Higgins L.R., "Maintenance Engineering Hand book", 7 th Edition, McGraw Hill, (2008)
5. Armstrong, "Condition Monitoring", BSIRSA, (1988)
6. Davies, "Handbook of Condition Monitoring", Chapman & Hall, (1996)
7. "Advances in Plant Engineering and Management", Seminar Proceedings -IIPE, (1996)
Web Resources
1. https://nptel.ac.in/courses/112/107/112107143/

CO Vs PO Mapping and CO Vs PSO Mapping

CO	PO	РО	PO	РО	PO	PO	PO	PO	РО	PO1	PO1	PO1	PSO	PSO
CO	1	2	3	4	5	6	7	8	9	0	1	2	1	2
1	1	2		1	2	1					1	1		3
2	1	2		1	2	1					1	1		3
3	1	2		1	2	1					1	1		3
4	1	2		1	2	1					1	1		3
5	1	2		1	2	1					1	1		3

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Summarize the industrial maintenance concepts. (Understand)

- 1. What are the objectives of maintenance organization and what different types of organizationsare in use in Indian industries?(U)
- 2. What is equipment availability and what are the three basic approaches to define and quantityavailability.(U)

COURSE OUTCOME 2: Compare the maintenance engineering approaches employed in all fields of industries. (Understand)

- 1. What are all the steps involved in preventive maintenance why preventive maintenance is better than reactive maintenance.(U)
- 2. Distinguish between fixed time maintenance and connect based maintenance. Give the merits and demerits.(U)

COURSE OUTCOME 3: Identify the different maintenance categories Preventive maintenance condition monitoring and repair of machine elements.(Understand)

- 1. What is leakage monitoring?Explain some of the leakage mediums used for condition monitoring.(U)
- 2. What is wear debris analysis what are the three wear debris analysis techniques commonly used and compare their performance and uses?(U)

COURSE OUTCOME 4: Interpret the various instruments used for condition monitoring in industry. (Apply)

- 1. Discover the procedure for the repair cycle of gears and lead screw.(A)
- 2. Construct failure analysis for an industry? Explain their development.(A)

COURSE OUTCOME 5: Construct the safety norms and concepts of industries. (Apply)

- 1. Explain various hydraulic and pneumatic equipment used in material handling purpose. How to maintain it.(U)
- 2. Prepare the maintenance procedure for various small equipment for material handling purpose like chain block chain, rope, trolley, and R.G.B.(A)

21ME5706	PRIN	ICIPLES OF MANAGEMENT		L	Τ	Р	С					
				3	0	0	3					
Prerequisites f	or the course:											
Nil												
Objectives												
1. To enable	e the students to stud	ly the evolution of Management.										
		inciples of management and to learn	the applicat	ion of	the p	orincip	oles					
in an organization												
UNIT I	INTRODU	D			9							
		ORGANIZATIONS										
	-	e or Art – Manager Vs Entrepreneur		-	-		-					
		Ianagement: Scientific, Human Rel	-			-	-					
	•• ••	s – Types of Business organization			-		-					
		Enterprises - Organization culture and	1 Environme	ent – C	urre	nt tren	ds and					
issues in Manage	ement					0						
		PLANNING				9						
		lanning process – types of planning	-		-	-						
policies = Planni	ing premises – Stra	tagia Dianning Dianning Toola an					olzina					
-		ategic Planning – Planning Tools an	ia Techniqu	les - 1	Decis	sion m	lakiii					
steps and process		aegic Planning – Planning Tools an	a Techniqu	ies – J	Decis	510n m	IAKIII					
-		ORGANIZING	id Techniqu	ies – I		9						
steps and process UNIT III	5.					9						
steps and process UNIT III Nature and purp	s. bose – Formal and	ORGANIZING	on chart –	Organ	izati	9 on str	ucture					
steps and process UNIT III Nature and purp Types – Line and	s. oose – Formal and nd Staff Authority	ORGANIZING informal Organization – Organizatio	on chart – of authorit	Organ ty – C	izati Centra	9 on stru	ucture on an					
steps and process UNIT III Nature and purp Types – Line an Decentralization	s. Hose – Formal and hd Staff Authority – Job Design – H	ORGANIZING informal Organization – Organizatio – Departmentalization – Delegation	on chart – of authorit Planning,	Organ ty – C Recru	izati Centra	9 on stru	ucture on an					
steps and process UNIT III Nature and purp Types – Line an Decentralization	s. Hose – Formal and hd Staff Authority – Job Design – H	ORGANIZING informal Organization – Organizatio – Departmentalization – Delegation fuman Resource Management – HR	on chart – of authorit Planning,	Organ ty – C Recru	izati Centra	9 on stru	ucture on an					
steps and process UNIT III Nature and purp Types – Line an Decentralization Training and Dev UNIT IV	s. Hose – Formal and hd Staff Authority – Job Design – H velopment, Performa	ORGANIZING informal Organization – Organizatio – Departmentalization – Delegation fuman Resource Management – HR ance Management, Career planning an	on chart – of authorit Planning, nd Manager	Organ ty – C Recru nent.	izati Centra itme	9 on stru alizationt, selv 9	ucture on an ectior					
steps and process UNIT III Nature and purp Types – Line an Decentralization Training and Dev UNIT IV Foundations of i	s. oose – Formal and nd Staff Authority – Job Design – H velopment, Performa individual and grou	ORGANIZING informal Organization – Organizatio – Departmentalization – Delegation fuman Resource Management – HR ance Management, Career planning an DIRECTING	on chart – of authorit Planning, nd Manager &Techniqu	Organ cy – C Recru nent. es – J	izati Centra itme	9 on stru alizationt, sel- 9 atisfac	ucture on an ection					
steps and process UNIT III Nature and purp Types – Line an Decentralization Training and Dev UNIT IV Foundations of i Job enrichment –	s. oose – Formal and nd Staff Authority – Job Design – H velopment, Performa individual and grou	ORGANIZING informal Organization – Organizatio – Departmentalization – Delegation fuman Resource Management – HR ance Management, Career planning an DIRECTING p behaviour – Motivation: theories s & Theories – Communication: Pro	on chart – of authorit Planning, nd Manager &Techniqu	Organ cy – C Recru nent. es – J	izati Centra itme	9 on stru alizationt, sel- 9 atisfac	ucture on an ection					
steps and process UNIT III Nature and purp Types – Line an Decentralization Training and Dev UNIT IV Foundations of i Job enrichment –	s. ose – Formal and nd Staff Authority – Job Design – H velopment, Performa ndividual and grou – Leadership: Types	ORGANIZING informal Organization – Organizatio – Departmentalization – Delegation fuman Resource Management – HR ance Management, Career planning an DIRECTING p behaviour – Motivation: theories s & Theories – Communication: Pro	on chart – of authorit Planning, nd Manager &Techniqu	Organ cy – C Recru nent. es – J	izati Centra itme	9 on stru alizationt, sel- 9 atisfac	ucture on an ectior					
steps and process UNIT III Nature and purp Types – Line an Decentralization Training and Dev UNIT IV Foundations of i Job enrichment – communication – UNIT V	s. ose – Formal and nd Staff Authority – Job Design – H velopment, Performa ndividual and grou – Leadership: Types – Communication an	ORGANIZING informal Organization – Organizatio – Departmentalization – Delegation fuman Resource Management – HR ance Management, Career planning an DIRECTING p behaviour – Motivation: theories s & Theories – Communication: Pro nd IT.	on chart – of authorit Planning, nd Manager &Technique cess, Types	Organ ty – C Recru nent. es – J s &Ba	izati Centra itmer	9 on stru alizationt, selo 9 atisfac 9 9	ucture on an ectior tion -					
steps and process UNIT III Nature and purp Types – Line and Decentralization Training and Dev UNIT IV Foundations of i Job enrichment – communication – UNIT V System and proc	s. oose – Formal and nd Staff Authority – Job Design – H velopment, Performa ndividual and grou – Leadership: Types – Communication an cess of controlling –	ORGANIZING informal Organization – Organizatio – Departmentalization – Delegation fuman Resource Management – HR ance Management, Career planning an DIRECTING p behaviour – Motivation: theories s & Theories – Communication: Pro- nd IT. CONTROLLING	on chart – of authorit Planning, nd Manager &Technique cess, Types getary contr	Organ y – C Recru nent. es – J s &Ba	izati lentra itme ob s rriers	9 on stru alizationt, self 9 atisfac - Eff 9 1es -	ucture on an ectior tion -					
steps and process UNIT III Nature and purp Types – Line and Decentralization Training and Dev UNIT IV Foundations of i Job enrichment – communication – UNIT V System and proce computers and I	s. oose – Formal and nd Staff Authority – Job Design – H velopment, Performa ndividual and grou – Leadership: Types – Communication an cess of controlling – T in Management c	ORGANIZING informal Organization – Organizatio – Departmentalization – Delegation iuman Resource Management – HR ance Management, Career planning an DIRECTING p behaviour – Motivation: theories s & Theories – Communication: Pro- nd IT. CONTROLLING – Budgets, Budgetary and Non-Budg	on chart – of authorit Planning, nd Manager &Technique cess, Types getary contr	Organ y – C Recru nent. es – J s &Ba	izati lentra itme ob s rriers	9 on stru alizationt, self 9 atisfac - Eff 9 1es -	ucture on an ection tion -					
steps and process UNIT III Nature and purp Types – Line and Decentralization Training and Dev UNIT IV Foundations of i Job enrichment – communication – UNIT V System and proce computers and I	s. oose – Formal and nd Staff Authority – Job Design – H velopment, Performa ndividual and grou – Leadership: Types – Communication an cess of controlling – T in Management c	ORGANIZING informal Organization – Organizatio – Departmentalization – Delegation fuman Resource Management – HR ance Management, Career planning an DIRECTING p behaviour – Motivation: theories s & Theories – Communication: Pro- nd IT. CONTROLLING – Budgets, Budgetary and Non-Budge control – Productivity problems and mon- control – Reporting.	on chart – of authorit Planning, nd Manager &Technique cess, Types getary contr	Organ y – C Recru nent. es – J s &Ba	izati Centra itmer ob s rriers hniqu ontrol	9 on stru alizationt, self 9 atisfac - Eff 9 1es -	ucture on an ection tion -					
steps and process UNIT III Nature and purp Types – Line and Decentralization Training and Dev UNIT IV Foundations of i Job enrichment – communication – UNIT V System and proce computers and I' performance – di	s. oose – Formal and nd Staff Authority – Job Design – H velopment, Performa ndividual and grou – Leadership: Types – Communication an cess of controlling – T in Management c	ORGANIZING informal Organization – Organizatio – Departmentalization – Delegation fuman Resource Management – HR ance Management, Career planning an DIRECTING p behaviour – Motivation: theories s & Theories – Communication: Pro- nd IT. CONTROLLING – Budgets, Budgetary and Non-Budge control – Productivity problems and mon- control – Reporting. Tota	on chart – of authorit Planning, nd Manager &Technique cess, Types getary contr managemen	Organ y – C Recru nent. es – J s &Ba	izati Centra itmer ob s rriers hniqu ontrol	9 on stru alizationt, sel- 9 atisfac 9 ues – and	ucture on an ection tion -					
steps and process UNIT III Nature and purp Types – Line and Decentralization Training and Dev UNIT IV Foundations of i Job enrichment – communication – UNIT V System and proce computers and I' performance – di	s. oose – Formal and nd Staff Authority – Job Design – H velopment, Performa ndividual and grou – Leadership: Types – Communication an cess of controlling – T in Management c rect and preventive of essment Methods	ORGANIZING informal Organization – Organizatio – Departmentalization – Delegation fuman Resource Management – HR ance Management, Career planning an DIRECTING p behaviour – Motivation: theories s & Theories – Communication: Pro- nd IT. CONTROLLING – Budgets, Budgetary and Non-Budge control – Productivity problems and mon- control – Reporting. Tota	on chart – of authorit Planning, nd Manager &Technique cess, Types getary contr managemen	Organ ty – C Recru nent. es – J s &Bas rol tec nt – cc	izati Centra itmer ob s rriers hniqu ontrol	9 on structure alization 9 atisfac 9 atisfac 9 atisfac 9 atisfac 9 and 45	ucture on an ectior tion -					
steps and process UNIT III Nature and purp Types – Line and Decentralization Training and Dev UNIT IV Foundations of i Job enrichment – communication – UNIT V System and proce computers and I' performance – di Suggestive Asse	s. oose – Formal and nd Staff Authority – Job Design – H velopment, Performa ndividual and grou – Leadership: Types – Communication an cess of controlling – T in Management c rect and preventive of essment Methods sessment Test	ORGANIZING informal Organization – Organizatio – Departmentalization – Delegation fuman Resource Management – HR ance Management, Career planning an DIRECTING p behaviour – Motivation: theories s & Theories – Communication: Pro- nd IT. CONTROLLING – Budgets, Budgetary and Non-Budge control – Productivity problems and mon- control – Reporting. Tota	on chart – of authorit Planning, nd Manager &Technique cess, Types getary contr managemen	Organ y – C Recru nent. es – J s &Bar ol tec at – co meste	izati Centra itmer ob s rriers hniqu ontrol	9 on structure alization 9 atisfac 9 atisfac 9 atisfac 9 atisfac 9 and 45	ucture on an ection tion					
steps and process UNIT III Nature and purp Types – Line and Decentralization Training and Dev UNIT IV Foundations of i Job enrichment – communication – UNIT V System and proce computers and I' performance – di Suggestive Asse Continuous Asse	s. oose – Formal and nd Staff Authority – Job Design – H velopment, Performa ndividual and grou – Leadership: Types – Communication an cess of controlling – T in Management c rect and preventive essment Methods sessment Test (s)	ORGANIZING informal Organization – Organizatio – Departmentalization – Delegation iuman Resource Management – HR ance Management, Career planning an DIRECTING p behaviour – Motivation: theories s & Theories – Communication: Pro- nd IT. CONTROLLING – Budgets, Budgetary and Non-Budge control – Productivity problems and mon- control – Reporting. Tota Formative Assessment Test	on chart – of authorit Planning, nd Manager &Technique cess, Types getary contr managemen al Periods End Ser (60 Ma	Organ cy – C Recru nent. es – J s &Bat rol tec nt – co meste rks)	iizati Centra itme ob s rriers hniqu ontrol	9 on structure alization 9 atisfac 9 atisfac 9 atisfac 9 atisfac 9 and 45	ucture on an ection tion -					
steps and process UNIT III Nature and purp Types – Line and Decentralization Training and Dev UNIT IV Foundations of i Job enrichment – communication – UNIT V System and proce computers and I' performance – di Suggestive Asse (20 Mark	s. pose – Formal and nd Staff Authority – Job Design – H velopment, Performa individual and grou – Leadership: Types – Communication an cess of controlling – T in Management c rect and preventive – essment Methods sessment Test (s) (s)	ORGANIZING informal Organization – Organizatio – Departmentalization – Delegation iuman Resource Management – HR ance Management, Career planning an DIRECTING p behaviour – Motivation: theories s & Theories – Communication: Pro- nd IT. CONTROLLING – Budgets, Budgetary and Non-Budge control – Productivity problems and mon- control – Reporting. Tota Formative Assessment Test (20 Marks)	on chart – of authorit Planning, nd Manager &Technique cess, Types getary contr managemen al Periods End Ser	Organ cy – C Recru nent. es – J s &Bat rol tec nt – co meste rks)	iizati Centra itme ob s rriers hniqu ontrol	9 on structure alization 9 atisfac 9 atisfac 9 atisfac 9 atisfac 9 and 45	ucture on an ection tion -					

Outcomes

Upon completion of the course, the students will be able to:

CO1: Describe the terms management, and organization, also identify the type of business organization and its culture. (**Understand**)

CO2: Apply the set objectives for strategic management using planning tools and techniques to make decision. (**Apply**)

CO3: Sketch the organization chart and structure, demonstrate whether the organization is centralized or decentralized and illustrate human resource management principles. (**Apply**)

CO4: Discuss the motivational theories to direct the employees for better communication and job satisfaction. (Understand)

CO5: Predict the budgetry and non - budgetry techniques, application of computers, direct and preventive controlling techniques and reporting.(**Apply**)

Text Books

- Stephen P. Robbins & Mary Coulter, "Management", Prentice Hall (India) Pvt. Ltd., 15th Edition, (2021)
- JAF Stoner, Freeman R.E and Daniel R. Gilbert "Management", 6th Edition, Pearson Education, (2018)

Reference Books

- 1. Stephen A. Robbins & David A. Decenzo& Mary Coulter, "Fundamentals of Management", 10th Edition, Pearson Education, (2022)
- 2. Robert Kreitner& Mamata Mohapatra, "Management", Biztantra, (2011)
- 3. Harold Koontz & Heinz Weihrich, "Essentials of Management", Tata McGraw Hill, (2015)
- 4. Tripathy PC & Reddy PN, "Principles of Management", Tata McGraw Hill, (2022)

Web Resources

1. https://nptel.ac.in/courses/122108038/

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
1						2		3	2		2	1		3
2						2		3	2		2	1		3
3						2	1	3	2		2	1		3
4						2	1	3	2		2	1		3
5						2	1	3	2		2	1		3

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Describe the terms management, and organization, also identify the type of business organization and its culture. (Understand)

- 1. Explain in detail about the different types of business organization. (U)
- 2. Enlighten the relevance of environmental factors that affects global business. (U)

COURSE OUTCOME 2: Apply the set objectives for strategic management using planning tools and techniques to make decision (Apply)

- 1. Demonstrate the 7 habits of highly effective people. Explain them in brief. (A)
- 2. Explain in brief the 14-point principles of Deming on the concept of good leadership. (R)

COURSE OUTCOME 3: Sketch the organization chart and structure, demonstrate whether the organization is centralized or decentralized and illustrate human resource management principles (Apply)

- 1. Explain the detail about Line and staff organization with an example. Discuss its merits and demerits? (U)
- 2. Illustrate the differences between Formal and Informal Organization. (A)
- Sketch the organogram of your own institution taking it as a reference of study.
 (A)

COURSE OUTCOME 4: Discuss the motivational theories to direct the employees for better communication and job satisfaction (Understand)

- 1. Evaluate the various styles of Leadership. (U)
- 2. Explain the different components of communication. (U)

COURSE OUTCOME 5: Predict the budgetary and non - budgetary techniques, application of computers, direct and preventive controlling techniques, and reporting (Apply)

- 1. How would you show your understanding about usage of use of computers and IT in Management control? (U)
- 2. Construct the steps involved in controlling and requirements for effective control. (A)

		L	Т	Р	C						
21ME5707	COMPOSITE MATERIALS	3	0	0	3						
Prerequisites	for the course	0	Ū	•							
Engineering P Strength of Ma	hysics, Engineering Mechanics, Engineering Materials and Metal terials	lurgy									
Objectives											
 material 	de students with a basic understanding of the composition and u s, their structural and mechanical properties.			_	e						
 available 	op the student's skills in understanding the different manufactu for composite materials.										
material		o the o	comp								
UNIT I	BASICS OF FIBERS, MATRICES AND COMPOSITES			9							
Basics of Fibers: Definition – Need – General Characteristics and Applications. Fibers: Glass-Carbon- Ceramic-Aramid-Polymer and Natural Fibers. Matrices: Polymer- Ceramic and Metal Matrices – Characteristics of Fibers and Matrices- Fiber Surface Treatments- Fillers andAdditives.											
UNIT II	COMPOSITE MANUFACTURING			9							
Resin Film In Composites (Technique.	Hand Layup – Spray up - Bag Molding – Compression Molding – Pultrusion – Filament Winding – Resin Film Infusion - Elastic ReservoirMolding - Tube Rolling - Processing of Metal Matrix Composites (MMC) – Diffusion Bonding – Stir Casting– Squeeze Casting and Powder Metallurgy Technique.										
UNIT III	NANOCOMPOSITES			9							
polymer-carbo Classification	Nanocomposites: Nano particle dispersion in polymer matrix, Polymer- nanoclaycomposites and polymer-carbon nanotubes composites; Functionally graded and Hierarchical Composites: Classification i.e. Natural and Man-made, Uniaxial andbi-axial property gradient, Application in various industrial sectors.										
UNIT IV	MICRO AND MACRO MECHANICS OF LAMINATE			9							
 Micromechanical Analysis of a LaminaVolume and Mass Fractions, Density, and Void Content-Prediction of engineering propertiesusing micromechanics-Material properties of the fiber and matrix. Macro mechanical analysis of a lamina -linear elastic stress-strain characteristics of FiberReinforced material: Stress and deformations in Fiber-Reinforced materials-Maxwell-Bett reciprocal theorem- Stress-strain relations- Effects of free thermal strains and moisture strains. 											
UNIT V											
	FAILURES										
Classification of Theories of I	Classical Laminate Theory: Force and Moment Resultants -Laminate stiffness matrix: ABD Matrix- Classification of laminates and theireffect on the ABD Matrix-Elastic couplings. Theories of Failures of Laminates: Maximum stress and strain criterion- Tsai-Hill, Tsai-										
vvuci itel ioii -	Interlaminar stresses - Impact resistance. Total Periods			45							
				10							

Continuous Assessment Test	Formative Assessment Test	End Semester Exams
(20 Marks)	(20 Marks)	(60 Marks)
CAT 1 – 10 MARKS	1.Assignment	1. Descriptive Questions
CAT 2 – 10 MARKS DESCRIPTIVE	2. Online Quizzes	
QUESTIONS	3. Problem-Solving Activities	
Outcomes		-
Upon completion of the course,	the students will be able to:	
CO1 Define and classify the fu	ndamentals of fibers, matrices	, additives, and composites
(Understand)		-
CO2 Describe the various manufact	uring processes involved in the fal	prication of composite material
(Understand)		
CO3 Describe the various technique	es for suitable composite material	with required enhanced
Properties. (Understand)		
נ 04 Analyze composite laminates ו		
C O5 Apply failure criteria on compo	site structures subjected to variou	is types of loading. (Apply)
Textbooks		
1. M.Balasubramanian, Comp	osite materials processing, 1st edit	ion, CRC press, 2013.
	ced Composites: Materials, Manufa	cturing and Design", 3rd
Edition, CRC Press Taylor a	ndFrancis, New York, 2007.	
Reference Books		
1. Bhagwan D. Agarwal, Lawr	ence J. Broutman& Chandrashekha	r K., "Analysis and
Performance of Fiber Comp	osites", 4th Edition, John Wiley & S	Sons, New York, 2017.
2. Ever J. Barbero, Introductio	n to Composite Materials Design, 2	2nd edition, CRC Press, 2010.
3. K.K. Chawla, Composite Ma	terials, 3rd edition, Springer-Verla	g, New York, 2012.
Web Resources		
1. <u>https://archive.nptel.ac.in/</u>	<u>/courses/101/106/101106038/</u>	
2 https://archivo.pptol.ac.in/	<u>courses/105/108/105108124/</u>	
$2. \underline{\mathrm{nups.}/\mathrm{arcmve.nptenat.m/}}$		

CO Vs PO Mapping and CO Vs PSO Mapping

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2
C01	3	2											2	1
C02	3	2											2	1
CO3	3	2											2	1
C04	2	2	2										2	1
C05	2	2	2									1	2	1

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1 (Understand)

- **1.** Combination of properties can be achieved in composites. Justify this statement & Explain. **(Understand)**
- 2. Compare matrix and dispersed phases in a composite material. What should be the important mechanical characteristics of matrix and dispersed phases for FRCs? (Understand)
- **3.** State whether the following statements are true or false and give reasons:**(Understand)**
 - Aramid fibers are commonly used as reinforcements for metal and ceramic matrices.
 - Carbon fiber has poor compressive properties.
- 4. Bulk material is stronger than fibrous material. (Understand)
 - Glass fiber is an anisotropic material.
 - Glass fiber is an amorphous material.
 - Whiskers are not widely used for making composites.

COURSE OUTCOME 2 (Understand)

1. Explain the criteria for selecting a process to manufacture FRP products.

(Understand)

- 2. Compare hand lay-up and RTM processes. (Understand)
- 3. Explain the fabrication process for MMC. (Understand)

COURSE OUTCOME 3 (Understand)

- 1. Explain the nanoclay composites and its applications. (Understand)
- 2. Describe the functionally graded composites and their applications. (Understand)

COURSE OUTCOME 4(Analyse)

- 1. Analyse the weight fraction and volume fraction of fibers in the glass/epoxy composites. The following data is obtained from the burnout test.
 - weight of the empty crucible = 46.5401 gm
 - weight of crucible and composite piece = 49.1201 gm
 - weight of crucible and glass fiber = 48.3420 gm.
 - The density of glass fiber is 2600 kg/m³and 1300 kg/m³(Analyse)
- 2. Calculate the ratio of fiber stress to matrix stress and matrix stress to composite stress for Vf = 15%, 30 %, 45 % and 70 %. Take Ef =250 G Pa and Em = 15 G Pa Analyse
- **3.** Calculate the strains in the xy directions for the composite subjected to the loading as shown in the figure. The composite is made of boron-epoxy. Take the data given for 00 unidirectional E-glass-epoxy as: E11 = 200 GPa; E22 = 20 GPa; G12 = 6.5 GPa; v 12 = 0.2.(Apply)

COURSE OUTCOME 5.(Apply)

1. Determine A, B, and D matrices for the 2-ply laminate as shown in the figure. Assume both the laminae have identical stiffness matrix Q as follows:**(Apply)**

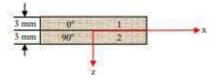


Fig.(i): Figure showing the laminate orientation

	130	2.5	0	
[Q] =	2.5	10	0	GPa
	Lo	0	3.5	

2. The material properties are, E1= 147 GPa, E2= 15 GPa, G12= 12 GPa and v 12 = 0.3. For the lamina with orientation [45°], Calculate the lamina stresses due to the load of N_{xx} = 100 kN/m. Verify for failure through the different failure criteria, if the strength values are(**Apply**)

 $\sigma_{\text{LU}} = 1200 \text{ MPa}$ $\sigma_{\text{TU}} = 60 \text{ MPa}$ $\tau_{\text{LTU}} = 90 \text{ Mpa}$

21ME5708	ŀ	POLYMER TECHNOLOGY		L T P						
				3	0	0	3			
Prerequisites	for the course									
Ma	anufacturing Techno	logy								
Objectives										
• To impart k	nowledge on mixing	devices, extrusion moulding.								
-	0 0	ction moulding and special moulding	technique	es.						
• To understa	nd the basic concept	s in mould design								
UNIT I		MIXING DEVICES				9				
Additives and	Mixing process, d	ifferent types of mixing devices -	twin dru	ım t	umbl	ers,	ribbon			
blenders, Z-bla	de Mixer, high spee	d mixer, ball mill, two roll mill, Bant	oury mixe	er, int	ernal	mixir	ng and			
screw mixing -	- twin screw compo	unding machines-differences between	mixing o	condi	tions	for ru	ubbers			
and plastics										
UNIT II	CALE	NDERING AND EXTRUSION				9				
Processing me	thods based on extra	ruder (granule production, profile p	roduction	, filn	n blo	wing,	blow			
moulding, extr	rusion stretch blow	molding) - extrusion coating pro	cess (she	eet c	oatin	g and	l wire			
covering) - ru	bber extrusion-hot	feed and cold feed extrusion of rul	bber – ca	alend	aring	of r	ubber			
compounds and	l PVC pastes – equip	pment and processes								
UNIT III	I	NJECTION MOULDING				9				
Injection moul	ding machines and	its components - moulds, multi ca	wity mou	ılds,	moul	d cla	mping			
devices, mould	clamping force, inje	ection blow moulding, reaction injecti	on mould	ling						
UNIT IV	OTHE	R MOULDING TECHNIQUES				9				
Thermoforming	g – vacuum forming.	, Pressure forming and matched moul	d forming	g – Ro	otatic	on mo	ulding			
- Compression	moulding – Transfe	r moulding								
UNIT V	BASIC C	CONCEPTS IN MOULD DESIGN				9				
Types of mould	ls – Feed system – e	jector system – ejection techniques –	mould co	oling	- C.	AD / 0	CAM			
applications										
		Total F	Periods			45				
Suggestive As	sessment Method	ls								
Continuous A	ssessment Test	Formative Assessment Test	End Ser	nest	er Ex	kams				
(20 Mai	·ks)	(20 Marks)	(60 Ma	rks)						
2 Test Each 10	Marks	Multiple Choice Questions	1 test of	f 60 N	/lark	S				
Descriptive Qu	lestions	(MCQ)	Descrip	tive (Jues	tions				
Outcomes		•								
Upon comple	tion of the course,	, the students will be able to:								
CO1. Enumera	te the various basic	processing methods employed for Pla	stics. (Un	derst	and)					
	1 1	f calendaring and extrusion processes	•	,						
11.	1 1 0	ion moulding in manufacturing of con	-	(App	oly)					
		chniques in production of component		otion	of	י תאר				
COS. Apply the CAM (A	_	lesign of mould system and evaluate t	ne applica	auons		-Αυ /				
	-YY-J/									

Text Books

- 1. D.H. Morton-Jones, Polymer Processing, Springer verlaggmbh (2014)
- 2. Myer Kutz, "Applied Plastics Engineering Handbook: Processing and Materials", Elsevier, UK, (2016)

Reference Books

- 1. Sinha R., "Outlines of Polymer Technology: Manufacture of Polymers", PHI, New Delhi, (2004)
- 2. Crawford R.J. Plastics Engineering, Butterworth Heinemann, 3rd Edition, (2005)
- 3. Fried helm Hansen, Plastics Extrusion Technology, 2nd Edition, Hanser Publishers, (1997)
- 4. Peter Powell, A. Jan IngenHouz, Engineering with Polymers, Stanley Thomas Publishers Ltd., 2nd Edition. (1998)
- 5. Richard G.Griskey, Polymer Process Engineering, Chapman and Hall, (1995)
- 6. Tim A. Osswald Georg Menges "Material Science of Polymers for Engineers", Hanser Publications, (2012)
- Michael L. Berins, "Plastic Engineering Handbook of the Society of the Plastics Industry", Kluwer Academic Publishers, Netherland, (1991) Charles A. Harper, "Handbook of Plastic Processes", John Wiley, NJ, (2006)

Web Resources

https://nptel.ac.in/courses/113105028/

CO Vs PO Mapping and CO Vs PSO Mapping

С	PO	РО	PO	PO	РО	РО	PO	РО	PO	РО	PO	РО	PSO	PSO
0	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	1					1						3	
2	3					2	1						2	3
3	3	2	1			1							3	2
4	3					1	1						2	3
5	1				2	2	1					2	3	1

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Enumerate the various basic processing methods employed for Plastics (Understand)

- Review the following mixing devices with their all salient features.
 a). High speed mixer b). Ball mill c). Two roll mill d). Banbury Mixer (Remember)
- **2.** Build a mixing device which have the key components of vertical vessel with a screw and state its functions and applications with neat portrayal **(Understand)**
- **3.** Correlate the various mixing conditions for vulcanized rubbers and plastics **(Understand)**

COURSE OUTCOME 2: Enumerate the principles of calendaring and extrusion processes (Understand)

- **1.** Apply the suitable polymer production technology to produce 'plastic pellets' **(Understand)**
- **2.** Select the suitable production method of 'Shampoo Bottle' and label the component and process **(Understand)**
- **3.** Check whether the high-tension wires from heavy voltage towers insulated in our country. If, not rank the issues caused by it. And label a best solution with detailed processes. **(Understand)**

COURSE OUTCOME 3: Apply the principles of injection moulding in manufacturing of components (Apply)

- **1.** Choose the best mould which can be used in the production of 'bottle caps' in large quantity and discuss the process. **(Apply)**
- **2.** Apply the suitable polymer production technology to produce 'plastic storage containers' **(Apply)**
- **3.** Select the often-utilized molding method of strong, lightweight parts that are easily painted and elaborate the process. **(Apply)**

COURSE OUTCOME 4: Apply the other moulding techniques in production of components (Apply)

- Apply the rules, facts and techniques for the production of 'Interior Door Panels.' (Apply)
- 2. Select the suitable production method of 'equipment panels' and label the component and process (Apply)
- **3.** Apply the rules, facts and techniques for the production Microwave & Deep Freeze Containers **(Apply)**

COURSE OUTCOME 5: Apply the basic concepts in design of mould system and evaluate the applications of CAD / CAM (Apply)

- 1. With suitable sketch, explain the ejector system in mould design. (Remember)
- **2.** Check whether CAD/CAM software can be used in mould design of polymer manufacturing, If yes, explain the basic concepts in mould design **(Understand)**
- **3.** Design the mold which is used when the part of the runner system is on a different plane to the injection location and explain (Apply)

21ME5709	PROFESS	SIONAL ETHICS FOR ENGINEERS		L 3	T 0	Р 0	<u>С</u> 3
Prerequisites	for the course			3	U	U	3
Nil							
Objectives							
	la the students to ar	eate an awareness on Engineering E	thice and l	Uumo	n Vo	luos to	incti
		l Loyalty and to appreciate the rights		Tuma	n va) IIISti
UNIT I		HUMAN VALUES				9	
Living peaceful Empathy – Se	lly – Caring – Sharing	y – Work ethic – Service learning – G g – Honesty – Courage – Valuing tim aracter – Spirituality – Introductio anagement.	ne – Coope	ration	- Co	ommiti	ment
UNIT II	I	ENGINEERING ETHICS				9	
		ariety of moral issues – Types of in - Gilligan's theory – Consensus					
		t right action – Self-interest – Cus					
Ethical Theorie		C			C		
UNIT III	ENGINEERIN	G AS SOCIAL EXPERIMENTA	ΓΙΟΝ			9	
Engineering as Outlook on Lay	1	ngineers as responsible Experimenter	rs – Codes	of Eth	nics –	A Bal	lance
Outlook of Lav	<i>N</i> .				nes		
UNIT IV Safety and Risk	SAFETY, R a – Assessment of Saf	ESPONSIBILITIES AND RIGH fety and Risk – Risk Benefit Analysis – Confidentiality – Conflicts of J	s and Redu	cing F	Risk -	9 - Resp	ect fo
UNIT IV Safety and Risk Authority – C Professional Ri	SAFETY, R Assessment of Safollective Bargaining	fety and Risk – Risk Benefit Analysis – Confidentiality – Conflicts of I hts – Intellectual Property Rights (IP	s and Redu Interest –	cing F Occuj	Risk -	9 - Resp nal Cr	ect fo
UNIT IV Safety and Risk Authority – Co Professional Ri UNIT V	SAFETY, R A – Assessment of Saf ollective Bargaining ghts – Employee Rig	fety and Risk – Risk Benefit Analysis – Confidentiality – Conflicts of I hts – Intellectual Property Rights (IP GLOBAL ISSUES	s and Redu Interest – R) – Discr	cing F Occup iminat	Risk - pation tion.	9 - Resp nal Cr 9	ect fo
UNIT IV Safety and Risk Authority – C Professional Ri UNIT V Multinational (Engineers as M	SAFETY, R A – Assessment of Saf ollective Bargaining ghts – Employee Rig Corporations – Envi Ianagers – Consultin	fety and Risk – Risk Benefit Analysis – Confidentiality – Conflicts of I hts – Intellectual Property Rights (IP GLOBAL ISSUES ironmental Ethics – Computer Eth ag Engineers – Engineers as Expert	s and Redu Interest – R) – Discr nics – We	cing F Occup iminat apons	Risk - pation tion.	9 - Resp nal Cr 9 velopn	ect fo
UNIT IV Safety and Risk Authority – C Professional Ri UNIT V Multinational (Engineers as M	SAFETY, R A – Assessment of Saf ollective Bargaining ghts – Employee Rig Corporations – Envi Ianagers – Consultin	fety and Risk – Risk Benefit Analysis – Confidentiality – Conflicts of I hts – Intellectual Property Rights (IP GLOBAL ISSUES ironmental Ethics – Computer Ething Engineers – Engineers as Expert porate Social Responsibility.	s and Redu Interest – R) – Discr nics – We	cing F Occup iminat apons	Risk - pation tion.	9 - Resp nal Cr 9 velopn	ect fo
UNIT IV Safety and Risk Authority – C Professional Ri UNIT V Multinational (Engineers as M Leadership –Co	SAFETY, R A – Assessment of Saf ollective Bargaining ghts – Employee Rig Corporations – Envi Ianagers – Consultin	fety and Risk – Risk Benefit Analysis – Confidentiality – Conflicts of I hts – Intellectual Property Rights (IP GLOBAL ISSUES ironmental Ethics – Computer Eth ag Engineers – Engineers as Expert porate Social Responsibility. Total	s and Redu Interest – R) – Discr nics – We Witnesses	cing F Occup iminat apons	Risk - pation tion.	9 - Resp nal Cr 9 velopn sors –	ect fo
UNIT IV Safety and Risk Authority – C Professional Ri UNIT V Multinational (Engineers as M Leadership –Co Suggestive As	SAFETY, R A – Assessment of Saf ollective Bargaining ghts – Employee Rig Corporations – Envi Ianagers – Consultin ode of Conduct – Cor sessment Methods ssessment Test	fety and Risk – Risk Benefit Analysis – Confidentiality – Conflicts of I hts – Intellectual Property Rights (IP GLOBAL ISSUES ironmental Ethics – Computer Eth ag Engineers – Engineers as Expert porate Social Responsibility. Total	s and Redu Interest – R) – Discr nics – We Witnesses	cing F Occup iminat eapons and A	Risk - pation tion. Dev Advis	9 - Resp nal Cr 9 velopn sors – 45	ect fo
UNIT IV Safety and Risk Authority – C Professional Ri UNIT V Multinational Engineers as M Leadership –Co Suggestive As Continuous A (20 Mar CAT 1 – 10 MA	SAFETY, R A – Assessment of Saf ollective Bargaining ghts – Employee Rig Corporations – Envi Ianagers – Consultin ode of Conduct – Cor sessment Methods ssessment Test rks) IRKS	fety and Risk – Risk Benefit Analysis – Confidentiality – Conflicts of I hts – Intellectual Property Rights (IP GLOBAL ISSUES ironmental Ethics – Computer Eth g Engineers – Engineers as Expert porate Social Responsibility. Total S Formative Assessment Test (20 Marks) 1.Assignment	s and Redu Interest – R) – Discr nics – We Witnesses Periods End Se	cing F Occup iminat apons and A mestor urks)	Risk - pation tion. Dev Advis	9 - Resp nal Cr 9 velopn sors – 45 xams	ect fo
UNIT IV Safety and Risk Authority – C Professional Ri UNIT V Multinational G Engineers as M Leadership –Co Suggestive As Continuous A (20 Mar CAT 1 – 10 MA CAT 2 – 10 MA	SAFETY, R Assessment of Saf ollective Bargaining ghts – Employee Rig Corporations – Envi Anagers – Consultin ode of Conduct – Cor seessment Methods ssessment Test rks) IRKS IRKS	fety and Risk – Risk Benefit Analysis – Confidentiality – Conflicts of I hts – Intellectual Property Rights (IP GLOBAL ISSUES ironmental Ethics – Computer Eth- ag Engineers – Engineers as Expert porate Social Responsibility. Total S Formative Assessment Test (20 Marks) 1.Assignment 2. Online Quizzes	s and Redu Interest – R) – Discr nics – We Witnesses Periods End Se (60 Ma	cing F Occup iminat apons and A mestor urks)	Risk - pation tion. Dev Advis	9 - Resp nal Cr 9 velopn sors – 45 xams	ect fo
UNIT IV Safety and Risk Authority – C Professional Ri UNIT V Multinational Engineers as M Leadership –Co Suggestive As Continuous A (20 Mai CAT 1 – 10 MA CAT 2 – 10 MA Descriptive Qu	SAFETY, R Assessment of Saf ollective Bargaining ghts – Employee Rig Corporations – Envi Anagers – Consultin ode of Conduct – Cor seessment Methods ssessment Test rks) IRKS IRKS	fety and Risk – Risk Benefit Analysis – Confidentiality – Conflicts of I hts – Intellectual Property Rights (IP GLOBAL ISSUES ironmental Ethics – Computer Eth g Engineers – Engineers as Expert porate Social Responsibility. Total S Formative Assessment Test (20 Marks) 1.Assignment	s and Redu Interest – R) – Discr nics – We Witnesses Periods End Se (60 Ma	cing F Occup iminat apons and A mestor urks)	Risk - pation tion. Dev Advis	9 - Resp nal Cr 9 velopn sors – 45 xams	ect fo
UNIT IV Safety and Risk Authority – C Professional Ri UNIT V Multinational G Engineers as M Leadership –Co Suggestive As Continuous A (20 Mar CAT 1 – 10 MA CAT 2 – 10 MA Descriptive Qu Outcomes	SAFETY, R A – Assessment of Saf ollective Bargaining ghts – Employee Rig Corporations – Envi Anagers – Consultin ode of Conduct – Cor Seessment Methods ssessment Test rks) IRKS IRKS IRKS IESTIONS	fety and Risk – Risk Benefit Analysis – Confidentiality – Conflicts of I hts – Intellectual Property Rights (IP GLOBAL ISSUES ironmental Ethics – Computer Eth- ag Engineers – Engineers as Expert porate Social Responsibility. Total S Formative Assessment Test (20 Marks) 1.Assignment 2. Online Quizzes 3.Problem-Solving Activities	s and Redu Interest – R) – Discr nics – We Witnesses Periods End Se (60 Ma	cing F Occup iminat apons and A mestor urks)	Risk - pation tion. Dev Advis	9 - Resp nal Cr 9 velopn sors – 45 xams	ect fo
UNIT IV Safety and Risk Authority – C Professional Ri UNIT V Multinational (Engineers as M Leadership –Co Suggestive As Continuous A (20 Mar CAT 1 – 10 MA CAT 2 – 10 MA Descriptive Qu Outcomes Upon comple	SAFETY, R A – Assessment of Saf ollective Bargaining ghts – Employee Rig Corporations – Envi Ianagers – Consultin ode of Conduct – Cor sessment Methods sessment Test rks) IRKS IRKS IESTIONS tion of the course, f	fety and Risk – Risk Benefit Analysis – Confidentiality – Conflicts of 1 hts – Intellectual Property Rights (IP GLOBAL ISSUES ironmental Ethics – Computer Eth- g Engineers – Engineers as Expert porate Social Responsibility. Total S Formative Assessment Test (20 Marks) 1.Assignment 2. Online Quizzes 3.Problem-Solving Activities the students will be able to:	s and Redu Interest – R) – Discr iics – We Witnesses Periods End Se (60 Ma 1. Desc	cing F Occup iminat apons and A mestar riptiv	Risk - pation tion. Dev Advis er Ex e Qua	9 - Resp nal Cr 9 velopn sors – 45 cams	ect fo
UNIT IV Safety and Risk Authority – Co Professional Risk UNIT V Multinational Co Engineers as M Leadership –Co Suggestive As Continuous A (20 Mar CAT 1 – 10 MA CAT 2 – 10 MA Descriptive Qu Outcomes Upon comple CO1 Apply the	SAFETY, R A - Assessment of Saf ollective Bargaining ghts – Employee Rig Corporations – Envi fanagers – Consultin ode of Conduct – Cor Sessment Methods ssessment Test rks) IRKS IRKS IRKS IESTIONS tion of the course, for a value of ethics without a statement to be thics without a statement to be this to be this to be the statement to be this to be the statement to be this the statement to be this to be the statement to be stateme	fety and Risk – Risk Benefit Analysis – Confidentiality – Conflicts of I hts – Intellectual Property Rights (IP GLOBAL ISSUES ironmental Ethics – Computer Eth- ag Engineers – Engineers as Expert porate Social Responsibility. Total S Formative Assessment Test (20 Marks) 1.Assignment 2. Online Quizzes 3.Problem-Solving Activities	s and Redu Interest – R) – Discr iics – We Witnesses Periods End Se (60 Ma 1. Desc	cing F Occup iminat apons and A mestar riptiv	Risk - pation tion. Dev Advis er Ex e Qua	9 - Resp nal Cr 9 velopn sors – 45 cams	ect fo
UNIT IV Safety and Risk Authority – C Professional Ri UNIT V Multinational C Engineers as M Leadership –Co Suggestive As Continuous A (20 Mar CAT 1 – 10 MA CAT 2 – 10 MA Descriptive Qu Outcomes Upon comple CO1 Apply the professiona	SAFETY, R A – Assessment of Saf ollective Bargaining ghts – Employee Rig Corporations – Envi Anagers – Consultin ode of Conduct – Cor sessment Methods ssessment Test rks) ARKS aRKS astions tion of the course, for a value of ethics with al decision.	fety and Risk – Risk Benefit Analysis – Confidentiality – Conflicts of I hts – Intellectual Property Rights (IP GLOBAL ISSUES ironmental Ethics – Computer Eth- ag Engineers – Engineers as Expert porate Social Responsibility. Total S Formative Assessment Test (20 Marks) 1.Assignment 2. Online Quizzes 3.Problem-Solving Activities the students will be able to: ith sustained lifelong learning to	s and Redu Interest – R) – Discr nics – We Witnesses Periods End Se (60 Ma 1. Desc	cing F Occup iminat eapons and A mestor riptiv	Risk - pation. Dev Advis er Ex e Que	9 - Resp nal Cr 9 velopm cors – 45 cams estion mous	ect fo
UNIT IV Safety and Risk Authority – C Professional Ri UNIT V Multinational Engineers as M Leadership –Co Suggestive As Continuous A (20 Mar CAT 1 – 10 MA CAT 2 – 10 MA Descriptive Qu Outcomes Upon comple CO1 Apply the professiona	SAFETY, R A – Assessment of Saf ollective Bargaining ghts – Employee Rig Corporations – Envi Anagers – Consultin ode of Conduct – Cor sessment Methods ssessment Test rks) ARKS aRKS astions tion of the course, for a value of ethics with al decision.	fety and Risk – Risk Benefit Analysis – Confidentiality – Conflicts of 1 hts – Intellectual Property Rights (IP GLOBAL ISSUES ironmental Ethics – Computer Eth- g Engineers – Engineers as Expert porate Social Responsibility. Total S Formative Assessment Test (20 Marks) 1.Assignment 2. Online Quizzes 3.Problem-Solving Activities the students will be able to:	s and Redu Interest – R) – Discr nics – We Witnesses Periods End Se (60 Ma 1. Desc	cing F Occup iminat eapons and A mestor riptiv	Risk - pation. Dev Advis er Ex e Que	9 - Resp nal Cr 9 velopm cors – 45 cams estion mous	ect fo
UNIT IV Safety and Risk Authority – C Professional Ri UNIT V Multinational G Engineers as M Leadership –Co Suggestive As Continuous A (20 Mar CAT 1 – 10 MA CAT 2 – 10 MA Descriptive Qu Outcomes Upon comple CO1 Apply the professional CO2 Apply the suitable prof	SAFETY, R A – Assessment of Saf ollective Bargaining ghts – Employee Rig Corporations – Envi Anagers – Consultin ode of Conduct – Cor sessment Methods ssessment Test rks) ARKS aRKS arkS	fety and Risk – Risk Benefit Analysis – Confidentiality – Conflicts of I hts – Intellectual Property Rights (IP GLOBAL ISSUES ironmental Ethics – Computer Eth- ag Engineers – Engineers as Expert porate Social Responsibility. Total S Formative Assessment Test (20 Marks) 1.Assignment 2. Online Quizzes 3.Problem-Solving Activities the students will be able to: ith sustained lifelong learning to	s and Redu Interest – R) – Discr nics – We Witnesses Periods End Se (60 Ma 1. Desc strengthe	cing F Occup iminat apons and A mestor riptiv	Risk - pation. Dev Advis er Ex e Que	9 - Resp nal Cr 9 velopm cors – 45 cams estion mous	ect fo

CO5 Analyze ethical problems supported by established experiments around the world and provide solution as a professional expert

Textbooks

- 1. Govindarajan M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics", Prentice Hall of India, New Delhi, (2004)
- 2. Mike W. Martin and Roland Schinzinger, "Ethics in Engineering", Tata McGraw Hill, New Delhi, (2003).

Reference Books

- 1. Mike W. Martin and Roland Schinzinger, "Ethics in Engineering", Tata McGraw Hill, New Delhi, (2003)
- 2. Charles E. Harris, Michael S. Pritchard and Michael J. Rabins, "Engineering Ethics Concepts and Cases", Cengage Learning, (2009)
- 3. Edmund G Seebauer and Robert L Barry, "Fundamentals of Ethics for Scientists and Engineers", Oxford University Press, Oxford, (2001)
- 4. John R Boatright, "Ethics and the Conduct of Business", Pearson Education, New Delhi, (2003)
- 5. Laura P. Hartman and Joe Desjardins, "Business Ethics: Decision Making for Personal Integrity and Social Responsibility" Mc Graw Hill education, India Pvt. Ltd., New Delhi, (2013)
- 6. World Community Service Centre, "Value Education", Vethathiri publications, Erode, (2011)

Web Resources

1. https://nptel.ac.in/courses/110105097/

CO P01 P05 **PSO1** PSO2 **PO2 PO3 PO4 P06 P07 P08 PO9** P010 P011 P012 **CO1** 2 3 1 2 2 2 **CO2** 2 3 2 2 2 1 **CO3** 3 2 2 2 3 1 2 **CO4** 3 1 2 2 3 2 2 2 **CO5** 2 3 3 3 3 1 2 2

CO Vs PO Mapping and CO Vs PSO Mapping

	L	Τ	Р	C
21ME5710 INTRODUCTION TO AIRCRAFT SYSTEM	3	0	0	3
Prerequisites for the course				
Fluid Mechanics and				
Machinery,Thermal				
Engineering				
Fundamentals of Electrical and Electronics Engineering				
Objectives				
• To understand the different component systems and functions.				
• To Understand the basic properties and principles behind the flight				
• To make the student understand the concept of theory of airfoils and wi	ng se	ctior	IS.	
UNIT I INTRODUCTION TO AIRCRAFTS	9			
Evolution and history of flight; Basic components of an aircraft: Structural m	nemb	ers, a	aircra	ıft axis
system, aircraft motions, control surfaces and high lift devices; Types of ai	rcraf	ts: Co	onver	ntional
design configurations based on power plant location, wing location, inta	ke lo	catio	on, ta	il unit
arrangements,				
landing gear arrangements.				
UNIT II BASIC PRINCIPLES OF FLIGHT	9			
Significance of speed of sound, air speed and ground speed, properties of atn	-			
equation, forces on the airplane, airflow over wing section, pressure distribution				-
section, generation of lift and drag, pitching moments, types of drag, lit	ft cu	rve,	drag	curve,
lift/drag ratio curve,				
factors affecting lift and drag.	0			
UNIT III AIRCRAFT SYSTEMS	9	6	,	
Environmental control systems(ECS), pneumatic systems, hydraulic systems				
landing gear systems, engine control systems, ice and rain protec		2		
pressurization and air conditioning systems, steering and brakes systems,				
Electrical and electronic systems: Avionics, flight controls, autopilot and	i flig	ht m	lanag	ement
systems, navigation systems,				
communication, information systems, radar systemUNIT IVAEROFOIL STABILITY AND CONTROL	9			
UNIT IVAEROFOIL STABILITY AND CONTROLAerofoil nomenclature, types of aerofoil, center of pressure and its ef	-	. 147;	ng (/	oction
			-	
Aerodynamic center, aspect ratio, effects of speed, air density on lift and dra	-	-		-
Lateral, longitudinal and directional stability and controls of aircraft; Effects		-		
lift coefficients, control tables, stalling, landing, gliding turning, spec	ea o	I SO	una,	macn
number, shock				
waves UNIT V AIRCRAFT PERFORMANCE AND MANEUVRES	9			
Power curves, maximum and minimum speeds of horizontal flight, effects of	-	ges (ofenc	vine
power,	Chal	.9-51		,
effects of altitude on power curves, forces acting on an aeroplane during a	ı turr	ı, loa	ds du	iring
a turn,correct and incorrect angles of bank.				č
Total Periods	45			

Contin			sment	Test	For		e Asse Tost	essme	ent		nd Sem		xams	
	(20 M	larks)					Test	``		(6	50 Marl	ks)		
CAT 1	10 N				1 1 0 00		Mark	(S)					ationa	
						ignme					escript	ive Que	stions	
CAT 2						-	uizzes							
Descri	ptive (Questio	ns		3.Pro	blem-	Solvin	g Acti	vities					
Outco														
-	_		of the o											
				ypes &	& clas	sificati	ions o	of air	craft	compo	nents a	and co	ntrol	
	-	dersta	-		6.01	1.0.0		,		6.4.	,	<i>(</i> 1 ,		•
	-			-	-			· ·			ospher	•	erstand	1)
											Under			1>
											dynami			
						s that a	are act	ing or	i an ai	rcraft, v	variatio	n of thr	ust, pov	wer,
		ocity ai	nd altit	uue. (A	рріуј									
Text B				.				2			0.04			
	1. A	nderso	n, J.D.,	Introdu	iction	to Flig	nt, MC	Graw-	H111; 8	th editi	on , 201	.5		
	2. N	elson, l	R.C. "Fl	ight Sta	bility a	and Au	itomat	tic Cor	ntrol",	McGrav	v-Hill B	ook Co.	, 2004.	
Refere	nco D	ookc		_	-									
			ل م	II.	DE "	A : 1	D	<u> </u>		- la : l : 4			- l 147:	1
				0	K.E., <i>I</i>	Airpiai	ne Per	forma	nce st	ability	and Cor	ntrol, J	onn wi	ley
_			NY, 19			C A						0040		
							•				Book Co			
			A.C. Flig	ght wit	nout Fo	ormula	ae, Pea	rson l	Educat	ion; Ele	even edi	ition, 20)11	
Web R														
	<u>https:</u>	//npte	l.ac.in/	courses	<u>s/1011</u>	01083	3							
CO Vs	PO M	lapping	g and C	CO Vs l	PSO M	appin	g							
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSC
CO1	2	1				2	2					2	2	1
CO2	2	1				2	2					2	2	1
CO3	2	1				2	2					2	2	1
CO4	3	2	2									2	2	1
		-		ł	ł	1	+		1	ł	1		ł	<u> </u>

CO5

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Demonstrate the types & classifications of aircraftcomponents and control systems (Understand)

1. Explain primary and secondary flight control surfaces.and mention the different types of tail arrangements of an aircraft. (U)

2. Draw three view of an aircraft and show all the major parts? Explain the major components and parts... (U)

COURSE OUTCOME 2: Interpret the basic concepts of flight & Physical properties of Atmosphere (Understand)

1. Explain the characteristics of an airfoil, when subjected to different angle of attacks. (U)

2. Discuss the pressure distribution on an aerofoil? Sketch the pressure distribution on anaerofoil at various angle of attack... (U)

COURSE OUTCOME 3: Describe the principle and working of different aircraft systems. (Understand)

1. Explain the working of the typical hydraulic system used for the passenger aircraft. (U)

2. Describe aircraft engine ignition system and starting system operation with neat sketches.(U)

COURSE OUTCOME 4: Determine dynamic longitudinal stability, lateral and directional dynamic stability (Apply)

 Discuss the dynamic stability aspects of an aircraft considering its linearized longitudinal equations of motion being analyzed under three degrees of freedom system.
 (A)

2. The characteristic equation of an airplane is $\lambda 2$ -0.5 λ +9.5=0. Determine whether themotion is dynamically stable or unstable. (A)

COURSE OUTCOME 5: Calculate the forces and moments that are acting on an aircraft, variation of thrust, power, SFC with velocity and altitude. (Apply)

- 1. Explain about the role of leading edge extension to improve the performance of aircraft at high angle of attack. . (U)
- 2. A flat plate is kept at 15° angle of attack to a supersonic flow at Mach number 2.4. Solve the flow field around the plate and determine the inclination of slipstream direction usingshock expansion theory. (A)

PROFESSIONAL ELECTIVE II

			.	T	T	D					
21ME6701	MECHANIC	AL VIBRATIONS AND CONTRO	י ר		T	P	C				
D	C 41			3	0	0	3				
Prerequisites											
Theory of Mac	nines										
Objectives											
• To understa	and the Fundamentals	s of Vibration and its practical applica	ations								
• To understa	and the working princ	ciple and operations of various vibrati	on measur	ring	instr	umen	ts				
• To underst	tand the various Vibr	ation control strategies									
UNIT I	FUNDA	AMENTALS OF VIBRATION				9					
Introduction –	Sources of Vibration	- Mathematical Models - Displacem	ent, veloci	ity a	nd ac	cceler	ation –				
Review of sin	single degree freedom systems – Vibration isolation -Vibrometers and accelerometers										
Response to an	bitrary and non-harr	nonic Excitations – Transient vibrati	ion – Imp	ulse	load	ls – C	Critical				
speed of shaft.											
UNIT II	TWO DE	GREE OF FREEDOM SYSTEM				9					
Introduction -	Free undamped and	d damped vibration - Forced vibrat	ion with	Harr	noni	c exc	itation				
system – Coor	dinate couplings and	principal coordinates - Torsional vib	ration witl	h two	o and	d three	e rotor				
systems.											
UNIT III	MULTI-DEGI	REES OF FREEDOM SYSTEM A	ND			9					
	C	CONTINUOUS SYSTEM									
Multi degree fr	reedom system – Infl	uence coefficients and stiffness coeff	ïcients – H	Flexi	bility	y mati	rix and				
Stiffness matri	x – Eigen values and	d Eigen vectors – Matrix iteration m	ethod -A	ppro	xima	ate me	ethods:				
Dunkerley, Ray	yleigh's, and Holzer	method – Geared systems – Eigen va	alues & Ei	igen	vect	ors fo	r large				
system of equa	tions using Sub spac	e, Lanczos method – Continuous sys	tem: Vibra	ation	of s	string,	shafts				
and beams.											
UNIT IV	V	IBRATION CONTROL				9					
Specification o	f Vibration Limits –V	Vibration severity standards – Vibratio	on as cond	ition	Mo	nitoriı	ng tool				
– Vibration Isc	olation methods – Dy	namic Vibration Absorber, Torsional	and Pend	ulun	n Tyj	pe Ab	sorber				
- Damped Vib	ration absorbers – Sta	atic and Dynamic Balancing – Balanci	ing machin	nes –	- Fie	ld bala	ancing				
– Vibration Co	ntrol by Design Mod	ification – Active Vibration Control									
UNIT V	EXPERIME	NTAL METHODS IN VIBRATION	N			9					
		ANALYSIS									
Vibration Ana	lysis overview – Ex	perimental Methods in Vibration Ar	nalysis –	Vibr	atior	n Mea	suring				
Instruments –	Selection of Sensors	s - Accelerometer Mountings - Vib	ration Ex	citer	·s –	Mech	anical,				
Hydraulic, Elec	ctromagnetic and Ele	ctrodynamics – Frequency Measuring	g Instrume	ents,	FFT	analy	zers –				
System Identifi	ication from Frequen	cy Response – Testing for resonance a	and mode s	shape	es.						
		Total I	Periods			45					
Suggestive As	sessment Methods		I								
Continuous A	ssessment Test	Formative Assessment Test	End Sem	neste	r Ex	ams					
(20 Ma	rks)	(20 Marks)	(60 Marl	ks)							
CAT 1 – 10 M	ARKS	1.Assignment	1. Descri	ptive	e Qu	estior	ıs				
CAT 2 – 10 M	ARKS	2. Online Quizzes									
		3. Problem-Solving Activities									
		-									

Outcomes
Upon completion of the course, the students will be able to:
CO1. Demonstrate mathematical models of dynamical systems with single degree of freedom to
determine their response to harmonic, transient and impulse loads(Apply)
CO2. Demonstrate mathematical models of dynamical systems with multiple degrees of freedom
to calculate natural frequencies and mode shapes(Apply)
CO3. Determine the natural frequencies and mode shapes of continuous systems such as strings

in transverse vibrations, bars in longitudinal vibrations, and circular shafts in torsional vibrations using analytical and numerical methods. **(Apply)**

- **CO4.** Illustrate the severity of vibration and choose a suitable vibration isolation system, perform static and dynamic balancing and design suitable vibration absorber systems.**(Apply)**
- **CO5.** Describe the vibration limits and able to select various vibration measuring instruments **(Understand)**

Text Books

- 1. Rao S S, "Mechanical Vibrations", 5th Edition, Prentice Hall, (2011)
- 2. Grover G K, "Mechanical Vibrations", Nem Chand and Brothers, Roorkee, (2009)

Reference Books

- 1. Thomson W, "Theory of Vibration with Applications", CRC Press, (2018)
- 2. Ashok Kumar Mallik, "Principles of Vibration control", Affiliated East-West Press (P) Ltd., New Delhi Press, (2014)
- 3. Lewis H Bell, "Industrial Noise Control Fundamentals and Applications", Marcel Dekkev Incl., New York, (2007)

Web Resources

https://nptel.ac.in/courses/112107087/

CO Vs PO Mapping and CO Vs PSO Mapping

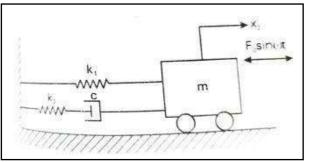
CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2
1	2	2	3									1	3	
2	2	2	3									1	3	
3	2	2	3									1	3	
4	2		3			1	1					1	2	1
5	2		1			2	1					1	2	1

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Demonstrate mathematical models of dynamical systems with single degree of freedom to determine their response to harmonic, transient and impulse loads. (Apply)

1. Discuss general theory of seismic instruments and obtain the condition for using it as a vibrometer. (U)

2. A shaft 1.5 m long supported in flexible bearings at the ends carries two wheels each of 50 kg mass. One wheel is situated at the centre of the shaft and the other at a distance of 375 mm from the centre towards left. The shaft is hollow of external diameter 75 mm and internal diameter 40 mm. The density of the shaft material is 7700 kg/m³ and its modulus of elasticity is 200 GN/m². Find the lowest whirling speed of the shaft, taking into account the mass of the shaft. (A)


COURSE OUTCOME 2 Demonstrate mathematical models of dynamical systems with multiple degrees of freedom to calculate natural frequencies and mode shapes. (Apply)

1. A machine mounted on springs and fitted with a dashpot has a mass of 75 kg. There are three springs, each of stiffness 10 N/mm. The amplitude of vibrations reduces from 38.4 to 6.4 mm in two complete oscillations. Assuming that the damping force varies as the velocity, determine: 1. the damping coefficient, 2. the ratio of frequencies of damped and undamped vibrations and 3. the periodic time of damped vibrations. (A)

2. A mass of 10 kg is suspended from one end of helical spring; the other end is being fixed. The stiffness of the spring is 10 N/mm. The viscous damping causes the amplitude to decrease to one-tenth of the initial value in four complete oscillations. If a periodic force of 150 Cos 50t (N) is applied at the mass in the vertical direction, find the amplitude of the forced vibrations. What is its value of resonance? (A)

COURSE OUTCOME 3: Determine the natural frequencies and mode shapes of continuous systems such as strings in transverse vibrations, bars in longitudinal vibrations, and circular shafts in torsional vibrations using analytical and numerical methods. (Apply)

1. Figure shown a system subjected to vibration. Find an expression for the natural Frequency, locate the mode and draw mode shapes. (A)

2. State and proof Maxwell reciprocal theorem. Explain Dunkerley's method. (U)

COURSE OUTCOME 4: Illustrate the severity of vibration and choose a suitable vibration isolation system, perform static and dynamic balancing and design suitable vibration absorber systems (Apply)

1. A motor is mounted on a platform that is observed to vibrate excessively at an operating speed of 6000 rpm producing a 250-N force. Design a vibration absorber (undamped) to add to the platform. Note that in this case the absorber mass will only be allowed to move 2 mm because of geometric and size constraints. (A

2. A machine sorts bolts according to their size by moving a screen back and forth using a primary system of 2500 kg with a natural frequency of 400 cycle/min. Design a vibration absorber so that the machine-absorber system has natural frequencies below 160 cycles/min and above 320 rpm. (A)

COURSE OUTCOME 5: Describe the vibration limits and able to select and analyse by various vibration measuring instruments (Understand)

- Explain the experimental modal analysis and the necessary basic equipments. (U)
- 2. Explain machine condition monitoring techniques. (U)

				L	Т	Р	С
21ME6702	CONCE	EPT OF ENGINEERING DESIGN		3	0	0	3
Prerequisites	s for the course						
		gy, Strength of Materials and Desig	n of Macl	nine E	leme	ents 8	ι
Joints							
Objectives							
1. To Stuc	ly the various desig	n requirements and get acquainted	d with the	e proc	esse	s invo	olved
*	uct development.						
		sses and scientific approaches to de	evelop a s	ucces	sful	prodı	ict.
3. To prov	vide the design solu	tion through the social needs.					
UNIT I]	DESIGN TERMINOLOGY				9	
Definition-var	ious methods and	l forms of design-importance o	f produo	t de	sign-	static	and
-		n projects-morphology of design-re	-		-		-
		er aided engineering-codes and st	andards-	produ	ict a	nd pi	ocess
cycles-bench r	narking.						
UNIT II	INTROD	UCTION TO DESIGN PROCESSES				9	
Basic module	s in design proce	ess-scientific method and design	method	-Need	l ide	entific	ation,
importance of	problem definition	n-structured problem, real life pro	blem- inf	orma	tion	gathe	ring -
customer req	uirements- Quality	v Function Deployment (QFD)- p	roduct d	esign	spe	cifica	tions-
generation of	alternative solutior	ns- Analysis and selection-Detail de	esign and	draw	vings	-Prot	otype,
modeling, sim	ulation, testing and	evaluation					
UNIT III		CREATIVITY IN DESIGN				9	
Creativity and	problem solving-v	ertical and lateral thinking-inventi	on-psych	ologi	cal vi	iew, n	nental
	-	storming, synectics, force fitting				-	-
map-Theory o	of innovative probl	em solving (TRIZ) - conceptual d	ecompos	ition	crea	ting c	lesign
concepts.							
UNIT IV	SOCIETA	AL ASPECTS IN PRODUCT DEVEL	OPMENT	•			9
Human factor	rs in design, ergon	omics, user friendly design-Aesth	etics and	l visu	al as	spects	5
environmenta	l aspects-marketing	g aspects-team aspects-legal aspect	ts-presen	tatior	ı asp	ects	
UNIT V	MATER	AL AND PROCESSES IN DESIGN				9	
		ormance characteristics of m	aterials-	select	ion	for	new
	•	lesign-economics of materials-sel					
		facturing process, process systems					
	n for Assembly (DF		0				- J
			Periods			45	
Suggestive As	ssessment Method		crious		-	15	
	ssessment Test	Formative Assessment Test	End Se	mest	er Ex	ams	
(30 Ma		(20 Marks)	(60 Ma				
2 Test EACH 1	-	MCQ/Descriptive Questions	Descrip	-)ues	tions	
Descriptive Qu	iestions				-		
		1	1				

Outcomes

Upon completion of the course, the students will be able to:

CO1: Examine the various design requirements and get acquainted with the processes involved in product development. **(Apply)**

CO2: Apply the design processes to develop a successful product. **(Apply)**

CO3: Apply scientific approaches to provide design solutions. **(Apply)**

CO4: Design solution through relate the social needs and provide a solution. **(Apply)**

CO5: Apply the principles of material selection, costing and manufacturing in design. **(Apply)**

Text Books

- 1. Dieter. G. N., Linda C. Schmidt, "Engineering Design", McGraw Hill, 2013.
- 2. Horenstein, M. N., Design Concepts for Engineers, Prentice Hall, 2010.

Reference Books

- 1. Dhillon, B. S., Advanced Design Concepts for Engineers, Technomic Publishing Co., 1998.
- 2. Edward B. Magrab, Satyandra K. Gupta, F. Patrick McCluskey and Peter A. Sandborn, "Integrated Product and Process Design and Development", CRC Press, 2009.
- 3. James Garratt, "Design and Technology", Cambridge University Press, 1996.
- 4. Joseph E. Shigley, Charles R.Mische, and Richard G. Budynas, "Mechanical Engineering Design", McGraw Hill Professional, 2003.
- 5. Sumesh Krishnan and MukulSukla, Concepts in Engineering Design, Notion Press, 2016.

Web Resources

- 1. <u>https://nptel.ac.in/courses/107103002</u>
- 2. <u>https://nptel.ac.in/courses/107101087</u>

CO Vs PO Mapping and CO Vs PSO Mapping

СО	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO 10	PO 11	PO 12	PSO1	PSO2
1	2	3	2										2	1
2			3		2	2							2	1
3			3		2							2	2	1
4			3				2	2					2	1
5	2	2	3										2	1

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Students will be able to predict the various design requirements and get acquainted with the processes involved in product development (Apply)

- 1. List the various methods and forms of design (R)
- 2. Discuss about the requirements of a good design (U)

3. Describe the steps in benchmarking process (A)

COURSE OUTCOME 2: Students will be able to predict the suitable method for the design processes to develop a successful product. (Apply)

- 1. Explain QFD with a suitable example (A)
- 2. Discuss the importance of problem definition (U)
- 3. State the importance of Prototype modeling, simulation, testing and evaluation (R)

COURSE OUTCOME 3: Students will be able to predict the scientific approaches to provide design solutions. (Apply)

- 1. Explain the creativity methods (R)
- 2. Discuss about theory of innovative problem solving (U)
- **3.** How the innovative problem-solving technique is used in design creativity(A)

COURSE OUTCOME 4: Students will be able to predict the design solution through relate the human needs and provide a solution. (Apply)

- 1. Describe the design for environment (R)
- 2. Why the human factors is considered in design (U)
- 3. Derive a design process for aesthetics and visual aspects (A)

COURSE OUTCOME 5: Students will be able to predict the principles of material selection, costing and manufacturing in design. (Apply)

- 1. Explain material selection methods in detail (U)
- 2. List the benefits of design of experiments (R)
- 3. Discuss Design for Manufacturability (DFM) and Design for Assembly (DFA) with a suitable example (A)

				L	Т	Р	С		
21ME6703	FUND	AMENTALS OF COMBUSTION		3	0	0	3		
Prerequisites	s for the course			•	Ŭ	0			
Engineering C	hemistry, Engineer	ing Thermodynamics							
Objectives									
		nentals of combustion and to eduel burning characteristics	icate the	diffe	rent	mode	es of		
UNIT I	THERM	ODYNAMICS OF COMBUSTION				9			
 Activation ender reaction 	nergy – multi-step i ns – Calculation of a mental laws of tran w	stoichiometry – Thermo-chemical reactions – Heat of reaction – first adiabatic flame temperature – Sec sport phenomena, Conservations	order, se cond law	cond analy	orde vsis f	er and for rea	third acting		
UNIT II	P	REMIXED COMBUSTION				9			
measurement extinction, Ign	methods, Effects on the stabilization methods in the stabilization method methods in the stabilization methods in the stabilization	al combustion wave, Laminar pre of chemical and physical variable zations, Turbulent Premixed flame				ocity,	-		
UNIT III		I-PREMIXED COMBUSTION				9			
Gaseous Jet d combustion	iffusion flame, Liqu	id fuel combustion, Atomization,	Spray Co	mbu	stion	ı, Soli	1 fuel		
UNIT IV	COMBUS	TION IN GAS TURBINE ENGINES				9			
affecting com		stion chambers – Recirculation – Fuels used for gas turbine combu							
UNIT V	EMISSI	ON CONTROL TECHNOLOGIES				9			
	stion technologies -	stion, Quantification of emission, - Simulation on premixed, non-pr							
		Total	Periods			45			
Suggestive As	ssessment Method	S							
	ssessment Test	Formative Assessment Test	End Se	mest					
(20 Ma)	-	(20 Marks)	(60 Ma	ırks)					
CAT 1 -10 Mai		1.ASSIGNMENT		SCRIPTIVE					
CAT 2 -10 Mai	rks	2. ONLINE QUIZZES	QUEST	IONS					
		3.PROBLEM-SOLVING							
		ACTIVITIES							

es													
npleti	on of	the c	ourse	, the s	stude	nts w	ill be	able t	: 0:				
Apply	the pr	rincip	es of j	physic	cs, che	mistr	y and	therm	odyna	mics to	comb	ustion	(Apply)
-			0			and t	urbul	ent pr	emixed	l comb	ustion	and its	;
			stion	and	its	chara	cteris	tics o	of gas	eous, l	iquid	and s	olid fu
turbin	es.	mowle	edge a	bout	combi	ustion	proce	esses a	and str	ategies	adapto	ed in ga	as
emissi	on.		ombu	stion	techr	nologie	es tha	at mi	tigate	combı	istion	driven	
· · · · · · · · · · · · · · · · · · ·		,											
R. Turn	is "Ai	n Intr	oduct	ion to	o Con	ıbusti	on Co	ncept	s and	Applic	cations'	', McG	raw Hil
012).								_					
vin Gla	ssmai	n "Con	nbusti	ion", A	Acadei	mic Pr	ess, (2	2015)					
Do Doo	lze												
		a"Cor	nhuct	ion Th	ooru"		CDC r	rocc	(2010)				
					-		-				וקו		
					-					-	-		
				•			0		•		-	ulai an'	,
		. and	Sha	ina i	Х.Р. ,	Gas	luidii	ie, je	t and	коске	t Plop	uision	,
		9. Dict	ributo	ra Da	Jh: 7	nd odi	tion ('	2014)					
							-	-		121			
		NUCK		puisi		ment	5, juii	11 VV110	zy, (19	55			
tps://		lacin	loou		1011(14070							
			/	<u>ses/</u>		<u>J4070</u>	2						
<u>ups.//</u>	nptel	auill	<u>,</u>										
<u>tps://</u>				rses/1	<u>1011(</u>	<u>)4072</u>	2						
	- nptel	.ac.in	/coui	-		<u>)4072</u>							
tps://	- nptel	.ac.in	/coui	-)4072 PO	РО	РО	PO1	PO1	PO1	PSO	PSO
tps:// Mappi	nptel	l <mark>.ac.in</mark> Id CO [°]	<mark>/cour</mark> Vs PS(О Мар	ping			PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
	Apply Acquir charac Interpr (Unde Assimi turbind (Apply Identif emissi (Apply) Identif emissi (Reme (Apply) Identif emissi (Reme (Reme (Apply) Identif emissi (Reme (Reme (Reme (Reme (Reme (Reme (Reme (Reme (Reme (Reme (Reme (Reme (Reme (Reme (Reme (Reme (Reme (Reme (Reme (Reme (Reme (Reme (Reme (Reme (Reme (Reme (Reme (Reme (Reme (Reme (Reme (Reme (Reme (Reme (Reme (Reme) (Reme (Reme (Reme (Reme (Reme) (Reme (Reme (Reme (Reme (Reme (Reme (Reme (Reme) (Reme (Reme (Reme (Reme) (Reme (Reme (Reme) (Reme) (Reme (Reme) (Reme) (Re	npletion of Apply the pro- Acquire the characterist Interpret of (Understand Assimilate k turbines. (Apply) Identify no emission. (Remembe Ks R. Turns "An 012). Vin Glassman (Remembe Ks R. Turns "An 012). Vin Glassman (C. K. Law "C Mathur M.I Standard Publishers a Sutton G.P., ources	<pre>mpletion of the c Apply the principl Acquire the know characteristics (U Interpret combu (Understand) Assimilate knowle turbines. (Apply) Identify novel co emission. (Apply) Identify novel co emission. (Remember) •ks R. Turns "An Intr 012). vin Glassman "Con ce Books F.A.Williams "Cor H.S.Mukunda "Un C. K. Law "Combu Mathur M.L. and Standard Publishers & Dist Sutton G.P., "Rock ources</pre>	<pre>mpletion of the course Apply the principles of p Acquire the knowledge characteristics (Underse Interpret combustion (Understand) Assimilate knowledge a turbines. (Apply) Identify novel combust emission. (Remember) ks R. Turns "An Introduct 012). vin Glassman "Combust Exe Books F.A.Williams "Combust H.S.Mukunda "Understa C. K. Law "Combustion Mathur M.L. and Shan Standard Publishers & Distributo Sutton G.P., "Rocket Pro- ources</pre>	mpletion of the course, the second	mpletion of the course, the stude Apply the principles of physics, che Acquire the knowledge on laminar characteristics (Understand) Interpret combustion and its (Understand) Assimilate knowledge about combu- turbines. (Apply) Identify novel combustion techr emission. (Remember) ks R. Turns "An Introduction to Con 012). vin Glassman "Combustion", Acader ce Books F.A.Williams "Combustion Theory" H.S.Mukunda "Understanding Com C. K. Law "Combustion Physics", Ca Mathur M.L. and Sharma R.P., " Standard Publishers & Distributors, Delhi, 20 Sutton G.P., "Rocket Propulsion Ele ources	mpletion of the course, the students w Apply the principles of physics, chemistry Acquire the knowledge on laminar and t characteristics (Understand) Interpret combustion and its chara (Understand) Assimilate knowledge about combustion turbines. (Apply) Identify novel combustion technologie emission. (Remember) ks R. Turns "An Introduction to Combusti 012). rin Glassman "Combustion Theory", ABP, H.S.Mukunda "Understanding Combusti C. K. Law "Combustion Physics", Cambrid Mathur M.L. and Sharma R.P., "Gas T Standard Publishers & Distributors, Delhi, 2nd edi Sutton G.P., "Rocket Propulsion Elements	npletion of the course, the students will be Apply the principles of physics, chemistry and Acquire the knowledge on laminar and turbule characteristics (Understand) Interpret combustion and its characterist (Understand) Assimilate knowledge about combustion procesturbines. (Apply) Identify novel combustion technologies that emission. (Remember) Ks R. Turns "An Introduction to Combustion Courses, (2) rin Glassman "Combustion Theory", ABP, CRC pply. I.S.Mukunda "Understanding Combustion", M. C. K. Law "Combustion Physics", Cambridge Ur Mathur M.L. and Sharma R.P., "Gas Turbir Standard Publishers & Distributors, Delhi, 2nd edition (2) Sutton G.P., "Rocket Propulsion Elements", Joh Ources	npletion of the course, the students will be able t Apply the principles of physics, chemistry and therm Acquire the knowledge on laminar and turbulent pr characteristics (Understand) Interpret combustion and its characteristics of (Understand) Assimilate knowledge about combustion processes a turbines. (Apply) Identify novel combustion technologies that mi emission. (Remember) ks R. Turns "An Introduction to Combustion Concept 012). vin Glassman "Combustion Theory", ABP, CRC press, H.S.Mukunda "Understanding Combustion", Macmill C. K. Law "Combustion Physics", Cambridge Univers Mathur M.L. and Sharma R.P., "Gas Turbine, Je Standard Publishers & Distributors, Delhi, 2nd edition (2014) Sutton G.P., "Rocket Propulsion Elements", John Wildources	npletion of the course, the students will be able to: Apply the principles of physics, chemistry and thermodyna Acquire the knowledge on laminar and turbulent premixed characteristics (Understand) Interpret combustion and its characteristics of gase (Understand) Assimilate knowledge about combustion processes and straturbines. (Apply) Identify novel combustion technologies that mitigate emission. (Remember) ks R. Turns "An Introduction to Combustion Concepts and 012). rin Glassman "Combustion Theory", ABP, CRC press, (2018) H.S.Mukunda "Understanding Combustion", Macmillan Indi C. K. Law "Combustion Physics", Cambridge University Press Mathur M.L. and Sharma R.P., "Gas Turbine, Jet and Standard Publishers & Distributors, Delhi, 2nd edition (2014) Sutton G.P., "Rocket Propulsion Elements", John Wiley, (1990)	npletion of the course, the students will be able to: Apply the principles of physics, chemistry and thermodynamics to Acquire the knowledge on laminar and turbulent premixed comb characteristics (Understand) Interpret combustion and its characteristics of gaseous, I (Understand) Assimilate knowledge about combustion processes and strategies turbines. (Apply) Identify novel combustion technologies that mitigate combu emission. (Remember) ks A. Turns "An Introduction to Combustion Concepts and Applic 012). rin Glassman "Combustion Theory", ABP, CRC press, (2018) H.S.Mukunda "Understanding Combustion", Macmillan India, (200 C. K. Law "Combustion Physics", Cambridge University Press, (201 Mathur M.L. and Sharma R.P., "Gas Turbine, Jet and Rocke Standard Publishers & Distributors, Delhi, 2nd edition (2014) Sutton G.P., "Rocket Propulsion Elements", John Wiley, (1993) ources	npletion of the course, the students will be able to: Apply the principles of physics, chemistry and thermodynamics to combu- Acquire the knowledge on laminar and turbulent premixed combustion characteristics (Understand) Interpret combustion and its characteristics of gaseous, liquid (Understand) Assimilate knowledge about combustion processes and strategies adapter turbines. (Apply) Identify novel combustion technologies that mitigate combustion emission. (Remember) ks A. Turns "An Introduction to Combustion Concepts and Applications" 012). rin Glassman "Combustion Theory", ABP, CRC press, (2018) H.S.Mukunda "Understanding Combustion", Macmillan India, (2007) C. K. Law "Combustion Physics", Cambridge University Press, (2010) Mathur M.L. and Sharma R.P., "Gas Turbine, Jet and Rocket Prop Standard Publishers & Distributors, Delhi, 2nd edition (2014) Sutton G.P., "Rocket Propulsion Elements", John Wiley, (1993) Ources	npletion of the course, the students will be able to: Apply the principles of physics, chemistry and thermodynamics to combustion and its characteristics (Understand) Interpret combustion and its characteristics of gaseous, liquid and s (Understand) Assimilate knowledge about combustion processes and strategies adapted in gas turbines. (Apply) Identify novel combustion technologies that mitigate combustion driven emission. (Remember) ks A. Turns "An Introduction to Combustion Concepts and Applications", McG 012). rin Glassman "Combustion", Academic Press, (2015) re Books F.A.Williams "Combustion Theory", ABP, CRC press, (2018) H.S.Mukunda "Understanding Combustion", Macmillan India, (2007) C. K. Law "Combustion Physics", Cambridge University Press, (2010) Mathur M.L. and Sharma R.P., "Gas Turbine, Jet and Rocket Propulsion" Standard Publishers & Distributors, Delhi, 2nd edition (2014) Sutton G.P., "Rocket Propulsion Elements", John Wiley, (1993) ources

CO 1	РО	PO	PO1	PO1	PO1	PSO	PSO							
	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO1	1	2	3										2	3
CO2	2	3											2	3
CO3		3		2									2	3
CO4	1	3	2										2	3
CO5					3							2	2	3

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Apply the principles of physics, chemistry and thermodynamics to combustion (Apply)

1. A closed, fixed, adiabatic volume contains a stoichiometric mixture of 2 kmole of H_2 and 1 kmole of O_2 at 100 kPa and 298 K. Find the adiabatic flame temperature assuming the irreversible reaction (**A**)

 $2\mathrm{H}_2 + \mathrm{O}_2 \rightarrow 2\mathrm{H}_2\mathrm{O}$

2. Consider a variant on the previous example in which the mixture is diluted with an inert, taken here to be N_2 . A closed, fixed, adiabatic volume contains a stoichiometric mixture of 2 kmole of H_2 , 1 kmole of O_2 , and 8 kmole of N_2 at 100 kPa and 298 K. Find the adiabatic flame temperature and the final pressure, assuming the irreversible reaction **(A)**

 $2\mathrm{H}_2 + \mathrm{O}_2 + 8\mathrm{N}_2 \rightarrow 2\mathrm{H}_2\mathrm{O} + 8\mathrm{N}_2.$

COURSE OUTCOME 2: Acquire the knowledge on laminar and turbulent premixed combustion and its characteristics (Understand)

- **1.** Identify the effects of chemical and physical variables on burning velocity during premixed flame? **(U)**
- 2. Comparison between the Laminar and Turbulent premixed flame? (U)

COURSE OUTCOME 3: Interpret combustion and its characteristics of gaseous, liquid and solid fuel (Understand)

- **1.** Characteristics for the liquid fuel to obtain the non-premixed combustion? **(U)**
- 2. Explain briefly about the solid fuel combustion? (U)

COURSE OUTCOME 4: Assimilate knowledge about combustion processes and strategies adapted in gas turbines (Apply)

- **1.** The mass flow rate of air through an aircraft engine is 10 kg/s. The compressor outlet temperature is 400 K and the turbine inlet temperature is 1800 K. The heating value of the fuel is 42 MJ/kg and the specific heat at constant pressure is 1 kJ/kg-K. The mass flow rate of the fuel in kg/s is approximately. For a given inlet condition, if the turbine inlet temperature is fixed, what value of compressor efficiency given below leads to the lowest amount of fuel added in the combustor of a gas turbine engine? **(A)**
- **2.** Identify the type of fuels used for gas turbine combustion chambers with it physical and chemical properties? **(U)**

COURSE OUTCOME 5: Identify novel combustion technologies that mitigate combustion driven emission (Remember)

- 1. Describe the types of technique used to reduce exhaust emission (R)
- **2.** Recognize the chemical balance during the combustion of the liquid fuel? **(R)**

21ME6704		Fuel Cell Technology		L	Т	Р	С
		Tuer cent reenhology	-	3	0	0	3
_	for the course						
Engineering P	hysics, Engineering	Chemistry					
Objectives							
^	•	nted in depth knowledge of fuel cell		0.			
		concepts, methods and application					_
		ribe the performance characteristic	cs of fuel	cell p	owe	er plai	nt and
its components. 4. To outline the performance, design characteristics and operating issues for various fuel							
	ine the performanc	e, design characteristics and operat	ing issue	es for	vari	ous fu	lel
cells.	art cufficient knowl	edge to students about the working	t of fuol a	oll in	duct	ruor	ם.9 ס
•		ledge to students about the working	g of fuel c	len m	uusi	.1 y 01	RØD
UNIT I	organization. UNIT I INTRODUCTION TO FUEL CELLS						
_		s of fuel cell – low, medium and high	ı temner	ature	fuel	9 cell	liauid
	0 11	ange membrane fuel cell solid oxide	•				iiquiu
		nical kinetics of fuel cells.	e, ilyulog	sen nu		-115 -	
5			IC			0	
UNIT II		FOR AUTOMOTIVE APPLICATION		1 .1.	· .1 .	9	
		cations – technology advances in					
-		id hydrogen and compressed hyd cell – road map to market.	nogen –	meta	ппу	unae	s, iuei
_		-				0	
UNIT III		OMPONENTS AND THEIR IMPACT PERFORMANCE				9	
		istics – current/voltage, voltage e					
	· .	mance, mass transfer effects – m		elec	trod	e ass	embly
	uel cell stack, bi-po	lar plate, humidifiers and cooling pl	lates				
UNIT IV		FUELING				9	
		ressure cylinders, liquid hydrogen,	-				fibers
		eforming, partial oxidation, auto th	nermal r	eform	ning	- CO	
removal, fuel d	cell technology base	ed on removal like bio-mass.					
UNIT V	UNIT V FUEL CYCLE ANALYSIS						
	2	s – application to fuel cell and othe		0		0	
	red vehicles, SI en	gine fueled by natural gas and h	ydrogen	and	hyb	rid e	lectric
vehicle.							
Suggostivo As	seesment Method	Total P	eriods			45	
	ssessment Method ssessment Test	s Formative Assessment Test	End Ser	moct	or Fr	zome	
					ei E	xaiiis	
(20 Mai	2	(20 Marks)	(60 Ma				
CAT 1 -10 Mar		1.ASSIGNMENT	1. DESC		IVE		
CAT 2 -10 Mar	KS	2. ONLINE QUIZZES	QUESTI	ION2			
		3.PROBLEM-SOLVING					
ACTIVITIES							

Outco	mes
Upon	completion of the course, the students will be able to:
CO1.	Describe the fundamentals of fuel cell (Understand)
CO2.	Describe the performance of fuel cell systems (Understand)
CO3.	Illustrate the construction and operation of fuel cell stack and fuel cell system (Apply)
CO4.	Illustrate the modelling techniques for fuel cell systems (Apply)
CO5.	Classify the different methods of fuel processing for fuel cells (Understand)
Text I	Books
1.	Andrew L. Dicks and David A. J. Rand, "Fuel Cell Explained", John Wiley & Sons. Inc., (2018)
2.	Revankar shrip, "Fuel Cells: Principles, Design and Analysis", Auerbach publications,
	(2014).
3.	Dushyant Shekhawat, "Fuel Cells: Technologies for fuel processing", North Holland
	Publishing Co., 2011.
Refer	ence Books
1.	Ohayre, "Fuel Cell Fundamentals", John Wiley & Sons Inc., 2016.
2.	F. Barbir, PEM Fuel Cells: Theory and Practice (2nd Ed.) Elsevier/Academic Press, 2013.
3.	Dushyant Shekhawat, "Fuel Cells: Technologies for fuel processing", North Holland
	Publishing Co., (2011)
4.	Kevin Huang, "Solid Oxide Fuel Cell Technology: Principles, Performance and Operations",
	Woodhead Publishing Ltd., 2009.
Web I	Resources
1.	https://archive.nptel.ac.in/courses/103/102/103102015/
2.	
2. 3.	https://nntel.ac.in/courses/121106014

3. <u>https://nptel.ac.in/courses/121106014</u>

CO Vs PO Mapping and CO Vs PSO Mapping

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO 1	PSO2
C01		2	2	2									2	3
C02	2	3			2								2	3
CO3		3	2	2									2	3
C04	3	2											2	3
CO5	2	2	2										2	3

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Describe the fundamentals of fuel cell (Understand)

- **1.** Describe the types of fuel cell low, medium and high temperature fuel cell? **(U)**
- 2. Compare between the low, medium and high temperature fuel cells? (U)

COURSE OUTCOME 2: Describe the performance of fuel cell systems (Understand)

- **1.** Differentiate between the liquid hydrogen and compressed hydrogen? **(U)**
- **2.** Explain briefly about the alkaline fuel with neat sketch? **(U)**

COURSE OUTCOME 3: Illustrate the construction and operation of fuel cell stack and fuel cell system (Apply)

- **1.** Illustrate suitable sketch for the Fuel cell performance characteristics with respective to current/voltage & voltage efficiency? **(A)**
- What are the main components of membrane electrode assembly components? (U)

COURSE OUTCOME 4: Illustrate the modelling techniques for fuel cell systems (Apply)

- **1.** A company is developing a new car powered by a fuel cell system that runs on H2. You have been asked to consider generating the H2 by electrolysis with a fuel cell. The H2 tank to be used is 10 liters in volume and a fill-up requires a pressure of 34 atm. a) Calculate the current required to operate at a voltage of 1.8V. b) Calculate the rate of hydrogen production per membrane area and the total membrane area required to fill the tank in 2 minutes. Consider the following specifications of the system. 60% conversion of H2O Eo = 1.172 V The cathode pressure is maintained at 1 atm. The anode pressure is maintained at 1 atm Membrane thickness = 100 μ m Membrane conductivity (σ) = 0.1 S/cm (S = 1/ Ω) Electrolysis T = 373 K (assume water is in the gas phase). H2 storage tank T = 298 K **(A)**
- 2. Explain the different states of Hydrogen storage technology? (U)

COURSE OUTCOME 5: Classify the different methods of fuel processing for fuel cells (Understand)

- **1.** Explain different methods of production of hydrogen and catalytic steam reforming in details. **(U)**
- 2. Discuss the technologies for hydrogen production? (U)
- 3. Explain a lay out of a fuel cell in automobile. (U)

21ME6705	INDUSTRIA	L ENGINEERING & MANAGEMEN	Г	L	Τ	Р	С
			-	3	0	0	3
Prerequisites	for the course				1 1		
Nil							
Objectives							
manag • To app	ement and engineer ly productivity tech	nowledge and skill sets required ir ring profession. niques for achieving continuous im , the ability to adopt a system app	nproveme	ent.		lovolo	n
implen	nent, and innovate i						
	vironment.		8-		0,		<i>.</i> ,
UNIT I		INTRODUCTION				9	
service sector	rs-functions of an	, history, primitive activities Appli I Industrial Engineer Manageme oach– Systems approach					-
UNIT II		PRODUCTIVITY				6	
Definition – Fa measures - Ca	•	creasing productivity of resources	- Kinds o	of pro	oduc	tivity	
UNIT III		PLANT LAYOUT				12	
process and p Introduction t	product layouts, ap	types of production layouts, adva plications, quantitative technique layout design, Tools and techniqu DRELAP.	es for op	tima	l lay	out d	esign,
UNIT IV		ESOURCE MANAGEMENT				9	
functions of p	personal manageme	anagement, personnel manageme ent – Job evaluation, its importa incentive plan, types					
UNIT V	DECISION MA	AKING AND PROJECT MANGEMEN	T			9	
Quantitative n	nethods in decision	of decision making – steps invo making PERT, CPM – differences a ashing, smoothing – simple numer	nd applic				-
		Total F	Periods			45	
Suggestive As	ssessment Method	s					
Continuous A	ssessment Test	Formative Assessment Test	End Ser		er Ex	kams	
(20 Mai	-	(20 Marks)	(60 Mai	-			
2 Test EACH 1 MCQ/Descript		MCQ/Descriptive Questions	Descript	tive (Ques	tions	

Outcomes	3
Upon com	pletion of the course, the students will be able to:
	narize the basics of industrial engineering and its applications in production and ctor (Understand)
	oly productivity techniques for continuous improvement in different ities of an industry. (Apply)
CO3: Inter	pret the optimal layout design using software (Understand)
	onstrate the resource and personnel management requirements for an on. (Apply)
0	are a decision-making plan on project management (Apply)
Text Book	KS
1.	Mart and Telsang, "Industrial Engineering and Management", S.Chand & Compagny Limited, (2006)
2.	O.PKhanna, "Industrial Engineering and Management", Khanna publishers, (2017)
	MIKhan, "Industrial Engineering", New age international (P) publishers ltd. (2007)
Reference	Books
1.	PhilipE.Hicks, Anthony Lal, "Introduction to industrial engineering and

- PhilipE.Hicks, Anthony Lal, "Introduction to industrial engineering and management science", McGraw Hill, (2001)
 C.Nadhan and Badda "Had at tight Engineering and Management", Nature 1996.
- 2. G,Nadhamuni Reddy, "Industrial Engineering and Management", New age international(P)publishers ltd., (2002).
- 3. V.Ravi, "IndustrialEngineering andManagement", PHILearningPvtLtd., (2015)

Web Resources

1. https://nptel.ac.in/courses/112/107/112107142/

CO Vs PO Mapping and CO Vs PSO Mapping

СО	РО	РО	РО	PO	PO	PO	РО	РО	РО	PO1	PO1	PO1	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	2
1	2	1			2	1			1			2		3
2	2	1			2	1			1			2		3
3	2	1			2	1			1			2		3
4	2	1			2	1			1			2		3
5	2	1			2	1			1			2		3

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Summarize the basics of industrial engineering and its applications in production and service sector (Understand)

- 1. Explain any four fields of application of Industrial Engineering (U).
- 2. Write the role of an Industrial Engineer with respect to Management approaches (R).

COURSE OUTCOME 2: Apply productivity techniques for continuous improvement in different functionalities of an industry. (Apply)

- 1. Importance of Vision, mission and objectives statements for an organization (A)
- 2. How to formulate the management structure for a company (U)

COURSE OUTCOME 3: Interpret the optimal layout design using software (Understand)

- 1. Write down the types of production layouts (U)
- 2. Describe the importance of quantitative techniques for optimal layout design (U)

COURSE OUTCOME 4: Demonstrate the resource and personnel management requirements for an organization. (Apply)

- 1. Differentiate between personnel management and industrial relations (A)
- 2. Write notes on wage incentive plan. (U)

COURSE OUTCOME 5: Prepare a decision-making plan on project management (Apply)

- 1. Apply the theories of decision making differ from other methods (A)
- 2. Describe about project crashing, smoothing (A)

Francis Xavier Engineering College/ Dept of Mechanical Engineering/R2021/Curriculum and Syllabi 21ME6706 LEAN SIX SIGMA L Т Ρ С 3 3 0 0 **Prerequisites for the course** Manufacturing Technology, Probability and Statistical Analysis **Objectives** To gain insights about the importance of lean manufacturing and six sigma practices LEAN & SIX SIGMA BACKGROUND AND FUNDAMENTALS **UNIT I** 9 Historical Overview - Definition of quality - What is six sigma - TQM and Six sigma - lean manufacturing and six sigma – six sigma and process tolerance – Six sigma and cultural changes – six sigma capability – six sigma need assessments – implications of quality levels, Cost of Poor Quality (COPQ), Cost of Doing Nothing – assessment questions UNIT II THE SCOPE OF TOOLS AND TECHNIQUES 9 Tools for definition - IPO diagram, SIPOC diagram, Flow diagram, CTQ Tree, Project Charter -Tools for measurement – Check sheets, Histograms, Run Charts, Scatter Diagrams, Cause and effect diagram, Pareto charts, Control charts, Flow process charts, Process Capability Measurement, Tools for analysis – Process Mapping, Regression analysis, RU/CS analysis, SWOT, PESTLE, Five Whys, interrelationship diagram, overall equipment effectiveness, TRIZ innovative problem solving – Tools for improvement – Affinity diagram, Normal group technique, SMED, 5S, mistake proofing. 9 **UNIT III** SIX SIGMA METHODOLOGIES Design For Six Sigma (DFSS), Design For Six Sigma Method - Failure Mode Effect Analysis (FMEA), FMEA process - Risk Priority Number (RPN) - Six Sigma and Leadership, committed leadership – Change Acceleration Process (CAP) – Developing communication plan – Stakeholder. **UNIT IV** SIX SIGMA IMPLEMENTATION AND CHALLENGES 9 Tools for implementation – Supplier Input Process Output Customer (SIPOC) – Quality Function Deployment or House of Quality (QFD) – alternative approach –implementation – leadership training, close communication system, project selection - project management and team champion training - customer quality index - challenges - program failure, CPQ vs six sigma, structure the deployment of six sigma – cultural challenge – customer/internal metrics. EVALUATION AND CONTINUOUS IMPROVEMENT UNIT V 9 **METHODS** Evaluation strategy – the economics of six sigma quality, Return on six Sigma (ROSS), ROI, poor project estimates - continuous improvement - lean manufacturing - value, customer focus, Perfection, focus on waste, overproduction – waiting, inventory in process (IIP), processing waste, transportation, motion, making defective products, underutilizing people – Kaizen **Total Periods** 45

Co	ntinuo	ous Asse	essment	Test	Forma	tive Assess	ment T	est	End Se	emeste	r Exams	5
	(20) Marks	;)			(20 Marks)			(60 M	arks)		
2 T	'est EA	CH 10m	narks		MCQ/D	escriptive Q	uestior	ıs	Descri	ptive Qı	uestions	;
MC	CQ/Des	criptive	Question	ns								
Ou	tcome	S										
Up	on cor	npletio	n of the	course, t	he stud	dents will b	e able t	to:				
						l six sigma (-				
				-		echniques. (-	-				
					-	x sigma met	-		ply)			
				-		on and challe			_			
			rocess of	evaluatio	on and o	continuous i	mprove	ement n	nethods	. (Apply	<i>י</i>)	
T -												
1 0	xt Boo		<u> </u>				1 . · · ·	<u> </u>	<i>U</i> N A	<u> </u>	1.11(204)	2)
10	1. M	ichaelL.	0			illKastle,"W ngImpleme				cGraw H	Iill(2012	2).
	1. M 2. De	ichaelL. ennisP.H	lobbs,"Ll							cGraw H	Hill(2012	2).
	1. M 2. De	ichaelL. ennisP.H e Book	Hobbs,"Ll s	EANManı	ufacturi	ngImpleme	ntation'	,APICS	(2009)	cGraw H	Hill(2012	2).
	1. M 2. De ferenc 1. '	ichaelL. ennisP.H e Book Thomas	Hobbs,"LH <mark>s</mark> Pyzdek,"	EANManu The Six S	ufacturi Sigma H	ngImpleme	ntation'	,APICS	(2009)			
	1. M 2. De ferenc 1. ⁷ 2. 1	ichaelL. ennisP.F e Book Thomas Fred Sol	lobbs,"Ll s Pyzdek," ei manne	EANManu The Six S jed, "SixS	ufacturi Sigma H Sigma, E	IngImpleme and book",N Basic Steps a	ntation' IcGraw nd Impl	",APICS -Hill,(20 ementat	(2009)			
	1. M 2. De ference 1. 7 2. 1 3. 1	ichaelL. ennisP.F e Book Thomas Fred Sol ForrestW	lobbs,"Ll s Pyzdek," ei manne V.Breyfog	EANManu The Six S jed, "SixS gle,III,Jan	lfacturi Sigma H Sigma, E nesM.Cu	ngImpleme	ntation' IcGraw nd Impl Meadov	",APICS -Hill,(20 ementat	(2009) (2009))10) ion",Au	thorHou	use,(2004	4)
	1. M 2. De ferenc 1. 7 2. 1 3. 1	ichaelL. ennisP.F e Book Thomas Fred Sol ForrestW "Managi the Strat	lobbs,"Ll s Pyzdek," ei manne V.Breyfog ing Six Si egy That	EANManu The Six S jed, "SixS gle,III,Jan igma:A P YieldsBo	ufacturi Sigma H Sigma, H nesM.Cu ractical ttom-Li	IngImpleme and book",M Basic Steps a upello,Becki Guide to Un ineSuccess, J	ntation' IcGraw- nd Impl Meadow derstanc ohn Wil	",APICS -Hill,(20 ementat vs, ling, As ley & So	(2009) (2009) (2009) (2019) (2019) (2019) (2019)	thorHou and Im 0)	use,(2004	4)
Re	1. M 2. De ference 1. 7 2. 1 3. 1 4. 5	ichaelL. ennisP.F e Book Thomas Fred Sol ForrestW "Managi the Strat James P.	lobbs,"Ll s Pyzdek," ei manne V.Breyfog ing Six Si egy That	EANManu The Six S jed, "SixS gle,III,Jan igma:A P YieldsBo	ufacturi Sigma H Sigma, H nesM.Cu ractical ttom-Li	and book",N and book",N Basic Steps a upello,Becki Guide to Un	ntation' IcGraw- nd Impl Meadow derstanc ohn Wil	",APICS -Hill,(20 ementat vs, ling, As ley & So	(2009) (2009) (2009) (2019) (2019) (2019) (2019)	thorHou and Im 0)	use,(2004	4)
Re	1. M 2. De ference 1. 7 2. 1 3. 1 3. 1 4. 2 eb Rese	ichaelL. ennisP.F e Book Thomas Fred Sol ForrestW "Managi the Strat James P. ources	Iobbs,"LI s Pyzdek," ei manne V.Breyfog ing Six Si egy That .Womack	EANManu The Six S jed, "SixS gle,III,Jan igma:A P YieldsBo c, DanielT	afacturi Sigma H Sigma, H nesM.Cu ractical tractical ttom-Li Jones, f	IngImpleme and book",M Basic Steps a upello,Becki Guide to Un ineSuccess, J "Lean Think	ntation' IcGraw- nd Impl Meadow derstanc ohn Wil ing",Fre	",APICS -Hill,(20 ementat vs, ling, As ley & So	(2009) (2009) (2009) (2019) (2019) (2019) (2019)	thorHou and Im 0)	use,(2004	4)
Re	1. M 2. De ference 1. 7 2. 1 3. 1 3. 1 4. 2 eb Rese	ichaelL. ennisP.F e Book Thomas Fred Sol ForrestW "Managi the Strat James P. ources	Iobbs,"LI s Pyzdek," ei manne V.Breyfog ing Six Si egy That .Womack	EANManu The Six S jed, "SixS gle,III,Jan igma:A P YieldsBo c, DanielT	afacturi Sigma H Sigma, H nesM.Cu ractical tractical ttom-Li Jones, f	IngImpleme and book",M Basic Steps a upello,Becki Guide to Un ineSuccess, J	ntation' IcGraw- nd Impl Meadow derstanc ohn Wil ing",Fre	",APICS -Hill,(20 ementat vs, ling, As ley & So	(2009) (2009) (2009) (2019) (2019) (2019) (2019)	thorHou and Im 0)	use,(2004	4)
Re	1. M 2. De ference 1. 7 2. 1 3. 1 3. 1 4. 2 eb Rese htt	ichaelL. ennisP.F e Book Thomas Fred Sol ForrestW "Managi the Strat James P. ources	Hobbs, "Ll s Pyzdek," ei manne V.Breyfog ing Six Si egy That .Womack	EANManu The Six S jed, "SixS gle,III,Jan igma:A P YieldsBo c, DanielT	afacturi Sigma H Sigma, E nesM.Cu tractical ttom-Li Jones, '	IngImpleme and book",M Basic Steps a upello,Becki Guide to Un neSuccess, J "Lean Think 04/112104	ntation' IcGraw- nd Impl Meadow derstand ohn Wil ing",Fre	",APICS -Hill,(20 ementat vs, ling, As ley & So	(2009) (2009) (2009) (2019) (2019) (2019) (2019)	thorHou and Im 0)	use,(2004	4)
Re We	1. M 2. De ference 1. 7 2. 1 3. 1 3. 1 4. 2 eb Rese htt	ichaelL. ennisP.F e Book Thomas Fred Sol ForrestW "Managi the Strat James P. ources tps://np	Iobbs, "LI s Pyzdek," ei manne V.Breyfog ing Six Si egy That .Womack otel.ac.in, ng and C	EANManu The Six S jed, "SixS gle,III,Jan igma:A P YieldsBo c, DanielT /courses,	Jigma H Sigma, H Sigma, Sigma, F nesM.Cu tractical ttom-Li Jones, ' /112/1 D Mapp	IngImpleme and book",M Basic Steps a upello,Becki Guide to Un neSuccess, J "Lean Think 04/112104	ntation' IcGraw- nd Impl Meadow derstanc ohn Wil ing",Fre 188/	",APICS -Hill,(20 ementat vs, ling, As ley & So	(2009) (2009) (2009) (2019) (2019) (2019) (2019)	thorHou and Im 0)	use,(2004	4)
Re We CO	1. M 2. De ference 1. 7 2. 1 3. 1 4. 3 eb Res htt	ichaelL. ennisP.F e Book Thomas Fred Sol ForrestW "Managi the Strat James P. ources tps://np	Iobbs, "LI s Pyzdek," ei manne V.Breyfog ing Six Si egy That .Womack otel.ac.in, ng and C	EANManu The Six S jed, "SixS gle,III,Jan igma:A P YieldsBo , DanielT /courses,	Jigma H Sigma, H Sigma, F nesM.Cu tractical ttom-Li Jones, ' /112/1 D Mapp	IngImpleme and book",M Basic Steps a upello,Becki Guide to Un ineSuccess, J "Lean Think 04/112104 bing	ntation' IcGraw- nd Impl Meadow derstanc ohn Wil ing",Fre 188/	",APICS -Hill,(20 ementat vs, ling, As ley & So ee Press	(2009) (2009) ion",Au sessing, ons,(201 Busines	thorHou and Im 0) ss,(2013)	plement	4) ing
Re	1. M 2. De ference 1. 7 2. 1 3. 1 3. 1 4. 3 eb Rese htt Vs PO	ichaelL. ennisP.F e Book Thomas Fred Sol ForrestW "Managi the Strat James P. ources tps://np Mappi	Iobbs, "LI s Pyzdek," ei manne V.Breyfog ing Six Si egy That .Womack otel.ac.in, ng and C	EANManu The Six S jed, "SixS gle,III,Jan igma:A P YieldsBo , DanielT /courses, CO Vs PSC OV PO5	Jigma H Sigma, H Sigma, F nesM.Cu tractical ttom-Li Jones, ' /112/1 D Mapp	IngImpleme and book",M Basic Steps a upello,Becki Guide to Un ineSuccess, J "Lean Think 04/112104 bing	IcGraw- nd Impl Meadow derstand ohn Wil ing",Fre 188/ PO9	",APICS -Hill,(20 ementat vs, ling, As ley & So ee Press	(2009))10) ion",Au sessing, ons,(201 Busines PO11	thorHou and Im 0) ss,(2013) PO12	plementi	4) ing PSO

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Describe the importance of Lean and six sigma (Understand)

- **1.** Give a detailed report on how Six Sigma is related to TQM, lean manufacturing, and process tolerance. **(U)**
- 2. Enumerate the importance of cost of quality. **(U)**

COURSE OUTCOME 2: Demonstrate the scope of tools and techniques. (Understand)

1. How a Milestone tracker diagram helps in continuous improvement of a firm. (A)

2. Explain the relationship between lean manufacturing and six sigma (U)

COURSE OUTCOME 3: Illustrate Plan the resources using six sigma methodologies (Apply)

- **1.** Describe Earned value management in detail **(U)**
- **2.** Depict the process of FMEA with a sample form **(U)**

COURSE OUTCOME 4: Apply QFD to face the implementation and challenges. (Apply)

- **1.** Demonstrate important is a customer to the firm and why is a quality index required? What are the various challenges faced? **(A)**
- **2.** Enumerate the various principles of CPQ and Six sigma **(U)**

COURSE OUTCOME 5: Apply the process of evaluation and continuous improvement methods. (Apply)

1. How is Kaizen implemented in an organization? (A)

2. Differentiate inventory in progress and work in progress. (U)

21ME6707	COMPUTER INTEGRATED MANUFACTURING	L	Т	Р	С				
		3	0	0	3				
Prerequisites for the course									

Manufacturing Technology, CNC Machines and Automation

Objectives

1.To understand the application of computers in various aspects of Manufacturing viz., Design, Proper planning, Manufacturing cost, Layout & Material Handling system.

riopei pia	inning, Manufacturing Cost, Layout & Material Handing System.						
UNIT I	INTRODUCTION	9					
Brief introdu	ction to CAD and CAM – Manufacturing Planning, Manu	ıfacturing control –					
Introduction t	o CAD/CAM – Concurrent Engineering – CIM concepts – Comp	outerised elements of					
CIM system –	Types of production - Manufacturing models and Metrics – Ma	thematical models of					
Production Performance – Simple problems – Manufacturing Control – Simple Problems – Basic							
Elements of a	Elements of an Automated system – Levels of Automation – Lean Production and Just-In-Time						
Production							
UNIT II	PRODUCTION PLANNING AND CONTROL AND	9					
	COMPUTERISED PROCESS PLANNING						
Process plann	ing – Computer Aided Process Planning (CAPP) – Logical step	s in Computer Aided					
Process Plann	ning – Aggregate Production Planning and the Master Pro	duction Schedule –					
Material Requ	irement planning – Capacity Planning – Control Systems – S	Shop Floor Control –					
Inventory Con	trol – Brief on Manufacturing Resource Planning-II (MRP-II) &	Enterprise Resource					
Planning (ERP)						
UNIT III	CELLULAR MANUFACTURING	9					
Group Techno	logy(GT), Part Families – Parts Classification and coding – Sim	ple Problems in Opitz					
Part Coding s	system – Production flow Analysis – Cellular Manufacturin	g – Composite part					
concept – Machine cell design and layout – Quantitative analysis in Cellular Manufacturing – Rank							
Order Clustering Method - Arranging Machines in a GT cell – Hollier Method – Simple Problems.							
UNIT IV	FLEXIBLE MANUFACTURING SYSTEM (FMS) AND	9					
	AUTOMATED GUIDED VEHICLE SYSTEM (AGVS)						

Types of Flexibility - FMS – FMS Components – FMS Application & Benefits – FMS Planning and
Control – Quantitative analysis in FMS – Simple Problems. Automated Guided Vehicle System
(AGVS) – AGVS Application – Vehicle Guidance technology – Vehicle Management & Safety.UNIT VINDUSTRIAL ROBOTICS9

Robot Anatomy and Related Attributes – Classification of Robots- Robot Control systems – End Effectors – Sensors in Robotics – Robot Accuracy and Repeatability – Industrial Robot Applications – Robot Part Programming – Robot Accuracy and Repeatability

11	0	U	5	1	5	
]	Fotal Per	iods	45

Suggestive Assessment Method	ls						
Continuous Assessment Test Formative Assessment Test End Semester Exams							
(20 Marks)	(20 Marks)	(60 Marks)					
CAT 1 – 10 MARKS	1.Assignment	1. Descriptive Questions					
CAT 2 – 10 MARKS	2. Online Quizzes						
Descriptive Questions	3. Problem-Solving Activities						
Outcomes							
Upon completion of the course	, the students will be able to:						
CO1: Explain the basic concepts	of CAD, CAM and computer integra	ited manufacturing systems					
(Understand)							
CO2: Demonstrate the productio	n planning and control and compu	terized process planning					
(Apply)							
CO3: Differentiate the different of	oding systems used in group techr	nology (Understand)					
CO4: Explain the concepts of flex	ible manufacturing system (FMS)	and automated guided vehicle					
(AGV) system. (Understand)							
CO5: Determine the Classificatio	n of robots used in industrial appli	cations. (Apply)					
Text Books							
1. Mikell.P.Groover "Automa	tion, Production Systems and Com	puter Integrated					
Manufacturing", Prentice							
	anyanS.and Raju V., "CAD/CAM/C	IM", 2nd Edition, New Age					
International (P) Ltd, New	v Delhi, (2018)						
Reference Books							
1. Gideon Halevi and Roland	Weill, "Principles of Process Plann	ning – A Logical Approach"					
Chapman & Hall, London,	(2012)						
2. Kant Vajpayee S, "Principl	es of Computer Integrated Manufa	cturing", Prentice Hall India.					
	ndra, "Computer Aided Manufactu	ring", Tata McGraw Hill					
Publishing Company, (202	17)						
Web Resources							
1. http://www.nptel.ac.in/c							
2. http://nptel.ac.in/courses	s/110106044/						
3. http://nptel.ac.in/courses							
4. http://nptel.ac.in/courses	\$/112103174/35						

CO Vs PO Mapping and CO Vs PSO Mapping

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
1	2				2	2	1						3	2
2	2				2	2	1						3	2
3	2				2	2	1						3	2
4	2				2	2	1						3	2
5	2				2	2	1						3	2

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Explain the basic concepts of CAD, CAM and computer integrated manufacturing systems. (Understand)

- 1. Discuss about seven forms of waste in production and methods to eliminate them. (U)
- 2. Explain the hierarchical structure of computerized elements of CIM. (U)

COURSE OUTCOME 2: Demonstrate the production planning and control and computerized process planning. (Apply)

- 1. Define MRP. Explain the inputs to MRP and various MRP outputs. Also list the various benefits of MRP. (R)
- 2. Show in detail the phases of shop floor system. (A)

COURSE OUTCOME 3: Differentiate the different coding systems used in group technology. (Understand)

- 1. Discuss the production flow analysis in detail. (U)
- 2. Explain cellular manufacturing in detail. (U)

COURSE OUTCOME 4: Explain the concepts of flexible manufacturing system (FMS) and automated guided vehicle (AGV) system. (Understand)

1. Define FMS and explain in detail about the FMS components. (R)

2. Explain vehicle guidance technology in AVGs. (U)

COURSE OUTCOME 5: Determine the classification of robots used in industrial applications. (Apply)

- 1. Demonstrate the basic structure of a robotic system with neat sketch. (A)
- 2. Summarize what are robot end effectors? How do you classify them? (U)

21ME6708	FLEXIBI	LE MANUFACTURING SYSTEMS		L	Т	Р	С	
				3	0	0	3	
Prerequisites	s for the course				L	11		
Manufacturing	g Technology, CNC M	lachines and Automation						
Objectives								
To understand	l the concepts and a	pplications of flexible manufacturing	ng systen	1S.				
UNIT I	PLANNING, S	CHEDULING AND CONTROL OF FI	MS	9				
of flexibility –	-	nt of manufacturing systems – ben nd flexibility – single product, singl duling system		-				
UNIT II	COMPUTER C	CONTROL AND SOFTWARE FOR F	MS			9		
center and ass and selection -	sembly lines – FMS - trends.	AS – hierarchy of computer control supervisory computer control – ty				pecifi		
UNIT III	FMS SI				9			
360 fusion) – planning for F	limitation – manu MS database	el of FMS – simulation software (De facturing data systems – data flov	w – FMS			e syste		
UNIT IV	GROUP TECHN	NOLOGY AND JUSTIFICATION OF I	FMS			9		
- knowledge-k	based system for gr	oup technology – economic justific	ation of I	FMS	- - ap	plicati	ion c	
-	tributions in FMS sy	oup technology – economic justific /stems justification. DF FMS AND FACTORY OF THE FU		FMS	– ap	plicati 9	ion c	
possibility dist UNIT V FMS applicati aerospace app	APPLICATIONS (APPLICATIONS (on in machining, plication – FMS deve	ostems justification. DF FMS AND FACTORY OF THE FU sheet metal fabrication, prismat elopment towards factories of the	TURE ic compo future –	onen artifi	t pr	9 oduct	ion	
possibility dist UNIT V FMS applicati aerospace app	APPLICATIONS (APPLICATIONS (on in machining, plication – FMS deve	vstems justification. DF FMS AND FACTORY OF THE FU sheet metal fabrication, prismat elopment towards factories of the gn philosophy and characteristics fo	TURE ic compo future – or future.	onen artifi	t pr	9 oduct intelli	ion	
possibility dist UNIT V FMS applicati aerospace app and expert sys	tributions in FMS sy APPLICATIONS (ion in machining, plication – FMS deve stems in FMS – desig	ostems justification. DF FMS AND FACTORY OF THE FU sheet metal fabrication, prismat elopment towards factories of the gn philosophy and characteristics for Total F	TURE ic compo future –	onen artifi	t pr	9 oduct	ion	
possibility dist UNIT V FMS applicati aerospace app and expert sys Suggestive As	tributions in FMS sy APPLICATIONS (on in machining, olication – FMS deve stems in FMS – desig ssessment Method	ostems justification. DF FMS AND FACTORY OF THE FU sheet metal fabrication, prismat elopment towards factories of the gn philosophy and characteristics for Total P s	TURE fic compo future – future. Periods	onen artifi	t pr cial	9 oduct intelli 45	ion	
possibility dist UNIT V FMS applicati aerospace app and expert sys Suggestive As Continuous A	APPLICATIONS (APPLICATIONS (on in machining, olication – FMS devo stems in FMS – desig sessment Method ssessment Test	ostems justification. DF FMS AND FACTORY OF THE FU sheet metal fabrication, prismat elopment towards factories of the gn philosophy and characteristics for Total F S Formative Assessment Test	TURE ic compo future – or future. Periods End Ser	onen artifi nest	t pr cial	9 oduct intelli 45	ion	
possibility dist UNIT V FMS applicati aerospace app and expert sys Suggestive As	tributions in FMS sy APPLICATIONS (ion in machining, olication – FMS deve stems in FMS – desig sessment Method ssessment Test rks)	ostems justification. DF FMS AND FACTORY OF THE FU sheet metal fabrication, prismat elopment towards factories of the gn philosophy and characteristics for Total F S Formative Assessment Test (20 Marks)	TURE ic compo future – or future. Periods End Sen (60 Man	onen artifi nest rks)	t pr cial er E	9 roduct intelli 45 xams	ion genc	
possibility dist UNIT V FMS applicati aerospace app and expert sys Suggestive As Continuous A (20 Man	tributions in FMS sy APPLICATIONS (ion in machining, plication – FMS deve stems in FMS – desig sessment Method ssessment Test rks) ARKS	ostems justification. DF FMS AND FACTORY OF THE FU sheet metal fabrication, prismat elopment towards factories of the gn philosophy and characteristics for Total F S Formative Assessment Test	TURE ic compo future – or future. Periods End Ser	onen artifi nest rks)	t pr cial er E	9 roduct intelli 45 xams	ion genc	
possibility dist UNIT V FMS applicati aerospace app and expert sys Suggestive As Continuous A (20 Man CAT 1 – 10 MA	APPLICATIONS (APPLICATIONS (an in machining, blication – FMS deve stems in FMS – desig sessment Method ssessment Test rks) ARKS ARKS	Astems justification. DF FMS AND FACTORY OF THE FU sheet metal fabrication, prismat elopment towards factories of the gn philosophy and characteristics for Total P S Formative Assessment Test (20 Marks) 1.Assignment	TURE ic compo future – or future. Periods End Sen (60 Man	onen artifi nest rks)	t pr cial er E	9 roduct intelli 45 xams	ion genc	
possibility dist UNIT V FMS applicati aerospace app and expert sys Suggestive As Continuous A (20 Mai CAT 1 – 10 MA CAT 2 – 10 MA	APPLICATIONS (APPLICATIONS (an in machining, blication – FMS deve stems in FMS – desig sessment Method ssessment Test rks) ARKS ARKS	Astems justification. OF FMS AND FACTORY OF THE FU sheet metal fabrication, prismat elopment towards factories of the gn philosophy and characteristics for Total F S Formative Assessment Test (20 Marks) 1.Assignment 2. Online Quizzes	TURE ic compo future – or future. Periods End Sen (60 Man	onen artifi nest rks)	t pr cial er E	9 roduct intelli 45 xams	ion genc	
possibility dist UNIT V FMS applicati aerospace app and expert sys Suggestive As Continuous A (20 Man CAT 1 – 10 MA CAT 2 – 10 MA DESCRIPTIVE Outcomes	tributions in FMS sy APPLICATIONS (ion in machining, olication – FMS deve stems in FMS – desig sessment Method ssessment Test rks) ARKS ARKS QUESTIONS	Astems justification. OF FMS AND FACTORY OF THE FU sheet metal fabrication, prismat elopment towards factories of the gn philosophy and characteristics for Total F S Formative Assessment Test (20 Marks) 1.Assignment 2. Online Quizzes	TURE ic compo future – or future. Periods End Sen (60 Man	onen artifi nest rks)	t pr cial er E	9 roduct intelli 45 xams	ion genc	
possibility dist UNIT V FMS applicati aerospace app and expert sys Suggestive As Continuous A (20 Mar CAT 1 – 10 MA CAT 2 – 10 MA DESCRIPTIVE Outcomes Upon comple	tributions in FMS sy APPLICATIONS (on in machining, olication – FMS deve stems in FMS – desig sessment Method ssessment Test rks) ARKS ARKS QUESTIONS tion of the course,	Astems justification. DF FMS AND FACTORY OF THE FU sheet metal fabrication, prismate elopment towards factories of the gn philosophy and characteristics for Total F S Formative Assessment Test (20 Marks) 1.Assignment 2. Online Quizzes 3.Problem-Solving Activities	TURE ic compo future – or future. Periods End Sen (60 Man 1. Descr	onen artifi nest rks) iptiv	t pr cial er E	9 roduct intelli 45 xams	ion genc	
possibility dist UNIT V FMS applicati aerospace app and expert sys Suggestive As Continuous A (20 Man CAT 1 – 10 MA CAT 2 – 10 MA DESCRIPTIVE Outcomes Upon comple CO1: Enumera	APPLICATIONS (APPLICATIONS (an in machining, blication – FMS developments in FMS – design sessment Method ssessment Test rks) ARKS ARKS QUESTIONS tion of the course, ate the principles of the concepts and ap	Astems justification. DF FMS AND FACTORY OF THE FU sheet metal fabrication, prismat elopment towards factories of the gn philosophy and characteristics for Total F S Formative Assessment Test (20 Marks) 1.Assignment 2. Online Quizzes 3.Problem-Solving Activities the students will be able to:	TURE ic compo future – or future. Periods End Sen (60 Max 1. Descr	onen artifi nest rks) iptiv	t pr cial er E e Qu	9 oduct intelli 45 xams estior	ion geno	
possibility dist UNIT V FMS applicati aerospace app and expert sys Suggestive As Continuous A (20 Mar CAT 1 – 10 MA CAT 2 – 10 MA DESCRIPTIVE Outcomes Upon comple CO1: Enumera CO2: Discuss t (Underst CO3: Apply the	APPLICATIONS (APPLICATIONS (an in machining, blication – FMS dever stems in FMS – desig sessment Method ssessment Test rks) ARKS ARKS QUESTIONS tion of the course, ate the principles of the concepts and ap tand) e modern tools in da	Astems justification. DF FMS AND FACTORY OF THE FU sheet metal fabrication, prismate elopment towards factories of the gn philosophy and characteristics for Total F S Formative Assessment Test (20 Marks) 1.Assignment 2. Online Quizzes 3.Problem-Solving Activities the students will be able to: flexible manufacturing systems. (U	TURE ic compo future – or future. Periods Periods End Sen (60 Man 1. Descr Inderstan manufact	onen artifi nest rks) iptiv	t pr cial er E e Qu	9 oduct intelli 45 xams estior	ion geno	

Text books

- **1.** Groover M.P., "Automation, Production Systems and Computer Integrated Manufacturing", Prentice Hall of India Pvt., New Delhi, (2015)
- **2.** H K Shivanand, M MBenal, V Koti, "Flexible Manufacturing Systems", New Age International publishers (2006)
- 3. Jha, N.K. "Handbook of flexible manufacturing systems", Academic Press Inc., (1991)

Reference Books

- **1.** Kalpakjian, "Manufacturing Engineering and Technology", Addison-Wesley Publishsing Co., (2018)
- **2.** Radhakrishnan P. and Subramanyan S., "CAD/CAM/CIM", Wiley Eastern Ltd., New Age International Ltd., (2018)
- **3.** Raouf, A. and Ben-Daya, M., Editors, "Flexible manufacturing systems: Recent development", Elsevier Science, (1995)
- **4.** Taiichi Ohno, "Toyota Production System: Beyond large-scale Production", Productivity Press (India) Pvt. Ltd. (2001)

Web Resources

1. https://nptel.ac.in/courses/110107116/

CO Vs PO Mapping and CO Vs PSO Mapping

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
1	2				2	2	2						3	2
2	2				2	2	2						3	2
3	2				2	2	2						3	2
4	2				2	2	2						3	2
5	2				2	2	2						3	2

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Explain the principles of flexible manufacturing systems (Understand)

- **1.** Discuss the major elements of FMS? State the applications of FMS. (U)
- **2.** Explain different types of flexibility in manufacturing in FMS concept. (U)

COURSE OUTCOME 2: Discuss the concepts and applications of computers in flexible manufacturing systems. (Understand)

- 1. Explain various functions performed by computer control system in FMS implementation. (U)
- 2. Discuss the role of software and considerations for maintenance planning and reporting. (U)

COURSE OUTCOME 3: Apply the modern tools in database management of FMS (Apply)

- 1. Show the languages for the simulation of FMS and the selection of simulation software. (A)
- 2. Discuss input and output analysis in FMS simulation with a case study. (U)

COURSE OUTCOME 4: Illustrate the performance of group technology in FMS. (Apply)

- 1. Examine the sorting-based algorithm in grouping parts with an example. (A)
- 2. Discuss bond energy algorithm in grouping parts with an example. (U)

COURSE OUTCOME 5: Show the application of FMS and understand the future factory of FMS. (Apply)

- 1. Predict how is FMS applied in prismatic part production? Give a case study. (A)
- 2. Show the design philosophy for the FMS of the future? Discuss in detail. (A)

21ME6709	HYB	-	L	Τ	Р	С			
			3 0				3		
-	for the course								
	of Electrical and El	ectronics Engineering, Automobile	Engineer	ing					
Objectives									
		chitecture, power train modelling a	and the e	lectri	ical 1	notor			
	stics in hybrid vehic			61	,				
		rage technology and driving cycle s opologies and power flow control in h			iybr	id veh	icles		
UNIT I		ION AND COMPONENTS OF HYBR	-	9					
UNITI	VEHICLES								
Introduction	General Architecti	ures- Vehicle System Component	s and A	nalve	ic.	Contr	ols c		
		Hybrid Vehicles: Prime Mover-		•					
5	•	torage System-Transmission System					,C/D		
		VEHICLES SYSTEM MODELING				9			
		ctric Motor- Battery System- Trans	emission	Suct	om-	-	Driv		
	chicle Body- PID-Ba	5 5	5111551011	Syst		Fillal	DIIV		
	-								
UNIT III		CONICS AND ELECTRIC MOTOR D				9	-		
		onic Devices- DC/DC Converter- D					Aoto		
		AC Induction Motor and Control- I	-	atter	y Cha	arger			
		ttery System and Charging Charact				0			
		GES SYSTEM MODELING AND CON				9	T : C		
	-	Charge- Estimation of Battery Po			-		y Life		
	5	ation of Cell Core Temperature- Bat	tery Syst	em E	fficie				
						9			
		LATION OF DRIVING CYCLES			0	-			
Simulation Sy	stem - Typical Tes	t - Driving Cycles - Preliminary Si	0			ipone			
Simulation Sy Hybrid Vehicle	stem - Typical Tes e- Fuel Economy an	t - Driving Cycles - Preliminary Si d Emissions Simulation Calculatior	0			ipone			
Simulation Sy Hybrid Vehicle	stem - Typical Tes	t - Driving Cycles - Preliminary Si d Emissions Simulation Calculation cape™.	ıs - Demo		ation	ipone using			
Simulation Sy Hybrid Vehicle MATLAB®, Sin	stem - Typical Tes e- Fuel Economy an nulink®, and Sim s	t - Driving Cycles - Preliminary Si d Emissions Simulation Calculation cape [™] . Total F	0		ation	ipone			
Simulation Sy Hybrid Vehicle MATLAB®, Sin Suggestive As	stem - Typical Tes e- Fuel Economy an mulink®, and Sim s ssessment Method	t - Driving Cycles - Preliminary Si d Emissions Simulation Calculation cape™. Total I s	is - Demo Periods	onstra	ation	ipone using 45			
Simulation Sy Hybrid Vehicle MATLAB®, Sin Suggestive As Continuous A	stem - Typical Tes e- Fuel Economy an mulink®, and Sim s sessment Method ssessment Test	t - Driving Cycles - Preliminary Si d Emissions Simulation Calculation cape™. Total I s Formative Assessment Test	eriods	nstra nest	ation	ipone using 45			
Simulation Sy Hybrid Vehicle MATLAB®, Sin Suggestive As Continuous A (20 Man	stem - Typical Tes e- Fuel Economy an mulink®, and Sim s ssessment Method ssessment Test rks)	t - Driving Cycles - Preliminary Si d Emissions Simulation Calculation cape [™] . Total F s Formative Assessment Test (20 Marks)	eriods Periods End Ser (60 Ma	nstra nest rks)	er E	upone using 45 xams	5		
Simulation Sy Hybrid Vehicle MATLAB®, Sin Suggestive As Continuous A (20 Man CAT 1 – 10 MA	stem - Typical Tes e- Fuel Economy an mulink®, and Sim s sessment Method ssessment Test rks)	t - Driving Cycles - Preliminary Si d Emissions Simulation Calculation cape [™] . Total H s Formative Assessment Test (20 Marks) 1.Assignment	eriods	nstra nest rks)	er E	upone using 45 xams	5		
Simulation Sy Hybrid Vehicle MATLAB®, Sin Suggestive As Continuous A (20 Man	stem - Typical Tes e- Fuel Economy an mulink®, and Sim s sessment Method ssessment Test rks) aRKS aRKS	t - Driving Cycles - Preliminary Si d Emissions Simulation Calculation cape [™] . Total F s Formative Assessment Test (20 Marks)	eriods Periods End Ser (60 Ma	nstra nest rks)	er E	upone using 45 xams	5		

Outcomes

Upon completion of the course, the students will be able to:

CO1. Summarize about the layout and sub systems of hybrid vehicles **(Understand)**

- CO2. Interpret the architecture of various models of hybrid Vehicles Systems. (Understand)
- CO3. Classify and explain electronic devices and motor drives (Understand)
- CO4. Estimate the parameters influencing the energy storage Systems. (Understand)
- CO5. Infer the results from simulation of driving cycles **(Understand)**

Text books

1. Wei Liu, "Introduction to Hybrid Vehicle System Modeling and Control", 1st Edition, John Wiley & Sons, Inc., New Jersey, (2013).

Reference Books

1. Mehrdad Ehsani, YiminGao, Stefano Longo, Kambiz Ebrahimi, "Modern Electric, Hybrid Electric and Fuel Cell Vehicles ", 2nd Edition, CRC Press, Boca Raton, (2018)

2. Iqbal Husain, "Electric and Hybrid Vehicles", 3rd Edition, CRC Press, Boca Raton, (2021)

Web Resources

1. https://archive.nptel.ac.in/courses/108/103/108103009/

CO Vs PO Mapping and CO Vs PSO Mapping

60	PO	PSO	PSO											
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	1			2	1	1					1	2	1
2	3	1			2	1	1					1	2	1
3	3	1			2	1	1					1	2	1
4	3	1				1	1					1		3
5	3	2				1	1					1		3

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Summarize about the layout and sub systems of hybrid vehicles. (Understand)

- **1.** Draw a general lay out of a EV and discuss the transmission characteristics. **(U)**
- 2. With a neat sketch, explain the configuration of Series hybrid electric drive train.(U)

COURSE OUTCOME 2: Explain the architecture of various models of hybrid Vehicles Systems. (Understand)

1. Explain the configuration of v/f-controlled induction motor drive with field weakening mode and constant-torque mode' **(U)**

2. A vehicle with power plant power output at the drive train considering all losses is 100kW. The maximum total resistance the vehicle experiences is 3.6 li. Calculate the velocity the vehicle can achieve in kmlh under this condition?. **(U)**

COURSE OUTCOME 3: Classify and explain electronic devices and motor drives . (Understand)

- **1.** Draw the typical torque Vs speed envelope curves of drive train motors and show the continuous, intermittent and peak overload ratings **(U)**
- 2. Explain compound wound DC motor with neat circuit diagram and also write the voltage and circuit Diagram(U)

COURSE OUTCOME 4: Estimate the parameters influencing the energy storage Systems. (Understand)

1. Why an energy management control system is required in an HEV? Do you think an elaborate energy management system similar to that applied to a hybrid vehicle, is required in an electric vehicle? Explain **(U)**

2. Draw the block diagram of a general Ftuzy Logic controller (FLC) and show (5) thecorecomponents of the FLC and the inputs and outputs relevant to a hybrid electric vehicle control'. **(U)**

COURSE OUTCOME 5: Infer the results from simulation of driving cycles. (Understand)

1.Explain the experimental modal analysis and the necessary basic equipments. **(U)**

2.A hybrid electric vehicle has two sources- an ICE with output power of 80kW and battery storage. The battery storage is a 150 Ah, Cio battery at 120V. (i) Calculate the battery energy capacity (ii). Without de-rating the Attr capacity, what is the maximum power that can be supported by the battery? (iii). What is the electrical motor power output if the total efficiency of power converter and motor combination is 98%. (iv). what is the maximum power that can be transmitted to the wheels if the transmission efficiency is 95%? **(U)**

21ME6710		ELECTRIC VEHICLE		L	Т	Р	С		
				3	0	0	3		
Prerequisites	s for the course								
Engineering P	hysics, Engineering	chemistry and Fundamentals of Ele	ectrical a	nd El	ectr	onics			
Engineering									
Objectives									
	rstand the concept o								
5	about the motors f								
		n in electric vehicles.							
	-	of battery technology.							
UNIT I	about sensors for e	JCTION TO ELECTRIC VEHICLES				9			
			Electric V	(abia)	<u>а</u> Та		0.077		
Electric Vehicle – Need - Types – Cost and Emissions – End of life. Electric Vehicle Technology - layouts, cables, components, Controls.									
UNIT II		ECTRIC VEHICLE MOTORS				9			
_		- Types, Principle, Construction,	Control	Inc	lucti	-	otor		
			, control		iucu		10101,		
permanent magnet motor, switched reluctance motor.UNIT IIIELECTRIC VEHICLE DRIVE TRAIN9									
Transmission configuration, Components – gears, differential, clutch, brakes regenerative									
	-					-			
-	-	rive Trains (EDT) – Series HEDT	-		-				
		e (PPS); Parallel HEDT (Mechanical			-				
•		eluctance Motors (SRM) Drives -	- Basic st	ructi	ure,	Drive			
Convertor, Des UNIT IV		BATTERY				9			
	annious and its types		nata Sta	toof	aha	-	ata of		
		s. Parameters – Capacity, Discharge							
		chnical characteristics - Battery plu	-		Ultra	а-сара	icitor,		
	thous and Standard	s. Alternate charging sources – Win	reless & S	olar		0			
UNIT V		SENORS				9			
		Self-drive Cars, Hacking; Sensor le							
Flux Linkage-Based Method, Phase Inductance Based, Modulated Signal Injection, Mutually									
Induced Voltage-Based, Observer-Based.									
		Total F	Periods			45			
	ssessment Method		1						
	ssessment Test	Formative Assessment Test		Semester Exams					
(20 Mai	rks)	(20 Marks)	(60 Ma	Marks)					
CAT 1 -10 Mar	·ks	1.ASSIGNMENT	1. DESC	1. DESCRIPTIVE					
CAT 2 -10 Mar	`ks	2. ONLINE QUIZZES QUESTIONS							
		3.PROBLEM-SOLVING							
		ACTIVITIES							

Outco	mes
Upon	completion of the course, the students will be able to:
CO1.	Describe about working principle of electric vehicles (Understand)
CO2.	Apply the working principle and select various motors used in electric vehicles. (Apply)
CO3.	Classify the types of drive train in electric vehicles (Understand)
CO4.	Differentiate the types and working principle of battery (Understand)
CO5.	Identify the various types and working principle of sensors (Understand)
Text I	Books
1.	Jack Erjavec and Jeff Arias, "Hybrid, Electric and Fuel Cell Vehicles", Cengage Learning
	2012.
2.	Jack Erjavec and Jeff Arias, "Alternative Fuel Technology – Electric, Hybrid and Fuel Cel
	Vehicles", Cengage Learning Pvt. Ltd., New Delhi, 2007.
3.	Mehrdad Ehsani, Yimin Gao, sebastien E. Gay and Ali Emadi, "Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design", CRC Press, 2009.
Refere	ence Books
1.	Electric and Hybrid Vehicles, Tom Denton, Taylor & Francis, 2018.
2.	Electric and Hybrid Vehicles Power Sources, Models, Sustainability, Infrastructure and the
	Market Gianfranco Pistoia Consultant, Rome, Italy, Elsevier Publications, 2017.
3.	Hybrid Electric Vehicle System Modeling and Control - Wei Liu, General Motors, USA, John
	Wiley & Sons, Inc., 2017.
4.	Hybrid Electric Vehicles – Teresa Donateo, Published by ExLi4EvA, 2017.
5.	Hybrid, Electric & Fuel-Cell Vehicles Jack Erjavec, Delmar, Cengage Learning, 2018.
Web I	Resources
1 1	nttps://archive.nptel.ac.in/courses/108/103/108103009/

- 1. <u>https://archive.nptel.ac.in/courses/108/103/108103009/</u>
- 2. https://nptel.ac.in/courses/108106170

CO Vs PO Mapping and CO Vs PSO Mapping

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
1	3					2				2				3
2	2		3							2			2	3
3	2		2			2				2				3
4	2		2			2				2				3
5	2		2			2				2				3

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Describe about working principle of electric vehicles (Understand)

- 1. Describe the historical background of electrical vehicle in India? (U)
- 2. Discuss the components of the current electrical vehicles? (U)

COURSE OUTCOME 2: Apply the working principle and select various motors used in electric vehicles (Apply)

- **1.** A vehicle powered by PM-DC motor is cruising at 36 kmph, the applied voltage is 25V, the BEMF is 24V and the winding resistance is 20 m Ω . How much current is the motor drawing? **(A)**
- 2. Comparison between the DC and BLDC motor? (U)

COURSE OUTCOME 3: Classify the types of drive train in electric vehicles (Understand)

- 1. Describe the working principle of brakes regenerative braking system? (U)
- 2. Comparison between series and parallel HEDT? (U)

COURSE OUTCOME 4: Differentiate the types and working principle of battery (Understand)

- **1.** Describe briefly about the Battery technology in India with standard specification? **(U)**
- 2. State the working principle of the Lithium batteries for electric vehicle? (U)

COURSE OUTCOME 5: Identify the various types and working principle of sensors (Understand)

- **1.** Describe the Autonomous EV cars? **(U)**
- 2. List of the latest sensors used in electric vehicles? (U)

PROFESSIONAL ELECTIVE III

		21ME6711 PRODUCT DESIGN FOR SUSTAINABILITY L T P										
Engineering Materials & Metallurgy, Strength of Materials and Design of Machine Elements & Joints Objectives 1. To understand the basic concepts of sustainability. 2. To gain knowledge about the tools and techniques for sustainable design. 3. To improve the design by assessing the customer needs. UNIT I BASIC CONCEPTS IN SUSTAINABILITY 9 Understanding the language of sustainable engineering design, construction and operatic Natural resources terminology. Carrying capacity. Sustainable development, corporate ONIT II TOOLS AND TECHNIQUES 9 Sustainable Engineering Design Tools – Life cycle analysis, carbon footprinting. Life cycl assessment (LCA), Types of LCA's: baseline, comparative, streamlined. LCA inventory analysis process or input-output. Hybrid inventory analysis. Sustainable Product Design. Whole syster design. UNIT II PRINCIPLES FOR SUSTAINABLE BREAKTHROUGH DESIGN 9 Infrastructure for managing flows of materials, energy and activities; sustainable value creati approaches for all stakeholders, environmental design characteristics; design changes<	n : :	PRODUCT DESIGN FOR SUSTAINABILITY	3	0	0	3						
Joints Objectives 1. To understand the basic concepts of sustainability. 2. To gain knowledge about the tools and techniques for sustainable design. 3. To improve the design by assessing the customer needs. UNIT I BASIC CONCEPTS IN SUSTAINABILITY 9 Understanding the language of sustainable engineering design, construction and operatid Natural resources terminology. Carrying capacity. Sustainable development, corporates responsibility, biophysical constraints, environmental management. 9 UNIT II TOOLS AND TECHNIQUES 9 Sustainable Engineering Design Tools - Life cycle analysis, carbon footprinting. Life cycl assessment (LCA), Types of LCA's: baseline, comparative, streamlined. LCA inventory analysis process or input-output. Hybrid inventory analysis. Sustainable Product Design. Whole system design. Lightweighting and materials reduction. Designing for a lifetime. Design for durabili repair and up-grade, disassembly and recycling. Energy use in design. Reducing energy losses design. 9 UNIT III PRINCIPLES FOR SUSTAINABLE BREAKTHROUGH DESIGN 9 Infrastructure for managing flows of materials, energy and activities; sustainable value creati approaches for all stakeholders, environmental design characteristics; design changes continual improvement; inclusive sustainable design principles, crowd sourcing, multip objective designs; infrastructures that support system thinking; knowledge management is sustainable design, learning systems and experimentation; smart data sysy	Prerequisite	s for the course		1 1								
Objectives 1. To understand the basic concepts of sustainability. 2. To gain knowledge about the tools and techniques for sustainable design. 3. To improve the design by assessing the customer needs. UNIT I BASIC CONCEPTS IN SUSTAINABILITY 9 Understanding the language of sustainable engineering design, construction and operation. Natural resources terminology. Carrying capacity. Sustainable development, corporates responsibility, biophysical constraints, environmental management. UNIT II TOOLS AND TECHNIQUES 9 Sustainable Engineering Design Tools – Life cycle analysis, carbon footprinting. Life cycle assessment (LCA), Types of LCA's: baseline, comparative, streamlined. LCA inventory analysis process or input-output. Hybrid inventory analysis. Sustainable Product Design. Whole system design. Lightweighting and materials reduction. Designing for a lifetime. Design for durabili repair and up-grade, disassembly and recycling. Energy use in design. Reducing energy losses design. UNIT III PRINCIPLES FOR SUSTAINABLE BREAKTHROUGH DESIGN 9 Infrastructure for managing flows of materials, energy and activities; sustainable value creati approaches for all stakeholders, environmental design principles, crowd sourcing, multip objective design, learning systems and experimentation; smart data systems, understandit variation. UNIT IIV SUSTAINABLE DESIGN 9 Industrial ecology, multiple life cycle design, princip	Engineering	Aaterials & Metallurgy, Strength of Materials and Design of Mach	nine I	Eleme	ents &							
1. To understand the basic concepts of sustainability. 2. To gain knowledge about the tools and techniques for sustainable design. 3. To improve the design by assessing the customer needs. UNIT I BASIC CONCEPTS IN SUSTAINABILITY 9 Understanding the language of sustainable engineering design, construction and operation. Natural resources terminology. Carrying capacity. Sustainable development, corporates responsibility, biophysical constraints, environmental management. UNIT II TOOLS AND TECHNIQUES 9 Sustainable Engineering Design Tools – Life cycle analysis, carbon footprinting. Life cycle assessment (LCA), Types of LCA's: baseline, comparative, streamlined. LCA inventory analysis process or input-output. Hybrid inventory analysis. Sustainable Product Design. Whole system design. Lightweighting and materials reduction. Designing for a lifetime. Design for durabili repair and up-grade, disassembly and recycling. Energy use in design. Reducing energy losses design. 9 UNIT III PRINCIPLES FOR SUSTAINABLE BREAKTHROUGH DESIGN 9 Infrastructure for managing flows of materials, energy and activities; sustainable value creati approaches for all stakeholders, environmental design principles, crowd sourcing, multip objective design, learning systems and experimentation; smart data systems, understandit variation. UNIT IV SUSTAINABLE DESIGN 9 Industrial ecology, multiple life cycle design, principles of design, green engineering, cradle cradle design, The Natural Step, biomimicry, design for reuse, dematerializat												
2. To gain knowledge about the tools and techniques for sustainable design. 3. To improve the design by assessing the customer needs. UNIT I BASIC CONCEPTS IN SUSTAINABILITY 9 Understanding the language of sustainable engineering design, construction and operation Natural resources terminology. Carrying capacity. Sustainable development, corporate responsibility, biophysical constraints, environmental management. UNIT II TOOLS AND TECHNIQUES 9 Sustainable Engineering Design Tools - Life cycle analysis, carbon footprinting. Life cycle assessment (LCA), Types of LCA's: baseline, comparative, streamlined. LCA inventory analysis process or input-output. Hybrid inventory analysis. Sustainable Product Design. Whole system design. Lightweighting and materials reduction. Designing for a lifetime. Design for durabili repair and up-grade, disassembly and recycling. Energy use in design. Reducing energy losses design. 9 UNIT III PRINCIPLES FOR SUSTAINABLE BREAKTHROUGH DESIGN 9 Infrastructure for managing flows of materials, energy and activities; sustainable value creati approaches for all stakeholders, environmental design characteristics; design changes continual improvement; inclusive sustainable design principles, crowd sourcing, multip objective designs; infrastructures that support system thinking; knowledge management fusition. UNIT IV SUSTAINABLE DESIGN 9 Industrial ecology, multiple life cycle design, principles of design, green engineering, cradle cradle design, The Natural Step, biomimicry, design for reuse, dematerialization, modularization	Objectives											
3. To improve the design by assessing the customer needs. UNIT I BASIC CONCEPTS IN SUSTAINABILITY 9 Understanding the language of sustainable engineering design, construction and operation Natural resources terminology. Carrying capacity. Sustainable development, corporates responsibility, biophysical constraints, environmental management. UNIT II TOOLS AND TECHNIQUES 9 Sustainable Engineering Design Tools – Life cycle analysis, carbon footprinting. Life cycl assessment (LCA), Types of LCA's: baseline, comparative, streamlined. LCA inventory analysis process or input-output. Hybrid inventory analysis. Sustainable Product Design. Whole system design. Lightweighting and materials reduction. Designing for a lifetime. Design for durabili repair and up-grade, disassembly and recycling. Energy use in design. Reducing energy losses design. 9 Infrastructure for managing flows of materials, energy and activities; sustainable value creati approaches for all stakeholders, environmental design characteristics; design changes continual improvement; inclusive sustainable design principles, crowd sourcing, multip objective designs; infrastructures that support system thinking; knowledge management for sustainable design, learning systems and experimentation; smart data systems, understandit variation. 9 UNIT IV SUSTAINABLE DESIGN 9 Industrial ecology, multiple life cycle design, principles of design, green engineering, cradle cradle design, The Natural Step, biomimicry, design for reuse, dematerialization, modularization		1. To understand the basic concepts of sustainability.										
UNIT IBASIC CONCEPTS IN SUSTAINABILITY9Understanding the language of sustainable engineering design, construction and operationNatural resources terminology. Carrying capacity. Sustainable development, corporateNatural resources terminology. Carrying capacity. Sustainable development, biphysical constraints, environmental management.9UNIT IITOOLS AND TECHNIQUES9Sustainable Engineering Design Tools - Life cycle analysis, carbon footprinting. Life cycle assessment (LCA), Types of LCA's: baseline, comparative, streamlined. LCA inventory analysis process or input-output. Hybrid inventory analysis. Sustainable Product Design. Whole system design. Lightweighting and materials reduction. Designing for a lifetime. Design for durabili repair and up-grade, disassembly and recycling. Energy use in design. Reducing energy losses design.9INIT IIIPRINCIPLES FOR SUSTAINABLE BREAKTHROUGH DESIGN9Infrastructure for managing flows of materials, energy and activities; sustainable value creati approaches for all stakeholders, environmental design characteristics; design changes continual improvement; inclusive sustainable design principles, crowd sourcing, multip objective designs; infrastructures that support system thinking; knowledge management for sustainable design, learning systems and experimentation; smart data systems, understandit variation.UNIT IVSUSTAINABLE DESIGN9Industrial ecology, multiple life cycle design, principles of design, green engineering, cradle cradle design, The Natural Step, biomimicry, design for reuse, dematerialization, modularization		2. To gain knowledge about the tools and techniques for susta	inab	le des	sign.							
Understanding the language of sustainable engineering design, construction and operation Natural resources terminology. Carrying capacity. Sustainable development, corpora responsibility, biophysical constraints, environmental management.UNIT IITOOLS AND TECHNIQUES9Sustainable Engineering Design Tools – Life cycle analysis, carbon footprinting. Life cycle assessment (LCA), Types of LCA's: baseline, comparative, streamlined. LCA inventory analysis process or input-output. Hybrid inventory analysis. Sustainable Product Design. Whole system design. Lightweighting and materials reduction. Designing for a lifetime. Design for durabili repair and up-grade, disassembly and recycling. Energy use in design. Reducing energy losses design.9Infrastructure for managing flows of materials, energy and activities; sustainable value creati approaches for all stakeholders, environmental design characteristics; design changes continual improvement; inclusive sustainable design principles, crowd sourcing, multip objective designs; infrastructures that support system thinking; knowledge management for sustainable design, learning systems and experimentation; smart data systems, understandin variation.9UNIT IVSUSTAINABLE DESIGN9Industrial ecology, multiple life cycle design, principles of design, green engineering, cradle cradle design, The Natural Step, biomimicry, design for reuse, dematerialization, modularization		3. To improve the design by assessing the customer needs.										
Naturalresourcesterminology.Carryingcapacity.Sustainabledevelopment,corporaresponsibility, biophysical constraints, environmental management.UNIT IITOOLS AND TECHNIQUES9SustainableEngineeringDesignTools – Lifecycleanalysis, carbonfootprinting.Lifecyclassessment (LCA), Types of LCA's:baseline, comparative, streamlined.LCA inventory analysisprocess or input-output.Hybridinventory analysis.SustainableProductDesign.Whole systemdesign.Lightweighting and materials reduction.Designing for a lifetime.Design for durabilirepair and up-grade, disassembly and recycling.Energy use in design.Reducing energy lossesUNIT IIIPRINCIPLES FOR SUSTAINABLE BREAKTHROUGH DESIGN9Infrastructure for managing flows of materials, energy and activities; sustainable value creatiapproachesfor all stakeholders, environmental design characteristics; design changescontinual improvement; inclusive sustainable design principles, crowd sourcing, multipobjective designs; infrastructures that support system thinking; knowledge management fsustainable design, learning systems and experimentation; smart data systems, understandivvariation.UNIT IVSUSTAINABLE DESIGN9Industrial ecology, multiple life cycle design, principles of design, green engineering, cradlecradledesign, The Natural Step, biomimicry, design for reuse, dematerialization, modularization	UNIT I	BASIC CONCEPTS IN SUSTAINABILITY			9							
responsibility, biophysical constraints, environmental management.UNIT IITOOLS AND TECHNIQUES9Sustainable Engineering Design Tools – Life cycle analysis, carbon footprinting. Life cycle assessment (LCA), Types of LCA's: baseline, comparative, streamlined. LCA inventory analysis process or input-output. Hybrid inventory analysis. Sustainable Product Design. Whole system design. Lightweighting and materials reduction. Designing for a lifetime. Design for durabili repair and up-grade, disassembly and recycling. Energy use in design. Reducing energy losses design.UNIT IIIPRINCIPLES FOR SUSTAINABLE BREAKTHROUGH DESIGN9Infrastructure for managing flows of materials, energy and activities; sustainable value creati approaches for all stakeholders, environmental design characteristics; design changes continual improvement; inclusive sustainable design principles, crowd sourcing, multip objective designs; infrastructures that support system thinking; knowledge management for sustainable design, learning systems and experimentation; smart data systems, understandit variation.UNIT IVSUSTAINABLE DESIGN9Industrial ecology, multiple life cycle design, principles of design, green engineering, cradle cradle design, The Natural Step, biomimicry, design for reuse, dematerialization, modularization	Understandin	g the language of sustainable engineering design, construct	ction	and	oper	ation.						
UNIT IITOOLS AND TECHNIQUES9SustainableEngineeringDesignTools – Lifecycleanalysis, carbonfootprinting.Lifecycleassessment (LCA), Types of LCA's:baseline, comparative, streamlined.LCA inventory analysisprocess or inventory analysis.SustainableProductDesign.Wholesystemdesign.Lightweightingandmaterialsreduction.Designingfor alifetime.Designfor durabilirepairand up-grade,disassemblyand recycling.Energyuse in design.ReductionsgUNIT IIIPRINCIPLES FOR SUSTAINABLE BREAKTHROUGH DESIGN99Infrastructurefor managingflows of materials, energy and activities; sustainable value creatiapproachesfor all stakeholders, environmentaldesigncharacteristics; designchangescontinualimprovement;inclusivesustainabledesignpinciples, crowdsourcing, multipobjectivedesigns;infrastructures thatsupportsystem thinking; knowledgemanagementforvariation.UNIT IVSUSTAINABLE DESIGN9111UNIT IVSUSTAINABLE DESIGN91Industrial ecology,multiplelife cycle design, principles of design, greenengineering, cradlecradledesign,TheNaturalStep, biomimicry, design for reuse, dematerialization, modularization			lopm	ent,	corp	orate						
SustainableEngineeringDesignTools– Lifecycleanalysis,carbonfootprinting.Lifecycleassessment(LCA),Types ofLCA's:baseline,comparative,streamlined.LCA inventoryanalysisprocess or input-output.Hybrid inventory analysis.SustainableProductDesign.Wholesystemdesign.Lightweightingandmaterialsreduction.Designingfor a lifetime.Design for durabilirepairand up-grade,disassembly andrecycling.Energyuse indesign.Reducingenergylossesdesign.UNIT IIIPRINCIPLES FOR SUSTAINABLE BREAKTHROUGH DESIGN9Infrastructureformanaging flows of materials, energy and activities; sustainable value creatiapproachesforall stakeholders, environmentaldesigncharacteristics; designchangescontinualimprovement; inclusivesustainabledesignprinciples, crowdsourcing, multipobjectivedesign;infrastructuresthat supportsystemthat systems, understandingvariation.UNIT IVSUSTAINABLE DESIGN9IndustrialgIndustrialecology, multiplelifecycledesign, principlesofdesign, cradlecradledesign, TheNaturalStep, biomimicry, design forreuse, dematerialization, modularization	responsibility	, biophysical constraints, environmental management.										
assessment (LCA), Types of LCA's: baseline, comparative, streamlined. LCA inventory analysis process or input-output. Hybrid inventory analysis. Sustainable Product Design. Whole system design. Lightweighting and materials reduction. Designing for a lifetime. Design for durabilit repair and up-grade, disassembly and recycling. Energy use in design. Reducing energy losses design.UNIT IIIPRINCIPLES FOR SUSTAINABLE BREAKTHROUGH DESIGN9Infrastructure for managing flows of materials, energy and activities; sustainable value creati approaches for all stakeholders, environmental design characteristics; design changes continual improvement; inclusive sustainable design principles, crowd sourcing, multip objective design; learning systems and experimentation; smart data systems, understandit variation.9UNIT IVSUSTAINABLE DESIGN9Industrial ecology, multiple life cycle design, principles of design, green engineering, cradle cradle design, The Natural Step, biomimicry, design for reuse, dematerialization, modularization	UNIT II	TOOLS AND TECHNIQUES			9							
process or input-output. Hybrid inventory analysis. Sustainable Product Design. Whole system design. Lightweighting and materials reduction. Designing for a lifetime. Design for durabili repair and up-grade, disassembly and recycling. Energy use in design. Reducing energy losses design.UNIT IIIPRINCIPLES FOR SUSTAINABLE BREAKTHROUGH DESIGN9Infrastructurefor managing flows of materials, energy and activities; sustainable value creati approaches for all stakeholders, environmental design characteristics; design changes continual improvement; inclusive sustainable design principles, crowd sourcing, multip objective design; infrastructures that support system thinking; knowledge management for sustainable design, learning systems and experimentation; smart data systems, understanding variation.9UNIT IVSUSTAINABLE DESIGN9Industrial ecology, multiple life cycle design, principles of design, green engineering, cradle cradle design, The Natural Step, biomimicry, design for reuse, dematerialization, modularization	Sustainable	Engineering Design Tools – Life cycle analysis, carbon foo	tprin	ting.	Life	cycle						
design. Lightweighting and materials reduction. Designing for a lifetime. Design for durabili repair and up-grade, disassembly and recycling. Energy use in design. Reducing energy losses design.UNIT IIIPRINCIPLES FOR SUSTAINABLE BREAKTHROUGH DESIGN9Infrastructure for managing flows of materials, energy and activities; sustainable value creati approaches for all stakeholders, environmental design characteristics; design changes continual improvement; inclusive sustainable design principles, crowd sourcing, multip objective designs; infrastructures that support system thinking; knowledge management for sustainable design, learning systems and experimentation; smart data systems, understanding variation.9UNIT IVSUSTAINABLE DESIGN9Industrial ecology, multiple life cycle design, principles of design, green engineering, cradle cradle design, The Natural Step, biomimicry, design for reuse, dematerialization, modularization	assessment (LCA), Types of LCA's: baseline, comparative, streamlined. LCA	A inv	entor	y ana	lysis:						
repair and up-grade, disassembly and recycling. Energy use in design. Reducing energy losses design.UNIT IIIPRINCIPLES FOR SUSTAINABLE BREAKTHROUGH DESIGN9Infrastructure for managing flows of materials, energy and activities; sustainable value creati approaches for all stakeholders, environmental design characteristics; design changes continual improvement; inclusive sustainable design principles, crowd sourcing, multip objective design; infrastructures that support system thinking; knowledge management for sustainable design, learning systems and experimentation; smart data systems, understanding variation.9UNIT IVSUSTAINABLE DESIGN9Industrial ecology, multiple life cycle design, principles of design, green engineering, cradle cradle design, The Natural Step, biomimicry, design for reuse, dematerialization, modularization	process or in	put-output. Hybrid inventory analysis. Sustainable Product De	sign.	Who	ole sys	stems						
design.PRINCIPLES FOR SUSTAINABLE BREAKTHROUGH DESIGN9Infrastructure for managing flows of materials, energy and activities; sustainable value creati approaches for all stakeholders, environmental design characteristics; design changes continual improvement; inclusive sustainable design principles, crowd sourcing, multip objective designs; infrastructures that support system thinking; knowledge management f sustainable design, learning systems and experimentation; smart data systems, understandin variation.UNIT IVSUSTAINABLE DESIGN9Industrial ecology, multiple life cycle design, principles of design, green engineering, cradle cradle design, The Natural Step, biomimicry, design for reuse, dematerialization, modularization	design. Light	weighting and materials reduction. Designing for a lifetime. D)esig	n for	dura	bility,						
UNIT IIIPRINCIPLES FOR SUSTAINABLE BREAKTHROUGH DESIGN9Infrastructure for managing flows of materials, energy and activities; sustainable value creati approaches for all stakeholders, environmental design characteristics; design changes continual improvement; inclusive sustainable design principles, crowd sourcing, multip objective designs; infrastructures that support system thinking; knowledge management for sustainable design, learning systems and experimentation; smart data systems, understanding variation.9UNIT IVSUSTAINABLE DESIGN9Industrial ecology, multiple life cycle design, principles of design, green engineering, cradle cradle design, The Natural Step, biomimicry, design for reuse, dematerialization, modularization	repair and up	-grade, disassembly and recycling. Energy use in design. Reduc	cing e	energ	y loss	ses in						
Infrastructure for managing flows of materials, energy and activities; sustainable value creati approaches for all stakeholders, environmental design characteristics; design changes continual improvement; inclusive sustainable design principles, crowd sourcing, multip objective designs; infrastructures that support system thinking; knowledge management f sustainable design, learning systems and experimentation; smart data systems, understandin variation.UNIT IVSUSTAINABLE DESIGN9Industrial ecology, multiple life cycle design, principles of design, green engineering, cradle cradle design, The Natural Step, biomimicry, design for reuse, dematerialization, modularization	design.											
approaches for all stakeholders, environmental design characteristics; design changes continual improvement; inclusive sustainable design principles, crowd sourcing, multip objective designs; infrastructures that support system thinking; knowledge management f sustainable design, learning systems and experimentation; smart data systems, understandin variation.UNIT IVSUSTAINABLE DESIGN9Industrial ecology, multiple life cycle design, principles of design, green engineering, cradle cradle design, The Natural Step, biomimicry, design for reuse, dematerialization, modularization	UNIT III	PRINCIPLES FOR SUSTAINABLE BREAKTHROUGH DESIGN	N		9							
continual improvement; inclusive sustainable design principles, crowd sourcing, multip objective designs; infrastructures that support system thinking; knowledge management f sustainable design, learning systems and experimentation; smart data systems, understandin variation.UNIT IVSUSTAINABLE DESIGN9Industrial ecology, multiple life cycle design, principles of design, green engineering, cradle cradle design, The Natural Step, biomimicry, design for reuse, dematerialization, modularization	Infrastructur			-								
objective designs; infrastructures that support system thinking; knowledge management for sustainable design, learning systems and experimentation; smart data systems, understanding variation.UNIT IVSUSTAINABLE DESIGN9Industrial ecology, multiple life cycle design, principles of design, green engineering, cradle design, The Natural Step, biomimicry, design for reuse, dematerialization, modularization	annraachaa											
sustainable design, learning systems and experimentation; smart data systems, understandin variation. UNIT IV SUSTAINABLE DESIGN 9 Industrial ecology, multiple life cycle design, principles of design, green engineering, cradle cradle design, The Natural Step, biomimicry, design for reuse, dematerialization, modularization		for all stakeholders, environmental design characteristics;	des	ign c	chang	es &						
variation.SUSTAINABLE DESIGN9Industrial ecology, multiple life cycle design, principles of design, green engineering, cradle cradle design, The Natural Step, biomimicry, design for reuse, dematerialization, modularization		for all stakeholders, environmental design characteristics;	des	ign c	chang	es &						
UNIT IVSUSTAINABLE DESIGN9Industrial ecology, multiple life cycle design, principles of design, green engineering, cradle cradle design, The Natural Step, biomimicry, design for reuse, dematerialization, modularization	continual im objective des	for all stakeholders, environmental design characteristics; provement; inclusive sustainable design principles, crowd signs; infrastructures that support system thinking; knowled	desi sou lge n	ign c rcing nanag	chang , mul gemei	es & tiple- nt for						
Industrial ecology, multiple life cycle design, principles of design, green engineering, cradle cradle design, The Natural Step, biomimicry, design for reuse, dematerialization, modularization	continual im objective des sustainable d	for all stakeholders, environmental design characteristics; provement; inclusive sustainable design principles, crowd signs; infrastructures that support system thinking; knowled	desi sou lge n	ign c rcing nanag	chang , mul gemei	es & tiple- nt for						
cradle design, The Natural Step, biomimicry, design for reuse, dematerialization, modularization	continual im objective des sustainable d variation.	for all stakeholders, environmental design characteristics; provement; inclusive sustainable design principles, crowd signs; infrastructures that support system thinking; knowled esign, learning systems and experimentation; smart data syst	desi sou lge n	ign c rcing nanag	chang , mul gemer erstar	es & tiple- nt for						
	continual im objective des sustainable o variation. UNIT IV	for all stakeholders, environmental design characteristics; provement; inclusive sustainable design principles, crowd signs; infrastructures that support system thinking; knowled esign, learning systems and experimentation; smart data syst SUSTAINABLE DESIGN	dest sou lge n tems,	ign c rcing nanag und	chang , mul gemei erstai 9	es & tiple- nt for nding						
design for flexibility, design for disassembly, design for inverse manufacturing design for t	continual im objective des sustainable d variation. UNIT IV Industrial ec	for all stakeholders, environmental design characteristics; provement; inclusive sustainable design principles, crowd signs; infrastructures that support system thinking; knowled esign, learning systems and experimentation; smart data syst SUSTAINABLE DESIGN plogy, multiple life cycle design, principles of design, green er	des sou lge n tems, ngine	ign c rcing nanag und eering	chang , mul gemer erstar 9 g, crac	es & tiple- nt for nding dle to						
	continual im objective des sustainable d variation. UNIT IV Industrial ec cradle design	for all stakeholders, environmental design characteristics; provement; inclusive sustainable design principles, crowd signs; infrastructures that support system thinking; knowled esign, learning systems and experimentation; smart data syst SUSTAINABLE DESIGN plogy, multiple life cycle design, principles of design, green en , The Natural Step, biomimicry, design for reuse, dematerializat	desi sou lge n tems, ngine tion,	ign c rcing, nanag und eering modu	chang , mul gemer erstar 9 g, crao ulariz	es & tiple- nt for nding dle to ation,						
environment, etc.	continual im objective des sustainable d variation. UNIT IV Industrial ec cradle design design for fle	for all stakeholders, environmental design characteristics; provement; inclusive sustainable design principles, crowd signs; infrastructures that support system thinking; knowled esign, learning systems and experimentation; smart data syst SUSTAINABLE DESIGN plogy, multiple life cycle design, principles of design, green en , The Natural Step, biomimicry, design for reuse, dematerializate exibility, design for disassembly, design for inverse manufacture	desi sou lge n tems, ngine tion,	ign c rcing, nanag und eering modu	chang , mul gemer erstar 9 g, crao ulariz	es & tiple- nt for nding dle to ation,						
UNIT VCUSTOMER AND USER NEEDS ASSESSMENT9	continual im objective des sustainable d variation. UNIT IV Industrial ec cradle design design for fle	for all stakeholders, environmental design characteristics; provement; inclusive sustainable design principles, crowd signs; infrastructures that support system thinking; knowled esign, learning systems and experimentation; smart data syst SUSTAINABLE DESIGN plogy, multiple life cycle design, principles of design, green en , The Natural Step, biomimicry, design for reuse, dematerializate exibility, design for disassembly, design for inverse manufacture	desi sou lge n tems, ngine tion,	ign c rcing, nanag und eering modu	chang , mul gemer erstar 9 g, crao ulariz	es & tiple- nt for nding dle to ation,						
Identification & breakdown structures that describe customers & stakeholders, green marketing	continual im objective des sustainable d variation. UNIT IV Industrial ec cradle design design for fle environment	for all stakeholders, environmental design characteristics; provement; inclusive sustainable design principles, crowd signs; infrastructures that support system thinking; knowled esign, learning systems and experimentation; smart data syst SUSTAINABLE DESIGN ology, multiple life cycle design, principles of design, green en , The Natural Step, biomimicry, design for reuse, dematerializate exibility, design for disassembly, design for inverse manufactu etc.	desi sou lge n tems, ngine tion,	ign c rcing, nanag und eering modu , desi	chang , mul gemer erstar 9 g, crac ulariz ign fc	es & tiple- nt for nding dle to ation,						
socially conscious consumerism, sources of customer information, collecting information	continual im objective des sustainable d variation. UNIT IV Industrial ec cradle design design for fle environment UNIT V Identification	for all stakeholders, environmental design characteristics; provement; inclusive sustainable design principles, crowd signs; infrastructures that support system thinking; knowled esign, learning systems and experimentation; smart data syst SUSTAINABLE DESIGN ology, multiple life cycle design, principles of design, green en , The Natural Step, biomimicry, design for reuse, dematerializate exibility, design for disassembly, design for inverse manufacturet. CUSTOMER AND USER NEEDS ASSESSMENT & breakdown structures that describe customers & stakeholde	desi sou lge n tems, ngine tion, uring	ign c rcing, nanag und eering modu , desi	chang , mul gemen erstan 9 g, crao ulariz ign fo 9 mark	es & tiple- nt for nding dle to ation, or the eting,						
analyzing customer behavior, translating the voice of the customer, use analysis, structuri	continual im objective des sustainable d variation. UNIT IV Industrial ec cradle design design for fle environment UNIT V Identification socially cons	for all stakeholders, environmental design characteristics; provement; inclusive sustainable design principles, crowd signs; infrastructures that support system thinking; knowled esign, learning systems and experimentation; smart data syst SUSTAINABLE DESIGN ology, multiple life cycle design, principles of design, green en , The Natural Step, biomimicry, design for reuse, dematerializate exibility, design for disassembly, design for inverse manufacturetc. CUSTOMER AND USER NEEDS ASSESSMENT & breakdown structures that describe customers & stakeholder cious consumerism, sources of customer information, col	desi sou lge n tems, ngine tion, uring ers, g llectin	ign c rcing, nanag und eering modu , desi reen ng ir	chang , mul gemer erstar 9 g, crac ulariz ign fc 9 mark nform	es & tiple- nt for nding dle to ation, or the eting, ation,						
customer needs, service gap analysis, prioritizing customer needs, strategic design, Kano	continual im objective des sustainable d variation. UNIT IV Industrial ec cradle design design for fle environment UNIT V Identification socially cons analyzing cu	for all stakeholders, environmental design characteristics; provement; inclusive sustainable design principles, crowd signs; infrastructures that support system thinking; knowled esign, learning systems and experimentation; smart data syst SUSTAINABLE DESIGN ology, multiple life cycle design, principles of design, green en , The Natural Step, biomimicry, design for reuse, dematerializate exibility, design for disassembly, design for inverse manufacturetc. CUSTOMER AND USER NEEDS ASSESSMENT & breakdown structures that describe customers & stakeholded scious consumerism, sources of customer information, col stomer behavior, translating the voice of the customer, use	desi sou lge n tems, ngine tion, uring ers, g llectin analy	ign c rcing, nanag und eering modu , desi reen ng ir zsis, s	chang , mul gemen erstan 9 g, crao ulariz ign fo 9 mark nform struct	es & tiple- nt for nding dle to ation, or the eting, ation, uring						
•	continual im objective des sustainable d variation. UNIT IV Industrial ec cradle design design for fle environment UNIT V Identification socially cons analyzing cu	for all stakeholders, environmental design characteristics; provement; inclusive sustainable design principles, crowd signs; infrastructures that support system thinking; knowled esign, learning systems and experimentation; smart data syst SUSTAINABLE DESIGN ology, multiple life cycle design, principles of design, green en , The Natural Step, biomimicry, design for reuse, dematerializate exibility, design for disassembly, design for inverse manufacturetc. CUSTOMER AND USER NEEDS ASSESSMENT & breakdown structures that describe customers & stakeholded scious consumerism, sources of customer information, col stomer behavior, translating the voice of the customer, use	desi sou lge n tems, ngine tion, uring ers, g llectin analy	ign c rcing, nanag und eering modu , desi reen ng ir zsis, s	chang , mul gemen erstan 9 g, crao ulariz ign fo 9 mark nform struct	es & tiple- nt for nding dle to ation, or the eting, ation, uring						
Total Periods 45	continual im objective des sustainable d variation. UNIT IV Industrial ec cradle design design for fle environment UNIT V Identification socially cons analyzing cu	for all stakeholders, environmental design characteristics; provement; inclusive sustainable design principles, crowd signs; infrastructures that support system thinking; knowled esign, learning systems and experimentation; smart data syst SUSTAINABLE DESIGN ology, multiple life cycle design, principles of design, green en , The Natural Step, biomimicry, design for reuse, dematerializate exibility, design for disassembly, design for inverse manufactu etc. CUSTOMER AND USER NEEDS ASSESSMENT & breakdown structures that describe customers & stakeholder scious consumerism, sources of customer information, col stomer behavior, translating the voice of the customer, use eds, service gap analysis, prioritizing customer needs, strateging	desi sou lge n tems, ngine tion, uring ers, g llectin analy	ign c rcing nanag und eering modu , desi reen ng in vsis, s sign,	chang , mul gemen erstan 9 g, crao ulariz ign fo 9 mark form struct Kano	es & tiple- nt for nding dle to ation, or the eting, ation, uring						
	continual im objective des sustainable d variation. UNIT IV Industrial ec cradle design design for fle environment UNIT V Identification socially cons analyzing cu	for all stakeholders, environmental design characteristics; provement; inclusive sustainable design principles, crowd signs; infrastructures that support system thinking; knowled esign, learning systems and experimentation; smart data syst SUSTAINABLE DESIGN ology, multiple life cycle design, principles of design, green en , The Natural Step, biomimicry, design for reuse, dematerializate exibility, design for disassembly, design for inverse manufacturetc. CUSTOMER AND USER NEEDS ASSESSMENT & breakdown structures that describe customers & stakeholded scious consumerism, sources of customer information, col stomer behavior, translating the voice of the customer, use	desi sou lge n tems, ngine tion, uring ers, g llectin analy	ign c rcing nanag und eering modu , desi reen ng in vsis, s sign,	chang , mul gemen erstan 9 g, crao ulariz ign fo 9 mark form struct Kano	es & tiple- nt for nding dle to ation, or the eting, ation, uring						

Suggesti	ve Ass	essme	ent Me	ethod	5									
Continuo (20	ous As:) Mark		ent T	est	Form	native (20	Asses Mark		t Test		nd Sem 60 Marl		xams	
2 Test EA	CH 10	marks	;		MCQ/	Descri	ptive (Questi	ons	D	escripti	ve Ques	stions	
Descripti	ve Que	stions	;											
Outcome	es			1										
Upon con	npletio	n of tł	ne cou	rse, th	e stud	ents w	vill be	able to):					
CO1: Exa	mine t	the co	ncept	of sus	stainał	oility i	n terr	ns of (design	, const	ruction	and de	evelopn	ıent
(Apply)														
CO2: Disc	over k	nowle	edge in	engin	eering	g desig	gn tool	s and	life cyo	cle asse	essment	. (Appl	y)	
СОЗ: Арр	oly sus	tainat	ole val	lue cre	eation	appro	oaches	s, desi	gn cha	anges	& contii	nual im	proven	ient
(Apply)														
CO4: Pred	lict the	e susta	inable	e desig	n, gre	en eng	ineeri	ng, fle	xible c	lesign	etc. (Ap	ply)		
CO5: Des	-	ording	g to th	e custo	omer i	needs.	(Appl	y)						
Text Boo	_													
1. Fir	ister, N	1ark P	., 2013	3. Sust	ainabl	e Pers	pectiv	es to I	Design	and In	novatio	n.		
Reference	e Boo	ks												
La		ory, D	epartr	nent				0			ycle. Life ring Me		0	
	imasw. istome	-				-	ind M	lanage	ement	of Se	ervice F	rocesse	es: Kee	pin
3. Sc	hmitt,	Brent,	2003.	. Custo	mer E	xperie	ence M	lanage	ment,	Wiley	and Son	s.		
Web Res						•								
	<u></u>	-	in/cou	11505 /1	07103	2021								
	.ps://n	-					07/11	21072	17/					
	• • • •		-							fall-20	06/pages	s/lectur	e-notes/	1
CO Vs PO	марр	oing a	na co	VS PS	0 Map	ping								
<u> </u>	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PS
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	2	1	2			2							2	
			ļ					ļ						┝───

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Students will be able to understand the concept of sustainability in terms of design, construction and development. (Remember, Understand and Apply)

- 1. What do you mean by sustainable engineering design (R)
- 2. Differentiate renewable and non-renewable resources (U)
- 3. "Sustainable development is the only way left for human survival" Give your comments (A)

COURSE OUTCOME 2: Students will be able to gain knowledge in engineering design tools and life cycle assessment. (Remember, Understand and Apply)

- 1. Explain Life cycle assessment with different types (R)
- 2. Discuss the hybrid inventory analysis (U)
- 3. Write down the design procedure for repair and up-grade, disassembly and recycling (A)

COURSE OUTCOME 3: Students will be able to apply sustainable value creation approaches, design changes & continual improvement. (Remember, Understand and Apply)

- 1. State and explain environmental design characteristics (R)
- 2. Explain the smart data systems for sustainable development design (U)
- 3. Write the procedure of breakthrough design concepts for sustainability (A)

COURSE OUTCOME 4: Students will be able to carry out sustainable design, green engineering, flexible design etc. (Remember, Understand and Apply)

- 1. Write short notes on ecological succession (R)
- 2. State and explain green engineering (U)
- 3. Derive a design process for inverse manufacturing (A)

COURSE OUTCOME 5: Students will be able Design according to the customer needs. (Remember, Understand and Apply)

- 1. Differentiate customers and stakeholders (R)
- 2. How to analyze the behavior of customer (U)
- 3. Discuss the Kano model for understanding customer needs (A)

21ME6712	INDUSTRIAL TRIBOLOGY	L	Т	Р	С
		3	0	0	3
Prerequisites	for the course				
Engineering M	echanics,				
Theory of Mac	chines,				
Design of Mac	hine elements and joints				
Metrology and	Instrumentation				
Objectives					
• To introdu	ce and expose students to the field and fundamentals in tribology a	nd its	appl	icatio	ns.
• To underst applications	and the importance of friction and wear while designing component s	s for f	uncti	onal	
• To recogni of bearings	ze the importance of lubrication in machine components and in the d	esign	of va	rious	types
UNIT I	SURFACES AND FRICTION			9	
Topography of	f Engineering surfaces – Contact between surfaces – Sources	of sl	iding	g Fric	tion –
Adhesion Plou	ghing – Energy dissipation mechanisms Friction Characteristics	of me	tals -	- Frict	tion of
non-metals. Fri	ction of lamellar solids – friction of Ceramic materials and polyme	rs – R	lollin	g Fric	ction –
Source of Rolli	ng Friction – Stick slip motion – Measurement of Friction.				
UNIT II	WEAR			9	
Types of wear	- Simple theory of Sliding Wear Mechanism of sliding wear of m	etals	– Ab	orasive	e wear
- Materials fo	r Adhesive and Abrasive wear situations - Corrosive wear -	Surfa	ce Fa	atigue	wear
situations - Bri	ttle Fracture wear - Wear of Ceramics and Polymers - Wear Meas	urem	ents.		
UNIT III	LUBRICATION TYPES AND NANOSCALE			9	
	TRIBOLOGY				
Types and pr	operties of Lubricants – Testing methods – Hydrodynamic	Lub	ricati	ion –	Elasto
hydrodynamic	lubrication - Boundary Lubrication - Solid Lubrication Hydr	rostati	c Li	ıbrica	tion –
	teractions, Atomic Force Microscope (AFM), Challenges of Tr				
Small Scales					
UNIT IV	FILM LUBRICATION THEORY			9	
Fluid film in s	imple shear – Viscous flow between very close parallel plates –	Shea	r stre	ess vai	riation
Reynolds Equa	ation for film Lubrication – High speed unloaded journal bearing	ngs –	Loa	ded j	ournal
bearings – Rea	ction torque on the bearings – Virtual Co-efficient of friction – The	e Som	erfie	ld diag	gram.
UNIT V	SURFACE ENGINEERING AND MATERIALS FOR			9	
	BEARINGS				
Surface modif	ications – Transformation Hardening, surface fusion – Thermo	chem	ical	proce	sses –
Surface coating	gs – Plating and anodizing – Fusion Processes –Vapour Phase pro	cesse	s – N	Aateri	als for
	t bearings – Materials for fluid film bearings – Materials for mar				
dry bearings.	-				
	Total Periods			45	

Continuous Assessment Test	Formative Assessment Test	End Semester Exams
(20 Marks)	(20 Marks)	(60 Marks)
CAT 1 – 10 MARKS	1.Assignment	1. Descriptive Questions
CAT 2 – 10 MARKS	2. Online Quizzes	
Descriptive Questions	3. Problem-Solving Activities	
Outcomes		
Upon completion of the course	, the students will be able to:	
CO1. Design according to differ	rent types of friction. (Apply)	
CO2. Demonstrate various wea	aring mechanisms and measurements	. (Understand)
CO3. Enumerate the properties a	nd testing methods of various lubrica	ants. (Understand)
CO4. Calculate shear stress, toro	ue and co efficient of friction. (Appl	y)
CO5. Explain surface process as	nd bearing materials. (Understand)	
Text Books		
1. A. Harnoy. "Bearing I	Design in Machinery", Marcel Dekke	r Inc, New York, (2003)
Reference Books		
1. Cameron, "Basic Lub	rication theory", Longman, U.K., (20	008)
2. E.P.Bowden and Tabor.	D., "Friction and Lubrication", Hei	nemann Educational Books Ltd.,
(2001)		
3. M.M.Khonsari and E.R.E	Booser, "Applied Tribology", John W	illey & Sons, New York, (2001)
4. M.J.Neale (Editor), "Trib	ology Handbook", Newnes Butter we	orth, Heinemann, U.K., (1995)
Web Resources		
https://nptel.ac.in/courses	/112/102/112102014/	

CO Vs PO Mapping and CO Vs PSO Mapping

CO	PO	РО	РО	РО	PSO	PSO								
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	2	2	3		2							1	3	
2	2	1	1		2	1						1	3	
3	2	1	1		2	1						1	3	
4	3	2	2									1	3	
5	3		2			1	2					1	2	1

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Design according to different types of friction. (Apply)

- 1. A 7.00kg block of wood is almost about to slide down a wooden wedge that has angle 30° with respect to the floor. The coefficient of static friction is 0.6910.691. What is the force of static friction? (A)
- 2. Explain the mechanism of rolling friction and compare it with sliding friction. (U)

COURSE OUTCOME 2: Demonstrate various wearing mechanisms and measurements. (Understand)

1.What are the classification of wear processes? Explain with example (U) **2.**Explain the mechanism of sliding wear. (U)

COURSE OUTCOME 3: CO3. Enumerate the properties and testing methods of various lubricants. (Understand)

1.State various types of lubricants and their industrial applications (U)2.Discuss the role of eccentricity in hydrodynamic lubrication of journal bearing.(U)

COURSE OUTCOME 4: Calculate shear stress, torque and co efficient of friction. (Apply)

1.A 360° hydrodynamic short journal bearing of is to be designed to support a radial load of 5.5 KN. The rotation of journal is 5000rpm. The eccentricity ratio is 0.6. If the viscosity of lubricating oil is 45×10 -9 Ns/mm2 and supplied at a rate of 0.5 l/min to the bearing, Determine the dimensions of the journal, bearings and minimum oil film thickness. Take l/d ratio as 0.4. (A)

2. Derive the equation of pressure distribution for hydrostatic step bearing. State the assumptions. (\mathbf{U})

COURSE OUTCOME 5: Explain surface process and bearing materials. (Understand)

1.Explain the experimental modal analysis and the necessary basic equipments. (U)

2.Explain machine condition monitoring techniques. (U)

21ME6713	Cas D	ynamics and Jet Propulsion		L T P C							
210120715	Gas D	ynamies and jet i ropuision									
Drono quigito	for the course			3	0	0	3				
-	s for the course	d The sum of Free size of suite s									
Engineering I	nermodynamics, an	d Thermal Engineering									
Objectives											
1. To und	erstand the basic di	fference between incompressible a	nd comp	ressi	ble f	low.					
2. To und	erstand the phenon	nenon of shock waves and its effect	on flow.								
3. To gain	n some basic knowle	dge about jet propulsion and Rock	et Propul	lsion.							
UNIT I	BASIC CON	ICEPTS AND ISENTROPIC FLOWS				9					
Energy and m	nomentum equation	s of compressible fluid flows - St	agnation	state	es, M	lach v	vaves				
and Mach cone – Effect of Mach number on compressibility – Isentropic flow through variable											
ducts – Nozzle and Diffusers											
UNIT II	FLOW TH	ROUGH CONSTANT AREA DUCTS				9					
Flows through	n constant area duct	tant area ducts with heat transfer (Rayleigh flow) and Friction (Fanno flow) –									
variation of flo	ation of flow properties										
UNIT III NORMAL AND OBLIQUE SHOCK 9											
Governing eq	uations – Variation	of flow parameters across the n	ormal ai	nd ob	oliqu	e sho	cks –				
Prandtl- Meye	er relations – Applic	ations									
UNIT IV		JET PROPULSION				9					
Theory of jet p	propulsion – Thrust	equation – Thrust power and prop	oulsive e	fficie	ncy -	- Opei	ration				
principle, cycl	e analysis and use o	f stagnation state performance of ra	am jet, tu	ırboje	et, tu	rbofa	n and				
turbo prop en	gines – Scramjet en	gines									
UNIT V		SPACE PROPULSION				9					
Types of rock	et engines – Propel	lants – feeding systems – Ignition	and com	ıbust	ion -	- The	ory of				
rocketpropuls	sion – Performance	study - Staging - Terminal and c	haracter	istic	velo	city –					
Applications –space flights											
		Total Periods45									
Suggestive As	ssessment Method	S									
Continuous A	ssessment Test	Formative Assessment Test	End Ser	End Semester Exams							
(20 Mai	rks)	(20 Marks)	(60 Marks)								
CAT 1 10 Marl	ks	MCQ	Descriptive Type								
CAT 2 10 Marl	ks	Seminar									
Descriptive ty	pe Questions	Air crash investigation – case									
		study									

Outcomes

Upon completion of the course, the students will be able to:

CO1: Apply the basic concept of isentropic flow through variable area ducts (Apply)CO2: Interpret the variation of flow properties through constant area ducts with heat transfer and Friction (Apply)

CO3: Enumerate the variation of flow parameters across the normal and oblique shocks (Apply)CO4: Apply the principle of different jet engine and numerical analysis of jet engine (Apply)CO5: Apply the principle of different rocket engine and numerical analysis of rocket engine (Apply)

Text Books

1. Anderson J.D., "Modern Compressible Flow", 3rd Edition, McGraw Hill, (2018)

2. Yahya S.M., "Fundamentals of Compressible Flow", New Age International (P) Limited, New Delhi, (2016)

Reference Books

1. Hill P., Peterson C., "Mechanics and Thermodynamics of Propulsion", Addison – Wesley Publishing company, (2012)

- 2. Zucrow N.J., "Principles of Jet Propulsion and Gas Turbines", John Wiley, New York, (2016)
- 3. Sutton G.P., "Rocket Propulsion Elements", John Wiley, (2012)
- 4. Ganesan V., "Gas Turbines", Tata McGraw Hill Publishing Co., New Delhi, (2018)

5. Cohen. H., G.E.C. Rogers and Saravanamutto, "Gas Turbine Theory", Longman Group Ltd., (2016)

Web Resources

1. https://nptel.ac.in/courses/112106166/

CO Vs PO Mapping and CO Vs PSO Mapping

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
1	3	3	3	3								1	3	
2	3	3	3	3								1	3	
3	3	3	3	3								1	3	
4	3	3	3	3								1		3
5	3	3	3	3								1		3

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Apply the basic concept of isentropic flowthrough variable area ducts **(Apply)**

1. The Pressure, temperature and velocity of air at the entry of a diffuser are 0.7 bar, 345 K and 190 m/s respectively. The entry diameter of a diffuser is 15 cm and exit diameter is 35 cm. Determine the following. (1) Exit pressure (2) Exit velocity (3) Force exerted on the diffuser walls. Assuming isentropic flow and take $\gamma = 1.4$, Cp = 1005 J/kg K

2. An aircraft flies at a velocity of 700 kmph in an atmosphere where the pressure is 75 kPa and temperature is 5° C. Calculate the Mach number and stagnation properties

COURSE OUTCOME 2: Interpret the variation of flow properties through constant area ducts with heat transfer and Friction **(Apply)**

1. Air at P1 = 3.4 bar, T1= 35 o C enters a circular duct a mach number of 0.14.The exit mach number is 0.6 and co-efficient of friction is 0.004.If the mass flow rate is 8.2 kg/s. Determine 1. Pressure temperature at the exit. 2. Diameter of the duct. 3. Length of the duct. 4. Stagnation pressure loss. 5. Verify the exit Mach number through exit velocity and temperature.

2. . Air enters a constant area duct at M1 = 3 ; P1 = 1atm and T1= 300K .Inside the heatadded per unit mass is $Q = 3 \times 10^{5}$ J/Kg. Calculate the flow properties M2, P2, T2, To2and Po2 at exit.

COURSE OUTCOME 3: Enumerate the variation of flow parameters across the normal and oblique shocks **(Apply)**

1. When a converging diverging nozzle is operated at off-design condition a normal shock occurs at a section where the cross sectional area is 18.75 cmin the diverging portion at inlet the nozzle the stagnation state is given as 0.21 MPa and 360C. The throat area is 12.5cmand exit area is 25cm. Estimate the exit Mach number, exit pressure loss in stagnation pressure for flow through nozzle.

2. Air flows adiabatically in a pipe. A normal shock wave is formed. The pressure andtemperature of air before the shock are 150 KN/m2and 25c respectively. Thepressure just after the shock is 350 KN/m2. Find, (i) Mach number before shock(ii) Mach number, static temperature and velocity of air after the shock wave.(iii) Increase in density of air(iv) Loss of stagnation pressure

(v) Change in entropy

COURSE OUTCOME 4: Apply the principle of different jet engine and numerical analysis of jet engine **(Apply)**

1. Explain in the construction and working details about Ramjet engine

2. An aircraft flies at 960kmph. One of its turbojet engines takes in 40kg/s of air and expandsthe gases to the ambient pressure. The air-fuel ratio is 50 and the lower calorific value of thefuel is 43MJ/kg. For maximum thrust power determine a) Jet velocity b)Thrust c) Specificthrust d)Thrust power e) Propulsive, thermal and overall efficiency f) TSFC

COURSE OUTCOME 5: Apply the principle of different rocket engine and numerical analysis of rocket engine **(Apply)**

1. Explain with a help of neat sketch the working of solid and liquid propellant rocket engine. 2. A rocket nozzle has a throat area of 18cm2and combustor pressure of 25bar. If the specific impulse is 127.42sec and the rate of flow of propellant is 44.145N/s, determine the thrustcoefficient, propellant weight flow coefficient, specific propellant consumption and characteristic velocity.

21ME6714	REFRIGERATION AND AIR CONDITIONING	L	Т	Р	С
		3	0	0	3
Prerequisites	for the course				
Thermal Engine	eering				
Objectives					
1. To underst	and the underlying principles of operations in different Refrig	gerati	on		
& Air condi	tioning systems and components.				
2. To provide	knowledge on design aspects of Refrigeration & Air condition	ingsy	sten	IS	
UNIT I	INTRODUCTION TO REFRIGERATION			9	
Basic Definition	s, Heat pump and Refrigerating Machine, Best Refrigeration (Cycle:	The	Carno	ot
	s a Refrigerant in Reversed Carnot Cycle, Limitations of Rever	-			
Reversed Brayt	on or Bell Coleman Cycle, Application to Aircraft Refrigeratior	n, Sim	ple N	lume	rical
problems					
UNIT II	VAPOUR COMPRESSION REFRIGERATION SYSTEM			9	
	ssion cycle: p-h and T-s diagrams – deviations from theoretic				
-	ng – effects of condenser and evaporator pressure on COP – r	-			ystem
_	are refrigeration – Cascade systems – problems. Equipment	ts: Ty	pe o	f	
Compressors,					
	pansion devices, Evaporators				
UNIT III	OTHER REFRIGERATION SYSTEMS			9	
refrigeration –	ples of Vapour absorption systems and adsorption cooling sys Ejector refrigeration systems – Thermoelectric refrigeration- tex and Pulse tube refrigeration systems.			-	
UNIT IV	REFRIGERANTS AND SYSTEM COMPONENTS			9	
propertiesof re Warming Pote different refrige Refrigeration	Primary and Secondary refrigerants, Designation of Referingerants, Selection of a Refrigerant, Ozone Depletion H Intialof CFC Refrigerants. Thermodynamic requirements, Cerants,Substitutes for CFC refrigerants, Secondary Refrigerant systems Equipment: Compressors, Condensers, Expan prief look at other components of the system.	Poten Comp Is.	tial ariso	and (Global tween
UNIT V	AIR-CONDITIONING			9	
Simple Air-Con Conditioning, Winter Air PreliminaryCon and Effective Sensible Heat F Air-Conditionin	in Conditioning of Air, Psychrometric Processes in Air-Condi ditioning/system and State and Mass Rate of Supply Air, Sur Conditioning. Loading Calculation and Applie siderations, Internal Hear Gains, System Heat Gains, Break-u actor, Cooling Load Estimate. Psychrometric Calculations for g Apparatus for Cooling and Dehumidification, Building Requ	mmen ed p of V Cooli	· Air Psyc /enti ing, S	chom latior Select	etrics: 1 Load ion of
Conservation in	Air Conditioned Buildings	r			
	Total Periods			45	

Continuous Assessment Test	Formative Assessment Test	End Semester Exams
(20 Marks)	(20 Marks)	(60 Marks)
Descriptive exam	MCQ	Descriptive
CAT 1 10 AND CAT2 10 MARKS	Seminar	
Outcomes		
Upon completion of the course,	, the students will be able to:	
CO1: Illustrate the principles, nor	menclature and applications of ref	rigeration systems including
air refrigeration system (Apply)		
CO2: Enumerate vapour compres	ssion refrigeration system and ide	ntify methods for performance
Improvement (Apply)		
CO3: Describe the working prince	iples of air, vapour absorption, the	rmoelectric and steam-jet and
thermo-acoustic refrigeration sys	stems (Apply)	
0 1	stems (Apply) and equipment's for various refri	gerating systems (Apply)
CO4: Identify suitable refrigerant		
CO4: Identify suitable refrigerant	and equipment's for various refri	
CO4: Identify suitable refrigerant CO5: Compute and Interpret cool Text Books	and equipment's for various refri	nditioning system (Apply)
CO4: Identify suitable refrigerant CO5: Compute and Interpret cool Text Books 1. Arora, C.P., "Refrigeration and A	and equipment's for various refri ing and heating loads in an air-cor	nditioning system (Apply)
CO4: Identify suitable refrigerant CO5: Compute and Interpret cool Text Books 1. Arora, C.P., "Refrigeration and A Reference Books	and equipment's for various refri ing and heating loads in an air-cor Air Conditioning", 3rdedition, McG	nditioning system (Apply) raw Hill, New Delhi, (2010)
CO4: Identify suitable refrigerant CO5: Compute and Interpret cool Text Books 1. Arora, C.P., "Refrigeration and A Reference Books 1. Roy J. Dossat, "Principles of Ref	and equipment's for various refri ing and heating loads in an air-con Air Conditioning", 3rdedition, McG frigeration", 4th edition, Pearson E	nditioning system (Apply) raw Hill, New Delhi, (2010) ducation Asia, (2009)
CO4: Identify suitable refrigerant CO5: Compute and Interpret cool Text Books 1. Arora, C.P., "Refrigeration and A Reference Books 1. Roy J. Dossat, "Principles of Ref 2. Stoecker, W.F. and Jones J.W., "	and equipment's for various refri ing and heating loads in an air-cor Air Conditioning", 3rdedition, McG	nditioning system (Apply) raw Hill, New Delhi, (2010) ducation Asia, (2009)
CO4: Identify suitable refrigerant CO5: Compute and Interpret cool Text Books 1. Arora, C.P., "Refrigeration and A Reference Books 1. Roy J. Dossat, "Principles of Ref 2. Stoecker, W.F. and Jones J.W., " (1986)	and equipment's for various refri ing and heating loads in an air-con Air Conditioning", 3rdedition, McG frigeration", 4th edition, Pearson E 'Refrigeration and Air Conditionin	nditioning system (Apply) raw Hill, New Delhi, (2010) ducation Asia, (2009) g", McGraw Hill, New Delhi,
CO4: Identify suitable refrigerant CO5: Compute and Interpret cool Text Books 1. Arora, C.P., "Refrigeration and A Reference Books 1. Roy J. Dossat, "Principles of Ref 2. Stoecker, W.F. and Jones J.W., " (1986) 3. ASHRAE Hand book, Fundamer	and equipment's for various refri ing and heating loads in an air-cor Air Conditioning", 3rdedition, McG frigeration", 4th edition, Pearson E 'Refrigeration and Air Conditionin ntals, (2010) 4. Jones W.P., "Air con	nditioning system (Apply) raw Hill, New Delhi, (2010) ducation Asia, (2009) g", McGraw Hill, New Delhi,
CO4: Identify suitable refrigerant CO5: Compute and Interpret cool Text Books 1. Arora, C.P., "Refrigeration and A Reference Books 1. Roy J. Dossat, "Principles of Ref 2. Stoecker, W.F. and Jones J.W., " (1986) 3. ASHRAE Hand book, Fundamen edition, Elsevier Butterworth-Hei	and equipment's for various refri ing and heating loads in an air-cor Air Conditioning", 3rdedition, McG frigeration", 4th edition, Pearson E 'Refrigeration and Air Conditionin ntals, (2010) 4. Jones W.P., "Air con	nditioning system (Apply) raw Hill, New Delhi, (2010) ducation Asia, (2009) g", McGraw Hill, New Delhi,
CO4: Identify suitable refrigerant CO5: Compute and Interpret cool Text Books 1. Arora, C.P., "Refrigeration and A Reference Books 1. Roy J. Dossat, "Principles of Ref 2. Stoecker, W.F. and Jones J.W., " (1986) 3. ASHRAE Hand book, Fundamer	and equipment's for various refri ing and heating loads in an air-cor Air Conditioning", 3rdedition, McG frigeration", 4th edition, Pearson E 'Refrigeration and Air Conditionin ntals, (2010) 4. Jones W.P., "Air con inemann, (2001)	nditioning system (Apply) raw Hill, New Delhi, (2010) ducation Asia, (2009) g", McGraw Hill, New Delhi,

CO **PO1 PO2** PO3 **PO4** PO5 **PO6 PO7 PO8 PO9 PO10** PO11 **PO12** PSO1 PSO2

CO Vs PO Mapping and CO Vs PSO Mapping

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Illustrate the principles, nomenclature and applications of refrigeration systems including air refrigeration system **(Apply)**

1. An air refrigerator used for food storage provides 50 tons of refrigeration. The temperature of air entering the compressor is $7 \circ C$ and the temperature before entering into expander is $27 \circ C$. Assuming 30 % more power is required than theoretical, find (a). Actual C.O.P of the cycle(b). KW capacity required to run the compressor

2. In a refrigeration plant working on Bell Coleman cycle, air is compressed to 5 bar from 1 bar. Its initial temperature is $10 \circ C$. After compression, the air is cooled up to $20 \circ C$ in a cooler before expanding to a pressure of 1 bar. Determine the theoretical C.O.P of the plant and net refrigerating effect. Take Cp = 1.005 KJ/Kg K and Cv = 0718 KJ/Kg K.

COURSE OUTCOME 2: Enumerate vapor compression refrigeration system and identify methods for performance Improvement **(Apply)**

A refrigeration machine using R-12 as refrigerant operates between the pressures 2.5 bar and 9 bar. The compression is isentropic and there is noundercooling in the condenser. The vapour is in dry saturated condition at the beginning of the compression. Estimate theoretical C.O.P. If the actual C.O.P is 0.65 of theoretical valve, calculate the net cooling produced perhour. The refrigerant flow is 5 kg/min. The properties table for the refrigerants need to be added

COURSE OUTCOME 3: Describe the working principles of air, vapour absorption, thermoelectric and steam-jet and thermo-acoustic refrigeration systems **(Apply)**

1. Explain with a neat sketch the working of lithium-bromide vapour absorption system

2. Explain thermo-electric refrigeration system with sketch

COURSE OUTCOME 4: Identify suitable refrigerant and equipment's for various refrigerating systems **(Apply)**

1. What is an azetrope? Give some examples to indicate its importance

2. Name the different refrigerants generally used. State the desirable properties of refrigerants.

COURSE OUTCOME 5: Compute and Interpret cooling and heating loads in an airconditioning system **(Apply)**

1. A room $7m \times 4m \times 4m$ is occupied by an air-water vapour mixture at 380C. The atmospheric pressure is 1 bar and the relative humidity is 70%. Determine the humidity ratio, dew point, mass of dry air and massof water vapour. If the mixture of air-water vapour is further cooled atconstant pressure until the temperature is 100C. Find the amount of watervapour condensed

2. A room has a sensible heat gain of 24 KW and a latent heat gain of 5.2KW and it has to be maintained at $26 \circ C$ DBT and 50 % RH.180 m3/min of air is delivered to the room. Determine the state of supply of air.

	the course	INDUSTRY 4.0	Γ	-			
Nil Objectives: The m	the course			3	0	0	3
Objectives: The m							
1 Δr	ain learning obj	ective of this course is to prepare th	ne student	ts for			
т. Лі	n introduction to	o Industry 4.0, its building blocks, i	ts applica	tions	and a	advan	itages
		tional production techniques					
		sight intohow intelligent processes	-	, and	artif	icial	
	0	sed to build up the productionof th	e future.				
UNIT I		RODUCTION TO INDUSTRY 4.0				8	
		Europe and China, comparison of in				and to	oday's
factory, basic princ	ciples and techn	ologies of a smart factory including	101, 1101,	and I	05.		
UNIT II	CYBER P	HYSICAL PRODUCTION SYSTEM				10	
Cyber physical sys	tems – definitio	n, demarcation to embedded syste	ms and ul	biqui	tous	comp	uting,
		roduction system, control theory a				•	
0	·	munication in cyber physical systemeters		0			r this
		amming, model – integrated develo	pment an	d app	licat		
UNIT III		INS AND AUGMENTED REALITY				9	
-	-	enefits, impact and challenges. Fe		-	•		
		ies of usage of digital twins. Augm		-			
		nd manufacturing, training shop fl vice and maintenance.	loor work	ers, s	supp	orting	5
UNIT IV	-	A, INFORMATION, KNOWLEDGE A				9	
UNITIV		TION IN FUTURE ORGANIZATION				9	
Resource-based vi	ew of a firm, Da	ata as a new resource for organiza	tions, Har	ness	ing a	nd sh	aring
		l Computing Basics, Cloud Comput					0
			-		-		
	DUCIN					0	
		ESS ISSUES IN INDUSTRY 4.0	, , ,		1 .	9	
	-	ture of Works and Skills for Wor	kers in th	he In	dust	ry 4.0) Era,
Strategies for comp	peting in an Indi	istry 4.0 world.					
		Total	Periods			45	
Suggestive Assess	ment Methods						
Continuous Asses	sment Test	Formative Assessment Test	End Sen		er Ex	ams	
(20 Marks)		(20 Marks)	(60 Mai				
CAT 1 10 Marks		1.Assignment	Descrip	tive t	ype		
CAT 2 10 Marks		2. Online Quizzes					
Descriptive type Q	uestions	3. Problem-Solving Activities					

Outco	mes
Upon	completion of the course, the students will be able to:
CO1 Illı	ustrate the drivers and enablers of Industry 4.0 (Apply)
CO2 De	monstrate the smartness in Smart Factories, Smart cities, smart products and smart
:	services. (Apply)
	ow the various systems used in a manufacturing plant and their role in an
	lustry 4.0 world. (Apply)
	monstrate the power of Cloud Computing in a networked economy. (Apply)
	istrate the opportunities, challenges brought about by Industry 4.0 and how
	ganisations and individuals should prepare to reap the benefits. (Apply)
Textb	ooks
1.	Alasdair Gilchrist, "Industry 4.0: The Industrial Internet of Things", Apress, 2016.
2.	Jesús Hamilton Ortiz, William Gutierrez Marroquin and Leonardo Zambrano Cifuentes .P,
	"Industry 4.0: Current Status and Future Trends", Open Access Peer-Reviewed Chapter,
	2020.
Refere	ence Books
1.	Alp Ustundag, Emre Cevikcan, "Industry 4.0: Managing The Digital Transformation",
	Springer, 2018.
2.	Diego Galar Pascual, Pasquale Daponte, Uday Kumar, "Handbook of Industry 4.0 and SMART
	Systems", 1 st Edition, CRC Press. 2020.
Web R	Resources
1.	https://youtu.be/wgWRLu8p90M
2.	<u>https://youtu.be/eKiepu2D-XQ</u>
3.	https://youtu.be/-2Cd38P6Y00
4.	https://youtu.be/XiDmSjsOFTk
5.	https://youtu.be/De8MQWbhu3k

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2
CO 1	1				3					2				3
CO 2	1				3					2				3
CO 3	1				3					2				3
CO 4	1				3					2				3
CO 5	1				3					2				3

CO Vs PO and CO Vs PSO Mapping

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1

- **1.** Illustrate the developments of Industry 4.0 in USA. **(Understand)**
- 2. Compare and contrast the industry 4.0 factory and today's factory. (Understand)
- 3. Identify the technology applied in a smart factory like General Motors, USA. (Apply)

COURSE OUTCOME 2

- **1.** Explain briefly the demarcation of embedded system with ubiquitous computing system.**(Understand)**
- **2.** Sketch the core elements of cyber physical production system and control theory applicable to that and explain in detail.**(Apply)**
- **3.** Draft a program to integrate the machine and computer for shop floor activity in a production centre. **(Apply)**

COURSE OUTCOME 3

- **1.** Explain in detail the digital twins with an example. **(Understand)**
- 2. Sketch the basic configuration of augmented reality in manufacturing environment. **(Apply)**
- 3. Illustrate the application of AR in supporting assembly operation in an industry. **(Apply)**

COURSE OUTCOME 4

- 1. Explain how data is considered to be a new resource for organization. **(Understand)**
- 2. Describe the role of cloud computing in Industry 4.0 with an example. (Understand)
- **3.** Review the resource based development in various world renowned firms like Toyota in adapting Industry 4.0. **(Apply)**

COURSE OUTCOME 5

- 1. Enumerate the various opportunities and challenges in running an organization currently. **(Understand)**
- 2. Identify the skills to be acquired by the man power to get encapsulated in present industrial scenario.(Apply)
- 3. Develop a strategy for competing in an industry 4.0 world. (Apply)

21ME6716	INDUSTRIAL ROBOTICS	L 3	Т 0	P 0	С 3
Prereavisites	for the course	3	U	U	3
-	atics: Matrices, and Differential equations				
Theory of Mac	-				
Mechatronics,					
	lics and Pneumatics				
	ne main learning objective of this course is to prepare the studen				
speci differ 2. Exem 3. Appl abilit 4. Deve robo 5. Imple of rob	ementing robots in various industrial sectors and interpolating t	plicat pot en obotic kinem che ec	ion d d eff s toi atics onor	of rob fectors mpro motionic an 8	ots in s. ve the ons of alysis
Classification-	Specifications-Pitch, Yaw, Roll, Joint Notations, Speed of Mot Functions-Need for Robots-Different Applications.		•		
UNIT II	ROBOT DRIVE SYSTEMS AND END EFFECTORS			10	
Motors, A.C. S Effectors-Grip Vacuum Gripp	ves-Hydraulic Drives-Mechanical Drives-Electrical Drives-D.C. S ervo Motors-Salient Features, Applications and Comparison of pers-Mechanical Grippers, Pneumatic and Hydraulic- Grippers pers; Two Fingered and Three Fingered Grippers; Internal G ction and Design Considerations.	all th s, Mag	ese gneti	Drive c Grij	s, End opers,
UNIT III	MACHINE VISION			9	
Lighting Tech	e Grabber, Sensing and Digitizing Image Data Signal Conversion niques, Image Processing and Analysis-Data Reduction, Segno ject Recognition, Other Algorithms, Applications, Inspection, Ide avigation.	entati	on, l	Featur	·e
UNIT IV	ROBOT KINEMATICS AND ROBOT PROGRAMMING			9	
Kinematics of freedom (in Generator, Exp Programming, Commands, Er	ematics, Inverse Kinematics and Difference; Forward Kine manipulators with Two, Three Degrees of Freedom (in 2 Dimens 3 Dimension) Jacobians, Velocity and Forces-Manipulator I pert system, Manipulator Mechanism Design-Derivations and pro Robot programming Languages-VAL Programming-Motion ad Effector commands and simple Programs.	sion), Dynar oblerr	Foui nics, is. Le	r Degr Trajo ead th	ees of ectory rough
UNIT V	IMPLEMENTATION AND ROBOT ECONOMICS			9	
· · · ·	plementation of Robots in Industries-Various Steps; Safety Cons conomic Analysis of Robots.	sidera	tion	s for I	Robot
	Total Periods			45	

Continuous Assessment Test	Formative Assessment Test	End Semester Exams
(20 Marks)	(20 Marks)	(60 Marks)
CAT 1 10 Marks	1.Assignment	Descriptive type
CAT 2 10 Marks	2. Online Quizzes	
Descriptive type Questions	3.Problem-Solving Activities	
Outcomes		
Upon completion of the course, t	he students will be able to:	
O1 Illustrate the need and applicat	ion of robots in different engineeri	ng fields. (Apply)
O2 Show the different types of rob	ot drive systems as well as robot e	nd effectors. (Apply)
O3 Apply the different image pro	cessing techniques in robotics to	improve the ability of robots.
(Apply)		
O4 Prepare robotic programs fo	r different tasks and analyze the	kinematics motions of robot
(Apply)		
05 Demonstrate robots in various	industrial sectors and interpolate	the economic analysis of
robots. (Apply)		
Textbooks		
	.S.G "Robotics – Control, Sensing, V	ision, and Intelligence",
McGraw Hill, 2015.		
	ll Robotics - Technology Programm	ing and Applications", McGraw
Hill, 2014.		
Reference Books		
1. Deb S.R., "Robotics Technol	ogy and Flexible Automation" Tata	McGraw Hill Book Co., 2013.
2. Maja J Mataric, "The Roboti	cs Primer "Universities Press. 2013	
3. Craig J.J., "Introduction to R	obotics Mechanics and Control", Pe	arson Education, 2009.
Wah Dagayyaag		
Web Resources		
	./noc/courses/noc20/SEM2/noc20 el.ac.in/noc20_de11/preview	J-me56/

CO Vs PO and CO Vs PSO Mapping

СО	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2
C01	3		1	2					2		1		3	
CO2	3		2	2					2		1		3	
CO3	3	2	2	2					2		1		3	
CO4	3		2	2					2		1		3	
CO5	3		2	2					2		1		3	

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1

- 1. With a neat sketch explain the anatomy of robot. (Understand)
- 2. Enumerate the future applications of robotics. (Understand)
- **3.** Sketch and explain the four basic robot configurations classified according to the coordinate system. **(Apply)**

COURSE OUTCOME 2

- **1.** Differentiate pneumatic drive system with hydraulic drive system. **(Understand)**
- **2.** Compare and contrast the various electrical drives especially Stepper motor and A.C.

Servo motors.(Understand)

3. Discuss in detail about Vacuum grippers along with their advantages and disadvantages.(**Apply**)

COURSE OUTCOME 3

- 1. Explain in detail the triangulation method of range sensing with a neat sketch. **(Understand)**
- **2.** Sketch the four different approaches adopted for construction of artificial skins and explain them in detail. **(Understand)**
- **3.** Apply the first principles of engineering specialization in resolving forces and moments between the end effectors. **(Apply)**

COURSE OUTCOME 4

1. For the vector v = 25i + 10j + 20 k, perform a translation by a z distance of 8 in the x direction, 5 in the y direction, and Θ in the z direction. The translation transformation would be **(Apply)**

	[1	0	0	8]
H-Trans(a, b, c)	0	1	0	5
11–17 ans (a, b, c)	0	0	1	0
H=Trans(a,b,c)	0	0	0	1

2. It is desired to determine the values to which the angles Θ_1 and Θ_2 must be set in order to achieve a certain point in space for the manipulator shown in Fig. 4.1. The length of joint 1, $L_1 = 30.48$ cm, the length of joint $L_2 = 25.4$ cm. The point Pw which the robot must achieve is defined by the coordinates x = 15.7 and y = 12.6. Using the reverse transformation methods, determine the angles. (Apply)

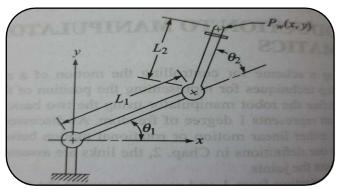


Fig. 1 – A two dimensional 2 – degree of freedom manipulator

3. A jointed – arm robot of configuration VVR is to move all three axes so that the first joint is rotated through 50° , the second joint is rotated through 90° and the third joint is rotated through 25° . Maximum speed of any of these rotational joints is 10° /s. Ignore the effects of acceleration and deceleration. (Apply)

COURSE OUTCOME 5

- **1.** Elucidate the different levels of safety sensor systems in robotics as prescribed by the National Bureau of Standards. **(Understand)**
- **2.** Data have been collected for a certain robot model on times between breakdowns and it has been determined that the mean time between failures is 324 hours. Repairing the robot has required an average of 6.5 hours, according to the records of the maintenance department. Calculate the robot's availability.**(Apply)**
- **3.** Suppose the present MTBF of a particular robot is 200 hours and the MTTR when breakdowns occur is 8 hrs. A preventive maintenance program is to be initiated in the plant which is expected to increase the MTBF to 300 hrs and reduce the MTTR to 6 hrs. Determine the effect of the PM program on the availability of the robot. **(Apply)**

21ME6717	MODERN MACHINING PROCESSESS	L	Т	Р	С
		3	0	0	3
Prerequisite	s for the course		1		
Manufacturin	g Technology, Engineering Physics & Engineering Chemistry				
Objectives					
	n about various modern machining processes, the various pro fluence on performance and their applications	cess j	para	meter	's and
UNIT I	INTRODUCTION AND MECHANICAL ENERGY BASED			9	
	PROCESSES				
Unconvention	al machining Process – Need – classification – merits, demen	rits a	nd a	pplica	ations
Abrasive Jet	Machining – Water Jet Machining – Abrasive Water Jet Ma	chini	ng –	Ultra	asoni
Machining. (A	AJM, WJM, AWJM and USM). Working Principles – equipm	ient 1	used	– Pi	roces
parameters –	MRR – Applications				
UNIT II	THERMAL AND ELECTRICAL ENERGY BASED PROCESSES			9	
	arge Machining (EDM) – Wire cut EDM – Working Principle	-eaui	nme	-	roces
	urface Finish and MRR – electrode / Tool – Power and control	-	•		
	'lushing – Applications. Laser Beam machining and drilling				
Dielectric					
Machining (P		-	-		
	AM) and Electron Beam Machining (EBM). Principles – Equipr	nent	-Typ		
control techni	AM) and Electron Beam Machining (EBM). Principles – Equipr ques – Applications - Ion Beam Machining - Plasma Assisted Po	nent	-Typ	oes –	
	AM) and Electron Beam Machining (EBM). Principles – Equipr	nent	-Typ		
control techni UNIT III	AM) and Electron Beam Machining (EBM). Principles – Equipr ques – Applications - Ion Beam Machining - Plasma Assisted Po CHEMICAL AND ELECTRO-CHEMICAL ENERGY BASED PROCESSES	nent lishin	–Typ Ig	9 9	Bean
control techni UNIT III Chemical mad	AM) and Electron Beam Machining (EBM). Principles – Equipr ques – Applications - Ion Beam Machining - Plasma Assisted Po CHEMICAL AND ELECTRO-CHEMICAL ENERGY BASED PROCESSES Chining and Electro-Chemical machining (CHM and ECM)- E	nent lishin tchan	–Typ lg ts –	oes – 9 Masł	Bean
control techni UNIT III Chemical mad techniques of	AM) and Electron Beam Machining (EBM). Principles – Equipr ques – Applications - Ion Beam Machining - Plasma Assisted Po CHEMICAL AND ELECTRO-CHEMICAL ENERGY BASED PROCESSES chining and Electro-Chemical machining (CHM and ECM)- E- applying maskants – Process Parameters – Surface finish and	nent lishin tchan MRR	-Typ Ig ts - t - A	oes – 9 Masł pplica	Bean kant
control techni UNIT III Chemical mae techniques of Principles of	AM) and Electron Beam Machining (EBM). Principles – Equipr ques – Applications - Ion Beam Machining - Plasma Assisted Po CHEMICAL AND ELECTRO-CHEMICAL ENERGY BASED PROCESSES Chining and Electro-Chemical machining (CHM and ECM)- E	nent lishin tchan MRR	-Typ Ig ts - t - A	oes – 9 Masł pplica	Bean kant
control techni UNIT III Chemical mae techniques of Principles of Parameters –	AM) and Electron Beam Machining (EBM). Principles – Equipr ques – Applications - Ion Beam Machining - Plasma Assisted Po CHEMICAL AND ELECTRO-CHEMICAL ENERGY BASED PROCESSES chining and Electro-Chemical machining (CHM and ECM)- Er applying maskants – Process Parameters – Surface finish and ECM – equipments-Surface Roughness and MRR Electrica ECG and ECH – Applications - Electrochemical arc machining	nent lishin tchan MRR	-Typ Ig ts - t - A	9 9 Masł pplica – Pr	Bean kant
control techni UNIT III Chemical mad techniques of Principles of Parameters – UNIT IV	AM) and Electron Beam Machining (EBM). Principles – Equipr ques – Applications - Ion Beam Machining - Plasma Assisted Po CHEMICAL AND ELECTRO-CHEMICAL ENERGY BASED PROCESSES chining and Electro-Chemical machining (CHM and ECM)- E applying maskants – Process Parameters – Surface finish and ECM – equipments-Surface Roughness and MRR Electrica ECG and ECH – Applications - Electrochemical arc machining ADVANCED NANO FINISHING PROCESSES	nent lishin tchan MRR al cir	–Typ ts – ts – A cuit	9 Masł pplica – Pr 9	Bean cant ation roces
control techni UNIT III Chemical mad techniques of Principles of Parameters – UNIT IV Abrasive flow	AM) and Electron Beam Machining (EBM). Principles – Equipr ques – Applications - Ion Beam Machining - Plasma Assisted Po CHEMICAL AND ELECTRO-CHEMICAL ENERGY BASED PROCESSES chining and Electro-Chemical machining (CHM and ECM)- Er applying maskants – Process Parameters – Surface finish and ECM – equipments-Surface Roughness and MRR Electrica ECG and ECH – Applications - Electrochemical arc machining ADVANCED NANO FINISHING PROCESSES machining, chemo-mechanical polishing, magnetic abrasive fin	nent lishin tchan MRR al cir nishir	-Typ g ts - A - A cuit	9 Masł pplica – Pr 9 agnet	Beam cant ation roces
control techni UNIT III Chemical mad techniques of Principles of Parameters – UNIT IV Abrasive flow rheological fin	AM) and Electron Beam Machining (EBM). Principles – Equipr ques – Applications - Ion Beam Machining - Plasma Assisted Po CHEMICAL AND ELECTRO-CHEMICAL ENERGY BASED PROCESSES chining and Electro-Chemical machining (CHM and ECM)- E applying maskants – Process Parameters – Surface finish and ECM – equipments-Surface Roughness and MRR Electrica ECG and ECH – Applications - Electrochemical arc machining ADVANCED NANO FINISHING PROCESSES machining, chemo-mechanical polishing, magnetic abrasive fin ishing, magneto rheological abrasive flow finishing their wor	nent lishin tchan MRR al cir nishir rking	-Types ts - ts - cuit ng, m prin	9 Masł pplica – Pr 9 agnet	Beam cant ation roces
control techni UNIT III Chemical mad techniques of Principles of Parameters – UNIT IV Abrasive flow rheological fin equipment's, o	AM) and Electron Beam Machining (EBM). Principles – Equipr ques – Applications - Ion Beam Machining - Plasma Assisted Po CHEMICAL AND ELECTRO-CHEMICAL ENERGY BASED PROCESSES chining and Electro-Chemical machining (CHM and ECM)- E- applying maskants – Process Parameters – Surface finish and ECM – equipments-Surface Roughness and MRR Electrica ECG and ECH – Applications - Electrochemical arc machining ADVANCED NANO FINISHING PROCESSES machining, chemo-mechanical polishing, magnetic abrasive fin hishing, magneto rheological abrasive flow finishing their wor	nent lishin tchan MRR al cir nishir rking	-Types ts - ts - cuit ng, m prin	9 Masł pplica – Pr 9 agnet ciples	Beam cant ation roces
control techni UNIT III Chemical mad techniques of Principles of Parameters – UNIT IV Abrasive flow rheological fin	AM) and Electron Beam Machining (EBM). Principles – Equipr ques – Applications - Ion Beam Machining - Plasma Assisted Po CHEMICAL AND ELECTRO-CHEMICAL ENERGY BASED PROCESSES chining and Electro-Chemical machining (CHM and ECM)- Er applying maskants – Process Parameters – Surface finish and ECM – equipments-Surface Roughness and MRR Electrica ECG and ECH – Applications - Electrochemical arc machining ADVANCED NANO FINISHING PROCESSES machining, chemo-mechanical polishing, magnetic abrasive fin hishing, magneto rheological abrasive flow finishing their wor effect of process parameters, applications, advantages and limit RECENT TRENDS IN NON-TRADITIONAL MACHINING	nent lishin tchan MRR al cir nishir rking	-Types ts - ts - cuit ng, m prin	9 Masł pplica – Pr 9 agnet	Beam cant ation roces
control techni UNIT III Chemical mae techniques of Principles of Parameters – UNIT IV Abrasive flow rheological fin equipment's, o UNIT V	AM) and Electron Beam Machining (EBM). Principles – Equipr ques – Applications - Ion Beam Machining - Plasma Assisted Po CHEMICAL AND ELECTRO-CHEMICAL ENERGY BASED PROCESSES chining and Electro-Chemical machining (CHM and ECM)- E- applying maskants – Process Parameters – Surface finish and ECM – equipments-Surface Roughness and MRR Electrica ECG and ECH – Applications - Electrochemical arc machining ADVANCED NANO FINISHING PROCESSES machining, chemo-mechanical polishing, magnetic abrasive fin hishing, magneto rheological abrasive flow finishing their wor effect of process parameters, applications, advantages and limit RECENT TRENDS IN NON-TRADITIONAL MACHINING PROCESSES	nent lishin tchan MRR al cir nishir rking ation	-Typ g ts - cuit ng, m prin s	9 Masł pplica – Pr 9 agnet ciples 9	Beam cant ation roces
control techni UNIT III Chemical mae techniques of Principles of Parameters – UNIT IV Abrasive flow rheological fir equipment's, o UNIT V Recent develo	AM) and Electron Beam Machining (EBM). Principles – Equipr ques – Applications - Ion Beam Machining - Plasma Assisted Po CHEMICAL AND ELECTRO-CHEMICAL ENERGY BASED PROCESSES chining and Electro-Chemical machining (CHM and ECM)- E- applying maskants – Process Parameters – Surface finish and ECM – equipments-Surface Roughness and MRR Electrica ECG and ECH – Applications - Electrochemical arc machining ADVANCED NANO FINISHING PROCESSES machining, chemo-mechanical polishing, magnetic abrasive fin hishing, magneto rheological abrasive flow finishing their wor effect of process parameters, applications, advantages and limit RECENT TRENDS IN NON-TRADITIONAL MACHINING PROCESSES	nent lishin tchan MRR al cir nishir rking ation	-Types ts - ts - cuit ng, m prin s	9 Mash pplica – Pr g agnet ciples 9 es,	Beam cant ation roces to s,
control techni UNIT III Chemical mae techniques of Principles of Parameters – UNIT IV Abrasive flow rheological fin equipment's, o UNIT V Recent develo equipments, o	AM) and Electron Beam Machining (EBM). Principles – Equipr ques – Applications - Ion Beam Machining - Plasma Assisted Po CHEMICAL AND ELECTRO-CHEMICAL ENERGY BASED PROCESSES chining and Electro-Chemical machining (CHM and ECM)- E- applying maskants – Process Parameters – Surface finish and ECM – equipments-Surface Roughness and MRR Electrica ECG and ECH – Applications - Electrochemical arc machining ADVANCED NANO FINISHING PROCESSES machining, chemo-mechanical polishing, magnetic abrasive fin hishing, magneto rheological abrasive flow finishing their wor effect of process parameters, applications, advantages and limit RECENT TRENDS IN NON-TRADITIONAL MACHINING PROCESSES	nent lishin tchan MRR al cir nishir rking ation	-Types ts - ts - cuit ng, m prin s	9 Mash pplica – Pr g agnet ciples 9 es,	Beam cant ation roces to s,
control techni UNIT III Chemical mae techniques of Principles of Parameters – UNIT IV Abrasive flow rheological fin equipment's, o UNIT V Recent develo	AM) and Electron Beam Machining (EBM). Principles – Equipr ques – Applications - Ion Beam Machining - Plasma Assisted Po CHEMICAL AND ELECTRO-CHEMICAL ENERGY BASED PROCESSES chining and Electro-Chemical machining (CHM and ECM)- E- applying maskants – Process Parameters – Surface finish and ECM – equipments-Surface Roughness and MRR Electrica ECG and ECH – Applications - Electrochemical arc machining ADVANCED NANO FINISHING PROCESSES machining, chemo-mechanical polishing, magnetic abrasive fin hishing, magneto rheological abrasive flow finishing their wor effect of process parameters, applications, advantages and limit RECENT TRENDS IN NON-TRADITIONAL MACHINING PROCESSES	nent lishin tchan MRR al cir nishir rking ation	-Types ts - cuit rcuit ng, m prin s ncipl ns. C	9 Mash pplica – Pr g agnet ciples 9 es,	Bean cant ation: roces to s,

(20 Marks) AT 1 10 Marks AT 2 10 Marks Descriptive type Questions	(20 Marks)	(60 Marks)
CAT 2 10 Marks Descriptive type Questions	0	
Descriptive type Questions		Descriptive type
	2. Online Quizzes	
	3.Problem-Solving Activities	
Jutcomes		·
Ipon completion of the course	, the students will be able to:	
O1: Enumerate the need for unc	conventional machining processes a	and its classification and
ummarize the various mechanic	al energy based processes (Unders	stand)
02: Discover various thermal en	nergy and electrical energy based u	nconventional machining
rocesses (Apply)		
03: Summarize various chemic	al and electro-chemical energy bas	ed unconventional machining
rocesses (Understand)		
04: Summarize the various	nano abrasives based unconven	tional machining processes
Understand)		
05: Enumerate various recent t	rends based unconventional machi	ning processes (Remember)
'ext Books		
	chining Processes' Allied Publisher . "Modern Machining Processes" "	
3. Bijoy Bhattacharyya and Hill, New Delhi, 2019.	BiswanthDoloi "Modern Machinin	g Technology" Tata McGraw
leference Books		
1. Benedict. G.F. "Non-tradit 2017	ional Manufacturing Processes", M	larcel Dekker Inc., New York
	and Ronald. A.Kohser, "Material and Ltd., 8 th Edition, New Delhi , 2001.	l Processes in Manufacturing

CO Vs PO Mapping and CO Vs PSO Mapping

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1	2		2								3	
CO2	2	1	2		2								3	
CO3	2	1	2		2								3	
CO4	2	1	2		2								3	
CO5	2	1	2		2								3	

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Enumerate the need for unconventional machining processes and its classification (Understand)

- 1. Identify the principle of AJM. Mention some of the applications and limitations (Remember)
- 2. Discuss in detail about the arrangement of USM process and its process parameters (Understand)

COURSE OUTCOME 2: Discover various thermal energy and electrical energy based unconventional machining processes (Apply)

- 1. Describe the mechanism of material removal in EDM. (Apply)
- 2. List out the process capabilities, advantages and limitations of LBM process (Remember)

COURSE OUTCOME 3: Summarize various chemical and electro-chemical energy based unconventional machining processes (Understand)

- 1. Discuss various parameters that influence the performance of CH process (Remember)
- 2. Sketch the schematic arrangement of ECH process and its working (Understand)

COURSE OUTCOME 4: Summarize various nano abrasives based unconventional machining processes (Understand)

- 1. Discuss about the process capabilities of AFM and the process parameters of AFM in improving machining quality (Understand)
- 2. List out the important process parameters that control the material removal rate in micro-LBM? Explain any four factors (Remember)

COURSE OUTCOME 5: Enumerate recent trends based unconventional machining processes (Remember)

- 1. Describe the comparison of non-traditional machining process (Remember)
- 2. List out the process parameters that influence the micro-USM process (Remember)

21ME6718	SOLID STATE JOINING PROCESSES	L	Τ	Р	С
		3	0	0	3
Prerequisite	s for the course		-	-	-
Manufacturin	g Technology				
Objectives					
To lear	n about various solid state joining process, tool materials & ind	ustria	al ap	plicat	ions.
UNIT I	OVERVIEW OF JOINING PROCESSES			8	
Fundamental	principles and classifications of fusion and solid-state joining	proce	esses	, ultra	asonic
welding, ultra	sonic spot welding, explosion welding process, Magneticall	y Im	pelle	d Arc	: Butt
(MIAB) weldi	ng; Resistance welding processes: Spot welding, seam welding	g, pro	jectio	on we	lding,
high-frequenc	y resistance welding, resistance butt welding, flash butt weldir	ng; Br	azin	g, adh	esive
bonding, clinc	hing, self-pierce riveting.				
UNIT II	DIFFUSION JOINING PROCESSES			7	
Principles an	d applications; Diffusion brazing, braze welding, diffusion	wel	ding	Dif	usion
bonding of m	etals to ceramics; Solid-state deposition welding processes;	Press	sure	non-f	usion
welding proc	esses: Cold welding, electromagnetic pulse welding, pressu	re ga	as w	elding	g, hot
pressure weld	ing, forge welding; Roll bonding.	_			_
UNIT III	FRICTION WELDING (FW) PROCESS			10	
Process para	neters, applications, metallurgical, mechanical and tribologic	cal ch	arac	teriza	tions;
•	rotary drive FW, inertia welding, friction taper stitch weldin				
	ng, third-body FW; Friction seam welding, linear and angu	-			
	g, friction stud welding; Study of friction welds and joint qualit		••, •	i bitui	FVV,
	$\mathbf{O}_{\mathbf{r}}$	y of F		n brea	FVV,
UNIT IV	FRICTION STIR WELDING	y of F	W.	10	FVV,
		-	W.	10	FVV,
Fundamentals	FRICTION STIR WELDING	necha	W. Inica	10 l	
Fundamentals characterizati	FRICTION STIR WELDING and taxonomy, materials; Heat generation, metallurgical and n	necha state	W. mica join	10 l	nd its
Fundamentals characterizati impact, enviro	FRICTION STIR WELDING and taxonomy, materials; Heat generation, metallurgical and nons, inspection; Material flow, material change during solid-	necha state Fricti	W. inica join on st	10 l ing an	nd its eting,
Fundamentals characterizati impact, enviro friction stir sp	FRICTION STIR WELDING and taxonomy, materials; Heat generation, metallurgical and mons, inspection; Material flow, material change during solid- onmental and energy benefits, micro FSW and its applications;	necha state Fricti vater	W. inica join on st FSW	10 l ing an tir riv	nd its eting, sonic
Fundamentals characterizati impact, enviro friction stir sp assisted FSW,	FRICTION STIR WELDING and taxonomy, materials; Heat generation, metallurgical and mons, inspection; Material flow, material change during solid- onmental and energy benefits, micro FSW and its applications; ot welding (FSSW) – process parameters, hybrid FSW, underw	necha state Fricti vater	W. inica join on st FSW	10 l ing an tir riv	nd its eting, sonic
Fundamentals characterizati impact, enviro friction stir sp assisted FSW,	FRICTION STIR WELDING and taxonomy, materials; Heat generation, metallurgical and mons, inspection; Material flow, material change during solid- onmental and energy benefits, micro FSW and its applications; for welding (FSSW) – process parameters, hybrid FSW, underwand electrically assisted FSW; Friction stir diffusion welding, t	necha state Fricti vater	W. join on st FSW al st	10 l ing an tir riv	nd its eting, sonic
Fundamentals characterizati impact, enviro friction stir sp assisted FSW, Weld defects; UNIT V	FRICTION STIR WELDING and taxonomy, materials; Heat generation, metallurgical and mons, inspection; Material flow, material change during solid- onmental and energy benefits, micro FSW and its applications; ot welding (FSSW) – process parameters, hybrid FSW, underw and electrically assisted FSW; Friction stir diffusion welding, t Friction stir processing and friction surfacing.	necha state Fricti vater	W. join on st FSW, aal st	10 l ing an tir riv , ultra ir wel 10	nd its eting, sonic ding;
Fundamentals characterizati impact, enviro friction stir sp assisted FSW, Weld defects; UNIT V FSW tools: M	FRICTION STIR WELDING and taxonomy, materials; Heat generation, metallurgical and mons, inspection; Material flow, material change during solid- onmental and energy benefits, micro FSW and its applications; is ot welding (FSSW) – process parameters, hybrid FSW, underwand electrically assisted FSW; Friction stir diffusion welding, to Friction stir processing and friction surfacing. TOOL MATERIALS AND INDUSTRIAL APPLICATIONS	necha state Fricti vater therm	W. join on st FSW al st	10 l ing an cir riv , ultra ir wel 10 tool	nd its eting, sonic ding; wear,
Fundamentals characterizati impact, enviro friction stir sp assisted FSW, Weld defects; UNIT V FSW tools: M deformation a	FRICTION STIR WELDINGand taxonomy, materials; Heat generation, metallurgical and mons, inspection; Material flow, material change during solid-onmental and energy benefits, micro FSW and its applications;ot welding (FSSW) – process parameters, hybrid FSW, underwand electrically assisted FSW; Friction stir diffusion welding, tFriction stir processing and friction surfacing.TOOL MATERIALS AND INDUSTRIAL APPLICATIONSaterial selection, tool geometry, pin geometry, load bearing	necha state Fricti vater therm g abi	W. join on st FSW al st	10 l ing an cir riv , ultra ir wel 10 tool	nd its eting, sonic ding; wear,
Fundamentals characterizati impact, enviro friction stir sp assisted FSW, Weld defects; UNIT V FSW tools: M deformation a Dissimilar me	FRICTION STIR WELDINGand taxonomy, materials; Heat generation, metallurgical and mons, inspection; Material flow, material change during solid-onmental and energy benefits, micro FSW and its applications;ot welding (FSSW) – process parameters, hybrid FSW, underwand electrically assisted FSW; Friction stir diffusion welding, tFriction stir processing and friction surfacing.TOOL MATERIALS AND INDUSTRIAL APPLICATIONSaterial selection, tool geometry, pin geometry, load bearinand failure, tool cost; FSW of aluminum alloys, magnesium all	necha state Fricti vater therm g abi	W. join on st FSW al st	10 l ing an cir riv , ultra ir wel 10 tool	nd its eting, sonic ding; wear, steels;

	S	
Continuous Assessment Test	Formative Assessment Test	End Semester Exams
(20 Marks)	(20 Marks)	(60 Marks)
CAT 1 10 Marks	1.Assignment	Descriptive type
CAT 2 10 Marks	2. Online Quizzes	
Descriptive type Questions	3. Problem-Solving Activities	
Outcomes		
Upon completion of the course,	the students will be able to:	
CO1: Classify various joining proc	esses and identify welding symbol	s, joints and edge preparatio
(Understand)		
CO2: Identify various solid state j	oining methods and its equipment	's (Understand)
CO3: Illustrate friction welding, p	rocess parameters and its types (A	apply)
CO4: Identify welding defects an	d their causes, destructive and no	n-destructive testing of weld
(Understand)		
CO5: Discuss various tool mate	rials in solid state joining proces	s and industrial application
(Understand)		
Text Books		
 R.S.Paramar , "Welding Pr Delhi, 2010. 	ocesses and Technology", 3 rd Edit	ion, Khanna Publishers, Nev
	Thon "Eriction Stir Wolding From	
 Daniela Lohwasser, Zhan (Woodhead Publishing, 202 		Basics To Applications",
		Basics To Applications",

Web Resources

1. https://nptel.ac.in/courses/112107213

CO Vs PO Mapping and CO Vs PSO Mapping

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	2	1	1								3	
CO2	2	2	2		1								3	
CO3	2	2	2	2	2								3	
CO4	2	1	1	3	1								3	
CO5	2	3	1	1	1								3	

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Classify various joining processes and identify welding symbols, joints and edge preparation (Understand)

- 1. Discuss the principle of MIAB. Mention some of the applications and limitations (Understand)
- 2. Explain the arrangement of USW process and its limitations (Understand)

COURSE OUTCOME 2: Identify various solid state joining methods and its equipment's (Understand)

- 1. List out the applications of diffusion welding process. (Remember)
- 2. Discuss the process capabilities, advantages and limitations of pressure nonfusion welding process (Understand)

COURSE OUTCOME 3: Illustrate friction welding, process parameters and its types (Apply)

- 1. Differentiate between linear and angular FW (Understand)
- 2. Demonstrate the schematic arrangement of friction taper stitch welding and its working (Apply)

COURSE OUTCOME 4: Identify welding defects and their causes, destructive and nondestructive testing of welds (Understand)

- 1. List out the defects involved in welding process (Understand)
- 2. Discuss about the material changes during solid state joining process and its impacts (Understand)

COURSE OUTCOME 5: Discuss various tool materials in solid state joining process and industrial applications (Understand)

- 1. Enumerate the tools involved in FSW (Remember)
- 2. Discover the industrial applications related to solid state joining process (Understand)

21ME6719	ENTREPRENEURSHIP DEVELOPMENT	L	Т	Р	С
	EN I REPRENEURSHIP DEVELOPMEN I	3	0	0	3
Prerequisites	s for the course				
NIL					
Objectives					
	velop and strengthen entrepreneurial quality and motivation basic entrepreneurial skills and understanding to run a bus vely				
UNIT I	ENTREPRENEURSHIP & SKILLS FOR SUCCESSFUL			9	
	ENTREPRENEURS				
Entrepreneur	- Types of Entrepreneurs - Difference between Entreprene	ur ar	nd In	trapr	eneu
Entrepreneur	ship in Economic Growth, Factors Affecting Entrepre	eneui	ial	Grow	vth
Communicatio	on Skills - Creativity and Problem solving – Innovation - Neg	otiati	on S	kills -	Risk
management					
UNIT II	MOTIVATION & CONCEPTS OF ENTREPRENEURSHIP			9	
	FAILURE				
Major Motive	s Influencing an Entrepreneur – Achievement Motivation '	Train	ing.	Self-r	ating
			8,		·····-6
	mes, Thematic Apperception Test – Stress Managemen		-		-
Business Gar	mes, Thematic Apperception Test – Stress Managemen Programs – Need, Objectives – Issues & Reasons of Entrep	t, Er	ntrep	reneı	ırship
Business Gar Development		t, Er	ntrep	reneı	ırship
Business Gar Development	Programs - Need, Objectives - Issues & Reasons of Entrepr	t, Er	ntrep	reneı	ırship
Business Gar Development Issues & Rease UNIT III	Programs – Need, Objectives – Issues & Reasons of Entrepr ons of Entrepreneurship Failure – Essentials to avoid failure	t, Er reneu	itrep rship	reneu o Fail 9	ırship ure –
Business Gan Development Issues & Rease UNIT III Small Enterpr	Programs – Need, Objectives – Issues & Reasons of Entrepr ons of Entrepreneurship Failure – Essentials to avoid failure BUSINESS	t, Er reneu Strue	trep rship	reneu o Fail 9 s – P	urship ure - rojec
Business Gar Development Issues & Rease UNIT III Small Enterpr Formulation -	Programs – Need, Objectives – Issues & Reasons of Entreprons of Entrepreneurship Failure – Essentials to avoid failure BUSINESS rises – Definition, Classification – Characteristics, Ownership	t, Er reneu Struc ting a	ntrep rship cture Goo	reneu 5 Fail 9 s – P d Bus	urshij ure - rojec
Business Gar Development Issues & Rease UNIT III Small Enterpr Formulation - opportunity,	Programs – Need, Objectives – Issues & Reasons of Entreprons of Entrepreneurship Failure – Essentials to avoid failure BUSINESS rises – Definition, Classification – Characteristics, Ownership - Steps involved in setting up a Business – identifying, select	t, Er reneu Struc ing a ility	trep rship cture Goo Asse	reneu o Fail 9 s – P d Bus	ırship ure – rojec sines:
Business Gar Development Issues & Rease UNIT III Small Enterpr Formulation - opportunity, Preparation o	Programs – Need, Objectives – Issues & Reasons of Entreprons of Entrepreneurship Failure – Essentials to avoid failure BUSINESS rises – Definition, Classification – Characteristics, Ownership - Steps involved in setting up a Business – identifying, select Market Survey and Research, Techno Economic Feasib	t, Er reneu Struc ing a ility	trep rship cture Goo Asse	reneu o Fail 9 s – P d Bus	rojec
Business Gar Development Issues & Rease UNIT III Small Enterpr Formulation - opportunity, Preparation o	Programs – Need, Objectives – Issues & Reasons of Entreprons of Entrepreneurship Failure – Essentials to avoid failure BUSINESS rises – Definition, Classification – Characteristics, Ownership - Steps involved in setting up a Business – identifying, select Market Survey and Research, Techno Economic Feasib f Preliminary Project Reports – Project Appraisal – Sources of	t, Er reneu Struc ing a ility	trep rship cture Goo Asse	reneu o Fail 9 s – P d Bus	roject
Business Gar Development Issues & Rease UNIT III Small Enterpr Formulation - opportunity, Preparation o Classification UNIT IV	Programs – Need, Objectives – Issues & Reasons of Entreprons of Entrepreneurship Failure – Essentials to avoid failure BUSINESS rises – Definition, Classification – Characteristics, Ownership - Steps involved in setting up a Business – identifying, select Market Survey and Research, Techno Economic Feasib f Preliminary Project Reports – Project Appraisal – Sources of of Needs and Agencies	t, Er reneu Struc ing a ility Infor	trep rship cture Goo Asse mati	reneu 9 s – P d Bus essme on – 9	rojec siness
Business Gar Development Issues & Rease UNIT III Small Enterpr Formulation - opportunity, Preparation o Classification UNIT IV Need – Source	Programs – Need, Objectives – Issues & Reasons of Entreprons of Entrepreneurship Failure – Essentials to avoid failure BUSINESS rises – Definition, Classification – Characteristics, Ownership - Steps involved in setting up a Business – identifying, select Market Survey and Research, Techno Economic Feasib f Preliminary Project Reports – Project Appraisal – Sources of of Needs and Agencies FINANCING AND ACCOUNTING	t, Er reneu Struc ing a ility Infor tion,	trep rship cture Goo Asse rmat	reneu o Fail o Fail s – P d Bus essme on – on – on – on –	rojec siness nt -
Business Gar Development Issues & Rease UNIT III Small Enterpr Formulation - opportunity, Preparation o Classification UNIT IV Need – Source working Capit	Programs – Need, Objectives – Issues & Reasons of Entreprons of Entrepreneurship Failure – Essentials to avoid failure BUSINESS rises – Definition, Classification – Characteristics, Ownership - Steps involved in setting up a Business – identifying, select Market Survey and Research, Techno Economic Feasib f Preliminary Project Reports – Project Appraisal – Sources of of Needs and Agencies FINANCING AND ACCOUNTING es of Finance, Term Loans, Capital Structure, Financial Institut	t, Er reneu Struc ing a ility Infor tion,	trep rship cture Goo Asse rmat	reneu o Fail o Fail s – P d Bus essme on – on – on – on –	rojec sines nt -
Business Gar Development Issues & Rease UNIT III Small Enterpr Formulation - opportunity, Preparation o Classification UNIT IV Need – Source working Capit	Programs – Need, Objectives – Issues & Reasons of Entreprons of Entrepreneurship Failure – Essentials to avoid failure BUSINESS rises – Definition, Classification – Characteristics, Ownership - Steps involved in setting up a Business – identifying, select Market Survey and Research, Techno Economic Feasib f Preliminary Project Reports – Project Appraisal – Sources of of Needs and Agencies FINANCING AND ACCOUNTING es of Finance, Term Loans, Capital Structure, Financial Institut cal, Costing, Break Even Analysis, Taxation – Income Tax, Excise SUPPORT TO ENTREPRENEURS	t, Er reneu Struc ing a ility Infor tion, Duty	trep rship cture Goo Asse mat Mana – Sa	reneu p Fail 9 s – P d Bus essme on – 9 ageme les Ta 9	rojec siness nt -
Business Gar Development Issues & Rease UNIT III Small Enterpr Formulation - opportunity, Preparation o Classification UNIT IV Need – Source working Capit	Programs – Need, Objectives – Issues & Reasons of Entreprons of Entrepreneurship Failure – Essentials to avoid failure BUSINESS rises – Definition, Classification – Characteristics, Ownership - Steps involved in setting up a Business – identifying, select Market Survey and Research, Techno Economic Feasib f Preliminary Project Reports – Project Appraisal – Sources of of Needs and Agencies FINANCING AND ACCOUNTING es of Finance, Term Loans, Capital Structure, Financial Institut cal, Costing, Break Even Analysis, Taxation – Income Tax, Excise SUPPORT TO ENTREPRENEURS nall Business – Concept, Magnitude, Causes and Consequences,	t, Er reneu Struc ing a ility Infor tion, Duty Corre	trep rship cture Goo Asse mati Mana – Sa	reneu p Fail 9 s – P d Bus essme on – 9 ageme les Ta 9 e Mea	rojec sines nt -
Business Gar Development Issues & Rease UNIT III Small Enterpr Formulation - opportunity, Preparation o Classification UNIT IV Need – Source working Capit UNIT V Sickness in sm –Business Inc	Programs – Need, Objectives – Issues & Reasons of Entreprons of Entrepreneurship Failure – Essentials to avoid failure BUSINESS rises – Definition, Classification – Characteristics, Ownership - Steps involved in setting up a Business – identifying, select Market Survey and Research, Techno Economic Feasib f Preliminary Project Reports – Project Appraisal – Sources of of Needs and Agencies FINANCING AND ACCOUNTING es of Finance, Term Loans, Capital Structure, Financial Institut cal, Costing, Break Even Analysis, Taxation – Income Tax, Excise SUPPORT TO ENTREPRENEURS	t, Er reneu Struc ing a ility Infor tion, Duty Corre	trep rship cture Goo Asse mati Mana – Sa ective	reneu p Fail 9 s – P d Bus essme on – 9 ageme les Ta 9 e Mea	rojec sines nt -

Continuous Assessment Test	Formative Assessment Test	End Semester Exams
(20 Marks)	(20 Marks)	(60 Marks)
CAT 1 10 Marks	1.Assignment	Descriptive type
CAT 2 10 Marks	2. Online Quizzes	
Descriptive type Questions	3.Problem-Solving Activities	
Outcomes		
Upon completion of the course,	the students will be able to:	
CO1: Illustrate the skills for succe	ssful entrepreneurs (Apply)	
CO2: Explain the concepts of entr	epreneurship failure (Understand)
CO3: Discover market survey and	techno economic feasibility assess	sment (Apply)
CO4: Identify the funds from finan	ncial source (Understand)	
CO5: Identify and correct sicknes	s in business (Understand)	
Text Books		
 Khanka. S.S., "Entreprener (2020) 	urial Development" S.Chand& Co.	Ltd., Ram Nagar, New Delh
2. Donald F Kuratko, "Entro Cengage Learning, (2014)	eprenuership – Theory, Process	and Practice", 9th Edition
Reference Books		
2. Mathew J Manimala, "Ente Edition Dream tech, (2005		s: paradigms and praxis" 2n
3. Rajeev Roy, "Entrepreneur	ship" 2nd Edition, Oxford Universi	ty Press, (2011)
Web Resources		
1. https://nptel.ac.in/courses	/110/106/110106141/	
/		

CO Vs PO Mapping and CO Vs PSO Mapping

CO	PO	PO1	PO1	PO1	PSO	PSO								
CO	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO1						1		1	1	2	2	2		
CO2						1		1	1	2	2	2		
CO3						1		1	1	2	2	2		
CO4						1		1	1	2	2	2		
CO5						1		1	1	2	2	2		

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Illustrate the skills for successful entrepreneurs (Apply)

- 1. Discover the main functions performed by the entrepreneurs (Apply)
- 2. Explain the factors affecting growth of entrepreneurship (Understand)

COURSE OUTCOME 2: Explain the concepts of entrepreneurship failure (Understand)

- 1. Describe achievement motivation? Do you consider it an essential ingredient of entrepreneurship? (Remember)
- 2. Define the term stress? It is always bond for people? Explain. (Understand)

COURSE OUTCOME 3: Discover market survey and techno economic feasibility assessment (Apply)

- 1. List out the factors to be considered while preparing a feasibility report (Remember)
- 2. Illustrate the major steps in detailed project report? What are the precautions than an entrepreneur should take at the time of preparation of detailed project report? (Apply)

COURSE OUTCOME 4: Identify the funds from financial source (Understand)

- 1. Define the term Sales Tax? Elaborate the types of sales taxation in India (Understand)
- 2. Discuss the various causes and consequences of industrial sickness in India (Understand)

COURSE OUTCOME 5: Identify and correct sickness in business (Understand)

- 1. Discuss the need for policy support to small scale enterprises (Understand)
- 2. Describe Joint Venture. State the reasons behind creation of joint venture (Understand)

21ME6720	CORROSION AND SURFACE ENGINEERINGLTP300										
Proroquisito	s for the course			3	0		J	3			
-		, Engineering Materials and Metall	urov								
	gineering chemistry	, Lingineering Materials and Metali	urgy.								
Objectives											
	impart knowledge o										
		osion control methods.	ial madifi	antin		. h					
	_	e of surface modification and spec		Icatio	ntec	m	Iqu				
	BASIC ASPECTS C					ml		<u>9</u>			
		nomics, emf series, Galvanic s									
		t relationships of activation contr pH diagrams Fe-H2O system, app									
Passivation	resses; Potential -	ph diagrams Fe-H2O System, app			IIIIIc	1110	115;				
UNIT II	FORMS OF CORR	OSION						9			
		ethods of various forms of corrosio	on - Unifo	rm. g	alvai	nic.	pit	ting.			
			corrosion								
embrittlemen					0		5	0			
UNIT III	CORROSION CON	TROL METHODS						9			
Atmospheric	corrosion – classifi	cation, factors influencing atmos	pheric co	orrosi	ion,	ten	npo	orary			
corrosion pre	ventive methods; or	rganic coating, corrosion inhibitors	s, cathodi	c prot	tecti	on,	and	odic			
-											
protection											
protection UNIT IV		ICATION AND SURFACE COATING		-		ha	rde	9			
protection UNIT IV Conventional carburizing,	surface modificati nitriding, diffusion	ion methods: shot peening, flan n aided surface alloying Surf	ne and i ^F ace coat	nduc ting	tion tech	nic	que	ening s by			
protection UNIT IV Conventional carburizing, chemical/elec	surface modificati nitriding, diffusion ctro-chemical route	ion methods: shot peening, flan	ne and i Face coat , anodizi	nduc ting ing, g	tion tech galva	nic niz	que: ing	ening s by ;, etc			
protection UNIT IV Conventional carburizing, chemical/elec	surface modificati nitriding, diffusion ctro-chemical route ng by physical route	ion methods: shot peening, flan n aided surface alloying Surf es: electro/electroless deposition	ne and i Face coat , anodizi	nduc ting ing, g	tion tech galva	nic niz	que: ing	ening s by ;, etc			
protection UNIT IV Conventional carburizing, chemical/elec Surface coatin	surface modificati nitriding, diffusion ctro-chemical route ng by physical route c.	ion methods: shot peening, flan n aided surface alloying Surf es: electro/electroless deposition es: thermal/plasma spray, physica	ne and i Face coat , anodizi al/chemio	nduc ting ing, g	tion tech galva	nic niz	que: ing	ening s by ; etc			
protection UNIT IV Conventional carburizing, chemical/elec Surface coatin sputtering, et UNIT V	surface modificati nitriding, diffusion ctro-chemical route ng by physical route c. ADVANCED SURF	ion methods: shot peening, flan n aided surface alloying Surf es: electro/electroless deposition es: thermal/plasma spray, physica FACE MODIFICATION TECHNIQUI	ne and i face coat , anodizi al/chemio ES	nduc ting ing, g cal va	tion tech galva ipor	nic niz dej	que: ing pos	ening s by c, etc ition 9			
protection UNIT IV Conventional carburizing, chemical/elec Surface coatin sputtering, et UNIT V	surface modificati nitriding, diffusion ctro-chemical route ng by physical route c. ADVANCED SURF	ion methods: shot peening, flan n aided surface alloying Surf es: electro/electroless deposition es: thermal/plasma spray, physica	ne and i face coat , anodizi al/chemio ES	nduc ting ing, g cal va	tion tech galva ipor	nic niz dej	que: ing pos	ening s by ; etc ition 9			
protection UNIT IV Conventional carburizing, chemical/elec Surface coatin sputtering, et UNIT V Advanced sur	surface modificati nitriding, diffusion ctro-chemical route ng by physical route c. ADVANCED SURF	ion methods: shot peening, flan n aided surface alloying Surf es: electro/electroless deposition es: thermal/plasma spray, physica FACE MODIFICATION TECHNIQUI ethods: laser, plasma, ion and elect	ne and i Face coat al, anodizi al/chemic ES tron bean	nduc ting ing, g cal va	tion tech galva por sted	nic niz dej su	que: ing pos	ening s by c, etc ition 9			
protection UNIT IV Conventional carburizing, chemical/elec Surface coatin sputtering, et UNIT V Advanced sur Engineering	surface modificati nitriding, diffusion ctro-chemical route ng by physical route c. ADVANCED SURF face modification m	ion methods: shot peening, flan n aided surface alloying Surf es: electro/electroless deposition es: thermal/plasma spray, physica FACE MODIFICATION TECHNIQUI ethods: laser, plasma, ion and elect Total	ne and i face coat , anodizi al/chemio ES	nduc ting ing, g cal va	tion tech galva por sted	nic niz dej	que: ing pos	ening s by ; etc ition 9			
protection UNIT IV Conventional carburizing, chemical/elec Surface coatin sputtering, et UNIT V Advanced sur Engineering Suggestive A	surface modificati nitriding, diffusion ctro-chemical route ng by physical route c. ADVANCED SURF face modification m	ion methods: shot peening, flan n aided surface alloying Surf es: electro/electroless deposition es: thermal/plasma spray, physica ACE MODIFICATION TECHNIQUI ethods: laser, plasma, ion and elect Total	ne and i Face coat al, anodizi al/chemio ES tron bean Periods	nduc ting ng, g cal va	tion tech galva ipor sted	nic niz dej sui 45	que: ing pos	ening s by c, etc ition 9			
protection UNIT IV Conventional carburizing, chemical/elec Surface coatin sputtering, et UNIT V Advanced sur Engineering Suggestive A Continuous A	surface modificati nitriding, diffusion ctro-chemical route ng by physical route c. ADVANCED SURF face modification m ssessment Method Assessment Test	ion methods: shot peening, flan n aided surface alloying Surf es: electro/electroless deposition es: thermal/plasma spray, physica FACE MODIFICATION TECHNIQUI ethods: laser, plasma, ion and elect Total s Formative Assessment Test	ne and i face coat al anodizi al/chemic ES tron bean Periods	nduc ting ing, g cal va n assi	tion tech galva ipor sted	nic niz dej sui 45	que: ing pos rfac	ening s by ; etc ition 9			
protection UNIT IV Conventional carburizing, chemical/elec Surface coatin sputtering, et UNIT V Advanced sur Engineering Suggestive A Continuous A (20 Ma	surface modificati nitriding, diffusion ctro-chemical route ng by physical route c. ADVANCED SURF face modification m ssessment Method Assessment Test rks)	ion methods: shot peening, flan n aided surface alloying Surf es: electro/electroless deposition es: thermal/plasma spray, physica FACE MODIFICATION TECHNIQUI ethods: laser, plasma, ion and elect Total s Formative Assessment Test (20 Marks)	ne and i face coat al/chemic ES tron bean Periods End Set (60 Ma	nduc ting ing, g cal va n assi n assi	tion tech galva por sted	nic niz dej sui 45 xar	jue: ing pos rfac ns	ening s by c, etc ition 9			
protection UNIT IV Conventional carburizing, chemical/elec Surface coatin sputtering, etc UNIT V Advanced sur Engineering Suggestive A Continuous A (20 Ma 2 Test Each 10	surface modificati nitriding, diffusion ctro-chemical route ng by physical route c. ADVANCED SURF face modification m ssessment Method Assessment Test rks) 0 Marks	ion methods: shot peening, flan n aided surface alloying Surf es: electro/electroless deposition es: thermal/plasma spray, physica FACE MODIFICATION TECHNIQUI ethods: laser, plasma, ion and elect Total s Formative Assessment Test	ne and i face coat al anodizi al/chemic ES tron bean Periods	nduc ting ing, g cal va n assi n assi	tion tech galva por sted	nic niz dej sui 45 xar	jue: ing pos rfac ns	ening s by c, etc ition 9			
protection UNIT IV Conventional carburizing, chemical/elec Surface coatin sputtering, et UNIT V Advanced sur Engineering Suggestive A Continuous A (20 Ma	surface modificati nitriding, diffusion ctro-chemical route ng by physical route c. ADVANCED SURF face modification m ssessment Method Assessment Test rks) 0 Marks	ion methods: shot peening, flan n aided surface alloying Surf es: electro/electroless deposition es: thermal/plasma spray, physica ACE MODIFICATION TECHNIQUI ethods: laser, plasma, ion and elect Total s Formative Assessment Test (20 Marks) Multiple Choice Questions	ne and i face coat al/chemic ES tron bean Periods End Set (60 Ma	nduc ting ing, g cal va n assi n assi	tion tech galva por sted	nic niz dej sui 45 xar	jue: ing pos rfac ns	ening s by c, etc ition 9			
protection UNIT IV Conventional carburizing, chemical/elec Surface coatin sputtering, etc UNIT V Advanced sur Engineering Suggestive A Continuous A (20 Ma 2 Test Each 10	surface modificati nitriding, diffusion ctro-chemical route ng by physical route c. ADVANCED SURF face modification m ssessment Method Assessment Test rks) 0 Marks	ion methods: shot peening, flan n aided surface alloying Surf es: electro/electroless deposition es: thermal/plasma spray, physica ACE MODIFICATION TECHNIQUI ethods: laser, plasma, ion and elect Total s Formative Assessment Test (20 Marks) Multiple Choice Questions	ne and i face coat al/chemic ES tron bean Periods End Set (60 Ma	nduc ting ing, g cal va n assi n assi	tion tech galva por sted	nic niz dej sui 45 xar	jue: ing pos rfac ns	ening s by c, etc ition 9			
protection UNIT IV Conventional carburizing, chemical/elec Surface coatin sputtering, et UNIT V Advanced sur Engineering Suggestive A Continuous A (20 Ma 2 Test Each 10 Descriptive Q	surface modificati nitriding, diffusion ctro-chemical route ng by physical route c. ADVANCED SURF face modification m ssessment Method Assessment Test rks) 0 Marks uestions	ion methods: shot peening, flan n aided surface alloying Surf es: electro/electroless deposition es: thermal/plasma spray, physica ACE MODIFICATION TECHNIQUI ethods: laser, plasma, ion and elect Total s Formative Assessment Test (20 Marks) Multiple Choice Questions	ne and i face coat al/chemic ES tron bean Periods End Set (60 Ma	nduc ting ing, g cal va n assi n assi	tion tech galva por sted	nic niz dej sui 45 xar	jue: ing pos rfac ns	ening s by c, etc ition 9			
protection UNIT IV Conventional carburizing, chemical/elec Surface coatin sputtering, et UNIT V Advanced sur Engineering Suggestive A Continuous A (20 Ma 2 Test Each 10 Descriptive Q Outcomes Upon comple CO1. Rememi	surface modificati nitriding, diffusion ctro-chemical route ng by physical route c. ADVANCED SURF face modification m ssessment Method Assessment Test rks) 0 Marks uestions etion of the course, ber various basic as	ion methods: shot peening, flan n aided surface alloying Surf es: electro/electroless deposition es: thermal/plasma spray, physica ACE MODIFICATION TECHNIQUI ethods: laser, plasma, ion and elect Total s Formative Assessment Test (20 Marks) Multiple Choice Questions (MCQ) the students will be able to: pects of corrosion. (Remember)	ne and i face coat al/chemic ES tron bean Periods End Set (60 Ma	nduc ting ing, g cal va n assi n assi	tion tech galva por sted	nic niz dej sui 45 xar	jue: ing pos rfac ns	ening s by c, etc ition 9			
protection UNIT IV Conventional carburizing, chemical/elec Surface coatin sputtering, et UNIT V Advanced sur Engineering Suggestive A Continuous A (20 Ma 2 Test Each 10 Descriptive Q Outcomes Upon comple CO1. Rememi	surface modificati nitriding, diffusion ctro-chemical route ng by physical route c. ADVANCED SURF face modification m ssessment Method Assessment Test rks) 0 Marks uestions etion of the course, ber various basic asp rate the various form	ion methods: shot peening, flan n aided surface alloying Surf es: electro/electroless deposition es: thermal/plasma spray, physica FACE MODIFICATION TECHNIQUI ethods: laser, plasma, ion and elect Total s Formative Assessment Test (20 Marks) Multiple Choice Questions (MCQ) the students will be able to: pects of corrosion. (Remember) ns of corrosion. (Understand)	ne and i face coat al/chemio ES tron bean Periods (60 Ma Descrip	nduc ting ing, g cal va n assi mest mest	tion tech galva por sted er E	anic niz dej sun 45 xar tion	jue: ing pos rfac ns	ening s by c, etc ition 9			
protection UNIT IV Conventional carburizing, chemical/elec Surface coatin sputtering, et UNIT V Advanced sur Engineering Suggestive A Continuous A (20 Ma 2 Test Each 10 Descriptive Q Outcomes Upon comple CO1. Rememi CO2. Enumer CO3. Apply th	surface modificati nitriding, diffusion ctro-chemical route ng by physical route c. ADVANCED SURF face modification m ssessment Method Assessment Test rks) 0 Marks uestions etion of the course, ber various basic aspected by the second state the various form the corrosion control	ion methods: shot peening, flam n aided surface alloying Surf es: electro/electroless deposition es: thermal/plasma spray, physica ACE MODIFICATION TECHNIQUI ethods: laser, plasma, ion and elect Total s Formative Assessment Test (20 Marks) Multiple Choice Questions (MCQ) the students will be able to: pects of corrosion. (Remember) ns of corrosion. (Understand) methods in the manufacturing of corrosion	ne and i Face coat al/chemid ES tron bean Periods Componen	nduc ting ing, g cal va n assi mest urks) otive (tion tech galva por sted er E Ques	anic niz dej sun 45 xan tion	que: ing pos rfac ms ns	ening s by ; etc ition 9 ce			
protection UNIT IV Conventional carburizing, chemical/elec Surface coatin sputtering, etc UNIT V Advanced sur Engineering Suggestive A Continuous A (20 Ma 2 Test Each 10 Descriptive Q Outcomes Upon comple CO1. Rememi CO2. Enumer CO3. Apply th CO4. Apply th	surface modificati nitriding, diffusion ctro-chemical route ng by physical route c. ADVANCED SURF face modification m ssessment Method Assessment Test rks) 0 Marks uestions etion of the course, ber various basic aspected by the second state the various form the corrosion control	ion methods: shot peening, flan n aided surface alloying Surf es: electro/electroless deposition es: thermal/plasma spray, physica FACE MODIFICATION TECHNIQUI ethods: laser, plasma, ion and elect Total s Formative Assessment Test (20 Marks) Multiple Choice Questions (MCQ) the students will be able to: pects of corrosion. (Remember) ns of corrosion. (Understand)	ne and i Face coat al/chemid ES tron bean Periods Componen	nduc ting ing, g cal va n assi mest urks) otive (tion tech galva por sted er E Ques	anic niz dej sun 45 xan tion	que: ing pos rfac ms ns	ening s by ition 9 ce			
protection UNIT IV Conventional carburizing, chemical/elec Surface coatin sputtering, et UNIT V Advanced sur Engineering Suggestive A Continuous A (20 Ma 2 Test Each 10 Descriptive Q Outcomes Upon comple CO1. Rememi CO2. Enumer CO3. Apply th (Apply)	surface modificati nitriding, diffusion ctro-chemical route ng by physical route c. ADVANCED SURF face modification m ssessment Method Assessment Test rks) 0 Marks uestions etion of the course, ber various basic asp rate the various form he corrosion control he surface modification	ion methods: shot peening, flam n aided surface alloying Surf es: electro/electroless deposition es: thermal/plasma spray, physica ACE MODIFICATION TECHNIQUI ethods: laser, plasma, ion and elect Total s Formative Assessment Test (20 Marks) Multiple Choice Questions (MCQ) the students will be able to: pects of corrosion. (Remember) ns of corrosion. (Understand) methods in the manufacturing of corrosion	ne and i face coat al/chemic ES tron bean Periods End Set (60 Ma Descrip	nduc ting ing, g cal va n assi mest mest otive (tion tech galva por sted er E Ques	45 xar tion y)	que: ing pos rfac ns ns	ening s by s, etc ition, 9 ce			

Text Books

1. Surface Engineering for Wear Resistances (Introduction and classification of Wear), By: K.G. Budinski, Prentice Hall, Englewood Cliffs, 1988.

2. Corrosion Engineering (classification of Corrosion), By: M.G. Fontana, M.C. Graw Hill, N.York, 1987.

Reference Books

1. E.E. Stansbury, R.A. Buchanan , "Fundamentals of electrochemical corrosion", ASMInternational, 2000.

2. M.G.Fontana, N.D. Greene , "Corrosion Engineering", 3rd Edition, McGraw Hill, New York, 2005.

3. S.N.Banerjee , "An Introduction to Science of Corrosion and its Inhibition", Oxonian Press, New Delhi, 1985.

4. Zaki Ahmad , "Principles of Corrosion Engineering and Corrosion Control", Butterworth Heinemann, London, 2006.

5. Materials Science and Engineering by W. D. Callister

6.. Introduction to Surface Engineering and Functionally Engineered Materials, by Peter Martin, WILEY, 2011

7. Surface Engineering of Metals: Principles, Equipment, Technologies, by: Tadeusz Burakowski, Tadeusz Wierzchon, CRC Press, 1988

8. Surface Engineering for Corrosion and Wear Resistance, by JR Davis, ASM International, 2001

Web Resources

https://onlinecourses.nptel.ac.in/noc23_mm21/preview

CO Vs PO Mapping and CO Vs PSO Mapping

С	PO	РО	РО	РО	PO	РО	PO	РО	РО	РО	РО	PO	PSO	PSO
0	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	2	2	1	1		1	1						3	2
2	3	2		2									3	2
3	2	1		1		2	2	1					2	3
4	3		1			2	2						2	3
5	2	1	1			2	2						2	3

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Remember various basic aspects of corrosion (Remember)

- **1.** Explain the chemical treatment for stainless steel and other alloys that enhances the ability of the treated surfaces to resist corrosion. **(Remember)**
- **2.** Draw the Pourbaix diagram for iron-water system and interpret. Bring out its advantage and limitations **(Remember)**

COURSE OUTCOME 2: Enumerate the various forms of corrosion. (Understand)

- **1.** Deduce the construction and working of the autocatalytic mechanism of pitting corrosion. Mention the means of combating pitting corrosion (**Understand**)
- **2.** Identify and explain which material can dezincification take place in and label its consequences. **(Understand)**

COURSE OUTCOME 3: Apply the corrosion control methods in the manufacturing of components (Apply)

- **4.** Apply the suitable protection method to mitigate corrosion damage to active metal surfaces **(Apply)**
- **1.** Select the widely used temporary corrosion preventive methods to avoid rusting and justify. **(Apply)**

COURSE OUTCOME 4: Apply the surface modification and surface coating techniques in the production of components (Apply)

- **1.** Apply the best coating method of nickel also label its advantages and limitations compared to the PVD methods. **(Apply)**
- **2.** Name the surface modification technique and illustrate the process based on the given applications like sand removal in foundries, decoding, descaling, and surface finishing for castings used in engine blocks and cylinder heads **(Apply)**

COURSE OUTCOME 5: Apply the advanced surface modification techniques in production of components (Apply)

- **1.** Identify and illustrate the advanced surface modification technique which can able to heat treat localized areas without affecting the entire work piece. **(Apply)**
- 2. Apply the thermal high speed heat treatment processes in solid and or liquid state (Apply)

PROFESSIONAL ELECTIVE - IV

21ME7701	DESIGN FOR MANUFACTURING AND ASSEMBLY	L	T	P	C	
210127701	DESIGN FOR MANOLACT ORING AND ASSEMBLT	3	0	0	3	

Prerequisites for the course

- Manufacturing Technology
- Engineering Materials and Metallurgy

Objectives

- This course provides the essential concepts behind manufacturing and assembly orient design.
- It also provides design guidelines for machining, casting and injection molding to achieve cost effective design.

UNIT I	UNIT I TOLERANCE ANALYSIS 9									
Geometric Tolerances – Tolerance Analysis – Worst Case Method – Assembly Limits – Design and										
Manufacturing Datum - Conversion of Design Datum into Manufacturing Datum - Tolerance										
Stacks – True Position Theory – Zero True Position Tolerance – Process Capability.										
UNIT II	MATERIALS SELECTION AND DESIGN FOR ASSEMBLY	9								
Evaluation N	aterials – Selection of Materials and Processes –Design – Po Iethod. General Design Principles for Manufacturability – Genera Assembly – Assembly Efficiency – Effects of Part Symmetry – F	l Design Guidelines								
Weight on	Weight on Handling Time - Types of Manual Assembly Methods - Design for High Speed									
Automatic Assembly And Robot Assembly.										
UNIT III	DESIGN FOR MACHINING	9								
Design Featu	Design Features to Facilities Machining – Single Point and Multipoint Cutting Tools – Choice and									

Design Features to Facilities Machining -- Single Point and Multipoint Cutting Tools – Choice and Shape of Work Material – Accuracy and Surface Finish – Design Recommendations for Turning and Milling Operations: Process Description - Suitable Materials. Guidelines for Machining of Rotational and Non-Rotational Components - Reduction of Machined Area - Design for Clampability – Design for Accessibility.

UNIT IV	DESIGN FOR INJECTION MOLDING AND POWDER METAL	9
	PROCESSING	

Injection Molding Materials – The Molding Cycle – Molding Systems and Molds – Cycle Time and Mold Cost Estimation - Estimation of Optimum Number of Cavities - Design Guidelines for Injection Molding. Design for Powder Metal Processing: Introduction to Powder Metal Processing - Materials and Manufacturing Cost - Design Guidelines for Powder Metal Parts.

i facel faib a								
UNIT V	DESIGN FOR SAND AND DIE CASTING9							
Sand Castin	g Alloys – Sand Cores – Design Rules for Sand Castings -	- Identification of						
Uneconomic	al Design – Modifying The Design. Die Casting Alloys – The D)ie Casting Cycle –						
Determinatio	on of Number of Cavities and Appropriate Machine Size in Die	e Casting – Design						
Principles for	r Die Casting.							
	Total Periods	45						

Total	Periods	4
-------	---------	---

Suggestive Assessment Methods End Semester Exams **Continuous Assessment Test Formative Assessment Test** (20 Marks) (20 Marks) (60 Marks) MCQ QUIZ / SEMINAR/ Descriptive exam Descriptive exam ASSIGNMENT/SLIPTEST/CASE CAT 1 10 AND CAT2 10 MARKS STUDY **Outcomes**

Upon completion of the course, the students will be able to:

CO1: Show the dimensions of components and identify the suitable geometrical tolerances for manufacturing-oriented design **(Apply)**

CO2: Determine the suitable materials for components and demonstrate the design considerations for assembly in different applications **(Apply)**

CO3: Illustrate suitable design recommendations for various machining operations **(Apply)**

CO4: Demonstrate the design for injection molded components and apply the design recommendations for powder metal processing. **(Apply)**

CO5: Determine the uneconomical design for sand and die castings **(Apply)**

Text Books

1. Boothroyd G, Dewhurst P & Knight W. A., "Product Design for Manufacture and Assembly", 3rd Edition, CRC Press, USA, 2011.

Reference Books

- **1.** Bralla J.G., "Design for Manufacturability Handbook", 2nd Edition, McGraw Hill Education, New York, 1999.
- **2.** Design for Manufacturing and Assembly: Concepts, architectures and implementation 1998th Edition

Web Resources

1. <u>https://archive.nptel.ac.in/courses/112/106/112106249/</u> (Design for Manufacturing and Assembly)

СО	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2
C01	3	2	3	1		1							3	
CO2	3	2	3	1		1							3	
CO3	3	2	3	1		1							3	
CO4	3	2	3	1		1							3	
CO5	3	2	3	1		1							3	

CO Vs PO Mapping and CO Vs PSO Mapping

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Show the dimensions of components and identify the suitable geometrical tolerances for manufacturing-oriented design **(Apply)**

- 1. Illustrate about the assembly limits, Datum features and tolerance stack
- 2. explain about design principle which used in manufacturability

COURSE OUTCOME 2: Determine the suitable materials for components and demonstrate the design considerations for assembly in different applications **(Apply)**

- 1. Discuss in detail about the design for assembly
- 2. Show the steps involved in minimizing the material usage

COURSE OUTCOME 3: Illustrate suitable design recommendations for various machining operations. **(Apply)**

- 1. Write down difference between clamp ability and accessibility.
- 2. Explain in detail about reduction of machine area by simplification by separation with suitable sketch.

COURSE OUTCOME 4: Demonstrate the design for injection molded components and apply the design recommendations for powder metal processing. **(Apply)**

- 1. Briefly discuss the factors to be considered while selecting the injection molding
- 2. Describe in detail on design guidelines for Powder Metal Parts

COURSE OUTCOME 5: Determine the uneconomical design for sand and die castings. **(Apply)**

- 1. Show the factors involved in uneconomical design.
- 2. Discuss in detail about casting requiring special sand cores.

21ME7703	INDIG	TDIAL EDCONOMICS IN DESIGN		L	T	Р	С
21ME7702	INDUS.	FRIAL ERGONOMICS IN DESIGN		3	0	0	3
Prerequisite	es for the course						
Nil							
Objectives							
		ign based on ergonomics.					
	-	ept in manufacturing.					
		n of controls and display.					
		rs in ergonomics design.					
Develo	op aesthetics applica	ble to manufacturing and product.					
UNIT I		INTRODUCTION			9)	
		Elements of design structure for inc		0			
		ring systems- Ergonomics and Indu	0				
•	•	em, general approach to the man-			-		
•	of work system, Mac	hine component of work system, L	ocal enviror	nmer	it-lig	ht, H	ea
ound. UNIT II	EDC	ONOMICS AND PRODUCTION			9	<u> </u>	
							1
	•	ta and its applications in ergonor		•••			
	0	, Chair Design. Visual Effects of Line		rne	meci	lanic	S 0
oning Ucuch		ro on ground offect Costalt's norcer	tione Simr	alicit		aula	ritz
		re on ground effect, Gestalt's perceptions influences of line and form	otions - Simp	olicit	y, Re	gula	rity
roximity, W	holeness. Optical illu	sions, Influences of line and form.		olicit			rity
Proximity, W UNIT III	holeness. Optical illu DESIGN PRIN	sions, Influences of line and form. CIPLES FOR DISPLAY AND CONTR	OLS		9)	
Proximity, W UNIT III Displays: Des	holeness. Optical illu DESIGN PRIN sign Principles of v	sions, Influences of line and form. CIPLES FOR DISPLAY AND CONTR isual Displays, Classification, Quar	OLS Ititative dis	plays	9 s, Qu) Ialita	tive
Proximity, W UNIT III Displays: Des lisplays, cheo	holeness. Optical illu DESIGN PRIN sign Principles of v ck readings, Situation	sions, Influences of line and form. CIPLES FOR DISPLAY AND CONTR isual Displays, Classification, Quar nal awareness, Representative displ	OLS Ititative dis ays, Design d	plays of po	9 5, Qu inter	alita s, Sig	tivo gna
Proximity, W UNIT III Displays: Des lisplays, cheo and warning	holeness. Optical illu DESIGN PRIN sign Principles of v ck readings, Situation g lights, colour codi	sions, Influences of line and form. CIPLES FOR DISPLAY AND CONTR isual Displays, Classification, Quar	OLS Ititative dis ays, Design d le displays	plays of po Cont	9 5, Qu inter trols	alita s, Sig	tiv gna sigi
Proximity, W UNIT III Displays: Des lisplays, chec and warning consideration	holeness. Optical illu DESIGN PRIN sign Principles of v ck readings, Situation g lights, colour codi ns, Controls with litt	sions, Influences of line and form. CIPLES FOR DISPLAY AND CONTR isual Displays, Classification, Quar nal awareness, Representative displaing of displays, Design of multipl	OLS Ititative disp ays, Design d le displays rotating Kno	plays of po Cont obs. (9 s, Qu inter trols Contr	alita s, Sig De ols v	tiv gna sigi vitl
Proximity, W UNIT III Displays: Des lisplays, check and warning consideration nuscular effe fachine Tool	holeness. Optical illu DESIGN PRIN sign Principles of v ck readings, Situation g lights, colour codi ns, Controls with littl ort – Hand wheel, (ls.	sions, Influences of line and form. CIPLES FOR DISPLAY AND CONTR isual Displays, Classification, Quar nal awareness, Representative displaing ing of displays, Design of multiplation le efforts – Push button, Switches, I Crank, Heavy lever, Pedals. Design	OLS Ititative disp ays, Design d le displays rotating Kno	plays of po Cont obs. (9 s, Qu inter trols Contr auto	alita s, Sig De ols v mob	tiv gna sigi vitl
Proximity, W UNIT III Displays: Des lisplays, check and warning consideration nuscular effo fachine Tool UNIT IV	holeness. Optical illu DESIGN PRIN sign Principles of v ck readings, Situation g lights, colour codi ns, Controls with litt ort – Hand wheel, (ls. EN	sions, Influences of line and form. CIPLES FOR DISPLAY AND CONTR isual Displays, Classification, Quar hal awareness, Representative displaing of displays, Design of multiplate le efforts – Push button, Switches, I Crank, Heavy lever, Pedals. Design IVIRONMENTAL FACTORS	OLS atitative dis ays, Design o le displays rotating Kno of controls	plays of po Cont obs. (s in	9 s, Qu inter trols Contr auto 9	alita s, Si De ols v mob	tiv gna sigi vitl iles
Proximity, W UNIT III Displays: Des displays, check and warning consideration nuscular effe Machine Tool UNIT IV Colour: Colou	holeness. Optical illu DESIGN PRIN sign Principles of v ck readings, Situation g lights, colour codi ns, Controls with littl ort – Hand wheel, (ls. EN ur and light, Colour at	sions, Influences of line and form. CIPLES FOR DISPLAY AND CONTR isual Displays, Classification, Quar nal awareness, Representative displaing ing of displays, Design of multiplation le efforts – Push button, Switches, I Crank, Heavy lever, Pedals. Design NVIRONMENTAL FACTORS nd objects, Colour and the eye – after	OLS ntitative disp ays, Design of le displays rotating Kno of controls r Image, Col	plays of po Cont obs. (s in lour l	9 s, Qu inter trols Contr auto 9 olind	alita s, Sig ols v mob	tive gna sign vitl iles
Proximity, W UNIT III Displays: Des displays, check and warning consideration nuscular effor Machine Tool UNIT IV Colour: Colour Colour consta	holeness. Optical illu DESIGN PRIN sign Principles of v ck readings, Situation g lights, colour codi ns, Controls with littl ort – Hand wheel, (ls. EN ur and light, Colour an ancy, Colour terms –	sions, Influences of line and form. CIPLES FOR DISPLAY AND CONTR isual Displays, Classification, Quar hal awareness, Representative displaing of displays, Design of multipla le efforts – Push button, Switches, I Crank, Heavy lever, Pedals. Design INTRONMENTAL FACTORS nd objects, Colour and the eye – after Colour circles, Munsel colour notati	OLS atitative disp ays, Design of le displays rotating Kno of controls r Image, Col on, reaction	plays of po Cont obs. (s in lour l s to (9 s, Qu inter trols Contr auto 9 olind colou	alita s, Sig ols v mob ness	tivo gna sign vitl iles
Proximity, W UNIT III Displays: Des displays, check and warning consideration nuscular effe Machine Tool UNIT IV Colour: Colou Colour constation	holeness. Optical illu DESIGN PRIN sign Principles of v ck readings, Situation g lights, colour codi ns, Controls with litt ort – Hand wheel, (ls. EN ar and light, Colour an ancy, Colour terms – nation – colour on er	sions, Influences of line and form. CIPLES FOR DISPLAY AND CONTR isual Displays, Classification, Quar hal awareness, Representative displain ing of displays, Design of multiple le efforts – Push button, Switches, n Crank, Heavy lever, Pedals. Design IVIRONMENTAL FACTORS nd objects, Colour and the eye – after Colour circles, Munsel colour notating ingineering equipments, Colour codin	OLS atitative disp ays, Design of le displays rotating Kno of controls r Image, Col on, reaction	plays of po Cont obs. (s in lour l s to (9 s, Qu inter trols Contr auto 9 olind colou	alita s, Sig ols v mob ness	tive gna sign vitl iles
Proximity, W UNIT III Displays: Des displays, check and warning consideration nuscular effe dachine Tool UNIT IV Colour: Colou Colour constation colour constation colour and m	holeness. Optical illu DESIGN PRIN sign Principles of v ck readings, Situation g lights, colour codi ns, Controls with littl ort – Hand wheel, (ls. EN ur and light, Colour an ancy, Colour terms –	sions, Influences of line and form. CIPLES FOR DISPLAY AND CONTR isual Displays, Classification, Quar hal awareness, Representative displain ing of displays, Design of multiple le efforts – Push button, Switches, n Crank, Heavy lever, Pedals. Design IVIRONMENTAL FACTORS nd objects, Colour and the eye – after Colour circles, Munsel colour notating ingineering equipments, Colour codin	OLS atitative disp ays, Design of le displays rotating Kno of controls r Image, Col on, reaction	plays of po Cont obs. (s in lour l s to (9 s, Qu inter trols Contr auto 9 olind colou	alita s, Sig ols v mob ness	tive gna sign vitl iles
Proximity, W UNIT III Displays: Des displays, check and warning consideration nuscular effe Machine Tool UNIT IV Colour: Colour Colour consta colour combi colour and m UNIT V	holeness. Optical illu DESIGN PRIN sign Principles of v ck readings, Situation g lights, colour codi ns, Controls with littl ort – Hand wheel, (ls. EN ancy, Colour terms – nation – colour on er achine form, colour a	sions, Influences of line and form. CIPLES FOR DISPLAY AND CONTR isual Displays, Classification, Quar hal awareness, Representative displaing of displays, Design of multiplation le efforts – Push button, Switches, I Crank, Heavy lever, Pedals. Design NVIRONMENTAL FACTORS nd objects, Colour and the eye – after Colour circles, Munsel colour notating ingineering equipments, Colour codinand style AESTHETIC CONCEPTS	OLS atitative disp ays, Design of e displays rotating Kno of controls of controls r Image, Col on, reaction ng, Psycholo	plays of po Cont obs. (s in lour l s to (gical	9 5, Qu inter trols Contr auto 9 olind colou effe	alita s, Sig ols v mob ness r and cts,	tive gna sigr vith iles , d
Proximity, W UNIT III Displays: Des displays, check and warning consideration nuscular effe dachine Tool UNIT IV Colour: Colou Colour consta colour consta colour consta colour and m UNIT V Concept of u	holeness. Optical illu DESIGN PRIN sign Principles of v ck readings, Situation g lights, colour codi ns, Controls with little ort – Hand wheel, (ls. EN ancy, Colour terms – nation – colour on er achine form, colour a unity, Concept of or	sions, Influences of line and form. CIPLES FOR DISPLAY AND CONTR isual Displays, Classification, Quar hal awareness, Representative displain ing of displays, Design of multiple le efforts – Push button, Switches, no Crank, Heavy lever, Pedals. Design NVIRONMENTAL FACTORS nd objects, Colour and the eye – after Colour circles, Munsel colour notating ingineering equipments, Colour codinand style AESTHETIC CONCEPTS der with variety, Concept of purp	OLS atitative dispays, Design of e displays rotating Kno of controls r Image, Col on, reaction ng, Psycholo	plays of po Cont obs. (s in lour l s to c gical	9 s, Qu inter trols Contr auto 9 olind colou effe 9 envir	alita s, Sig ols v mob ness ness r and cts,	tive gna sign vith iles , d
Proximity, W UNIT III Displays: Des displays: Des displays, check and warning consideration nuscular effe Machine Tool UNIT IV Colour: Colou Colour consta colour consta colour consta colour and m UNIT V Concept of u Aesthetic ex	holeness. Optical illu DESIGN PRIN sign Principles of v ck readings, Situation g lights, colour codi ns, Controls with little ort – Hand wheel, (ls. EN ancy, Colour terms – nation – colour on er achine form, colour a unity, Concept of or pressions – Symmetric Symmetric action – Symmetric	sions, Influences of line and form. CIPLES FOR DISPLAY AND CONTR isual Displays, Classification, Quar hal awareness, Representative displaing of displays, Design of multiple le efforts – Push button, Switches, no Crank, Heavy lever, Pedals. Design NVIRONMENTAL FACTORS nd objects, Colour and the eye – after Colour circles, Munsel colour notating ingineering equipments, Colour codinand style AESTHETIC CONCEPTS der with variety, Concept of purp etry, Balance, Contrast, Continuit	OLS atitative dis ays, Design of e displays otating Kno of controls r Image, Col on, reaction ng, Psycholo ose, Style a y, Proporti	plays of po Cont obs. (s in our l s to c gical and c ion.	9 s, Qu inter trols Contr auto 9 olind colou effe 9 envir Style	alita s, Sig ols v mob ness r and cts,	tive gna sign vitl iles , d ent
Proximity, W UNIT III Displays: Des lisplays, check and warning consideration nuscular effe Machine Tool UNIT IV Colour: Colou Colour consta colour combit colour and m UNIT V Concept of u Aesthetic ex	holeness. Optical illu DESIGN PRIN sign Principles of v ck readings, Situation g lights, colour codi ns, Controls with little ort – Hand wheel, (ls. EN ancy, Colour terms – nation – colour on er achine form, colour a unity, Concept of or pressions – Symme of style, House style,	sions, Influences of line and form. CIPLES FOR DISPLAY AND CONTR isual Displays, Classification, Quar hal awareness, Representative displain ing of displays, Design of multiple le efforts – Push button, Switches, no Crank, Heavy lever, Pedals. Design NVIRONMENTAL FACTORS nd objects, Colour and the eye – after Colour circles, Munsel colour notating ingineering equipments, Colour codinand style AESTHETIC CONCEPTS der with variety, Concept of purp	OLS atitative dis ays, Design of e displays otating Kno of controls r Image, Col on, reaction ng, Psycholo ose, Style a y, Proporti	plays of po Cont obs. (s in our l s to c gical and c ion.	9 s, Qu inter trols Contr auto 9 olind colou effe 9 envir Style	alita s, Sig ols v mob ness r and cts,	tive gna sign vitl iles , d ent
Proximity, W UNIT III Displays: Des displays: Des displays, check and warning consideration nuscular effe Machine Tool UNIT IV Colour: Colour Colour consta colour consta colour combi colour and m UNIT V Concept of u Aesthetic ex	holeness. Optical illu DESIGN PRIN sign Principles of v ck readings, Situation g lights, colour codi ns, Controls with little ort – Hand wheel, (ls. EN ancy, Colour terms – nation – colour on er achine form, colour a unity, Concept of or pressions – Symmetric Symmetric action – Symmetric	sions, Influences of line and form. CIPLES FOR DISPLAY AND CONTR isual Displays, Classification, Quar hal awareness, Representative displa- ing of displays, Design of multiple le efforts – Push button, Switches, no Crank, Heavy lever, Pedals. Design VVIRONMENTAL FACTORS nd objects, Colour and the eye – after Colour circles, Munsel colour notation ingineering equipments, Colour codina and style AESTHETIC CONCEPTS der with variety, Concept of purp- etry, Balance, Contrast, Continuit Style in capital good. Introduction t	OLS atitative disp ays, Design of e displays rotating Kno of controls of controls r Image, Col on, reaction ng, Psycholo ose, Style a ry, Proporti o Ergonomio	plays of po Cont obs. (s in our l s to c gical and c ion.	9 5, Qu inter trols Contr auto 9 olind colou effe 9 envir Style I plan	alita s, Sig ols v mob ness ness r and cts, o ness r and cts,	tive gna sign vitl iles , d ent
Proximity, W UNIT III Displays: Des displays: Des displays, check and warning consideration muscular effe Machine Tool UNIT IV Colour: Colou Colour consta colour consta colour consta colour and m UNIT V Concept of u Aesthetic ex components of software's, to	holeness. Optical illu DESIGN PRIN sign Principles of v ck readings, Situation g lights, colour codi ns, Controls with little ort – Hand wheel, (ls. EN ar and light, Colour and ancy, Colour terms – nation – colour on er achine form, colour a unity, Concept of or pressions – Symmo of style, House style, stal layout design.	sions, Influences of line and form. CIPLES FOR DISPLAY AND CONTR isual Displays, Classification, Quar hal awareness, Representative displain ing of displays, Design of multiple le efforts – Push button, Switches, no Crank, Heavy lever, Pedals. Design NVIRONMENTAL FACTORS nd objects, Colour and the eye – after Colour circles, Munsel colour notating ingeering equipments, Colour codinand style AESTHETIC CONCEPTS der with variety, Concept of purp etry, Balance, Contrast, Continuit Style in capital good. Introduction t	OLS atitative dis ays, Design of e displays otating Kno of controls r Image, Col on, reaction ng, Psycholo ose, Style a y, Proporti	plays of po Cont obs. (s in our l s to c gical and c ion.	9 s, Qu inter trols Contr auto 9 olind colou effe 9 envir Style	alita s, Sig ols v mob ness ness r and cts, o ness r and cts,	tive gna sign with iles d d ent
Proximity, W UNIT III Displays: Des displays: Des displays, check and warning consideration nuscular effe Machine Tool UNIT IV Colour: Colour Colour consta colour combine colour and m UNIT V Concept of u Aesthetic ex components of software's, to	holeness. Optical illu DESIGN PRIN sign Principles of v ck readings, Situation g lights, colour codi ns, Controls with little ort – Hand wheel, (ls. EN ancy, Colour terms – nation – colour on er achine form, colour a unity, Concept of or pressions – Symme of style, House style, stal layout design.	sions, Influences of line and form. CIPLES FOR DISPLAY AND CONTR isual Displays, Classification, Quar hal awareness, Representative displain ing of displays, Design of multiplation le efforts – Push button, Switches, I Crank, Heavy lever, Pedals. Design NVIRONMENTAL FACTORS nd objects, Colour and the eye – after Colour circles, Munsel colour notating ingineering equipments, Colour codinand style AESTHETIC CONCEPTS der with variety, Concept of purp etry, Balance, Contrast, Continuit Style in capital good. Introduction t Tota	OLS atitative disp ays, Design of le displays rotating Kno of controls r Image, Col on, reaction ng, Psycholo ose, Style a ry, Proporti o Ergonomic l Periods	plays of po Cont obs. (s in lour l s to (or gical and (ion. c and	9 s, Qu inter trols Contr auto 9 olind colou effe 9 envir Style 1 plan 4	alita s, Sig ols v mob ness ness r and cts, o onm e - nt lay 5	tiv gna sign vitl iles , d ent
Proximity, W UNIT III Displays: Des displays: Des displays, check and warning consideration nuscular effe Machine Tool UNIT IV Colour: Colou Colour consta colour consta colour combine colour and m UNIT V Concept of u Aesthetic ex components of coftware's, to Suggestive A Continuous A	holeness. Optical illu DESIGN PRIN sign Principles of v ck readings, Situation g lights, colour codi ns, Controls with little ort – Hand wheel, (ls. EN ancy, Colour terms – nation – colour on en achine form, colour a unity, Concept of or pressions – Symmo of style, House style, btal layout design. ESSESSMENT Method Assessment Test	sions, Influences of line and form. CIPLES FOR DISPLAY AND CONTR isual Displays, Classification, Quar hal awareness, Representative displain ing of displays, Design of multiple le efforts – Push button, Switches, no Crank, Heavy lever, Pedals. Design NVIRONMENTAL FACTORS nd objects, Colour and the eye – after Colour circles, Munsel colour notating ingering equipments, Colour codinand style AESTHETIC CONCEPTS der with variety, Concept of purperty, Balance, Contrast, Continuit Style in capital good. Introduction t Tota S Formative Assessment Test	OLS atitative displays ays, Design of le displays rotating Know of controls r Image, Col on, reaction ng, Psycholo ose, Style a ry, Proporti o Ergonomic I Periods End Sem	plays of po Cont obs. (s in lour l s to c gical and c ion. c and	9 s, Qu inter trols Contr auto 9 olind colou effe 9 envir Style 1 plan 4	alita s, Sig ols v mob ness ness r and cts, o onm e - nt lay 5	tiv gna sign vitl iles , d ent
Proximity, W UNIT III Displays: Des displays: Des displays, check and warning consideration nuscular effe Machine Tool UNIT IV Colour: Colou Colour consta colour consta colour consta colour and m UNIT V Concept of u Aesthetic ex components of coftware's, to Suggestive A Continuous A (20 Ma	holeness. Optical illu DESIGN PRIN sign Principles of v ck readings, Situation g lights, colour codi ns, Controls with little ort – Hand wheel, of ls. EN ancy, Colour terms – nation – colour on er achine form, colour a unity, Concept of or pressions – Symme of style, House style, stal layout design. ESSESSMENT Method Assessment Method Assessment Test arks)	sions, Influences of line and form. CIPLES FOR DISPLAY AND CONTR isual Displays, Classification, Quar hal awareness, Representative displain ing of displays, Design of multiple le efforts – Push button, Switches, no Crank, Heavy lever, Pedals. Design VVIRONMENTAL FACTORS nd objects, Colour and the eye – after Colour circles, Munsel colour notating ingineering equipments, Colour codinand style AESTHETIC CONCEPTS der with variety, Concept of purpletry, Balance, Contrast, Continuit Style in capital good. Introduction t Tota S Formative Assessment Test (20 Marks)	OLS atitative displays ays, Design of le displays otating Know of controls r Image, Col on, reaction ng, Psycholo ose, Style a y, Proporti o Ergonomic I Periods End Sem (60 Marl	plays of po Cont obs. (s in our l s to c gical and c ion. c and c and c and c and	9 s, Qu inter trols Contr auto 9 olind colou effe 9 envir Style 1 plan 4	alita s, Sig ols v mob ness r and cts, o onm e - nt lay 5	tive gna sign vitl iles , d ent
Proximity, W UNIT III Displays: Des displays: Des displays, check and warning consideration nuscular effe Machine Tool UNIT IV Colour: Colou Colour consta colour consta colour combine colour and m UNIT V Concept of u Aesthetic ex components of coftware's, to Suggestive A Continuous A	holeness. Optical illu DESIGN PRIN sign Principles of v ck readings, Situation g lights, colour codi ns, Controls with little ort – Hand wheel, (ls. EN ancy, Colour terms – nation – colour on er achine form, colour a unity, Concept of or pressions – Symme of style, House style, stal layout design. Assessment Method Assessment Test arks) exam	sions, Influences of line and form. CIPLES FOR DISPLAY AND CONTR isual Displays, Classification, Quar hal awareness, Representative displain ing of displays, Design of multiple le efforts – Push button, Switches, no Crank, Heavy lever, Pedals. Design NVIRONMENTAL FACTORS nd objects, Colour and the eye – after Colour circles, Munsel colour notating ingering equipments, Colour codinand style AESTHETIC CONCEPTS der with variety, Concept of purperty, Balance, Contrast, Continuit Style in capital good. Introduction t Tota S Formative Assessment Test	OLS atitative displays ays, Design of le displays rotating Know of controls r Image, Col on, reaction ng, Psycholo ose, Style a ry, Proporti o Ergonomic I Periods End Sem	plays of po Cont obs. (s in our l s to c gical and c ion. c and c and c and c and	9 s, Qu inter trols Contr auto 9 olind colou effe 9 envir Style 1 plan 4	alita s, Sig ols v mob ness r and cts, o onm e - nt lay 5	tiv gna sign vit iles , d a Th

Course Outcomes

Upon completion of the course, the students will be able to:

CO1: Interpret ergonomics need in the industrial design. **(Understand)**

CO2: Apply ergonomics in creation of manufacturing system. **(Apply)**

CO3: Discuss on design of controls and display. **(Apply)**

CO4: Interpret environmental factors in ergonomics design. (Apply)

CO5: Discuss the importance of aesthetics to manufacturing system and product. **(Apply)**

Text Books

- 1. Ergonomics in Design: Methods and Techniques (Human Factors and Ergonomics) by Marcelo M. Soares , Francisco Rebelo, (2017)
- **2.** Ergonomics in Product Design by Sendpoints Publishing Co. Ltd (2018)

Reference Books

- 1. Benjamin W.Niebel, Motion and Time Study, Richard, D. Irwin Inc., 7thEdition, 2012
- 2. Brain Shakel, "Applied Ergonomics Hand Book", Butterworth Scientific London, 2020.
- 3. Bridger, R.C., Introduction to Ergonomics, 2ndEdition (reprinted), 2013, McGraw Hill Publications.
- 4. Martin Helander, A Guide to human factors and Ergonomics, Taylor and Francis, 2016

Web Resources

https://www.digimat.in/nptel/courses/video/107103004/L01.html (Industrial Ergonomics in Design)

CO Vs PO Mapping and CO Vs PSO Mapping

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	1	1		1	3			1			1	3	
CO2	1	1	1		1	3			1			1	3	
CO3	1	1	3		1	3			1			1	3	
CO4	1	1	1		1	3			1			1	3	
CO5	1	1	1		1	3			1			1	3	

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Interpret ergonomics need in the industrial design (Remember, Understand)

- 1. What are the objectives in industrial ergonomics (Remember)
- 2. Draw the human machine systems and its components (Understand)

COURSE OUTCOME 2: Apply ergonomics in creation of manufacturing system (Understand, Apply)

- 1. Explain Anthropometric data and its application in ergonomics. **(Understand)**
- 2. Describe about simplicity, regularity and proximity (Apply)

COURSE OUTCOME 3: Discuss on design of controls and display (Remember, Apply)

- 1. Name five types of display and one example each? (Remember)
- 2. Write the design controls in automobiles and machine tools with examples (Apply)

COURSE OUTCOME 4: Consider environmental factors in ergonomics design. (Understand, Apply)

- 1. Explain munsell colour system. (Apply)
- 2. What is colour circle? And its application (Understand)

COURSE OUTCOME 5: Report on importance of aesthetics to manufacturing system and product (Understand, Apply)

- 1. Describe aesthetic expressions in industrial ergonomics (Apply)
- 2. What are the ways of using industrial designers?(Understand).

21ME7703	COMPI	JTATIONAL FLUID DYNAMICS		L	T	Р	C
Dronoquisit	a for the gourge			3	0	0	3
Partial Differ and Mass Tra	-	d application of Fourier series, Fluid	Mechan	ics an	d M	achin	ery, Heat
Objectives							
flo • To • To • To	w. gain knowledge on Familiarize with Fi learn the concepts	sic flow equations, characteristics of the important aspects of grid gener nite Volume techniques in Computa of time dependent and panel metho edge in both structures and unstruct	ation for tional flu ds	pract id ana	tical alysi	prob s.	U
		INDAMENTAL CONCEPTS		0		9	
UNIT I		of Fluid Dynamics – Mathematic	1		C 1	-	<u> </u>
subsonic, sup UNIT II Need for grid grid generati	bersonic and viscous d generation – Vario ion – importance of	Transformations and grids – Exp s flows GRID GENERATION ous grid generation techniques – Al f grid control functions – boundary ptic grid generation using Laplace	gebraic, v point c	confo	rma l – c	9 l and ortho	numerica gonality o
aerofoil and			s equat				
UNIT III		PANEL METHODS				9	
incompressil	ole, compressible, s g 2D panel methods tively.	ensional panels, panel singularities - ubsonic and supersonic flows – N s using both vertex and source panel IE DEPENDENT METHODS	umerical	solu	tion	of fl	ow over a
Unsteady tra Numerical so	nsonic flow around lution of unsteady 2	nethods – Time split methods – App aerofoils – Sometime dependent sol 2D heat conduction problems using S	lutions of	f gas c	lyna	mic p	
UNIT V		ITE VOLUME TECHNIQUES				9	
Time Steppir	ng – Multi-stage Tin FDM-like Finite Vo	l Centred Formulation – Lax-Vendo ne Stepping – Accuracy – Cell Verte olume Techniques – Central and	ex Formu	latior	1 – I	Multis	stage Time
		Total F	Periods			45	
Suggestive A	Assessment Method	is					
	Assessment Test	Formative Assessment Test (20 Marks)	End Ser (60 Ma		er Ex	kams	
CAT 2 – 10 M	T 1 - 10MARKS1.Assignment1. Descriptive QuestionsT 2 - 10 MARKS2. Online Quizzes3. Problem-Solving Activities						
Outcomes							
Ilnon compl	etion of the course	, the students will be able to:					
opon compi	enon of the course	, the students will be able to:					

CO 1 Explain and calculate the governing equations for fluid flow. **(Understand)**

CO 2 Explain how grids are generated. **(Understand)**

- CO 3 Describe the issues about two-phase flow modelling. (Apply)
- **CO 4** Apply the concept of discretization, upwind differencing and implicit, explicit solutions. **(Apply)**
- **CO 5** Apply finite difference and finite volume methods to fluid flow problems. **(Apply)**

Text Books

- 1. Blazek, J., "Computational Fluid Dynamics: Principles and Applications", 2nd Ed., Elsevier, 2006.
- 2. Chung. TJ, "Computational Fluid Dynamics", Cambridge University Press, 2010.

Reference Books

- 1. John D. Anderson, "Computational Fluid Dynamics", McGraw Hill Education, 2017.
- 2. John F. Wendt (Editor), "Computational Fluid Dynamics An Introduction", Springer Verlag, Berlin, 2009
- 3. Klaus A Hoffmann and Steve T. Chiang. "Computational Fluid Dynamics for Engineers", Vols. I & II Engineering Education System, P.O. Box 20078, W. Wichita, K.S., 67208 1078 USA, 2000

Web Resources

- 1. <u>https://nptel.ac.in/courses/112105045 (</u>Computational Fluid Dynamics)
- 2. <u>https://nptel.ac.in/courses/112103289 (Computational Fluid Dynamics)</u>
- 3. https://archive.nptel.ac.in/courses/112/106/112106294/ (Computational Fluid Dynamics)

CO Vs PO Mapping and CO Vs PSO Mapping

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	3	1	1	3								3	
CO2	1	3	1	1	3								3	
CO3	1	3	1	1	3								3	
CO4	1	3	1	1	3								3	
CO5	1	3	1	1	3								3	

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Explain and calculate the governing equations for fluid flow. (Remember, Understand)

- 1. How is Partial Differential Equation Classified? (Remember)
- 2. Derive an expression for the explicit method for supersonic flow . (Understand)

COURSE OUTCOME 2: Explain how grids are generated. (Remember, Understand)

- 1. Write an application of C-grid (Remember)
- 2. Explain the concept of grid generation using laplace's equation with examples. (Understand)

COURSE OUTCOME 3: Describe the issues about two-phase flow modelling. (Remember, Understand, Apply)

- 1. Write the types of Algorithms. (Remember)
- 2. Write down the application of panel methods to subsonic and supersonic flows (Understand)
- 3. Interpret the results of flow over a cylinder for lifting cases using Numerical simulation techniques. **(Apply)**

COURSE OUTCOME 4: Apply the concept of discretization, upwind differencing and implicit, explicit solutions. (Remember, Understand, Apply)

- 1. Compare the stability aspect of explicit and implicit equation solving approaches. **(Remember)**
- 2. Derive an expression for solving 2D unsteady heat transfer problem using implicit scheme and finite volume method. **(Understand)**
- 3. Demonstrate the concept of explicit methods in Unsteady transonic flow around aerofoils. (Apply)

COURSE OUTCOME 5: Apply finite difference and finite volume methods to fluid flow problems. (Remember, Understand, Apply)

- 1. State the cell vertex formulation.(Remember)
- 2. Explain the Runge-Kutta Time stepping method in detail with emphasis on stability and accuracy of the method. **(Understand)**
- 3. Illustrate with suitable example for the conservative upwind discretization of hyperbolic system. **(Apply)**

21ME7704	HVAC SYSTEMS	L	Τ	Р	С
		3	0	0	3
D	C - 1				

Prerequisites for the course

Thermal Engineering, Heat and Mass Transfer

Objectives

- To calculate direct, diffuse and reflected radiation as well as to understand clearly about various
 - incident radiation related parameters
- To calculate angle of incidence for horizontal, vertical and tilted surfaces such as walls
- To compare and contrast the conventional cooling and heating load calculations
- To understand the concept and application of various air heating systems as well as to make aware the various trouble shooting measures for common arising problems
- To classify and contrast the various water heating systems based on piping arrangement and water circulation

UNIT I HEAT TRANSFER THROUGH BUILDING STRUCTURES

Building Survey, Periodic heat transfer through walls and roofs. Empirical methods to calculate heat transfer through walls and roofs; Heat gain through glass, calculation of solar heat gain through ordinary glass tables, shading devices, effect of shading devices. Equivalent temperature difference method, Thermal resistance of various building materials, Infiltration, stack effect, wind effect.

UNIT II

HEAT LOAD DESIGNS

Winter heating load calculation, heat losses through structure, heat losses due to infiltration, Effects of solar radiation and internal heat sources on heating loads. Methods for estimating energy requirements for heating.

UNIT IIIHVAC SYSTEM DESIGN9Principles of HVAC system design and analysis; component and system selection criteria including
room air distribution, fans and air circulation, humidifying and dehumidifying processes, piping and
ducting design. Air quality standards. Control systems and techniques; operational economics. The
engineering principles and key factors influencing the thermal environments and quantification of
these factors, functional requirements of utilities, and the design of systems to local codes.

UNIT IVAIR CONDITIONING SYSTEMS9VentilationSystems; Space Heating Systems; Automatic control; Commissioning, operation and
maintenance; Introduction to HVAC & R analysis. Thermal equipment performance; Direct contact
heat and mass transfer; Component modelling and simulation; Performance analysis and optimization
of environmental plant systems. Part-load and year-round operation, system performance and
operational problems; Ventilation systems: outdoor air control, ventilation effectiveness, ADPI, fan-
duct network; filtration systems

UNIT V

AIR HEATING SYSTEMS

Primary and secondary water loops, constant and variable flow; System control: air side control, water side control; Energy requirement: cooling load profile, fan and pump power, system operation for energy effectiveness and heat recovery, chiller optimization. Thermal environment; Air quality; Energy

conservation measures; Energy codes; Noise and vibration control

	100	arrenous	75							
Suggestive Assessment Methods										
Continuous Assessment Test (20 Marks)	Formative Assessment Test 20 Marks)	End Sen (50 Mar	nester Exams [.] ks)							

Total Periods

9

9

9

45

CAT 1 – 10MARKS	1.Assignment	1. Descriptive Questions
CAT 2 – 10 MARKS	2. Online Quizzes	
DESCRIPTIVE QUESTIONS	3.Problem-Solving Activities	

Outcomes

Upon completion of the course, the students will be able to:

CO1. List the factors that impact the heating & cooling loads in buildings **(Remember)**

CO2. Discuss the internal and external cooling loads on a building by separating sensible and latent

Parts (Apply)

CO3. Analyze the heating & cooling loads and Design an HVAC system for a residential or commercial building **(Analyze)**

CO4. Analyze the various HVAC systems available and selecting the most appropriate one **(Analyze)**

CO5. Select appropriate air heating system for a particular location and application **(Analyze)**

Text Books

1. HVAC Fundamentals Volume-l / James E. Brumbou / Audel / 4th Edition

Reference Books

- 1. Fundamentals of HVAC Systems / Robert Mcdowall / Academic Press / 2007
- 2. Home Heating & Air Conditioning systems / James Kittle / MGH
- 3. HVAC Fundamentals / Samuel C. Sugarman / Fairmont Press / 2005.
- 4. Principles of Refrigeration Dossat, Pearson
- 5. R&AC Hand Book by ISHRAE

Web Resources

1. https://nptel.ac.in/courses (HVAC Systems)

CO Vs PO Mapping and CO Vs PSO Mapping

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2
C01	1	1	3	1			1							3
CO2	1	1	3	1			1							3
CO3	1	1	3	1	2		1							3
CO4	1	1	3	1	2		1							3
CO5	1	1	3	1			1							3

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1 List the factors that impact the heating & cooling loads in buildings (Remember)

1. Apply insulation considerations: If there is insulation present in the walls or roofs, consider its thermal resistance (R-value) and its impact on reducing heat transfer. The R-value represents the resistance to heat flow and should be included in the calculations. **(Remember)**

2. Understand the heat transfer mechanisms: Heat transfer can occur through conduction, convection, and radiation. It's important to consider these mechanisms while calculating the heat transfer. **(Understand)**

COURSE OUTCOME 2: Discuss the internal and external cooling loads on a building by separating sensible and latent Parts **(Apply)**

- 1. Solar radiation impact: How does solar radiation affect heating loads? **(Remember)**
- 2. Internal heat sources: What role do internal heat sources play in heating loads? (Apply)

COURSE OUTCOME 3: Analyze the heating & cooling loads and Design an HVAC system for a residential or commercial building **(Analyze)**

- 1. Components and layout: What components are involved in HVAC system design, and how should they be laid out? **(Understand)**
- 2. Load calculations: How are load calculations performed in HVAC system design? (Analyze)

COURSE OUTCOME 4: Analyze the various HVAC systems available and selecting the most appropriate one **(Analyze)**

- 1. Types of air conditioning systems: What are the different types of air conditioning systems available? **(Understand)**
- 2. Cooling capacity: How is the cooling capacity of an air conditioning system determined? (Analyze)

COURSE OUTCOME 5: Select appropriate air heating system for a particular location and application **(Analyze)**

- 1. Cooling load profile: How is the cooling load profile determined in a building? (Understand)
- 2. Fan and pump power: Specify the factors affect the power consumption of fans and pumps in HVAC systems? **(Apply)**

Francis Xavier Engineering	College Dep	pt of Mechanical	Engineering 1	R2021/Cu	rricul	lum	and	
Syllabi								

21ME7705	PROCESS P	LANNING AND COST ESTIMATIO	N	L	T	Р	C
				3	0	0	3
-	es for the course						
Objectives							
-	introduce the proc	ess planning concepts					
• Tc	o make cost estimati	on for various products after proce	ess planni	ng			
UNIT I	INTROD	UCTION TO PROCESS PLANNING				9	
	-	ess planning-Drawing interpretat quipment and tooling selection	on-Mater	ial ev	/alua	tion	– steps in
UNIT II		CESS PLANNING ACTIVITIES				9	
quality assur case studies	ance methods - Set	or various production processes-S of documents for process planning				ocess	
UNIT III		UCTION TO COST ESTIMATION				9	
estimates –	0	mation –methods of costing-elem ure- Estimation labor cost, mate ion cost					• •
UNIT IV		DUCTION COST ESTIMATION	1			9	
Estimation o	f Foundry Shop	of Jobs - Estimation of Forging S	hop, Esti	matio	n of		ding Shop,
UNIT V		HINING TIME CALCULATION Importance of Machine Time Cal	culation-	Calci	ulatio	9	Machining
	0	tions ,Drilling and Boring - Mach					0
Shaping and	Planning -Machinin	g Time Calculation for Grinding.					
Suggostivo /	Assessment Metho		Periods			45	
	Assessment Test	Formative Assessment Test	End Se	mest	er Ex	ams	
(20 Ma		(20 Marks)	(60 Ma		<u> </u>		
CAT 1 – 10 M		1.Assignment	1. Desc	riptiv	re Qu	estio	ns
CAT 2 – 10 M DESCRIPTIV	E QUESTIONS	2. Online Quizzes 3.Problem-Solving Activities					
Outcomes							
Upon compl	etion of the course	, the students will be able to:					
CO2 Prepare CO3 Explain CO4 Comput	process planning a the concept of cost e the job order cost	nt and tools for various industrial ctivity chart. (Understand) estimation. (Apply) for different type of shop floor. (A) the for various machining operation	oply)	-	ersta	nd)	
Text Books							
Books	s, Dec 2002.	lanning, Design/Manufacture Inte					
2. Sinha	B.P, Mechanical Es	timating and Costing", Tata-McGra	w Hill put	olishi	ng co	, 199	5.
Reference B	ooks						

- 1. Chitale A.V. and Gupta R.C., "Product Design and Manufacturing", 2nd Edition, PHI, 2002
- 2. Ostwalal P.F. and Munez J., "Manufacturing Processes and systems", 9 th Edition, John Wiley, 1998.
- 3. Russell R.S and Tailor B.W, "Operations Management", 4th Edition, PHI, 2003

Web Resources

- 1. https://nptel.ac.in/courses/112107238 (Process Planning and Cost Estimation)
- 2. https://nptel.ac.in/courses/105103206 (Process Planning and Cost Estimation)

CO Vs PO Mapping and CO Vs PSO Mapping

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		2	2	1							2		3	
CO2		2	2	1							2		3	
CO3		2	2	1							3		3	
CO4		2	2	1							3		3	
CO5		2	2	1							3		3	

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Select the process, equipment and tools for various industrial products (Remember, Understand)

- 1. What are parameters to determine the tool performance? (Remember)
- 2. Explain basic steps involve in process planning. (Understand)

COURSE OUTCOME 2: Prepare process planning activity chart. (Remember, Understand)

- 1. What are the functions of jig and fixture? (Remember)
- 2. Explain the various quality assurance methods in detail. (Understand)

COURSE OUTCOME 3: Explain the concept of cost estimation (Remember, Understand, Apply)

- 1. Distinguish cost estimation and cost accounting. **(Remember)**
- 2. From the following data provided by a mask machine manufacturer, find prime cost, factory cost, production cost, total coat and profit

Items	INR
Value of stock material as on 1-07-2021	52,000
Material purchased	5,48,000
Wages to workers	2,40,000
Depreciation of plant and machinery	16,000
Depreciation of office equipment	4,000
Rent, taxes and insurance	32,000
General administrative expenses	6,800
Water, power and telephone bill of factory	19,200
Water, power and telephone bill of office	5,000
Transportation in factory	4,000
Insurance and rent of office building	4,000
Direct expenses	1,00,000
Commission and pay of salesman	21,000

Syll	abi	
	Repair and maintenance	2,000
	Production Managers salary	60,000
	Salary of office staff	1,20,000
	Value of stock of material on 30-06-2021	72,000
	Sale of products	12,72,000. (Understand)
3.	Find out the production cost per gear for a transmiss	sion unit in automobile from the following
	data.	
	Charges for forging per kg	Rs. 22.5
	Wrought iron used per month @ Rs. 90 per Kg	27 tonnes
	Wages of operator	Rs. 450/day
	No of operator employed	36
	Cartage/day	Rs. 2,250
	Deprecation of machines and tools	Rs. 4500 per month
	Wages of helpers	Rs. 270 per day each
	No of helpers employed	8
	Salary of supervisor	Rs. 45,000 per month
	Packing charges for 108 gears	Rs. 360
	Electric charges	Rs. 11700 Per month
	Salary of manager and maintenance staff	Rs. 1,26,000 per month
	If 12 E00 goons are to be preduced non month and fac	stowy wyng 26 dawa a manth at 0 hawn shift

If 13,500 gears are to be produced per month and factory runs 26 days a month at 8 hour shift then what should be the selling price of each gears so as to earn profit of 20 percentage of factory cost? **(Apply)**

COURSE OUTCOME 4: Compute the job order cost for different type of shop floor (Remember, Understand, Apply)

- 1. What is shrinkage allowance? (Remember)
- 2. Calculate the cost of forging a crank shaft as show in figure 1 below using the following data available. The forging is to be made out of 50 mm dia.

Material price	Rs.100 per kg
Direct labour charges	Rs. 43 per piece
Overhead charges	150% of material cost
Density	7.5 g/cc

Losses

28% of net weight

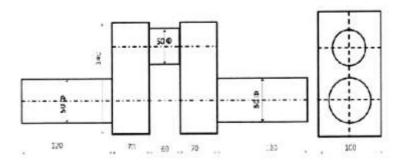
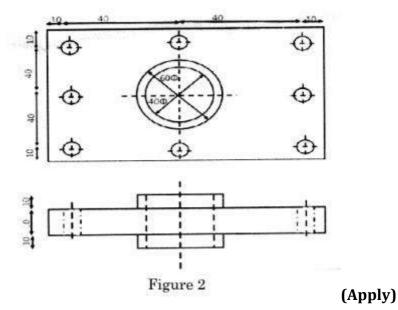


Figure 1


(Understand)

3. Calculate the cost of welding two pieces of mild steel sheets each 2 meters long and 7 mm thick. A 60° V is prepared by means of gas cutting before welding is to be commenced. The cost of oxygen is Rs. 7/cumeter and acetylene is Rs. 4/cu meter. The filler metal costs Rs. 20 per kg. The following data is also available :

The following data is also availab	ic.
For gas cutting (10 mm thick plat	te)
Cutting speed	20 m/hr
Consumption of oxygen	2 cu m/hr
Consumption of acetylene	0.2 cu m/hr
Data for rightward welding	
Consumption of oxygen	0.8 cu m/hr
Consumption of acetylene	0.8 cu m/hr
Dia of filler rod used	3.5 mm
Filler rod used per meter of weld	3.4 m
Rate of welding	3 m/hr
Density of filler metal	8 g/cc (Apply)
-	

COURSE OUTCOME 5: Calculate the machining time for various machining operations. (Remember, Understand, Apply)

- 1. What is tear down time? (Remember)
- 2. A 400 mm 2 60 mm rectangular cast iron piece is to be face milled with a carbide cutter. The cutting speed and feed are 60 m/min and 60 m/mm. If the cutter diais 80 mm with 12 cutting teeth. Find cutter r.p.m. feed per tooth, milling time. **(Understand)**
- 3. Calculate the machining time to drill eight 8 mm dia holes and one 40 mm dia central hole in the flange shown below (Figure 2). With cutting speed 10 m/min, feed for 8 mm drill 0.1 mm/rev, 40 mm drill is 0.4 mm/rev, 20 mm dia drill 0.2 mm/rev.

21ME7706	INDUS	STRIAL INTERNET OF THINGS		L	T	Р	C
210127700			-	3	0	0	3
	es for the course						
Nil							
Objectives							
		focus on basics of industrial inter ire the knowledge about various netw	· 0		idea	abou	ıt IIO'
UNIT I	INTRODU	CTION TO INDUSTRIAL INTERNET				9	
	nd IIoT – Intelligent – Logistics – IoT Innc	Devices – Industrial Internet – Healt ovations in Retail.	h care – (Dil an	d Ga	s Ind	ustry
UNIT II	TECHNICAL AND	BUSINESS INNOVATORS OF INDUS INTERNET	TRIAL			9	
		Systems – Wireless technology – IP M ig Data and Analytics – M2M Learning	-				
UNIT III	IIOT	REFERENCE ARCHITECTURE				9	
nformation	Domain, Applicatio	e Framework – Functional View n Domain, Business Domain – In er Topology – Data Management.	•	-			
UNIT IV	INDU	STRIAL INTERNET SYSTEMS				9	
		Protocols - WSN Edge Node - Lega	cv Industi	rial P	roto	cols -	-RS23
Serial Comm Protocols – Ir	unications, 40-20ma ndustrial Ethernet – I					ımun	
Serial Comm Protocols – Ir UNIT V	unications, 40-20ma ndustrial Ethernet – I MIIDDLI	a Current Loop, Field Bus Technolog Industrial Gateways. EWARE TRANSPORT PROTOCOL	gies – Mo	odern	Con	1mun 9	icatio
Serial Comm Protocols – Ir UNIT V FCP/IP, UDP Programming	unications, 40-20ma ndustrial Ethernet – I MIIDDLI , RTP, CoAP –Middl	a Current Loop, Field Bus Technolog Industrial Gateways.	gies – Mo Design p	odern	Con ns –	nmun 9 Appl	icatio licatio
Serial Comm Protocols – Ir UNIT V FCP/IP, UDP Programming	unications, 40-20ma ndustrial Ethernet – I MIIDDLI , RTP, CoAP –Middl g Interface (API) – C	a Current Loop, Field Bus Technolog Industrial Gateways. EWARE TRANSPORT PROTOCOL eware Software patterns –Software CAN Protocol-Web Services – Middle	gies – Mo Design p	odern	Con ns – ecuri	nmun 9 Appl	icatio licatio
Serial Comm Protocols – Ir UNIT V FCP/IP, UDP Programming Identity Acce	unications, 40-20ma ndustrial Ethernet – I MIIDDLI , RTP, CoAP –Middl g Interface (API) – C ss Management.	a Current Loop, Field Bus Technolog Industrial Gateways. EWARE TRANSPORT PROTOCOL eware Software patterns –Software CAN Protocol-Web Services – Middle Total 1 s	gies – Mo Design p ware IIo7 Periods	odern oatter Γ – Se	Con ns – ecuri	9 Appl ng th 45	licatio licatio le IIo7
Serial Comm Protocols – In UNIT V FCP/IP, UDP Programming dentity Acce Suggestive A Continuous	unications, 40-20ma ndustrial Ethernet – I MIIDDLI , RTP, CoAP –Middl g Interface (API) – C ss Management. Assessment Methods Assessment Test	a Current Loop, Field Bus Technolog Industrial Gateways. EWARE TRANSPORT PROTOCOL eware Software patterns –Software CAN Protocol-Web Services – Middle Total I S Formative Assessment Test	gies – Mo Design p ware IIo7 Periods	odern oatter Γ – Se Sem	Con ns – ecuri este	9 Appl ng th 45 r Exa	licatio licatio le IIo7
Serial Comm Protocols – In UNIT V FCP/IP, UDP Programming dentity Acce Suggestive A Continuous (20	unications, 40-20ma ndustrial Ethernet – I MIIDDLI , RTP, CoAP –Middl g Interface (API) – C ss Management. Assessment Methods Assessment Test 0 Marks)	a Current Loop, Field Bus Technolog Industrial Gateways. EWARE TRANSPORT PROTOCOL eware Software patterns –Software CAN Protocol-Web Services – Middle Total I S Formative Assessment Test (20 Marks)	gies – Mo Design p ware IIo7 Periods End	odern atter Γ – Se Sem (60	Con ns – ecuri ester Mar	9 Appl ng th 45 r Exa ks)	licatio licatio licatio ms
Serial Comm Protocols – In UNIT V FCP/IP, UDP Programming Identity Acce Suggestive A Continuous (20 CAT 1 – 10 M CAT 2 – 10 M	unications, 40-20ma ndustrial Ethernet – I MIIDDLI , RTP, CoAP –Middl g Interface (API) – C ss Management. Assessment Methods Assessment Test D Marks) ARKS	a Current Loop, Field Bus Technolog Industrial Gateways. EWARE TRANSPORT PROTOCOL eware Software patterns –Software CAN Protocol-Web Services – Middle Total I S Formative Assessment Test	gies – Mo Design p ware IIo7 Periods	odern atter Γ – Se Sem (60	Con ns – ecuri ester Mar	9 Appl ng th 45 r Exa ks)	iicatio licatio le IIo7 ms
Serial Comm Protocols – Ir UNIT V FCP/IP, UDP Programming Identity Acce Suggestive A Continuous (20 CAT 1 – 10 M CAT 2 – 10 M DESCRIPTIVE	unications, 40-20ma ndustrial Ethernet – I MIIDDLI , RTP, CoAP –Middl g Interface (API) – C ss Management. Assessment Methods Assessment Test O Marks) ARKS ARKS E QUESTIONS	a Current Loop, Field Bus Technolog Industrial Gateways. EWARE TRANSPORT PROTOCOL eware Software patterns –Software CAN Protocol-Web Services – Middle Total 1 S Formative Assessment Test (20 Marks) 1.Assignment 2. Online Quizzes 3.Problem-Solving Activities	gies – Mo Design p ware IIo7 Periods End	odern atter Γ – Se Sem (60	Con ns – ecuri ester Mar	9 Appl ng th 45 r Exa ks)	licatio licatio le IIo7 ms
Serial Comm Protocols – In UNIT V FCP/IP, UDP Programming dentity Acce Suggestive A Continuous (20 CAT 1 – 10 M CAT 2 – 10 M DESCRIPTIVE Dutcomes	unications, 40-20ma ndustrial Ethernet – I MIIDDLI , RTP, CoAP –Middl g Interface (API) – C ss Management. Assessment Methods (ASS Management Test (Marks) ARKS ARKS E QUESTIONS etion of the course,	A Current Loop, Field Bus Technolog Industrial Gateways. EWARE TRANSPORT PROTOCOL eware Software patterns –Software CAN Protocol-Web Services – Middle Total 1 S Formative Assessment Test (20 Marks) 1.Assignment 2. Online Quizzes 3.Problem-Solving Activities the students will be able to:	gies – Mo Design p ware IIo7 Periods End	odern atter Γ – Se Sem (60	Con ns – ecuri ester Mar	9 Appl ng th 45 r Exa ks)	licatio licatio le IIo7 ms
Serial Comm Protocols – In UNIT V FCP/IP, UDP Programming Identity Acce Suggestive A Continuous (20 CAT 1 – 10 M CAT 2 – 10 M CAT 2 – 10 M DESCRIPTIVE Dutcomes Upon comple CO1: Interpro CO2: Discuss CO3: Identify CO4: Organiz	unications, 40-20ma dustrial Ethernet – I MIIDDLI , RTP, CoAP –Middl g Interface (API) – C ss Management. Assessment Methods Assessment Test 0 Marks) ARKS ARKS E QUESTIONS etion of the course, et the company's per the different styles co various IIoT Archite a the design of Indus	A Current Loop, Field Bus Technolog Industrial Gateways. EWARE TRANSPORT PROTOCOL eware Software patterns –Software CAN Protocol-Web Services – Middle Total I S Formative Assessment Test (20 Marks) 1.Assignment 2. Online Quizzes 3.Problem-Solving Activities the students will be able to: formance using IoT (Understand) of technical and business innovators (fortures related to data management system strial Internet Systems (Apply)	gies – Mo Design p ware IIo7 Periods End 1. Des Understa ystem (Ap	odern oatter Γ – Se Sem (60 script and) oply)	Con ns – ecuri este Mar	9 Appl ng th 45 r Exa ks) Juest	iicatio licatio le IIo7 ms
Serial Comm Protocols – In UNIT V FCP/IP, UDP Programming dentity Acce Suggestive A Continuous (20 CAT 1 – 10 M CAT 2 – 10 M CAT 2 – 10 M DESCRIPTIVE Dutcomes Upon comple CO1: Interpro CO2: Discuss CO3: Identify CO4: Organiz CO5: Constru	unications, 40-20ma dustrial Ethernet – I MIIDDLI , RTP, CoAP –Middl g Interface (API) – C ss Management. Assessment Methods Assessment Test 0 Marks) ARKS ARKS E QUESTIONS etion of the course, et the company's per the different styles co various IIoT Archite a the design of Indus	A Current Loop, Field Bus Technolog Industrial Gateways. EWARE TRANSPORT PROTOCOL eware Software patterns –Software CAN Protocol-Web Services – Middle Total I S Formative Assessment Test (20 Marks) 1.Assignment 2. Online Quizzes 3.Problem-Solving Activities the students will be able to: formance using IoT (Understand) of technical and business innovators (ectures related to data management systems)	gies – Mo Design p ware IIo7 Periods End 1. Des Understa ystem (Ap	odern oatter Γ – Se Sem (60 script and) oply)	Con ns – ecuri este Mar	9 Appl ng th 45 r Exa ks) Juest	licatio licatio le IIo7 ms
Serial Comm Protocols – In UNIT V TCP/IP, UDP Programming Identity Acce Suggestive A Continuous (20 CAT 1 – 10 M CAT 2 – 10 M DESCRIPTIVE Outcomes Upon comple CO1: Interpro CO2: Discuss CO3: Identify CO4: Organiz CO5: Constru Fext Books	unications, 40-20ma ndustrial Ethernet – I MIIDDLI , RTP, CoAP –Middl g Interface (API) – C ss Management. Assessment Methods (ARKS) ARKS ARKS E QUESTIONS etion of the course, et the company's per the different styles of various IIoT Archite is the design of Indus	A Current Loop, Field Bus Technolog Industrial Gateways. EWARE TRANSPORT PROTOCOL eware Software patterns –Software CAN Protocol-Web Services – Middle Total I S Formative Assessment Test (20 Marks) 1.Assignment 2. Online Quizzes 3.Problem-Solving Activities the students will be able to: formance using IoT (Understand) of technical and business innovators (fortures related to data management system strial Internet Systems (Apply)	gies – Mo Design p ware IIoT Periods End 1. Des Understa ystem (Ap ge networ	atter Γ – Se Sem (60 script and) pply) ks (A	Con ns – ecuri este Mar tive (9 Appl ng th 45 r Exa ks) Juest	licatio licatio ne IIo7 ms ions

Reference Books

- 1. Dr. Guillaume Girardin , Antoine Bonnabel, Dr. Eric Mounier, 'Technologies Sensors for the Internet of Things Businesses & Market Trends 2014 -2024',Yole Development Copyrights, 2014.
- 2. Peter Waher, 'Learning Internet of Things', Packt Publishing, 2015.

Web Resources

1. <u>https://onlinecourses.nptel.ac.in/noc20_cs69/preview</u> (Industrial Internet of things)

										-		-		
CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2
C01	1	2	2	1	3									3
CO2	1	2	2	1	3									2
CO3	2	2	3	1	3									3
CO4	2	2	3	1	3									2
C05	2	2	3	1	3									3

CO Vs PO Mapping and CO Vs PSO Mapping

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Interpret the company's performance using IoT (Understand)

- 1. How IOT is working in oil & gas industry. Explain in detail (Remember)
- 2. Compare IOT and IIOT in terms of functionality, connectivity and usage (Understand)

COURSE OUTCOME 2: Discuss the different styles of technical and business innovators (Understand)

- 1. Compare artificial intelligence & machine learning (Understand)
- 2. Outline the domains where fog computing is used (Understand)

COURSE OUTCOME 3: Identify various IIoT Architectures related to data management system (Apply)

- 1. List out the viewpoints in industrial internet (Remember)
- 2. Build the framework of industrial internet architecture (Apply)

COURSE OUTCOME 4: Organize the design of Industrial Internet Systems (Apply)

- 1. Outline RS232 Serial Communication Protocol working and specifications (Understand)
- 2. Identify the modes of data transfer in serial communication (Apply)

COURSE OUTCOME 5: Construct a Middleware software system related to proximity edge networks (Apply)

- 1. Classify the seven software design patterns and explain with an example (Understand)
- 2. Construct the architecture of TCP/IP Protocol in IIOT (Apply)

21ME7707	MANUFACT	URING AND INSPECTION OF GEARS		L	Т	Р	С
				3	0	0	3
	es for the course						
	ng Technology						
Objectives							
•		focus the inspection process that led		-		-	
•	Develop a broad un	derstanding of the methods used to m	nanufactu	re an	d ins	pect g	ears.
UNIT I	PRODUC	CTION OF CYLINDERICAL GEARS				9	
Types of cyli	ndrical gears - Gear p	production methods - Procedure for c	utting gea	ars - (Cutte	r sele	ction -
		be gear shaping machine - Internal ge	ear cutting	g met	hod	s - CN	C gear
0	ar shaping machines						
UNIT II		DUCTION OF CONICAL GEARS				9	
	• method - Productio	on methods for straight bevel gears - n methods for spiral bevel and hypo	-	-			-
UNIT III	THODS			9			
power trans	mission - Selection	n-metallic, non-ferrous and plastic g of materials for worm and wheel on hardening - Flame hardening.					
UNIT IV	GEAR	FINISHING AND INSPECTIONS				9	
Gear quality	standards and allow Gear failure reasons a	ing - Lapping - Honing - Gear inspect vable limits - Composite error meas and remedies. ON METHODS AND PRODUCTION SY	surement				
		oing - Die casting - Powder metallurgy		Inio	ation	-	Idina
Compression	n moulding of plastic tch production - Gea	gears - Cold and hot rolling - Gear r production cells - Automobile gear	r broachi	ng -	Gear	prod	uction
		Total	Periods			45	
00	Assessment Method	S					
(2	s Assessment Test 0 Marks)	Formative Assessment Test (20 Marks)	End	Sem (60		r Exar ks)	ns
CAT 1 – 10 M CAT 2 – 10 M DESCRIPTIV	-	 Assignment Online Quizzes Problem-Solving Activities 	1. Des	-)uesti	ons
Course Outo	comes		1				
Upon compl	etion of the course,	the students will be able to:					
CO2: Discuss CO3: Illustra CO4: Examin	s the manufacturing n te the gear materials he the gear quality and	nufacturing cylindrical gears (Understan nethods of conical gears (Understand) and hardening methods (Apply) d standards (Apply) on methods and systems of gears (App					
Text Books	^						
1. H.J.V		[•] Production", 1 st edition, Pergamon, 2 Production Technology" Wiley, 2018.	2013.				
Reference B	ooks						

- 1. Thomas Bergs and Christian Brecher, "Aachen Forum on Gear Production: Gear Finishing Technology and Quality Inspection" 9th edition, 2021,
- 2. Stephen and Radzevich, "Dudley's Handbook of Practical Gear Design and Manufacture", 4th edition, CRC Press, 2021.

Web Resources

1. https://nptel.ac.in/courses/112105234 (Manufacturing and Inspection of Gears)

CO Vs PO Mapping and CO Vs PSO Mapping

CO	PO	PO1	PO1	PO1	PSO	PSO								
CO	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO1	1	2	1			1							3	
CO2	1	2	1			1							3	
CO3	1	2	1			1							3	
CO4	1	2	1			1							3	
CO5	1	2	1			1							3	

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Interpret the methods of manufacturing cylindrical gears (Understand)

- 1. List out the different types of cylindrical gears. Explain in detail (Remember)
- 2. Describe the rack type gear shaping machine (Understand)

COURSE OUTCOME 2: Discuss the manufacturing methods of conical gears (Understand)

- 1. Describe the straight bevel gear & spiral bevel gear (Understand)
- 2. Outline the duplex rotary cutter method where it is used (Understand)

COURSE OUTCOME 3: Illustrate the gear materials and hardening methods (Apply)

- 1. List out the viewpoints in hardening process (Remember)
- 2. Illustrate the selection of gear materials for transmission system (Apply)

COURSE OUTCOME 4: Examine the gear quality and standards (Apply)

- 1. Discuss the various gear inspection methods (Understand)
- 2. Identify the gear failures and remedies (Apply)

COURSE OUTCOME 5: Describe the mass production methods and systems of gears (Apply)

- 1. Classify the mass production methods of gears (Understand)
- 2. Illustrate the die casting and powder metallurgy process (Apply)

21ME7708	PRECISION MANUFACTURING	L	Т	Р	С
		3	0	0	3
D	C - 1				

Prerequisites for the course

Nil

Objectives

• This course deals with precision manufacturing, micro machining and fundamental design requirements of precision machine tools. It also provides insights on machine surface characteristics and error detection methods.

UNIT I	INTRODUCTION	9
Need for Pr	ecision Manufacturing - Taniguchi Diagram - Four Classes of A	Achievable Machining
Accuracy – N	ormal Precision - High-Precision - Ultra-Precision Processes and Na	anotechnology.

 UNIT II
 PRECISION MACHINING AND UNCONVENTIONAL
 9

 MICROMACHINING TECHNIQUES
 9

Overview of Micro and Nano Machining - Conventional Micro Machining Techniques - Ultrasonic Micromachining - Photochemical Machining - Electro Chemical Micromachining - Laser Beam Micromachining - Electron Beam Micromachining

UNIT III MACHINE DESIGN FOR PRECISION MANUFACTURING

Philosophy of Precision Machine Design - Ultra-Precision Machine Elements: Guide Ways - Drive Systems - Friction Drive - Linear Motor Drive - Spindle Drive. Bearings: Principle - Construction and Application of Rolling - Hydrodynamic and Hydrostatic Bearings

UNIT IVMECHANICAL AND THERMAL ERRORS9Sources of Error - Principles of Measurement - Errors Due to Machine Elements - Bearings - Spindles- Kinematic Design - Structural Compliance - Vibration - Thermal Effects - Environmental Control of
Precision Machinery. Error Mapping and Error Budgets.

UNIT V DIMENSIONAL METROLOGY FOR MICRO MACHINING

Laser Tracking Systems - Laser Scanners, White Light Interference 3D Microscopes - Metrology: 3D Surface Topography – Non-Optical Scanning Microscopy – Scanning Electron Microscopes - Scanning Probe Microscopes - Parameters for Characterizing 3D Surface Topography.

	Total	Periods	45
Suggestive Assessment Method	S		
Continuous Assessment Test (20 Marks)	Formative Assessment Test (20 Marks)		Semester Exams (60 Marks)
CAT 1 – 10 MARKS CAT 2 – 10 MARKS DESCRIPTIVE QUESTIONS	 Assignment Online Quizzes Problem-Solving Activities 	1. Des	criptive Questions

Course Outcomes

Upon completion of the course, the students will be able to:

CO1: Illustrate the precision engineering and machining accuracy. (Understand)

CO2: Explain the working principle of different precision machining process. **(Understand)**

CO3: Choose the basic design requirements for the construction of precision machine tools. **(Apply)**

CO4: Identify various errors affecting the accuracy of precision manufacturing **(Apply)**

CO5: Apply a suitable measurement technique to measure and characterize the features of precision machined components. **(Apply)**

Text Books

1. Richard Leach, Stuart T. Smith, "Basics of Precision Engineering", CRC Press, 2018.

2. Wei Gao, "Metrology (Precision Manufacturing)" Springer, 2019.

9

9

Reference Books

- 1. Giovanni Lucchetta, "Advances in Micro and Nano Manufacturing: Process Modeling and Applications", Mdpi AG, 2022,
- 2. Jain V.K., "Introduction to Micromachining", 2nd Edition, Narosa Publishers, New Delhi, 2018.

Web Resources

1. https://nptel.ac.in/courses/112105231 (Precision Manufacturing)

CO Vs PO Mapping and CO Vs PSO Mapping

CO	PO	РО	PO	PO1	PO1	PO1	PSO	PSO						
CO	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO1	1	2	3			1							3	
CO2	1	2	3			1							3	
CO3	2	2	3			1							3	
CO4	2	2	3			1							3	
CO5	2	2	3			1							3	

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Illustrate the concepts of precision engineering and machining accuracy (Understand)

- 1. List out the various types of precision process. Explain in detail (Remember)
- 2. Describe the ultra-precision process and nanotechnology (Understand)

COURSE OUTCOME 2: Explain the working principle of different precision machining process. (Understand)

- 1. Describe the working of electro chemical micro machining process (Understand)
- 2. Discuss the laser beam machining. where it is used (Understand)

COURSE OUTCOME 3: Choose the basic design requirements for the construction of precision machine tools. (Apply)

- 1. Describe the Construction and Application of Rolling (Remember)
- 2. Illustrate the working of hydrostatic and hydrodynamic bearings (Apply)

COURSE OUTCOME 4: Identify various errors affecting the accuracy of precision manufacturing (Apply)

- 1. Discuss the error mapping and error budgets (Understand)
- 2. Identify the various error affecting the precision manufacturing (Apply)

COURSE OUTCOME 5: Apply a suitable measurement technique to measure and characterize the features of precision machined components. (Apply)

- 1. Differentiate the scanning electron microscope and scanning probe microscope (Understand)
- 2. Illustrate the white Light Interference 3D Microscopes (Apply)

TRADITIONAL AND NON-TRADITIONAL OPTIMIZATION	L	Т	Р	С	
TOOLS	3	0	0	3	
or the course					

Prerequisites for the course

Nil

Objectives

21ME7709

- To know the introduction and classical optimization techniques.
- To understand the linear programming techniques to solve problems
- To understand the non-linear programming: one dimensional minimization method.
- To understand the non-linear programming: Unconstrained and Constrained Optimization Techniques
- To understand the evolutionary algorithms in optimization.

UNIT I	INTRODUCT	TON AND CLASSICAL OPTIMIZATIO	ON	9
		TECHNIQUES	D :	
		ering applications of Optimization,		
	-	unction, Classification of Optimiza		-
-		constrained multi-variable optimiza	tion, Direc	t substitution method,
		, Karush-Kuhn-Tucker conditions		
UNIT II		AND NON LINEAR PROGRAMMING		9
		aphical Solution of an LP problem,		
	•	restricted search, Exhaustive search	•	nous search, Interval
halving meth	od, Fibonacci metho	d, Golden section method, Direct roo	t methods	
UNIT III	NON-LINEAR F	ROGRAMMING: UNCONSTRAINED	AND	9
	CONSTRA	INED OPTIMIZATION TECHNIQUES	5	
UNCONSTRA	INED: Types of Dire	ect Search Methods - Random search	h methods	, Grid search method,
Univariate n	nethod. Types of In	direct Search Methods: Steepest de	escent me	thod, Fletcher-Reeves
method CON	STRAINED: Types o	f Direct Search Methods: Random s	earch met	hod, Sequential linear
programmin	g. Indirect methods	: Transformation techniques, Exte	erior pena	lty function method,
Interior pena	alty function method	-	_	-
UNIT IV	INTRODUC	FION TO NON-TRADITIONAL TOOI	LS	9
Introduction	- Genetic Algorithm	s: Representation of Design Variabl	es - Repre	sentation of Objective
		tic Operators – Algorithm - Numeric		
		es of the Method - Numerical Result		
		of PSO - Improvement to the Particle		
-	ne Constrained Optim	-		•
UNIT V	ANT COLONY OPT	IMIZATION AND OPTIMIZATION O	F FUZZY	9
		SYSTEMS		
	-	Searching Behavior - Path Retraci	-	
		Algorithm - Optimization of Fuzz		
-		- Computational Procedure - Nume	rical Resu	lts – Neural Network
Based Optim	ization			
		Tota	Periods	45
Suggestive A	Assessment Method	S		
Continuous	Assessment Test	Formative Assessment Test	End Ser	nester Exams
(20 Ma	arks)	(20 Marks)	(60 Ma	rks)
CAT 1 – 10 M	IARKS	1.Assignment	1. Descr	iptive Questions
CAT 2 – 10 M	IARKS	2. Online Quizzes		
DESCRIPTIV	E QUESTIONS	3.Problem-Solving Activities		
Outcomes		1		

Upon completion of the course, the students will be able to:

CO1: Apply the classical optimization techniques to solve the problems. **(Apply)**

CO2: Solve problems using linear and nonlinear programming techniques (Apply)

CO3: Apply the constrained and unconstrained optimization techniques to solve problems **(Apply)**

CO4: Use the evolutionary algorithms for the multivariable problems. **(Apply)**

CO5: Solve multivariable problems using Ant colony and fuzzy system optimization methods (Apply)

Text Books

1. Singiresu S.Rao, "Engineering Optimization", Vth Edition, John Wiley&Sons, 2020.

Reference Books

- 1. David G Luenberger, Yinyu Ye, "Linear and Non-linear Programming", Springer 2015
- 2. Kalyanmoy Deb," Optimization for Engineering Design", PHI Publications 2012

Web Resources

1. https://nptel.ac.in/courses/112105235 (Traditional and Non-Traditional Optimization Tools)

CO Vs PO Mapping and CO Vs PSO Mapping

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	1	2	2	3								3	
CO2	1	1	2	2	3								3	
CO3	1	1	2	2	3								3	
CO4	1	1	2	2	3								3	
CO5	1	1	2	2	3								3	

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Students will be able to Apply the classical optimization techniques to solve the problems. (Apply)

1. Ten jobs are to be performed in an automobile assembly line as noted in the following table:

Job number	Time required to complete the job (min)	Jobs that must be completed before starting this job
1	4	None
2	8	None
3	7	None
4	6	None
4 5	3	1, 3
6	5	2, 3, 4
7	1	5,6
8	9	6
9	2	7,8
10	8	9

It is required to set up a suitable number of workstations, with one worker assigned to each workstation, to perform certain jobs. Formulate the problem of determining the number of workstations and the particular jobs to be assigned to each workstation to minimize the idle time of the workers as an integer programming problem.

Hint: Define variables x_{ij} such that $x_{ij} = 1$ if job *i* is assigned to station *j*, and $x_{ij} = 0$ otherwise.

2. A pipe of length *l* and diameter *D* has at one end a nozzle of diameter *d* through which water is discharged from a reservoir. The level of water in the reservoir is maintained at a constant value h above the center of nozzle. Find the diameter of the nozzle so that the kinetic energy of the jet is a maximum. The kinetic energy of the jet can be expressed as

$$\frac{1}{4}\pi\rho d^2 \left(\frac{2gD^5h}{D^5 + 4fld^4}\right)^{3/2}$$

Where ρ is the density of water, *f* the friction coefficient and g the gravitational constant.

COURSE OUTCOME 2: Solve problems using linear and nonlinear programming techniques (Apply)

State the following LP problem in standard form:

Maximize
$$f = -2x_1 - x_2 + 5x_3$$

subject to

subject to

$$x_1 - 2x_2 + x_3 \le 8$$

$$3x_1 - 2x_2 \ge -18$$

$$2x_1 + x_2 - 2x_3 \le -4$$
Find the solution of the following LP problem graphically:
Maximize $f = 2x_1 + 6x_2$

 $-x_1 + x_2 \le 1$ $2x_1 + x_2 \le 2$ $x_1 \ge 0, \quad x_2 \ge 0$

subject to

COURSE OUTCOME 3: Apply the constrained and unconstrained optimization techniques to solve problems (Apply)

1. Find the minimum of the function $f = \lambda^5 - 5\lambda^3 - 20\lambda + 5$ by the following methods:

(Apply) Unrestricted search with a fixed step size of 0.1 starting from $\lambda = 0.0$

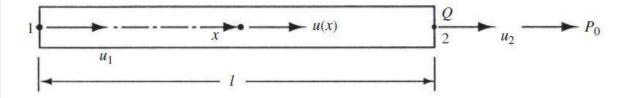
(b) Unrestricted search with accelerated step size from the initial point 0.0 with a starting step length of 0.1

- (c) Exhaustive search in the interval (0,5)
- (d) Dichotomous search in the interval (0,5) with δ = 0.0001
- (e) Interval halving method in the interval (0,5)
- (f) Fibonacci search in the interval (0,5)
- (g) Golden section method in the interval (0,5)

2.

A bar is subjected to an axial load, P_0 , as shown in Figure 6.17. By using a one-finite-element model, the axial displacement, u(x), can be expressed as [6.1]

$$u(x) = \{N_1(x) \qquad N_2(x)\} \begin{cases} u_1 \\ u_2 \end{cases}$$


where $N_i(x)$ are called the shape functions:

$$N_1(x) = 1 - \frac{x}{l}, \qquad N_2(x) = \frac{x}{l}$$

and u_1 and u_2 are the end displacements of the bar. The deflection of the bar at point Q can be found by minimizing the potential energy of the bar (f), which can be expressed as

$$f = \frac{1}{2} \int_0^l EA\left(\frac{\partial u}{\partial x}\right)^2 dx - P_0 u_2$$

where E is Young's modulus and A is the cross-sectional area of the bar. Formulate the optimization problem in terms of the variables u_1 and u_2 for the case $P_0 l/EA = 1$.

COURSE OUTCOME 4: Use the evolutionary algorithms for the multivariable problems (Apply)

1.

Consider the following two strings denoting the vectors \mathbf{X}_1 and \mathbf{X}_2

$$\mathbf{X}_1 : \{1000101101\}$$
$$\mathbf{X}_2 : \{0111110110\}$$

Find the result of crossover at location 2. Also, determine the decimal values of the variables before and after crossover if each string denotes a vector of two variables.

2.

Find the maximum of the function $f = -x^5 + 5x^3 + 20x - 5$ in the range $-4 \le x \le 4$ using the PSO method. Use 4 particles with the initial positions $x_1 = -2$, $x_2 = 0$, $x_3 = 1$, and $x_4 = 3$. Show detailed calculations for 2 iterations.

COURSE OUTCOME 5: Solve multivariable problems using Ant colony and fuzzy system optimization methods. (Apply)

1. Find the minimum of the function $f(x) = x^2 - 2x - 11$ in the range (0, 3) using the ant colony optimization method. **(Apply)**

2. Two discrete fuzzy sets, A and B are defined as follows:

 $A = \{ (60, 0.1) \ (62, 0.5) \ (64, 0.7) \ (66, 0.9) \ (68, 1.0) \ (70, 0.8) \}$

 $B = \{(60, 0.0) \ (62, 0.2) \ (64, 0.4) \ (66, 0.8) \ (68, 0.9) \ (70, 1.0) \}$

Determine the union and intersection of these sets. (Apply)

21ME7710	VEH	HICLE STYLING AND DESIGN		L	Τ	Р	C
				3	0	0	3
	es for the course						
Nil							
Objectives							
		nicle styling, vehicle interior and exten	-		uton	notive	e parts
It also	o provides standards,	tests and norms for an automotive pa	arts/syste	em.			
UNIT I		VEHICLE STYLING				9	
-		sketching - Two-wheeler and Four-w wo-wheeler and Four-wheeler sketch			-		
UNIT II	SELECTION O	F ENGINE AND TRANSMISSION FOR AUTOMOBILE	AN			9	
		design - Engine selection criteria -					
0 0	ansmission character	l economy - Engine life and pollutio ristics - Power limited acceleration -					
UNIT III		ACTING IN CRANK MECHANISM				9	
acceleration		and acceleration - Instantaneous ltant force - Turning moment of sing crank mechanism.		-			-
UNIT IV		ENGINE BALANCING				9	
-	single cylinder, two- inline and v-type eng	cylinder, four cylinder and six-cylind gines.	er in- line	e engi	nes.	Comj	pariso
UNIT V	STANDARDS, TH	ESTS AND NORMS FOR AN AUTOMO	TIVE			9	
		PART/SYSTEM					
	by various stake hole	PART/SYSTEM s for automobile industry - Working e der tests - Test conditions to verify p					
& handling b	by various stake hole	s for automobile industry - Working e der tests - Test conditions to verify j			l failı		
& handling b Emission nor	by various stake hole	s for automobile industry - Working e der tests - Test conditions to verify p Total	part agair Periods	ist all	l failı	ure n 45	nodes
& handling b Emission nor Suggestive A Continuous	oy various stake holo rms. Assessment Method S Assessment Test O Marks)	s for automobile industry - Working e der tests - Test conditions to verify Total 1 s Formative Assessment Test (20 Marks)	part agair Periods End	st all Sem (60	l failt ester Marl	are n 45 r Exa ks)	nodes ms
& handling b Emission nor Suggestive A Continuous (2) CAT 1 – 10 M	by various stake hole rms. Assessment Method S Assessment Test O Marks) IARKS	s for automobile industry - Working e der tests - Test conditions to verify p Total 1 s Formative Assessment Test (20 Marks) 1.Assignment	part agair Periods	st all Sem (60	l failt ester Marl	are n 45 r Exa ks)	nodes ms
& handling b Emission nor Suggestive A Continuous (2) CAT 1 – 10 M CAT 2 – 10 M	by various stake hole rms. Assessment Method S Assessment Test O Marks) IARKS IARKS	s for automobile industry - Working e der tests - Test conditions to verify Total 1 s Formative Assessment Test (20 Marks) 1.Assignment 2. Online Quizzes	part agair Periods End	st all Sem (60	l failt ester Marl	are n 45 r Exa ks)	nodes ms
& handling b Emission nor Suggestive A Continuous (2 CAT 1 – 10 M CAT 2 – 10 M	by various stake hole rms. Assessment Method S Assessment Test O Marks) IARKS	s for automobile industry - Working e der tests - Test conditions to verify p Total 1 s Formative Assessment Test (20 Marks) 1.Assignment	part agair Periods End	st all Sem (60	l failt ester Marl	are n 45 r Exa ks)	nodes ms
& handling b Emission nor Suggestive A Continuous (2) CAT 1 – 10 M CAT 2 – 10 M DESCRIPTIV	by various stake hole cms. Assessment Method S Assessment Test O Marks) IARKS IARKS E QUESTIONS	s for automobile industry - Working e der tests - Test conditions to verify Total 1 s Formative Assessment Test (20 Marks) 1.Assignment 2. Online Quizzes	part agair Periods End	st all Sem (60	l failt ester Marl	are n 45 r Exa ks)	nodes ms
& handling b Emission nor Suggestive A Continuous (2) CAT 1 – 10 M CAT 2 – 10 M DESCRIPTIV Course Outc	by various stake hole rms. Assessment Method S Assessment Test O Marks) IARKS IARKS E QUESTIONS	s for automobile industry - Working e der tests - Test conditions to verify Total 1 s Formative Assessment Test (20 Marks) 1.Assignment 2. Online Quizzes	part agair Periods End	st all Sem (60	l failt ester Marl	are n 45 r Exa ks)	nodes ms
& handling b Emission nor Suggestive A Continuous (2) CAT 1 – 10 M CAT 2 – 10 M DESCRIPTIV Course Outc Upon compl CO1: Illustra	by various stake hole cms. Assessment Method s Assessment Test 0 Marks) IARKS IARKS E QUESTIONS comes etion of the course, te the concepts of ve	s for automobile industry - Working e der tests - Test conditions to verify p Total 1 s Formative Assessment Test (20 Marks) 1.Assignment 2. Online Quizzes 3.Problem-Solving Activities the students will be able to: hicle interior and exterior parts desig	part again Periods End 1. Des n. (Under	Sem (60 script	l failt ester Marl tive (ure n 45 r Exa ks) Juest	nodes ms
& handling b Emission nor Suggestive A Continuous (2) CAT 1 – 10 M CAT 2 – 10 M DESCRIPTIV Course Outc Upon compl CO1: Illustra CO2: Select e	by various stake hole cms. Assessment Method S Assessment Test O Marks) IARKS IARKS E QUESTIONS Comes etion of the course, te the concepts of vel-	s for automobile industry - Working e der tests - Test conditions to verify p Total 1 s Formative Assessment Test (20 Marks) 1.Assignment 2. Online Quizzes 3.Problem-Solving Activities the students will be able to: hicle interior and exterior parts desig ion of a vehicle for a particular application	part again Periods End 1. Des n. (Under	Sem (60 script	l failt ester Marl tive (ure n 45 r Exa ks) Juest	nodes ms
& handling b Emission nor Suggestive A Continuous (2) CAT 1 – 10 M CAT 2 – 10 M DESCRIPTIV Course Outco Upon compl CO1: Illustra CO2: Select e CO3: Determ	by various stake hole cms. Assessment Method S Assessment Test 0 Marks) IARKS IARKS E QUESTIONS comes letion of the course, te the concepts of vel- engine and transmiss line forces in engine of	s for automobile industry - Working e der tests - Test conditions to verify p Total 1 s Formative Assessment Test (20 Marks) 1.Assignment 2. Online Quizzes 3.Problem-Solving Activities the students will be able to: hicle interior and exterior parts desig ion of a vehicle for a particular applicators crank mechanism. (Apply)	part again Periods End 1. Des n. (Under ation. (Un	sem (60 script	ester Marl tive (d) tand	ure n 45 r Exa ks) Juest	nodes ms
& handling b Emission nor Suggestive A Continuous (2) CAT 1 – 10 M CAT 2 – 10 M DESCRIPTIV Course Outc Upon compl CO1: Illustra CO2: Select e CO3: Determ CO4: Suggest	by various stake hole cms. Assessment Method S Assessment Test O Marks) IARKS IARKS E QUESTIONS Comes etion of the course, te the concepts of vel engine and transmiss line forces in engine of t suitable firing order	s for automobile industry - Working e der tests - Test conditions to verify p Total 1 s Formative Assessment Test (20 Marks) 1.Assignment 2. Online Quizzes 3.Problem-Solving Activities the students will be able to: hicle interior and exterior parts desig ion of a vehicle for a particular application crank mechanism. (Apply)	part again Periods End 1. Des n. (Under ation. (Un noments.	Sem (60 script rstan iders (App	l failu ester Marl tive (d) tand	ure n 45 • Exa ks) Juest	ms ions
& handling b Emission nor Suggestive A Continuous (2) CAT 1 – 10 M CAT 2 – 10 M DESCRIPTIV Course Outc Upon compl CO1: Illustra CO2: Select e CO3: Determ CO4: Suggest	by various stake hole cms. Assessment Method S Assessment Test 0 Marks) IARKS IARKS E QUESTIONS comes letion of the course, te the concepts of vel engine and transmiss line forces in engine of t suitable firing order ibe the test proce	s for automobile industry - Working e der tests - Test conditions to verify p Total 1 s Formative Assessment Test (20 Marks) 1.Assignment 2. Online Quizzes 3.Problem-Solving Activities the students will be able to: hicle interior and exterior parts desig ion of a vehicle for a particular applicators crank mechanism. (Apply)	part again Periods End 1. Des n. (Under ation. (Un noments.	Sem (60 script rstan iders (App	l failu ester Marl tive (d) tand	ure n 45 • Exa ks) Juest	ms ions

- 1. A.K. Babu, S.C. Sharma, T.R. Banga, "Automobile Mechanics" 1st Edition, Khanna Publishers, 2018.
- 2. Kirpal Singh, "Automobile Engineering" Volume-1&2, 13thEdition, Standard Publishers Distributers, Delhi, 2017.

Reference Books

- 1. Harald Naunheimer, Bernd Bertsche, Joachim Ryborz, "Automotive Transmissions: Fundamentals, Selection, Design and Application", 2nd Edition, Springer, 2014.
- 2. Thomas D. Gillespie, "Fundamentals of Vehicle Dynamics", 2021.

Web Resources

1. https://nptel.ac.in/courses/107106088 (Vehicle Styling And Design)

CO Vs PO Mapping and CO Vs PSO Mapping

CO	PO	PO	PO	РО	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO
CO	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO1	2	1	3										3	
CO2	1	2	3										3	
CO3	2	1	3		1								3	
CO4	2	1	3		2								3	
CO5	1	2	3		1								3	

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Illustrate the concepts of vehicle interior and exterior parts design (Understand)

- 1. Discuss the interior and exterior design for two-wheeler vehicle. **(Understand)**
- 2. Enlist various types of sketches used for four-wheeler vehicle (Remember)

COURSE OUTCOME 2: Select engine and transmission of a vehicle for a particular application. (Understand)

- 1. How to design a transmission system for a passenger car? (Remember)
- 2. Discuss on the factors considered in selecting orientation of engine, fuel, method of cooling for given vehicle layout and requirement. **(Understand)**

COURSE OUTCOME 3: Determine forces in engine crank mechanism. (Apply)

- 1. Describe the expressions for instantaneous piston velocity, piston acceleration, connecting rod angular velocity and angular acceleration at any crank angle? **(Remember)**
- 2. Design a detailed procedure of engine crank mechanism (Apply)

COURSE OUTCOME 4: Suggest suitable firing order for engines by balancing forces and moments. (Apply)

- 1. Prove that 4-stroke, 6-cylinder engine with firing order of 1-5-3-6-2-4 is completely balanced. **(Apply)**
- **2.** Choose a firing order for 4-stroke, 4 cylinder engine, based on engine balancing. **(Understand)**

COURSE OUTCOME 5: Describe the test procedures, standards and norms for an automobile/sub system. (Understand)

- 1. Write down BS-IV norms for 2&3 wheelers powered by petrol. (Understand)
- 2. Discuss how rotation bending fatigue test and radial load durability test are done on alloy wheel rims of 2-wheelers. **(Understand)**

PROFESSIONAL ELECTIVE - V

21ME7711	PRODU	CT DESIGN AND DEVELOPMENT		L	Τ	Р	C
				3	0	0	3
Prerequisit	es for the course						
Nil							
Objectives							
To pr	ovide the basic conce corporate them suital	pts of product design, product featu oly in product.	ires and its	archi	tectu	re	
UNIT I		INTRODUCTION				9	
material sup customer –	plier and process plan prompting customer s – Organization – pr	tance of Product development – in nner, Competitor and customer – B understanding – involve custome rocess management and improvem	ehaviour an r in develo	nalysi opmer	s. Un 1t an	derst d ma	anding
UNIT II		T GENERATION AND SELECTION				9	
		 clarification – search – exter utions and processes – concept sele 	-		-		-
UNIT III	P	RODUCT ARCHITECTURE				9	
level design	issues – secondary	elopment – fundamental and incide systems – architecture of the chu					
level design specification UNIT IV Integrate pr Simulating p design – imp investigation	issues – secondary s s. ocess design – Mana product performance pact – design process of customer needs	systems – architecture of the chur INDUSTRIAL DESIGN aging costs – Robust design – Int and manufacturing processes ele s – investigation for industrial des – conceptualization – refinement	nks – creat egrating CA ctronically sign – impa – manager	AE, CA - Ne nct - 0 nent	AD, (ed fo desig	ed in 9 CAM or inc n pro e inc	terfac tools lustria ocess lustria
level design specification UNIT IV Integrate pr Simulating p design – imp investigation design proce	issues – secondary s s. ocess design – Mana product performance pact – design process of customer needs ess – technology driv	systems – architecture of the chu INDUSTRIAL DESIGN aging costs – Robust design – Int and manufacturing processes ele s – investigation for industrial des	nks – creat egrating CA ctronically sign – impa – manager	AE, CA - Ne nct - 0 nent	AD, (ed fo desig	ed in 9 CAM or inc n pro e inc	terfact tools lustria ocess lustria
level design specification UNIT IV Integrate pr Simulating p design – imp investigation design proce industrial de UNIT V	issues – secondary s s. ocess design – Mana oroduct performance pact – design process of customer needs ess – technology driv sign. DESIGN FOI	systems – architecture of the chur INDUSTRIAL DESIGN aging costs – Robust design – Int and manufacturing processes ele s – investigation for industrial des – conceptualization – refinement ven products – user – driven pro R MANUFACTURING AND PRODUC DEVELOPMENT	nks – creat egrating CA ctronically sign – impa – manager ducts – as C T	ting d AE, CA – Ne act – o nent sessir	etail AD, (ed fc desig of th ng th	ed in 9 CAM or inc n pro e inc e qua 9	tools lustria ocess lustria ality o
level design specification UNIT IV Integrate pro- Simulating pro- design – imp investigation design proce industrial de UNIT V Definition – Minimize sys – Economic	issues – secondary s s. ocess design – Mana oroduct performance pact – design process of customer needs ess – technology driv sign. DESIGN FOH Estimation of Manufa stem complexity – Pro- Analysis – Unders	systems – architecture of the chur INDUSTRIAL DESIGN aging costs – Robust design – Int and manufacturing processes ele s – investigation for industrial des – conceptualization – refinement ven products – user – driven pro R MANUFACTURING AND PRODUC DEVELOPMENT acturing cost – reducing the compo ototype basics – principles of proto standing and representing tasks	nks – creat egrating CA ctronically sign – impa – manager ducts – as CT Onent costs otyping – pl	AE, CA – Ne act – o nent sessir and a	etaile AD, C ed fo desig of th ng th asser	ed in 9 CAM or incon e inco e qua 9 nbly prot	terface tools - lustria ocess - lustria ality o costs - cotype
level design specification UNIT IV Integrate pro- Simulating procession design – imp investigation design procession design procesion de	issues – secondary s s. ocess design – Mana oroduct performance pact – design process of customer needs ess – technology driv sign. DESIGN FOH Estimation of Manufa stem complexity – Pro	systems – architecture of the chur INDUSTRIAL DESIGN aging costs – Robust design – Int and manufacturing processes ele s – investigation for industrial des – conceptualization – refinement ven products – user – driven pro R MANUFACTURING AND PRODUC DEVELOPMENT acturing cost – reducing the compo ototype basics – principles of protoc standing and representing tasks execution.	nks – creat egrating CA ctronically sign – impa – manager ducts – as CT Onent costs otyping – pl	AE, CA – Ne act – o nent sessir and a	etail AD, C ed fo desig of th ng th asser ng for ject	ed in 9 CAM or incon e inco e qua 9 nbly prot	terface tools - lustria ocess - lustria ality o costs - cotype
level design specification UNIT IV Integrate pro- Simulating procession design – implication design procession design	issues – secondary s s. ocess design – Mana oroduct performance pact – design process of customer needs ess – technology driv sign. DESIGN FOH Estimation of Manufa stem complexity – Pro Analysis – Unders the project – project of	systems – architecture of the chur INDUSTRIAL DESIGN aging costs – Robust design – Int and manufacturing processes ele s – investigation for industrial des – conceptualization – refinement ven products – user – driven pro R MANUFACTURING AND PRODUC DEVELOPMENT acturing cost – reducing the compo ototype basics – principles of proto standing and representing tasks execution. Tota	nks – creat egrating CA ctronically sign – impa – manager oducts – as oducts – as CT Onent costs otyping – pl – baseline	AE, CA – Ne act – o nent sessir and a	etail AD, C ed fo desig of th ng th asser ng for ject	ed in 9 CAM or inc n pro e inc e qua 9 nbly prot plan	terfac tools lustria ocess lustria ality o costs cotype
level design specification UNIT IV Integrate pro- Simulating pro- design – imp investigation design proce industrial de UNIT V Definition – Minimize sys – Economic accelerating	issues – secondary s s. ocess design – Mana oroduct performance pact – design process of customer needs ess – technology driv sign. DESIGN FOH Estimation of Manufa stem complexity – Pro Analysis – Unders the project – project of Assessment Methods Assessment Test	systems – architecture of the chur INDUSTRIAL DESIGN aging costs – Robust design – Int and manufacturing processes ele s – investigation for industrial des – conceptualization – refinement ven products – user – driven pro R MANUFACTURING AND PRODUC DEVELOPMENT acturing cost – reducing the compo ototype basics – principles of proto standing and representing tasks execution. Tota	nks – creat egrating CA ctronically sign – impa – manager oducts – as oducts – as CT Onent costs otyping – pl – baseline	AE, CA - Ne nent sessir and a annir e pro	etail AD, C ed fo desig of th ng th asser ng for ject	ed in 9 CAM or inc e inc e qua 9 nbly prot plan 45	terfac tools lustria ocess lustria ality o costs cotype
level design specification UNIT IV Integrate pro- Simulating procession design – imp investigation design procession design procesion desi	issues – secondary s s. ocess design – Mana oroduct performance pact – design process of customer needs ess – technology driv sign. DESIGN FOH Estimation of Manufa stem complexity – Pro Analysis – Unders the project – project of Assessment Methods Assessment Test arks) exam ND	systems – architecture of the chur INDUSTRIAL DESIGN aging costs – Robust design – Int and manufacturing processes ele s – investigation for industrial des – conceptualization – refinement ven products – user – driven pro R MANUFACTURING AND PRODUC DEVELOPMENT acturing cost – reducing the compo ototype basics – principles of proto standing and representing tasks execution. Tota S Formative Assessment Test	nks – creat egrating CA ctronically sign – impa – manager oducts – as cT cnent costs otyping – pl – baseline al Periods End Ser	AE, CA – Ne act – o nent sessir and a annir e pro neste rks)	etail AD, C ed fc desig of th ng th asser ng for ject	ed in 9 CAM or inc n pro e inc e qua 9 nbly prot plan 45 ams	terfac tools lustria ocess lustria ality o costs cotype
level design specification UNIT IV Integrate pro- Simulating processing design – implity investigation design processing design processing	issues – secondary s s. ocess design – Mana oroduct performance pact – design process of customer needs ess – technology driv sign. DESIGN FOH Estimation of Manufa stem complexity – Pro Analysis – Unders the project – project of Assessment Methods Assessment Test arks) exam ND ARKS	systems – architecture of the chur INDUSTRIAL DESIGN aging costs – Robust design – Int and manufacturing processes ele s – investigation for industrial des – conceptualization – refinement ven products – user – driven pro R MANUFACTURING AND PRODUC DEVELOPMENT acturing cost – reducing the compo ototype basics – principles of proto standing and representing tasks execution. Tota S Formative Assessment Test (20 Marks) MCQ QUIZ / SEMINAR/ ASSIGNMENT/SLIPTEST/CASE	nks – creat egrating CA ctronically sign – impa – manager ducts – as oducts – as CT Onent costs otyping – pl – baseline Al Periods End Ser (60 Mat	AE, CA – Ne act – o nent sessir and a annir e pro neste rks)	etail AD, C ed fc desig of th ng th asser ng for ject	ed in 9 CAM or inc n pro e inc e qua 9 nbly prot plan 45 ams	tools lustria ocess lustria ality c costs cotype

CO1: Outline the need for Integrated Product and Process Design. (Understand)

CO2: Illustrate the structured approaches in concept generation. **(Apply)**

CO3: Apply the principles of product architecture in component standardization. **(Apply)**

CO4: Develop integrated environment for industrial design. **(Apply)**

CO5: Examine the economic aspects of product development. (Apply)

Text Books

- 3. Karl T., Ulrich and D. Steven, and Eppinger, Product Design and Development, McGraw Hill, (2011)
- **4.** Dieter G. E., Engineering Design, McGraw Hill International, (2019)

Reference Books

- 5. Chitale A. K., Gupta R. C., "Product Design and Manufacturing", 6th Edition, PHI Publication, (2014).
- 6. Stephen R. Rosenthal, "Effective Product Design and Development", Business & Economics (2002).
- 7. Kemnneth Crow, "Concurrent Engg./Integrated Product Development", DRM Associates, 26/3,Via Olivera, Palos Verdes, CA 90274(310) 377-569, Workshop Book.
- 8. Stephen Rosenthal, "Effective Product Design and Development", Business One Orwin, Homewood, 2012.

Web Resources

- 1. https://nptel.ac.in/courses/112104230/ (Product Design and Development)
- 2. http://meche.mit.edu/research/design Product Design and Development)

CO Vs PO Mapping and CO Vs PSO Mapping

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2			1							3	
CO2	3	2	2			1							3	
CO3	3	2	2			1							3	
CO4	3	2	2		1	1							3	
CO5	3	2	2			1							3	

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Outline the need for Integrated Product and Process Design (Understand)

- 1. Explain the phases of generic product development process and point out the tasks and responsibilities of the organization **(Remember)**
- 2. Briefly explain the organizational policies for product planning, process management and improvement of product **(Understand)**

COURSE OUTCOME 2: Illustrate the structured approaches in concept generation. (Apply)

- 1. How can the concept selection methods be used to benchmark existing products. Perform such an evaluation for five automobile you might consider purchasing **(Understand)**
- 2. Prepare an external search plan for the problem of permanently applying serial numbers to plastic products **(Apply)**

COURSE OUTCOME 3: Apply the principles of product architecture in component standardization (Apply)

- 1. Summarize the design issues that make an impact in related system of product architecture **(Remember)**
- 2. Describe the four-step method to structure the decision process, using the desk jet printer, with a geometric layout **(Apply)**

COURSE OUTCOME 4: Develop integrated environment for industrial design. (Apply)

- 1. Is Industrial Design Worth the Investment? Explain with respect to, singular architecture and integral architecture **(Apply)**
- 2. Explain the need for CAE/CAD/CAM in Industrial design, using suitable illustrations **(Understand)**

COURSE OUTCOME 5: Examine the economic aspects of product development (Apply)

- 1. Summarize the reasons why reducing the number of parts in a product might reduce production costs. Also explain some reasons why costs might increase **(Apply)**
- 2. What would you expect to be some of the characteristics of individuals who successfully lead project teams? Explain them in detail **(Apply)**.

21ME7712	712 PRODUCT LIFE CYCLE MANAGEMENT						C			
Prereauisites	s for the course			3	0	0	3			
Nil										
Objectives										
ne objectives of	product life cycle m	anagement (PLM) are to;								
• Imp	prove product qua	lity and reduce time to marke	t, protot	typing	g co	sts re	educe			
env	ironmental impacts									
		opportunities and revenue contrib	outions							
UNIT I		UNDAMENTALS OF PLM		9						
Information m	nodels and product	M, Product information, Product li structures-Information model, Th ns for the deployment of PLM syste	e produc							
UNIT II	FU	NCTIONS AND FEATURES		9						
		Document Management, Workflo								
Functions: Co	0	Product Classification and Prog Notification, data transport, data ation integration			<u> </u>					
UNIT III	DIGITAL MANUF	ACTURING AND INTEGRATION O	F PLM			9				
learning curve systems, Tran CAD.	e, manufacturing tl sfer file, Database i	manufacturing, manufacturing the ne rest, production planning. Difference ntegration, System roles, ERP, Opt	erent wa imization	ys to	inte	egrate	PLM			
materials and	process consister	euse, smart parts, engineering acy, Digital mock-up and prototy validation, marketing collateral.								
UNIT V	NIT V PLM IN INDUSTRIES					9				
sectors, PLM financial justif of PLM for-b	visioning, PLM st ication of PLM, barr	d implementation (like auto, aero, or rategy, PLM feasibility study, ch riers to PLM implementation, ten s on, users, product or service, pr on.	ange ma tep appro	nage bach t	men to PL	t for M, be	PLM, nefits			
		Total I	45							
Suggestive As	ssessment Method	S	-							
Continuous A (20 Mai	ssessment Test rks)	Formative Assessment Test (20 Marks)	mester Exams urks)							
Descriptive e	-	MCQ QUIZ / SEMINAR/	IPTIVE QUESTIONS							
CAT 1 10 AN		ASSIGNMENT/SLIPTEST/CASE								
CAT2 10 MAI	RKS	STUDY								
Course Outco										
		the students will be able to:								
CO2: Develop	the functions and fe	nation, structures and PLM concep eatures of PLM/PDM (Apply) ndards for digital manufacturir	-		-	n of	PLM			
	M concepts through	n collaborative product developme M approaches for industrial applica		• •	stan	ıd)				

Text Books

- Product Lifecycle Management for a Global Market, Springer; 29th September 2016, ISBN-10: 3662516330
- 2. Jaya Krishna S, Product Lifecycle Management: Concepts and cases, ICFAI Publications 2011.

Reference Books

- 1. AnttiSaaksvuori and AnselmiImmonen, "Product Lifecycle Management", Springer Publisher, 2008 (3rd Edition)
- 2. IvicaCrnkovic, Ulf Asklund and AnnitaPerssonDahlqvist, "Implementing and Integrating Product Data Management and Software Configuration Management", Artech House Publishers, 2003.
- 3. John Stark, "Product Lifecycle Management: 21st Century Paradigm for Product Realisation", Springer Publisher, 2011 (2nd Edition).
- 4. Michael Grieves, "Product Life Cycle Management", Tata McGraw Hill, 2006
- 5. SOA approach to Enterprise Integration for Product Lifecycle, IBM Red books, 2011.

Web Resources

4. <u>https://onlinecourses.nptel.ac.in/noc21_me83/preview</u> (Product Life Cycle Management)

CO Vs PO Mapping and CO Vs PSO Mapping

СО	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2
C01			2	1		1		3				1	3	
CO2			2	1		1		3				1	3	
CO3			2	1	1	1		3				1	3	
CO4			2	1	1	1		3				1	3	
C05			2	1		1		3				1	3	

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Students will be able to Identify product data, information, structures and PLM concepts. (Understand)

- 1. Mention the need for PLM (Remember)
- 2. List the reasons for the deployment of PLM systems (Understand)

COURSE OUTCOME 2: Students will be able to develop the functions and features of PLM/PDM (Apply)

- 1. Discuss the relationship between version and revision with an illustration (Apply)
- 2. Elaborate the technologies related to document management with suitable illustration (Apply)

COURSE OUTCOME 3: Students will be able to Recognize tools and standards for digital manufacturing and integration of PLM (Understand)

- 1. Explain in detail digital manufacturing (Understand)
- 2. Explain the process of creation of 3DXML and CAD software tools (Understand)

COURSE OUTCOME 4: Students will be able to apply PLM concepts through collaborative product development (Apply)

- 1. Sketch the architecture of collaborative product commerce and explain its challenges (Apply)
- 2. Explain the steps involved in the prototype development through collaborative approach (Apply)

COURSE OUTCOME 5: Students will be able to Interpret the implement PLM approaches for industrial applications (Understand)

- 1. Explain the consequences of the ten step approach (Understand)
- 2. Develop a suitable case study for the selection of PLM (Apply)

21ME7713	C	RYOGENIC ENGINEERING		L	Τ	Р	C
_			-	3	0	0	3
-	es for the course:						
Engineering	g Thermodynamics,	, Thermal Engineering					
Objectives							
• To	provide the know	vledge of evolution of low temp	erature sci	ence.			
• To	o provide knowledge	e on the properties of materials	at low tem	ipera	ture		
		arious gas liquefaction and refrige rogenic storageand transfer lines.	ration syste	ems	and	to p	rovic
UNIT I		DUCTION TO CRYOGENIC SYSTEM	S			9	
•	c properties, Propert	eering Materials: Mechanical proper ies of Cryogenic fluids.		•	•	9	
		L RYOGENIC REFRIGERATION SYS	LEININ			9	
Introduction	n to liquefaction Syst	CRYOGENIC REFRIGERATION SYS	expansion,			expa	
Introduction Linde Hamp Magnetic Co	n to liquefaction Systemson Cycle, Claude & Colong, Stirling Cycle C	tems: Ideal system, Joule Thomson Cascaded System - Introduction to (Cryo Coolers.	expansion,			c expan on Sys	
Introduction Linde Hamp	n to liquefaction Systemson Cycle, Claude & Colong, Stirling Cycle C	tems: Ideal system, Joule Thomson Cascaded System - Introduction to (expansion,			expa	
Introduction Linde Hamp Magnetic Co UNIT III Ideal refriger	n to liquefaction Systems oson Cycle, Claude & Coling, Stirling Cycle C CRYOC ration systems - Refr	tems: Ideal system, Joule Thomson Cascaded System - Introduction to (Cryo Coolers.	expansion, Cryogenic R	efrig	eratio	c expan on Sys 9	stem
Introduction Linde Hamp Magnetic Co UNIT III Ideal refriger	n to liquefaction Systems oson Cycle, Claude & Coling, Stirling Cycle C CRYOC ration systems - Refr rking media	tems: Ideal system, Joule Thomson Cascaded System - Introduction to (Cryo Coolers. GENIC REFRIGERATION SYSTEMS	expansion, Cryogenic R refrigerant	efrig	eratio	c expan on Sys 9	stem
Introduction Linde Hamp Magnetic Co UNIT III Ideal refriger solids as wor UNIT IV Cryogenic	n to liquefaction Systems on Cycle, Claude & Coling, Stirling Cycle Contraction Systems - Refrection Systems - Refrecting media CRYOGENIC FL	tems: Ideal system, Joule Thomson Cascaded System - Introduction to G Cryo Coolers. GENIC REFRIGERATION SYSTEMS igeration using liquids and gases as	expansion, Cryogenic R refrigerant SYSTEMS ion and t	efrig - Re	eratio frige perfo	expan on Sys 9 rators 9 orman	stem: s usir
Introduction Linde Hamp Magnetic Co UNIT III Ideal refrigen solids as wor UNIT IV Cryogenic s cryogenic t	n to liquefaction Systems on Cycle, Claude & Coling, Stirling Cycle Coling, Stirling Cycle Contration systems - Refrecting media CRYOGENIC FLUstorage vessels and temperatures - Supeer systems.	tems: Ideal system, Joule Thomson Cascaded System - Introduction to C Cryo Coolers. GENIC REFRIGERATION SYSTEMS igeration using liquids and gases as UID STORAGE AND TRANSFER	expansion, Cryogenic R refrigerant SYSTEMS ion and t	efrig - Re	eratio frige perfo	expan on Sys 9 rators 9 orman	stem s usin
Introduction Linde Hamp Magnetic Co UNIT III Ideal refriger solids as wor UNIT IV Cryogenic s cryogenic t fluid transfe UNIT V Pressure - fl	n to liquefaction Systesson Cycle, Claude & Coling, Stirling Cycle Coling, Stirling Cycle Content of the conten	tems: Ideal system, Joule Thomson Cascaded System - Introduction to C Cryo Coolers. GENIC REFRIGERATION SYSTEMS igeration using liquids and gases as UID STORAGE AND TRANSFER I transportation - thermal insulat r insulations, Vacuum insulation,	expansion, Cryogenic R refrigerant SYSTEMS ion and th Powder in types of H	efrig - Re heir sulat eat H	eratio frige perfo ion - Excha	expanded on System 9 orman Cryo 9	stems s usir nce ogen
Introduction Linde Hamp Magnetic Co UNIT III Ideal refriger solids as wor UNIT IV Cryogenic s cryogenic t fluid transfe UNIT V Pressure - fl	n to liquefaction Systesson Cycle, Claude & Coling, Stirling Cycle Coling, Stirling Cycle Content of the conten	tems: Ideal system, Joule Thomson Cascaded System - Introduction to C Cryo Coolers. GENIC REFRIGERATION SYSTEMS igeration using liquids and gases as UID STORAGE AND TRANSFER I transportation - thermal insulat r insulations, Vacuum insulation, YOGENIC INSTRUMENTATION el and temperature measurements - scription with figure) - Cryo Pur	expansion, Cryogenic R refrigerant SYSTEMS ion and th Powder in types of H	efrig - Re heir sulat eat E catio	eratio frige perfo ion - Excha	expanded on System 9 orman Cryo 9	stems s usir nce ogen
Introduction Linde Hamp Magnetic Co UNIT III Ideal refrigen solids as wor UNIT IV Cryogenic s cryogenic t fluid transfe UNIT V Pressure - fluin cryogenic	n to liquefaction Systesson Cycle, Claude & Coling, Stirling Cycle Coling, Stirling Cycle Content of the conten	tems: Ideal system, Joule Thomson Cascaded System - Introduction to C Cryo Coolers. GENIC REFRIGERATION SYSTEMS igeration using liquids and gases as UID STORAGE AND TRANSFER I transportation - thermal insulat r insulations, Vacuum insulation, YOGENIC INSTRUMENTATION el and temperature measurements - scription with figure) - Cryo Pun	expansion, Cryogenic R refrigerant SYSTEMS ion and th Powder in types of Ho nping Appli	efrig - Re heir sulat eat E catio	eratio frige perfo ion - Excha	expan on Sys 9 rators 9 orman Cryo 9 ngers	stem s usin nce ogen
Introduction Linde Hamp Magnetic Co UNIT III Ideal refriger solids as wor UNIT IV Cryogenic s cryogenic t fluid transfe UNIT V Pressure - fluin cryogenic	n to liquefaction Systesson Cycle, Claude & Coling, Stirling Cycle Content of the CRYOO CR	tems: Ideal system, Joule Thomson Cascaded System - Introduction to C Cryo Coolers. GENIC REFRIGERATION SYSTEMS igeration using liquids and gases as UID STORAGE AND TRANSFER I transportation - thermal insulat r insulations, Vacuum insulation, YOGENIC INSTRUMENTATION el and temperature measurements - scription with figure) - Cryo Pun	expansion, Cryogenic R refrigerant SYSTEMS ion and th Powder in types of Ho nping Appli	efrig - Re neir sulat eat E catio s	eratio frige perfo ion - Excha ns.	expan on Sys 9 rators 9 orman Cryo 9 ingers 45	stems s usir nce ogen

Course Outcomes

Upon completion of the course, the students will be able to:

CO1: Outline the scope and history of cryogenics and to understand the properties of materials at low temperature applying fundamental knowledge. **(Understand)**

CO2: Apply the knowledge of low temperature production methods to understand and analyze different liquefaction systems. **(Apply)**

CO3: Apply the knowledge of ideal refrigeration techniques, to understand and analyse common cryogenic refrigeration systems. **(Apply)**

CO4: Summarize various cryogenic fluid storage and transport systems and to evaluate their performance applying fundamental concepts **(Understand)**

C05: Discuss cryo pumping and cryogenic instrumentation. **(Understand)**

Text Books

- 1. J. H. Boll Jr, Cryogenic Engineering, 2019
- 2. Randal F.Barron, Cryogenic systems, McGraw Hill, 2017

Reference Books

- **4.** Klaus D.Timmerhaus and Thomas M.Flynn, CryogenicProcess Engineering, Plenum Press, New York, 2021
- 5. R. B. Scott, Cryogenic Engineering, Van Nostrand Co., 2013

Web Resources

1. <u>NPTEL</u> (CRYOGENIC ENGINEERING)

CO Vs PO Mapping and CO Vs PSO Mapping

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2
C01	3	1	1			1	1							3
CO2	3	1	1			1	1							3
CO3	3	1	1			1	1							3
C04	3	1	1			1	1							3
C05	3	1	1			1	1							3

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Students will be able to outline the scope and history of cryogenics and to understand the properties of materials at low temperature applying fundamental knowledge. (Understand)

- 1. Explain the historical development of cryogenics. (Remember)
- 2. Explain how the ultimate and yield strengths of engineering materials change with cryogenic temperature? **(Understand)**

COURSE OUTCOME 2: Students will be able Apply the knowledge of low temperature production methods to understand and analyze different liquefaction systems. (Apply)

- 1. With a neat sketch, explain any one system for the liquefaction of Hydrogen. Derive expressions for liquid yield and work of liquefaction. **(Understand)**
- 2. Prove that COP of an ideal Stirling cycle refrigerator is same as that of Carnot refrigerator. **(Apply)**

COURSE OUTCOME 3: : Students will be able to apply the knowledge of ideal refrigeration techniques, to understand and analyse common cryogenic refrigeration systems. (Apply) 1. Illustrate the working of a simple cascade gas liquefaction system (Apply)

2. Explain the working of cryogenic refrigeration system with suitable example. **(Understand)**

COURSE OUTCOME 4: Students will be able to summarize various cryogenic fluid storage and transport systems and to evaluate their performance applying fundamental concepts (Understand)

- 1. Discuss the principles of storage and handling cryogenic fluid. **(Understand)**
- 2. Write short notes on insulations used in cryogenic applications. (Understand)

COURSE OUTCOME 5: Students will be able to discuss cryo pumping and cryogenic instrumentation. (Understand)

- 1. With neat sketch explain any three types of heat exchangers used in cryogenic systems. **(Understand)**
- 2. Explain any one pressure measurement system used in cryogenic applications. (Understand)

21ME7714		POWER PLANT ENGINEERING		L	Т	P	С
Prerequisit	es for the course			3	0	0	3
-	Thermodynamics, T	hermal Engineering					
Objectives	inciniouynamics, i						
• Pr	oviding an overviev eir operation and ma	v of Power Plants and detailing the aintenance	e role of Mechan	ical	Eng	ginee	rs in
UNIT I	COAI	BASED THERMAL POWER PLAN	ГS			9	
Boilers, Turb	ines, Condensers, St aught system, Feed v	, Layout of modern coal power p ceam & Heat rate, Subsystems of the vater treatment. Binary Cycles and (RBINE AND COMBINED CYCLE PO	ermal power plan Cogeneration sys	ts -	Fue		
	Dual & Brayton Cyc	le - Analysis & Optimisation. Comp ower Plants. Integrated Gasifier base	onents of Diesel				bine
UNIT III		NUCLEAR POWER PLANTS	a comonica cyc	10 5	SIC	<u>9</u>	
Reactors : B	oiling Water React ctor (CANDU), Bree	ayout and subsystems of Nuclear F or (BWR), Pressurized Water Rea der, Gas Cooled and Liquid Metal (ctor (PWR), CAN	Vad	a De	euter	ium-
UNIT IV	PO	WER FROM RENEWABLE ENERGY				9	
Turbines. Pr	inciple, Constructio	Classification, Typical Layout and on and working of Wind, Tidal, S d Fuel Cell power systems.					
UNIT V		MIC AND ENVIRONMENTAL ISSUE PLANTS	ES OF POWER			9	
relative mer	its & demerits, Cap	ution parameters, load curve, Com bital & Operating Cost of different sposal Options for Coal and Nuclear	power plants.				
			Total Periods			45	
	ssessment Method	ls					
Continuous (20 Ma	Assessment Test arks)	Formative Assessment Test (20 Marks)	End Semester 1 (60 Marks)	Exa	ms		
CAT 1 – 10 M CAT 2 – 10 M DESCRIPTIV	-	1.Assignment 2. Online Quizzes 3.Problem-Solving Activities	1. Descriptive Q	ues	tion	S	
Course Outo	omes						
Upon compl	etion of the course	, the students will be able to:					
CO.2 Illustra Combined cy CO.3 Illustra CO.4 Illustra power plants CO.5 Estima	ite the layout, cons cle power plants. te the layout, constr ite the layout, cons s. te the costs of ele	uction and working of the component truction and working of the component uction and working of the component truction and working of the component ctrical energy production in diffe ures in coal and nuclear power plant	oonents inside a nts inside nuclea onents inside Ro rent power plai	Di r po enev	esel, wer wab	Gas plar le er	and nts. nergy
				1. 1		0	

1. Nag. P.K., "Power Plant Engineering", Third Edition, Tata McGraw – Hill Publishing Company Ltd., 2008

Reference Books

- 1. El-Wakil. M.M., "Power Plant Technology", Tata McGraw Hill Publishing Company Ltd., 2010.
- 2. Thomas C. Elliott, Kao Chen and Robert C. Swanekamp, "Power Plant Engineering", Second Edition, Standard Handbook of McGraw Hill, 1998.

Web Resources

- 1. <u>https://onlinecourses.nptel.ac.in/noc22_me73/preview (</u>POWER PLANT ENGINEERING)
- 2. <u>https://nptel.ac.in/courses/112101007 (</u>POWER PLANT ENGINEERING)

CO Vs PO Mapping and CO Vs PSO Mapping

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2
C01	1	2	2			3	1							3
CO2	1	2	2			3	1							3
CO3	1	2	2			3	1							3
C04	1	2	2			3	1							3
C05	1	2	2			3	1							3

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Explain the layout, construction and working of the components inside a thermal power plant. (Understand)

- 1. Mention any four-equipment used for ash collection. (Remember)
- 2. Explain briefly on draught and its types and also discuss the different types of draught systems. **(Understand)**

COURSE OUTCOME 2: Illustrate the layout, construction and working of the components inside a Diesel, Gas and Combined cycle power plants. (Understand)

- 1. Define regenerator efficiency. (Remember)
- 2. Discuss briefly on integrated gasification combined cycle and its benefits. (Understand)

COURSE OUTCOME 3: Illustrate the layout, construction and working of the components inside nuclear power plants. (Understand)

- 1. Mention any four ways of Nuclear Power plant safety. (Remember)
- 2. Discuss the working principle and construction of Pressurized Water Reactor and Boiling Water Reactor. **(Understand)**

COURSE OUTCOME 4: Illustrate the layout, construction and working of the components inside Renewable energy power plants. (Understand)

- 1. Enlist the classification of fuel cell. (Remember)
- 2. Explain the principle of working and construction of solar power plant using suitable sketches. State their advantages, disadvantages and applications. **(Understand)**

COURSE OUTCOME 5: Estimate the costs of electrical energy production in different power plants and evaluate different pollution control measures in coal and nuclear power plants. (Apply)

- 1. A new factory having a minimum demand of 100 kW and a load factor of 25% is comparing two power supply agencies. i) Public supply tariff is Rs. 40 per kW of maximum demand plus 2 paise per kWh. Capital cost = Rs. 70,000; Interest and depreciation = 10% **(Understand)**
- 2. A hydro power plant is to be used as peak load plant at an annual load factor of 30%. The electrical energy obtained during the year is 750 × 105 kWh. Determine the maximum demand. If the plant capacity factor is 24% find reserve capacity of the plant. **(Apply)**

yllabi						
21ME7715	PRODU	CTION PLANNING AND CONTROL		LT	Р	С
				3 0	0	3
Prerequisites for						
Manufacturing Te	chnology					
Objectives						
as work stu	udy, product pla	s components and functions of produ anning, process planning, production	scheduling,	Invento	ry Con	trol.
	ne recent trend Planning (ERP).	s like manufacturing requirement Pl	anning (MR	P II) and	a Ente	rprise
UNIT I		INTRODUCTION			9	
		ng and control -Functions of producti				
		act development and design-Market	•			•
	-	and dependability aspect aesthetic	-			
standardization, S	implification &	specialization- Break even analysis -	Economics o	of a new	aesign	l .
UNIT II		WORK STUDY			9	
	asic procedure.	Selection-Recording of process - C	ritical analy	vsis. De	-	ient
	•	and memo motion study – work mea	•		-	
-		oduction study - Work sampling -		-	•	
Predetermined m	-		by meneoro m	oni stai	iuuiu	uutu
			C		0	
		PLANNING AND PROCESS PLANNIN			9	1
	0	e original product information– Valu ing and routing– Pre requisite inform	•			аск о
	_	ing – Quantity determination in batch		-		vacity
		pabilities in a multiproduct system.	I production	i macii	ine cap	Jucity
	_					
UNIT IV		RODUCTION SCHEDULING			9	
	•	ading and scheduling- Master Sche	duling Sch		_	
scheduling– Batc Periodic batch cor	h production s ntrol- Material	sic scheduling problems – Line c scheduling– Product sequencing – requirement planning kanban – Disp ime– Techniques for aligning comple	of balance Production atching– Pro	 Flow Control ogress re 	produ l syste eportin	uction ems
scheduling– Batc Periodic batch cor	h production s ntrol– Material facturing lead t	scheduling– Product sequencing – requirement planning kanban – Disp	of balance Production atching– Pro tion times an	 Flow Control ogress re 	produ l syste eportin	uction ems
scheduling– Batc Periodic batch con expediting– Manu UNIT V	h production s ntrol– Material i facturing lead t INVENTORY C	scheduling– Product sequencing – requirement planning kanban – Disp ime– Techniques for aligning comple ONTROL AND RECENT TRENDS IN	of balance Production atching– Pro tion times an PPC	 Flow Contro ogress re nd due c 	produ l syste eportin lates. 9	uction ems ig and
scheduling– Batc Periodic batch con expediting– Manu UNIT V Inventory control	h production s ntrol– Material facturing lead t INVENTORY C -Purpose of he	scheduling– Product sequencing – requirement planning kanban – Disp ime– Techniques for aligning comple	of balance Production atching– Pro tion times an PPC ventories-O	 Flow Contro ogress read nd due d rdering 	produ l syste eportin lates. 9 proce	uction ems ig and dures
scheduling– Batc Periodic batch con expediting– Manu UNIT V Inventory control Two bin system -	h production s ntrol- Material facturing lead t INVENTORY C -Purpose of he Ordering cycle	scheduling– Product sequencing – requirement planning kanban – Disp ime– Techniques for aligning comple CONTROL AND RECENT TRENDS IN olding stock-Effect of demand on in	of balance Production atching– Pro tion times an PPC ventories-Option	- Flow Contro ogress re nd due c rdering ity and e	produ syste portin lates. 9 procee	uction ems ig and dures nic lo
scheduling– Batc Periodic batch con expediting– Manu UNIT V Inventory control Two bin system - size- ABC analysi	h production s ntrol– Material facturing lead t INVENTORY C -Purpose of he Ordering cycle s - Recorder pu	scheduling– Product sequencing – requirement planning kanban – Disp ime– Techniques for aligning comple ONTROL AND RECENT TRENDS IN olding stock-Effect of demand on in system-Determination of Economic o	of balance Production atching– Pro tion times an PPC ventories-O order quanti integrated p	- Flow Contro ogress re nd due c rdering ity and e	produ syste portin lates. 9 procee	uction ems ig and dures nic lo
scheduling– Batc Periodic batch con expediting– Manu UNIT V Inventory control Two bin system - size- ABC analysi	h production s ntrol– Material facturing lead t INVENTORY C -Purpose of he Ordering cycle s - Recorder pu	scheduling– Product sequencing – requirement planning kanban – Disp ime– Techniques for aligning comple ONTROL AND RECENT TRENDS IN olding stock-Effect of demand on in system-Determination of Economic of rocedure-Introduction to computer IE SYSTEMS-Fundamentals of MRP II	of balance Production atching– Pro tion times an PPC ventories-O order quanti integrated p	 Flow Contro ogress read nd due c rdering ty and e oroducti 	produ syste portin lates. 9 procee	uction ems ig and dures nic lo
scheduling– Batc Periodic batch con expediting– Manu UNIT V Inventory control Two bin system - size- ABC analysi systems- elements	h production s ntrol- Material facturing lead t INVENTORY C -Purpose of he Ordering cycle s - Recorder pr s of JUST IN TIM	scheduling– Product sequencing – requirement planning kanban – Displ ime– Techniques for aligning comple ONTROL AND RECENT TRENDS IN olding stock-Effect of demand on in system-Determination of Economic of rocedure-Introduction to computer IE SYSTEMS-Fundamentals of MRP II Total	of balance Production atching– Pro- tion times an PPC ventories-O order quanti integrated p	 Flow Contro ogress read nd due c rdering ty and e oroducti 	produ syste portin lates. 9 procee econom on pla	uction ems ig and dures nic lo
scheduling– Batc Periodic batch con expediting– Manu UNIT V Inventory control Two bin system - size- ABC analysi systems- element: Suggestive Asses Continuous Asse	h production s ntrol- Material facturing lead t INVENTORY C -Purpose of he Ordering cycle s - Recorder pr s of JUST IN TIM sment Method ssment Test	scheduling– Product sequencing – requirement planning kanban – Displime– Techniques for aligning comple ONTROL AND RECENT TRENDS IN olding stock-Effect of demand on in system-Determination of Economic of rocedure-Introduction to computer IE SYSTEMS-Fundamentals of MRP II Total s Formative Assessment Test	of balance Production atching– Pro- tion times an PPC ventories-O order quanti integrated p Periods End Seme	- Flow Control ogress re nd due c rdering ty and e oroducti	produ syste eportin lates. 9 procee econom on pla 45	uction ems - ng and dures nic lo
scheduling– Batc Periodic batch con expediting– Manu UNIT V Inventory control Two bin system - size- ABC analysi systems- elements Suggestive Asses Continuous Asse (20 Marks)	h production s ntrol– Material i facturing lead t INVENTORY C -Purpose of he Ordering cycle s - Recorder pr s of JUST IN TIM sment Method ssment Test	scheduling– Product sequencing – requirement planning kanban – Displime– Techniques for aligning comple ONTROL AND RECENT TRENDS IN olding stock-Effect of demand on in system-Determination of Economic of rocedure-Introduction to computer IE SYSTEMS-Fundamentals of MRP II Total s Formative Assessment Test (20 Marks)	of balance Production atching– Pro- tion times an PPC ventories-Of order quanti integrated p Periods End Seme (60 Mark	 Flow Contro ogress re nd due c rdering ity and e oroducti ester Ex s) 	produ syste eportin lates. 9 procee econom on pla 45	uction ems ig and dures nic lo
scheduling– Batc Periodic batch con expediting– Manu UNIT V Inventory control Two bin system - size- ABC analysi systems- element: Suggestive Asses Continuous Asse (20 Marks) Descriptive exam	h production s ntrol– Material i facturing lead t INVENTORY C -Purpose of he Ordering cycle s - Recorder pr s of JUST IN TIM sment Method ssment Test	scheduling– Product sequencing – requirement planning kanban – Displime– Techniques for aligning comple ONTROL AND RECENT TRENDS IN olding stock-Effect of demand on in system-Determination of Economic of rocedure-Introduction to computer IE SYSTEMS-Fundamentals of MRP II Total S Formative Assessment Test (20 Marks) MCQ QUIZ / SEMINAR/	of balance Production atching– Pro- tion times an PPC ventories-O order quanti integrated p Periods End Seme	 Flow Contro ogress re nd due c rdering ity and e oroducti ester Ex s) 	produ syste eportin lates. 9 procee econom on pla 45	uction ems ig and dures nic lo
scheduling– Batc Periodic batch con expediting– Manu UNIT V Inventory control Two bin system - size- ABC analysi systems- elements Suggestive Asses Continuous Asse (20 Marks)	h production s ntrol- Material i facturing lead t INVENTORY C -Purpose of he Ordering cycle s - Recorder pr s of JUST IN TIM sment Method ssment Test	scheduling– Product sequencing – requirement planning kanban – Displime– Techniques for aligning comple ONTROL AND RECENT TRENDS IN olding stock-Effect of demand on in system-Determination of Economic of rocedure-Introduction to computer IE SYSTEMS-Fundamentals of MRP II Total s Formative Assessment Test (20 Marks)	of balance Production atching– Pro- tion times an PPC ventories-Of order quanti integrated p Periods End Seme (60 Mark	 Flow Contro ogress re nd due c rdering ity and e oroducti ester Ex s) 	produ syste eportin lates. 9 procee econom on pla 45	uction ems - ig and dures nic lo

Upon completion of the course, the students will be able to:

CO1: Outline production planning and Control objectives, functions types and Economic analysis **(Understand)**

CO2: Conduct production planning and Control activities such as work study, Time study, Production study & Work sampling in industries. **(Apply)**

CO3: Summarize product planning and process planning concepts. (Apply)

CO4: Plan manufacturing requirements and scheduling in Production Control systems. (Apply)

CO5: Discuss about inventory control and the recent trends in PPC (Understand)

Text Books

- 1. James B.Dilworth, "Operations management Design, Planning and Control for manufacturing and services" Mcgraw Hill International edition, 2019
- 2. Martand Telsang, "Industrial Engineering and Production Management", First edition, S.Chand and Company, 2000.

Reference Books

- 1. Jawad Akhtar , "Production Planning and Control with SAP Erp Hardcover", SAP Press; Second edition, 2016.
- 2. Ramachandran S, Devaraj R, Rasidhar L, "Production Planning And Control [Print Replica] Kindle Edition", AIRWALK PUBICATIONS; 1st edition, 2017.
- 3. Dr.V. Jayakumar, "Production Planning & Control", Lakshmi Publications 7th Edition 2016.
- 4. Mukhopadhyay, "Production Planning and Control: Text and Cases Paperback 1", Prentice Hall India Learning Private Limited; 2nd edition, 2007.

Web Resources

1. https://nptel.ac.in/courses/112107143 (PRODUCTION PLANNING AND CONTROL)

CO Vs PO Mapping and CO Vs PSO Mapping

СО	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2
C01	2	2				1					3		3	
CO2	2	2				1					3		3	
CO3	2	2	1			1					3		3	
CO4		2				1			2		3		3	
CO5		2			2	1			2		3		3	

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Outline production planning and Control objectives, functions types and Economic analysis (Understand)

- 1. Discuss in detail about the various functions of production planning and control. (Understand)
- 2. Enumerate the various aspects of Product design and development or Product analysis? (Understand)

COURSE OUTCOME 2: Conduct production planning and Control activities such as work study, Time study, Production study & Work sampling in industries. (Apply)

1. A work study was conducted in a machine shop. The data has been recorded as follows:

Total number of observations	= 160
Hand controlled work	= 14
Machine controlled work	= 106
Machine idle time	= 40
Average performance rating	= 80%
No of parts produced	= 36
Allowance for personal needs and fatigue	= 10%
Duration of study	= 3 days
Available working hours/day	=8 hrs

Determine the standard time per piece (Apply)

2. Enumerate in detail the various charts in method study with illustration and neat sketch **(Understand)**

COURSE OUTCOME 3: Summarize product planning and process planning concepts. (Apply)

- 1. Enumerate various phases in the development of a new product (Understand)
- 2. As a product planning engineer, how do you analyze the process capacities in a multi-product system and how do you document the results. **(Apply)**

COURSE OUTCOME 4: Plan manufacturing requirements and scheduling in Production Control systems. (Apply)

The processing times (including setup time) and due dates for six jobs waiting to be processed at a work centre are given in the following table. Determine the sequence of jobs, the average flow time, average tardiness, and average number of jobs at work centre for each of these rules: (Apply)

I. SPT

II. EDD

Job	Processing	Due date (days
	time (days)	from present
		time
A	2	7
В	8	16
С	4	4
D	10	17
Е	5	15
F	12	18

2. Explain Gantt chart and Line of Balance. (Understand)

COURSE OUTCOME 5: Discuss about inventory control and the recent trends in PPC (Understand)

- 1. Explain with a block diagram, the basic elements of JIT manufacturing system (Understand)
- 2. What are the components of Material Requirement Planning (MRP)? (Understand)

21ME7716	L	OW-COST AUTOMATION		L 3	T 0	P 0	C 3
Prereauisites	s for the course			3	U	U	3
-	and Automation	1					
Objectives							
	basic knowledg	e about automation					
		c hydraulics and pneumatics s	systems for	automat	tion		
 To und 	erstand the asse	mbly automation					
UNIT I	AUTO	MATION OF ASSEMBLY LINE	S			9	
		echanization and automation					
		n - classification, balancing of					
assembly line.		em (TLMS) using Line Status -	· Line efficie	ency - Bi	uffer sto	ock Simu	ilation in
UNIT II		ION USING HYDRAULIC SYS	TEMS			9	
_		ents of hydraulic systems suc		, valves,	filters,	reservoi	rs,
accumulators,	actuators, inte	nsifiers etc Selection of	hydraulic f	luid, pra	actical	case stu	idied on
-		erformance analysis - Servo v	alves, elect	rohydra	ulic val	ves, proj	portional
valves, and the	eir applications.	ION USING PNEUMATIC SYS	темс			9	
_		itrol elements, position and		ncing l	ogic cir	-	witching
		odules and these integration					
		nter method. Pneumatic equi					
calculations -a	pplication - fault	t finding – hydro pneumatic ci	rcuits.				
UNIT IV		ION USING ELECTRONIC SYS				9	
		s – transducers - signal pro- struction - programmable log			tems -	progran	nming of
UNIT V	6	SSEMBLY AUTOMATION		.13.		9	
		Parts delivery at workstation	ns - Variou	ıs vihra	tory ar	-	vibratory
5 I	0	eders, rotary disc feeder, cent			5		5
		automation - Robotic circuits					-
		Tota	al Periods			45	
	ssessment Meth		1 -				
Continuous A Test	ssessment	Formative Assessment Test	End Sem		ams		
(20 Ma)	rks)	(20 Marks)	(60 Mark	5)			
	Г 1 -	1.Assignment		1. Desc	riptive		
10		2. Online Quizzes		Questi	ons		
	RKS [2 –	3.Problem-Solving Activities					
10		Activities					
	RKS						
Course Outco		co the students will be able	to				
opon comple	tion of the cour	se, the students will be able	: 10:				

CO.1 Summarize the concepts of automated assembly line in industries. **(Apply)**

CO.2 Design and performance analysis of low-cost automation using hydraulics system. **(Analyze)**

CO.3 Design and performance analysis of low-cost automation using pneumatic system. **(Analyze)**

CO.4 Design and performance analysis of low-cost automation using PLC system. **(Analyze)**

CO.5 Design and construct the Assembly system and part feeders. **(Analyze)**

Textbooks

- 1. Mikell P Groover, "Automation, Production System and Computer Integrated Manufacturing", Prentice Hall Publications, 4 th edition, 2016.
- 2. Kuo .B.C, "Automatic control systems", Prentice Hall India, New Delhi, 2016.

Reference Books

- 1. Anthony Esposito, "Fluid Power with applications", Prentice Hall international, 2013.
- 2. Peter Rohner, "Industrial hydraulic control", Wiley Edition, 2012.
- 3. Mujumdar.S.R, "Pneumatic System", Tata McGraw Hill 201.

Web Resources

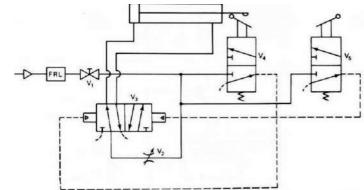
- 1. <u>https://nptel.ac.in/courses/108105063</u> (Low-Cost Automation)
- 2. <u>https://nptel.ac.in/courses/112102011 (</u>Low-Cost Automation)

CO Vs PO Mapping and CO Vs PSO Mapping

		0			-	1 0								
CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2
CO1	3	2	2	1	1								3	
CO2	3	2	2	1	1								3	
CO3	3	2	2	1	1								3	
CO4	3	2	2	1	1								3	
CO5	3	2	2	1	1								3	

COURSE LEVEL ASSESSMENT QUESTIONS

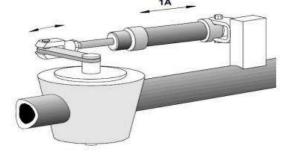
COURSE OUTCOME 1 Summarize the concepts of automated assembly line in industries (Apply)


- 1. As the number of workstations on an automated production line increase, does line Efficiency (a) decrease, (b) increase, or (c) remain unaffected? **(Understand)**
- 2. An automated production line operates with an ideal cycle time of 35 sec. Line stops are characterized by a mean time between failures of 70 min and a mean time to repair of 8.0 min. What is the average hourly production rate? **(Apply)**

COURSE OUTCOME 2 Design and performance analysis of low-cost automation using hydraulics system. (Analyze)

- 1. Develop a hydraulic system to control the speed of speed of a hydraulic motor using flow control valve **(Apply)**
- 2. Compare the various performance factors of a gear, vane and piston pumps (Analyze)

COURSE OUTCOME 3 Design and performance analysis of low-cost automation using pneumatic system. (Analyze)


1. Consider the circuit, what happens to the cylinder when valve v₄ is depressed. (Analyze)

2. What undesirable consequence occurs when components of a pneumatics system such as pipes, and vales are undersized? **(Apply)**

COURSE OUTCOME 4 Design and performance analysis of low-cost automation using PLC system (Analyze)

1. Develop an electro pneumatic system for Opening/closing the flow in a pipeline. (Analyze)

2. Develop PLC programming for sequencing of cylinders to follow A+B+B-A- (Apply)

COURSE OUTCOME 5 Design and construct the Assembly system and part feeders. (Analyze)

- 1. Differentiate the part design features of automated assembly over manual assembly (Analyze)
- 2. Design a part feeder orientation system for Orienting a Cylindrical Parts whose Length is Greater than its Diameter. **(Apply)**

21ME7717	SUSTAINABILIT	TY THROUGH GREEN MANUFACTURI SYSTEM	ING	L	T	P	C
	a for the sources			3	0	0	3
Prerequisite Nil	es for the course:						
Objectives	avida an avamiaura	f the Sustainability through Green Me	nufactu	ning	Guete	ma. 11	
methoTo lear	dologies and its app rn about the commo	f the Sustainability through Green Ma lication in improving the eco-efficiency only used Sustainable manufacturing to n Deployment (ECQFD) and Life Cycle A	7. cools suc	h as	Envi	ronme	
UNIT I		INTRODUCTION				7	
-	-	Definitions of sustainable - Enviror ent energy use – Design for recycling.	imental	effe	cts o	of des	ign
UNIT II	QU/	ALITY FUNCTION DEPLOYMENT				11	
		ty Function Deployment (ECQFD), EC 7, Extended Producer Responsibility (E			ECQ	FD Ph	ase-l
UNIT III	ENVIRO	NMENTAL LIFE CYCLE ASSESSMENT				9	
	2	sment (LCA), LCA Phase-I, LCA Phase-I flow and cycles – Material recycling – I					
UNIT IV		GREEN DESIGN METHOD				9	
		al and Business indicators - Mass balar recycle – Risk analysis – Material sele	•	vsis –	Gree	en indi	cate
UNIT V	SUSTAIN	ABLE ECONOMIC ENVIRONMENT				9	
	devices – wind en dly materials.	ergy resources – Full cost accounting	g metho	dolog	gy –	Select	ion (
		Total P	eriods			45	
Suggestive A	ssessment Method	s					
(2	Assessment Test) Marks)	(20 Marks)	End Sen (60 Mar	rks)			
<u> </u>		Descriptive type questions. Assignment	Descript	tive Q	uest	ions	
CAT 2 10 MA							
CAT 2 10 MA Course Outc Upon compl	omes etion of the course,	the students will be able to:					
CAT 2 10 MA Course Outc Upon compl O1: Interpre	omes etion of the course, t the basic Concepts	& knowledge about sustainable manuf	_	-		-	
CAT 2 10 MA Course Outc Upon compl O1: Interpre O2: Identify	omes etion of the course, t the basic Concepts and apply the QFD to	& knowledge about sustainable manufa ools required for implementing sustain	able mar	nufac	turin	g (Apj	ply)
CAT 2 10 MA Course Outc Upon compl O1: Interpre O2: Identify O3: Conduct	omes etion of the course, t the basic Concepts and apply the QFD to Life Cycle Assessme	& knowledge about sustainable manufa ools required for implementing sustain nt and cost analysis required for Green	able mar manufa	nufac cturii	turin ng (A	g (Apj	ply)
CAT 2 10 MA Course Outc Upon compl O1: Interpre O2: Identify O3: Conduct O4: Apply th	omes etion of the course, t the basic Concepts and apply the QFD to Life Cycle Assessmen e design factors and	& knowledge about sustainable manufa ools required for implementing sustain nt and cost analysis required for Green considerations for sustainable manufa	able mar manufa cturing (nufac cturii Appl	turin ng (A y)	g (Apj pply)	
CAT 2 10 MA Course Outc Upon compl O1: Interpre O2: Identify O3: Conduct O4: Apply th O5: Conduct (Ap)	omes etion of the course, t the basic Concepts and apply the QFD to Life Cycle Assessmen e design factors and t economic and env	& knowledge about sustainable manufa ools required for implementing sustain nt and cost analysis required for Green	able mar manufa cturing (nufac cturii Appl	turin ng (A y)	g (Apj pply)	
01: Interpre 02: Identify 03: Conduct 04: Apply th 05: Conduct (Ap) Text Books	omes etion of the course, t the basic Concepts and apply the QFD to Life Cycle Assessmen e design factors and t economic and env ply)	& knowledge about sustainable manufa ools required for implementing sustain nt and cost analysis required for Green considerations for sustainable manufa	able mar manufa cturing (green ma	nufac cturin Appl anufa	turin ng (A y) ncturi	g (Apj pply) ing sy	stem

Reference Books

- 1. P. Lawn, "Sustainable Development Indicators in Ecological Economics", Edward Elgar Publishing Limited 2017.
- 2. S. Asefa, "The Economics of Sustainable Development", W.E. Upjohn Institute.2017.
- 3. G. Atkinson, S. Dietz, E. Neumayer, "Handbook of Sustainable Manufacturing". Edward Elgar Publishing Limited, 2017.

Web Resources

1. <u>https://archive.nptel.ac.in/courses/112/104/112104225/#</u> (SUSTAINABILITY THROUGH GREEN MANUFACTURING SYSTEM)

CO Vs PO Mapping and CO Vs PSO Mapping

СО	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2
C01	2	2	1			1	3							3
CO2		2				1	3							3
CO3		2		2		1	3							3
CO4	2	2	1			1	3							3
CO5		2				1	3							3

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Interpret the basic Concepts & knowledge about sustainable manufacturing (Understand)

- 1. Illustrate the sustainability in manufacturing system through green systems. (Understand)
- 2. Explain green manufacturing concepts in detail. (Understand)

COURSE OUTCOME 2: Identify and apply the QFD tools required for implementing sustainable manufacturing (Apply)

- 1. Explain the Extended Producer Responsibility (EPR) policy. (Remember)
- 2. Demonstrate the environmental impact of current manufacturing systems in detail with a case study. **(Apply)**

COURSE OUTCOME 3: Conduct Life Cycle Assessment and cost analysis required for Green manufacturing (Apply)

- 1. Examine how the life cycle assessment system should be in green manufacturing assessment. (Apply)
- 2. Enumerate the factors affecting the selection of material handling equipment in a production shop **(Apply)**

COURSE OUTCOME 4: Apply the design factors and considerations for sustainable manufacturing (Apply)

- 1. State the role of government, employer and workers for productivity improvement **(Understand)**
- 2. Apply the design factors in green manufacturing systems in detail with a case study. (Apply)

COURSE OUTCOME 5: Conduct economic and environment analysis for sustainable green manufacturing systems (Apply)

- 1. State the recycling techniques for different natural friendly materials (Understand)
- 2. Identify the practices, challenges and solutions of Full cost accounting methodology in developed countries. **(Apply)**

21ME7718	ADVAN	CED MANUFACTURING SYSTEM FOR MICROSYSTEM FABRICATION	L	Τ	Р	C
		FABRICATION	3	0	0	3
Prerequisites						
Manufacturing	Technolog	y, Engineering Materials and Metallurgy				
Objectives						
Learn atUnderstandLearn to	oout the ma and handli work with	recision machine tools acro and micro components. ing and operating of the precision machine tools. n miniature models of existing machine tools/robots and or or micro system	theri	nstru	umen	ıts.
UNIT I		INTRODUCTION TO MICROSYSTEMS		Ģ	9	
medical to gen properties; mic	eral purports	ction, micro-actuators: hydraulic, pneumatic, electrostatic, ose applications. Micro-sensors based on Thermal, mec sfor measurement of pressure, flow, temperature, inertia, f nitoring of manufacturing systems	hani	cal, e	electr	ical
UNIT II	FA	ABRICATION PROCESSES FOR MICRO-SYSTEMS		Ģ	9	
		ning process, microsystems-Micro-pumps, micro- turbine re biomedical devices.	s, mi	cro e	engin	es,
UNIT III	Ι	NTRODUCTION TO PRECISION ENGINEERING		Ģ	9	
other piezo-bas	sed devices	PRECISION MACHINING PROCESSES cesses for macro components - Diamond turning, fixed a		(9	
UNIT V		METROLOGY FOR MICRO SYSTEMS			9	
	aiana arrata				9	
Metrology lor in	nicro syste	ems - Surface integrity and its characterization. Total Periods		1	-5	
Suggestive Ass	sessment			4	· 5	
Continuous Assessment Te (20 Marl	est	Formative Assessment Test (20 Marks)	Exa	l Sen Ims Mar	neste ·ks)	er
Descriptive Ex CAT 1 10 AND CAT2 10 MAR		MCQ QUIZ / SEMINAR/ ASSIGNMENT/SLIPTEST/CASE STUDY		escrip am	otive	
Course Outcom						
CO1: Outline (Understand) CO2: Interpret CO3: Enumera (Understand) CO4: Summariz	the conce the variou ite the ma ze the prec	course, the students will be able to: epts and applications of micro systems for advance s fabrication processes of micro systems. (Understand) achines, handling tools and fixtures for the assembly ision manufacturing processes for macro components. (Un micro system (Apply)	of n	nicro	syste	-

Text Books

- 1. Davim, J. Paulo, ed. Micro fabrication and Precision Engineering: Research and Development. Woodhead Publishing, 2017
- 2. Gupta K, editor. Micro and Precision Manufacturing. Springer; 2017

Reference Books

- 1. Dornfeld, D., and Lee, D. E., Precision Manufacturing, 2008, Springer.
- 2. H. Nakazawa, Principles of Precision Engineering, 1994, Oxford University Press.
- 3. Whitehouse, D. J., Handbook of Surface Metrology, Institute of Physics Publishing, Philadelphia PA, 1994.
- 4. Murthy.R.L, —Precision Engineering in Manufacturing||, New Age International, New Delhi, 2005

Web Resources

5. <u>https://archive.nptel.ac.in/courses/112/104/112104162/</u> (Advanced Manufacturing System for Microsystem fabrication)

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2
C01	3	1	1		1	1							3	
CO2	3	1	1		1	1							3	
CO3	3	1	1		1	1							3	
CO4	3	1	1		1	1							3	
CO5	3	1	1		1	1							3	

CO Vs PO Mapping and CO Vs PSO Mapping

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Students will be able to outline the concepts and applications of micro systems for advanced manufacturing (Understand)

- 1. List out the application of MEMS in industries. (Remember)
- 2. Design a pressure sensor with a mems microsensors suitable for an engineering application. **(Understand)**

COURSE OUTCOME 2: Students will be able to Interpret the various fabrication processes of micro systems. (Understand)

- 1. Why electrostatic forces used to run micro motors rather than conventional electromagnetic forces. **(Understand)**
- 2. Explain the concept miniaturization of MEMS. Distinguish between micro actuator and micro accelerometer. **(Understand)**

COURSE OUTCOME 3: Students will be able to enumerate the machines, handling tools and fixtures for the assembly of microsystems. (Understand)

- 1. Interpret suitable MEMS fixtures for handling and assembly of microparts. **(Understand)**
- 2. Compare piezo motors and ultrasonic motors (Understand)

COURSE OUTCOME 4: Students will be able to summarize the precision manufacturing processes for macro components. (Understand)

- 1. What is the most accurate machining process? Why? (Understand)
- 2. Explain the working of diamond turning process? (Understand)

COURSE OUTCOME 5: Students will be able to apply metrology for micro system (Apply)

- 1. Select the gauge which is used to check the perfect threading in hole and explain the process and machine tool with neat sketch. **(Apply)**
- 2. Which parameter influence the surface integrity during rolling process and explain with neat sketch. **(Understand)**

21ME7719

ELECTRO AND ELECTROLESS PLATING

g

9

Prerequisites for the course

Engineering Chemistry

Objectives

- To give an overview of various methods of electro and electroless plating
- To study the various inspection methods in Coating process

UNIT I FUNDAMENTALS OF ELECTROPLATING AND ELECTROLESS 9 PLATING 9

Fundamental Principles – Electro Deposition of Copper, Nickel, Chromium, Zinc, T in and precious metals such as Gold and Silver – Surface Preparation for Electro Deposition – Electrolytic cleaning. Measurement of pH, Surface Tension, Conductivity, Throwing Power and Current Efficiency of Electro plating electrolytes.

UNIT II

TYPES OF PLATING

Brush Plating – Barrel Plating – Pulse Plating – Electro Forming – Electro Winning – Electro Refining and their applications.

UNIT IIICOMPOSITE COATING9Need for composite coating - Principles of Alloy Deposition - Mechanism of Co-Deposition -
Composite coating by Electrode position and Electroless Deposition for Nickel - Chromium, Nickel -

Composite coating by Electrode position and Electroless Deposition for Nickel – Chromium, Nickel – Silicon Carbide, Nickel – PTFE – Alloys. Engineering applications of composite coating for Wear resistance and Tribological applications.

UNIT IV INSPECTION AND TESTING OF ELECTRO/ELECTROLESS DEPOSITION

Testing of Electrodeposit for Thickness, Adhesion, Stress, Porosity, Hardness, Ductility and Solderability – Use of Hull Cell in Plating – Determination of Corrosion Rate by Polarization method.

UNIT V EFFECT OF VARIOUS PARAMETERS AND DEFECTS IN 9 ELECTRO / ELECTROLESS PLATING

Effect of current density, Particle size, Volume Fraction of Particle in the bath, Agitation, temperature, PH on deposition rate and volume fraction of Co-deposited particles. Defects in electro plating and electroless plating – Porosity, Poor adhesion, Hydrogen embrittlement etc –Causes and Remedies.
Total Periods 45

Suggestive Assessment Methods

Continuous Assessment Test (20 Marks)	Formative Assessment Test (20 Marks)	End Semester Exams (60 Marks)
Descriptive exam	MCQ QUIZ / SEMINAR/	Descriptive exam
CAT 1 10 AND	ASSIGNMENT/SLIPTEST/CASE	
CAT2 10 MARKS	STUDY	

Course Outcomes

Upon completion of the course, the students will be able to:

CO1: Summarize the fundamentals of Electro and Electroless plating **(Understand)**

CO2: Categorize different types of plating process (Apply)

CO3: Familiarize composite coating and its application in various fields **(Understand)**

CO4: Conduct different testing and inspection methods for electro and electroless deposition. **(Apply) CO5**: Interpret the effects of various parameters and defects in electro and electroless plating **(Understand)**

Text Books

- 1. Lowenkeeim, F A Model Electroplating John Wiley & Sons, Inc., USA
- 2. N.Kanani, Electroplating and Electroless plating of copper and its alloys, ASM International, 2003

Reference Books

- 1. Metal Finishing Guide Book and Directory, USA
- 2. Electro Platers Process control Hand Book, Foulke and Grane
- 3. Glenn O. Mallory, Juan B. Hajdu, Electroless Plating, Fundamentals and Applications, American Electroplaters and Surface Finishers Society, 2010

Web Resources

- 1. NPTEL :: Mechanical Engineering Technology of Surface Coating (Electro and Electroless plating)
- 2. https://nptel.ac.in/courses/112107248 (Electro and Electroless plating)

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2
C01	3	2				1	2					1		3
CO2	3	2				1	2					1		3
CO3	3	2				1	2					1		3
CO4	3	2				1	2					1		3
CO5	3	2				1	2					1		3

CO Vs PO Mapping and CO Vs PSO Mapping

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Students will be able to Understand the fundamentals of Electro and Electroless plating (Understand)

- 1. Explain briefly the principle and process of electrodeposition in Silver. **(Understand)**
- 2. Discuss in detail the electrolytic cleaning process. (Understand)

COURSE OUTCOME 2: Students will be able to Categorize different types of plating process. (Apply)

- 1. Distinguish between Barrel plating and blush plating. (Understand)
- Demonstrate the application of electroforming in electroplating process with suitable example? (Apply)

COURSE OUTCOME 3: Students will be able to Familiarize composite coating and its application in various fields (Understand)

- Explain the process of Electrodeposition of Nickel and Chromium by composite coating. (Understand)
- Briefly explain the applications of composite coating in wear and tribological applications. (Understand)

COURSE OUTCOME 4: Students will be able to Utilize different testing and inspection methods for predicting various parameters of electrodeposit (Apply)

- **1.** Determine the corrosion rate of pure aluminium metal by polarization method. **(Apply)**
- 2. Write a note on the testing of mechanical properties of electrodeposit. (Understand)

COURSE OUTCOME 5: Students will be able to Interpret the effects of various parameters in electro and electroless plating (Understand)

- 1. Explain the defects in electroplating and electroless plating along with its causes and remedies **(Understand)**
- 2. Write a short note on Hydrogen Embrittlement. (Understand)

rancis Xavier yllabi	Engineering College	Dept of Mechanical Engineering R2	2021/Curri	culum	and		
				L	Τ	Р	С
21ME7720	ENER	GY CONVERSION IN INDUSTRIES		3	0	0	3
Prerequisit	es for the course:						
Nil							
Objectives							
• Comp	prehend the technique	es available for energy conservation	in Industr	ies ut	ilities	5	
• Know	the techniques adop	ted for performance evaluation of th	nermal util	ities			
• Learn	and appreciate the v	vorking principle employed in VCRS	and VAM s	syster	ns		
• List th	he parameters consid	ered in electricity billing and the los	ses associa	ated v	vith a	i moto	r
UNIT I		BOILERS via direct and indirect method				11	
-	recovery system – Op	nt of steam distribution losses – St portunities for energy saving in stea IS AND THERMIC FLUID HEATERS		-		ems	
UNIT II	FURNACE				7		
-	formance assessment	AND WASTE HEAT RECOVERY t – energy savings opportunities –		-			
waste heat	recovery devices: re	ssion system. WHR systems: Clas cuperator, regenerator, heat pipe, ressor. CHP– Poly generation					
UNIT IV		SYSTEMS AND INDUCTION MOTO	RS			9	
Harmonics in	nduction Motors: Typ	e management – Power factor imp pes – Losses – performance assessm erformance-energy efficient motors	nent adopt				
UNIT V	ENERGY CONS	SERVATION IN ELECTRICAL UTILI	ΓIES			9	
	e assessment and s-illumination system	energy conservation avenues s –cooling towers	in: far	ıs-blo	wers	-pum	ps–ai
		Tota	l Periods			45	
Suggestive A	Assessment Method	S					
Continuous (20 Marks)	Assessment Test	Formative Assessment Test (20 Marks)	End Ser (60 Ma		er Ex	ams	
Descriptive CAT 1 10 Al CAT2 10 MA	ND	MCQ QUIZ / SEMINAR/ ASSIGNMENT/SLIPTEST/CASE STUDY	Descri	ptive	exam	l	
Course Outo	comes						
Upon compl	letion of the course,	the students will be able to:					
·		nergy saving in steam consumption s	•			-	
CO2: Discuss	s about furnaces and '	Thermal fluid heaters, its type and a	pplication.	(Und	lerst	and)	

CO3: Enumerate the working principle employed in VCRS and VAM systems (Understand)

CO4: Identify the parameters considered in electricity billing and the losses associated with a motor **(Apply)**

C05: Comprehend the techniques available for energy conservation in electrical utilities **(Apply)**

Text Books

1. L.C.Witte, P.S.Schmidt, D.R.Brown, "Industrial Energy Management and Utilisation" Hemisphere Publication, Washington, 2016

Reference Books

- 1. S.C. Bhattia "Industrial energy conservation" Woodhead publishing India 2018.
- 2. W.R. Murphy and G. McKay "Energy Management" Butter worths, London 2017

Web Resources

1. <u>https://onlinecourses.nptel.ac.in/noc20_mm20/preview</u> (Energy Conversion in Industries)

CO Vs PO Mapping and CO Vs PSO Mapping

со	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3		2	1			2							3
CO2	3		2	1			2							3
CO3	3		3	1			2							3
CO4	3	1	2	1			2							3
CO5	3	1	3	1			3							3

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Interpret the methods for energy saving in steam consumption systems. (Understand)

- 1. Explain the Assessment of steam distribution losses (Understand)
- Enumerate Types & Performances evaluation via direct and indirect method energy conservation (Remember)

COURSE OUTCOME 2: Discuss about furnaces and Thermal fluid heaters, its type and application. (Understand)

- 1. Explain the Furnaces and Thermic Fluid Heaters. (Remember)
- 2. Describe the Insulation and Refractory method with its types and application to new module of industries **(Understand)**

COURSE OUTCOME 3: Enumerate the working principle employed in VCRS and VAM systems (Understand)

- 1. Explain the Commercial waste heat recovery devices to process in industries (Understand)
- 2. Outline the classifications of WHR systems with suitable diagrams (Understand)

COURSE OUTCOME 4: Identify the parameters considered in electricity billing and the losses associated with a motor (Apply)

- 1. Obtain the Factors affecting motor performance & energy efficient motors **(Understand)**
- 2. Identify the Harmonics induction Motors with its Types, Losses, & performance assessment adopting direct and indirect method **(Apply)**

COURSE OUTCOME 5: Comprehend the techniques available for energy conservation in electrical utilities (Apply)

- 1. Case study the cooling towers in industries which can be alternate to use in any other places (Apply)
- 2. Identify the practices, challenges and solutions of performance assessment Industries methodology in developed countries. **(Apply)**

PROFESSIONAL ELECTIVE - VI

21ME7721	n	esign of Jigs and Fixtures		L	T	Р	C
21ME//21		esign of Jigs and Fixtures		3	0	0	3
	es for the course						
	turing Technology, E	Design of Machine Elements, Design	of Trans	missi	ion S	ysten	ns
Objectives							
•	basic procedure of Bring in the require	portance of tool design for producti tool design, drafting of tool drawing ed properties in the tool material by iate to the cutting process adopted	g etc.,		C		
UNIT I		IENTALS OF JIGS AND FIXTURES				9	
		en Jigs and Fixtures – Advantages o	files and	[]:		-	
location – E Common def	ssential features of fects in Jigs design.	es of freedom – 6 point location p Jigs and Fixtures – General Design	-		-	ign s	-
UNIT II		ES OF LOCATION AND CLAMPING point – types of locators – pins and s				9	
point locatio Principles of swinging cla operated cla	n of a three legged ol f clamping – types o mp – wedge clamp amp – quarter turn	locator – Cam operated 'V' locator - bject – Location of a cylinder on a v- of clamping – lever clamp – hinge – eccentric clamping arrangement screw – Toggle clamp – Pneum	block. d clamp – quick	– tw actic	vo w on cla	ay cla amp -	amp - – Carr
UNIT III	' washer – spherical a	JIGS BUSHINGS				9	
	ijg hushing - press f	it bushing – Fixed renewable bushi	ng – slin	rene	wahl	-	hing -
		niscellaneous type of drill bushings					_
UNIT IV		DRILL JIGS				9	
	sed box drill jig – lea	nplate drill jig – channel drill jig – t f drill jig – post jig – indexing drill j				-	-
UNIT V		NCIPLE OF FIXTURE DESIGN				9	
Introduction and clamps mandrels – ł milling fixtu cylindrical g	- principles of fixtur for fixtures – types poring fixtures – mill tres with respect to prinding fixtures – b	NCIPLE OF FIXTURE DESIGN re design – element of fixtures – de of fixtures – design of turning fi ling fixtures – essentials of milling o cutter position – grinding fixtu- proaching fixtures – internal and e	xtures – fixtures ires – s	man – me urfac	ndrel thod e gr	of lo s – ty of lo indin	ype o cating g anc
Introduction and clamps mandrels – ł milling fixtu cylindrical g	- principles of fixtur for fixtures – types poring fixtures – mill tres with respect to prinding fixtures – b	re design – element of fixtures – de of fixtures – design of turning fi ling fixtures – essentials of milling o cutter position – grinding fixtu	xtures – fixtures ires – s external	man – me urfac	ndrel thod e gr ching	of lo s – ty of lo indin	ype o cating g and
Introduction and clamps mandrels – h milling fixtu cylindrical g welding fixtu	- principles of fixtur for fixtures – types poring fixtures – mill tres with respect to prinding fixtures – b	re design – element of fixtures – de of fixtures – design of turning fi ling fixtures – essentials of milling o cutter position – grinding fixtu proaching fixtures – internal and e Total P	xtures – fixtures ires – s external	man – me urfac	ndrel thod e gr ching	of lo s – ty of lo indin g fixtu	ype o cating g anc
Introduction and clamps mandrels – h milling fixtu cylindrical g welding fixtu Suggestive A	- principles of fixtur for fixtures – types poring fixtures – mill tres with respect to prinding fixtures – b tres.	re design – element of fixtures – de of fixtures – design of turning fi ling fixtures – essentials of milling o cutter position – grinding fixtu proaching fixtures – internal and e Total P	xtures – fixtures ires – s external	man – me urfac broa	ndrel thod e gr ching	of lo s – ty of lo indin g fixtu 45	ype o cating g and ures -
Introduction and clamps mandrels – h milling fixtu cylindrical g welding fixtu Suggestive A	- principles of fixtur for fixtures – types poring fixtures – mill ares with respect to prinding fixtures – b ares. Assessment Method Assessment Test arks)	re design – element of fixtures – de of fixtures – design of turning fi ling fixtures – essentials of milling o cutter position – grinding fixtu- proaching fixtures – internal and e Total P	xtures – fixtures ares – s external P eriods	man – me urfac broad	ndrel thod e gr ching	of lo s – ty of lo indin g fixtu 45	ype of cating g and ures -

Upon completion of the course, the students will be able to:

CO1: Interpret the fundamentals of Jigs and fixtures **(Understand)**

CO2: Discuss the locating and clamping of Jigs and fixtures **(Understand)**

CO3: Recognize the mounting of Jigs and Fixtures on machine tool through Jigs Bushings **(Understand)**

CO4: Recognize the mounting of Jigs and Fixtures on machine tool through drill jigs **(Understand)**

CO5: Apply the design procedure for fixtures. **(Apply)**

Text Books

- 5. P. H Josh, Jigs and Fixtures, 3rd edition, TMH, Newdelhi, July 2017
- 6. Kempster M. H. A. 'An Introduction to Jig and Tool Design' Viva Books Pvt. Ltd. 2002

Reference Books

- 6. John G. Nee 'Fundamentals of Tool Design' Society of Manufacturing 1998 4th Edition
- 7. Production Technology Hand Book' HMT Tata McGraw Hill
- 8. E. K. Henriksen 'Jig and Fixture Design Manual' Industrial Press, New York 1973
- 9. Donaldson, Lecain and Goold 'Tool Design' McGraw Hill, New York 1976

Web Resources

- 1. https://archive.nptel.ac.in/courses/112/105/112105127/ /Design of Jigs and Fixtures
- 2. http://www.dragonworks.info/Metalworking/Milling%20Fixtures/Milling%20fixtures.ht m / **Design of Jigs and Fixtures**
- 3. https://www.tvsts.com/jigsandfixtures / Design of Jigs and Fixtures

CO Vs PO Mapping and CO Vs PSO Mapping

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01	3	1	2	1									3	
CO2	3	1	2	1									3	
CO3	3	1	2	1									3	
CO4	3	1	2	1									3	
CO5	3	1	2	1									3	

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Students will be able to interpret the fundamentals of Jigs and fixtures (Understand)

- 1. Identify the differences between jig and fixtures (Understand)
- 2. Explain possible freedom of movement o job in a jig, fixture (Understand)

COURSE OUTCOME 2: Students will be able to discuss locating and clamping of Jigs and fixtures (Understand)

- 1. Identify locating of work piece in a jig, fixture (Understand)
- 2. list the different types of fixtures (Understand)

COURSE OUTCOME 3: Students will be able to recognize the mounting of Jigs and Fixtures on machine tool through Jigs Bushings (Understand)

- 1. Explain mounting of jig on a machine tool (Understand)
- 2. Describe the specifications of bushing (Understand)

COURSE OUTCOME 4: Students will be able to recognize the mounting of Jigs and Fixtures on machine tool through drill jigs (Understand)

- 1. Explain the indexing of drill jigs (Understand)
- 2. Describe the mounting of fixtures on the machine tool (Understand)

COURSE OUTCOME 5: Students will be able to apply the design procedure for fixtures (Apply)

- 1. Develop the milling, welding, fixtures and grinding fixtures (Apply)
- 2. Design procedure of jigs and fixtures (Apply)

FAILURE ANALYSIS AND NDT TECHNIQUES

L	Т	Р	С
3	0	0	3

21ME7722

Prerequisites for the course

Manufacturing Technology, Engineering materials and Metallurgy

Objectives

- To introduce need and scope of failure analysis and fundamental sources of failures.
- To learn about non-destructive testing and basic principles of visual inspection.
- To study about magnetic testing and principles, techniques.
- To learn the principle of radiography testing and its inspection techniques and methods.
- To study the acoustic testing principle and technique and instrumentation

UNIT IINTRODUCTION9Introduction and need and scope of failure analysis. Engineering Disasters and understanding failure
analysis. Fundamental sources of failures. Deficient design. Improper Manufacturing & Assembly. Tree
diagram and FMEA.

UNIT II	VISUAL INSPECTION	9
Introduction	to Non-Destructive Testing: An Introduction, Visual examination	n, Basic Principle, The
Eye, Optical	aids used for visual inspection, Applications. Liquid Penetra	ant Testing: Physical
principles, P	rocedure for penetrant testing, Penetrant testing materials, Penet	rant testing methods,
Sensitivity, A	pplications, Limitations and Standards	

5.										
UNIT III	MAGNETIC TESTING 9									
Magnetic Particle Testing, Eddy Current Testing: Magnetism-basic definitions and principle of.										
magnetic par	magnetic particle testing, Magnetizing techniques, induced current flow, Procedure used for testing a									
component,	Equipment Used for magnetic particle testing, Sensitivity, Limit	tations. Eddy Current								
Testing: Prin	ciples, Instrumentation for eddy current testing Techniques. Sens	itivity Advanced Eddy								
Current Test	Current Test Methods, Applications, Limitations.									
UNIT IV	RADIOGRAPHY TESTING	9								

Radiography, Ultrasonic Testing: Basic principle, Electromagnetic radiation, Sources, Radiation attenuation in the specimen. Effect of radiation in film, Radiographic imaging, Inspection techniques, Applications of radiographic inspection, Limitations, Safety in Industrial Radiography, Standards, Neutron radiography. Ultrasonic Testing: Basic properties of sound beam, Ultrasonic transducers, Inspection methods, Techniques for Normal Beam Inspection, Techniques for Angle Beam Inspection, Flaw characterization techniques, Ultrasonic flaw detection equipment, Modes of Display, Immersion Testing, Applications of Ultrasonic Testing, Advantages, Limitations

1 00 011-B) 1 - P P										
UNIT V	ACOUSTIC TESTING	9								
Acoustic Emission Testing: Principle of Acoustic Emission Testing, Technique, Instrumentation,										
Sensitivity,	Applications, Standards. Thermograph: Basic Principles, Detec	tors and Equipment,								
Techniques, Applications, Codes and Standards. In Situ Metallographic Examination: Approach to the										
Selection of Site for Metallographic examination, Replication process, Significance of Microstructure										
observation,	observation, Decision making, Applications, Codes and Standards.(digital signal process)									
	Total Periods	45								

Suggestive Assessment Metho Continuous Assessment Test (20 Marks)	ds Formative Assessment Test (20 Marks)	End Semester Exams (60 Marks)
escriptive exam	MCQ QUIZ / SEMINAR/	1.
CAT 1 10 AND	ASSIGNMENT/SLIPTEST/CASE	Descriptive
CAT2 10 MARKS	STUDY	Questions

Course Outcomes

Upon completion of the course, the students will be able to:

CO1: Discuss the need and scope of failure analysis and fundamental sources of failures. **(Understand)**

CO2: Interpret about non-destructive testing and basic principles of visual inspection. (Understand)
CO3: Conduct magnetic particle testing and eddy current testing with different procedures. (Apply)
CO4: Conduct radiography testing and ultrasonic testing with different procedures. (Apply)

CO5: Characterize the acoustic testing, techniques and instrumentation. **(Apply)**

Text Books

- 1. Baldev Raj, T.Jayakumar, M.Thavasimuthu Practical Non-Destructive Testing, Narosa Publishing House, 2014
- 2. Ravi Prakash, Non-Destructive Testing Techniques, 1st revised edition, New Age InternationalPublishers, 2012

Reference Books

- 1. ASM Metals Handbook,Non-Destructive Evaluation and Quality Control, American Society of Metals, Metals Park, Ohio, USA, 2021, Volume-17.
- 2. Paul E Mix, Introduction to Non-destructive testing: a training guide, Wiley, 2nd Edition NewJersey, 2005
- 3. 5. J.Prasad and C. G. K. Nair, Non-Destructive Test and Evaluation of Materials, Tata McGraw-HillEducation, 2nd edition (2011).

Web Resources

- 1. https://archive.nptel.ac.in/courses/112/107/112107241/_FAILURE ANALYSIS AND NDT TECHNIQUES
- 2. https://onlinecourses.nptel.ac.in/noc21_me14/preview / FAILURE ANALYSIS AND NDT TECHNIQUES

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	2	3	1	1	1						1	3	
CO2	1	2	3	1	1	1						1	3	
CO3	1	2	3	1	1	1						1	3	
CO4	1	2	3	1	1	1						1	3	
CO5	1	2	3	1	1	1						1	3	

CO Vs PO Mapping and CO Vs PSO Mapping

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Students will be able to discuss the need and scope of failure analysis and fundamental sources of failures (Understand)

- 1. Illustrate about discontinuities. Explain various types of discontinuities with examples **(Understand)**
- 2. Compare and contrast the fundamental sources of failures with examples (Understand)

COURSE OUTCOME 2: Students will be able to interpret about non-destructive testing and basic principles of visual inspection. (Understand)

- 1. Illustrate the methodologies used to inspect the gear tooth profile and explain details of visual or optical inspection procedure. **(Understand)**
- 2. Compare and contrast the principles, characteristics detected, advantages, limitations and applications of visual inspection, liquid penetrant testing methods. **(Understand)**

COURSE OUTCOME 3: Students will be able to conduct magnetic particle testing and eddy current testing with different procedures (Apply)

- 1. Elucidate the procedure used for testing a component through Magnetic Particle Testing method and briefly explain its applications. **(Understand)**
- 2. Construct the block diagram of Eddy current testing method and explain its working principle. **(Apply)**

COURSE OUTCOME 4: Students will be able to conduct radiography testing and ultrasonic testing with different procedures. (Apply)

- 1. Construct the black diagram of X-ray Radiography with a neat sketch and state its advantages, limitations and applications. **(Apply)**
- 2. Describe in details about the working principle of Pulse echo, Transmission and Phased Array techniques with a neat sketch. **(Understand)**

COURSE OUTCOME 5: Students will be able to characterize the acoustic testing, techniques and instrumentation. (Apply)

- 1. Illustrate the working principle of Acoustic Emission testing method with a neat sketch. (Understand)
- 2. Demonstrate and explain the simple experimental test setup for Acoustic Emission testing. (Apply)

21ME7723	ENERGY CONSE	RVATION AND WASTE HEAT REC	OVERY	L	Τ	Р	С
		012111	3	0	0	3	
Prerequisite	es for the course						
Thermal Eng	ineering, Heat and M	ass Transfer					
Objectives							
	impart knowledge aste heat recovery fr	on the various methods of Energy om thermal systems.	Conservati	on, En	ergy	polic	ies and
UNIT I				9			
Energy conse industries –	ervation potential in	a. Energy Resources availability in I various Industries and commercia conservation and energy efficienc nservation Act.	l establishr	nents.	Ener	gy in	tensiv
UNIT II		ENERGY POLICIES				9	
energy multi	plier and implicatio on Trading – Renewa	Plan programs, Basic concept of In n of energy multiplier for analysis able Energy Certification – CDM RECOVERY IN THERMAL UTILITIE	s of region				-
	7						
		ecovery technologies – recuperator ; fluid heaters – Waste heat boile					
plate heat ex conditions, d – sorption sy	xchangers – thermio esign Considerations /stems, identifying o	ecovery technologies – recuperator c fluid heaters – Waste heat boile – fluidized bed heat exchangers – h pportunities for energy savings –	ers classific neat pipe ex	ation, chang	loca [.] – gers	tion, heat	servic pump
plate heat ex conditions, d – sorption sy HVAC system UNIT IV	xchangers – thermio esign Considerations /stems, identifying o is. ENERGY	c fluid heaters – Waste heat boile – fluidized bed heat exchangers – h pportunities for energy savings – CONSERVATION AND AUDITING	ers classific neat pipe ex steam syst	ation, chang ems, (loca gers – Coger	tion, heat ierati 9	service pump on and
plate heat ex conditions, d – sorption sy HVAC system UNIT IV Definition, n energy costs, system effici auditing – ty energy mana UNIT V	xchangers – thermio esign Considerations /stems, identifying o is. ENERGY eed, and types of e , bench marking, end encies, optimizing t /pes, methodologies, gers and auditors – E	c fluid heaters – Waste heat boile – fluidized bed heat exchangers – h pportunities for energy savings – CONSERVATION AND AUDITING nergy audit; Energy management ergy performance, matching energy he input energy requirements; Fu barriers. Energy audit instrument Energy audit questionnaire. ENERGY MANAGEMENT	ers classific neat pipe ex steam syst (audit) ap y use to re lel & energ its; Duties	ation, cchang ems, (proacl quirer gy sub and r	loca gers – Coger h: Un nent, ostitut respon	tion, heat erati 9 derst maxi tion. nsibil 9	service pumps on and canding mizing Energy ities o
plate heat ex conditions, d – sorption sy HVAC system UNIT IV Definition, n energy costs, system effici auditing – ty energy mana UNIT V Organization industrial en- analysis and Energy Mana	xchangers – thermio esign Considerations /stems, identifying o is. ENERGY eed, and types of e , bench marking, end encies, optimizing t /pes, methodologies, gers and auditors – E al background desin ergy management sy techniques – Energ	c fluid heaters – Waste heat boile – fluidized bed heat exchangers – h pportunities for energy savings – CONSERVATION AND AUDITING nergy audit; Energy management ergy performance, matching energy he input energy requirements; Fu barriers. Energy audit instrument Energy audit questionnaire. ENERGY MANAGEMENT red for energy management persustems. Energy monitoring and target y consumption, production, cumula Systems (EMIS). Economics of variant	ers classific neat pipe ex steam syst (audit) ap y use to re lel & energ its; Duties nasion, mo eting – Elen ative sum c ious energy	ation, cchang ems, (proach quiren gy sub and r tivatio nents, of diffe	locat gers – Coger h: Un nent, ostitut respon on, pu data, erence ervat	tion, heat nerati 9 derst maxition. nsibil 9 ublicit infor es (Cli ion so	service pumps on and canding mizing Energy ities o cy role mation USUM)
plate heat ex conditions, d - sorption sy HVAC system UNIT IV Definition, n energy costs, system effici auditing – ty energy mana UNIT V Organization industrial en- analysis and Energy Mana – Energy poli	xchangers – thermio esign Considerations ystems, identifying o is. ENERGY eed, and types of e , bench marking, end encies, optimizing t ypes, methodologies, gers and auditors – E al background desin ergy management sy techniques – Energy igement Information cy and energy labelin	c fluid heaters – Waste heat boile – fluidized bed heat exchangers – h pportunities for energy savings – CONSERVATION AND AUDITING nergy audit; Energy management ergy performance, matching energy he input energy requirements; Fu barriers. Energy audit instrument chergy audit questionnaire. ENERGY MANAGEMENT red for energy management persustems. Energy monitoring and targery y consumption, production, cumular Systems (EMIS). Economics of variant	ers classific neat pipe ex steam syst (audit) ap y use to re rel & energents; Duties nasion, more ting – Elem	ation, cchang ems, (proach quiren gy sub and r tivatio nents, of diffe	locat gers – Coger h: Un nent, ostitut respon on, pu data, erence ervat	tion, heat nerati 9 derst maxition. nsibil 9 ibliciti infor es (Cl	service pumps on and canding mizing Energy ities o cy role mation USUM)
plate heat ex conditions, d – sorption sy HVAC system UNIT IV Definition, n energy costs, system effici auditing – ty energy mana UNIT V Organization industrial en- analysis and Energy Mana – Energy poli	xchangers – thermio esign Considerations ystems, identifying o is. ENERGY eed, and types of e , bench marking, end encies, optimizing t ypes, methodologies, gers and auditors – E al background desin ergy management sy techniques – Energy igement Information cy and energy labelin Assessment Method Assessment Test	c fluid heaters – Waste heat boile – fluidized bed heat exchangers – h pportunities for energy savings – CONSERVATION AND AUDITING nergy audit; Energy management ergy performance, matching energy he input energy requirements; Fu barriers. Energy audit instrument chergy audit questionnaire. ENERGY MANAGEMENT red for energy management persustems. Energy monitoring and targery y consumption, production, cumular Systems (EMIS). Economics of variant	ers classific neat pipe ex steam syst (audit) ap y use to re lel & energ its; Duties nasion, mo eting – Elen ative sum c ious energy	ation, cchang ems, (proach quiren gy sub and r tivation nents, of diffe y cons neste	loca gers – Coger h: Un nent, ostitut respon on, pu data, erence ervat	tion, heat nerati 9 derst maxition. nsibil 9 iblicit infor es (Cl ion so 45	service pumps on and canding mizing Energy ities o cy role matior USUM)

Course Outcomes Upon completion of the course, the students will be able to: CO1. Summarize the present energy scenario and interpret the need for energy conservation measures. (Understand)

CO2. Familiarize with various energy policies (National and International) & standards. **(Understand)**

CO3. Comprehend the concepts of waste heat recovery system and perform energy analysis. **(Apply) CO4.** Conduct energy audit and optimize energy requirements. **(Apply)**

CO5. Interpret the economics of energy conservation schemes in industrial energy management systems. **(Understand)**

Text Books

1. Chirla Chandra Sekhara Reddy, Gade Pandu Rangaiah, Waste Heat Recovery: Principles and Industrial Applications, World Scientific Publishing Co Pte Ltd, 2022.

2. Energy Conservation Guidebook, Dale R Patrick, Stephen W Fardo, 2nd Edition, CRC Press

Reference Books

- Steve Doty, Wayne C. Turner "Energy Management Handbook", 7th Edition, the Fairmont Press, Inc., (2013)
- 2. F Kreith, D.Y.Goswami, "Energy management and conservation handbook", CRC Press, (2017)
- 3. Industrial Energy Conservation Manuals, MIT Press, Mass, (2007)
- 4. YP Abbi and Shashank Jain. "Handbook on Energy Audit and Environment Management", TERI Publications, (2006)
- 5. Handbook of Energy Audits, Albert Thumann, 6th Edition, The Fairmont Press

Web Resources

- 1. <u>www.energymanagertraining.com/</u> ENERGY CONSERVATION AND WASTE HEAT RECOVERY
- 2. <u>www.classcentral.com/</u> ENERGY CONSERVATION AND WASTE HEAT RECOVERY
- 3. https://nptel.ac.in/courses/ ENERGY CONSERVATION AND WASTE HEAT RECOVERY

CO Vs PO Mapping and CO Vs PSO Mapping

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	1				2	3					1		3
CO2	1	1				2	3					1		3
CO3	2	1				2	3					1		3
CO4	1	2		2	1	2						1		3
CO5	1	2		2	1	2						1		3

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Students will be able to summarize the present energy scenario and interpret the need for energy conservation measures (Understand)

- 1. What are the energy-saving options available for office buildings? **(Understand)**
- 2. How can the construction industry promote energy conservation? **(Understand)**

COURSE OUTCOME 2: Students will be able to familiarize with various energy policies (National and International) & standards. (Understand)

- 1. How are thermic fluid heaters utilized in waste heat recovery? (Understand)
- 2. How can opportunities for energy savings be identified in waste heat recovery systems? **(Understand)**

COURSE OUTCOME 3: Students will be able to comprehend the concepts of waste heat recovery system and perform energy analysis (Apply)

- 1. Develop the design considerations which are important for waste heat recovery systems? (Apply)
- 2. How do fluidized bed heat exchangers contribute to waste heat recovery? **(Understand)**

COURSE OUTCOME 4: Students will be able to conduct energy audit and optimize energy requirements. (Apply)

- 1. What is the importance of matching energy use to requirement in energy audits? **(Understand)**
- 2. Optimize input energy requirements in energy audits? (Apply)

COURSE OUTCOME 5: Students will be able to interpret the economics of energy conservation schemes in industrial energy management systems. (Understand)

- 1. What organizational background is desirable for energy management persuasion and motivation? **(Understand)**
- 2. What techniques are used in analyzing energy consumption, production, and cumulative sum of differences (CUSUM)? **(Understand)**

21ME7724	SI	MULATION OF IC ENGINES		L	Т	Р	C
				3	0	0	3
	es for the course						
	Thermodynamics, Th	nermal Engineering					
Objectives							
 varyin Simula fuel ai transference 	ng them on performa ate engine operation ir processes with ch er and time depende	ters of significance for the operation nce and fuel economy. through the use of ideal air cycle r nemical equilibrium and time dep ent combustion. ribe the combustion processes in s	nodels, idea oendent mo	l air e dels t	xcha hat i	nge m nclude	odels e hea
UNIT I	-	second laws of thermodynamics			ulest	9	nes
		dynamics – Estimation of propert		nixtur	es -	-	ure c
		cycle models - Cycle studies	les of gus h	inneur	00	sti ucti	
UNIT II	Chemical Rea	ctions and Heat Transfer in IC E	ngine			9	
Chemical Rea							for :
emperature,	Chemical Equilibri at transfer models fo	um and calculation of equilibrium r engines.	n compositi	on -	Heat	trans	ier i
emperature, engines – Hea UNIT III	at transfer models fo	r engines. Combustion in SI engines				9	
emperature, engines – Hea UNIT III Combustion i Mass burning	at transfer models fo (n SI engines, Flame	r engines.	one models	– Mul	ti zo	9 ne mo	dels
emperature, engines – Hea UNIT III Combustion i Mass burning Multidimensi UNIT IV	at transfer models fo (n SI engines, Flame g rate, Turbulence r onal models. (r engines. Combustion in SI engines propagation and velocity, Single zo nodels – One dimensional models Combustion in CI engines	one models s – Chemica	– Mul al kin	ti zoi etics	9 ne mo mode 9	dels ling
emperature, engines – Hea UNIT III Combustion i Mass burning Multidimensi UNIT IV Combustion Whitehouse v	at transfer models fo (in SI engines, Flame g rate, Turbulence r onal models. (in CI engines Sing way model, Two zor	r engines. Combustion in SI engines propagation and velocity, Single zo nodels – One dimensional models	one models s – Chemica usive mode guerdichiar	– Mul al kin els – 1 and	ti zo etics Wieb Wats	9 ne mo mode 9 e' mo	dels ling odel
emperature, engines – Hea UNIT III Combustion i Mass burning Multidimensi UNIT IV Combustion Whitehouse v	at transfer models fo (in SI engines, Flame g rate, Turbulence n onal models. (in CI engines Sing way model, Two zor odel, Lyn's model – I	r engines. Combustion in SI engines propagation and velocity, Single zo models – One dimensional models Combustion in CI engines le zone models – Premixed-Diffe ne models - Multizone models- Me	one models s – Chemics usive mode guerdichian nd spray mo	– Mul al kin els – 1 and	ti zo etics Wieb Wats	9 ne mo mode 9 e' mo	dels ling odel
emperature, engines – Hea UNIT III Combustion i Mass burning Multidimensi UNIT IV Combustion Whitehouse v Hiroyasu's mo UNIT V Thermodynamultidimensi	at transfer models fo (in SI engines, Flame g rate, Turbulence r onal models. (in CI engines Sing way model, Two zor odel, Lyn's model – I Thermodyn mics of the gas excl	r engines. Combustion in SI engines propagation and velocity, Single zo nodels – One dimensional models Combustion in CI engines le zone models – Premixed-Diffu- ne models - Multizone models- Me ntroduction to Multidimensional at namics of the gas exchange proce nange process - Flows in engine re round valves and through ports Me	one models s – Chemics usive mode guerdichian nd spray mo e ss nanifolds –	– Mul al kin els – n and odellir One	ti zor etics Wieb Wats ng dime	9 ne mo mode 9 e' mo con's n 9 nsiona	dels ling odel node
emperature, engines – Hea UNIT III Combustion i Mass burning Multidimensi UNIT IV Combustion Whitehouse v Hiroyasu's mo UNIT V Thermodynamultidimensi	at transfer models fo (in SI engines, Flame g rate, Turbulence r onal models. (in CI engines Sing way model, Two zor odel, Lyn's model – I Thermodyn mics of the gas exch onal models, Flow a	r engines. Combustion in SI engines propagation and velocity, Single zo models – One dimensional models Combustion in CI engines le zone models – Premixed-Diffu- ne models - Multizone models- Me ntroduction to Multidimensional a namics of the gas exchange proce nange process - Flows in engine r round valves and through ports Me thermal models.	one models s – Chemics usive mode guerdichian nd spray mo e ss nanifolds –	– Mul al kin els – n and odellir One	ti zor etics Wieb Wats ng dime ing in	9 ne mo mode 9 e' mo con's n 9 nsiona	dels ling odel node
emperature, engines – Hea UNIT III Combustion i Mass burning Multidimensi UNIT IV Combustion Whitehouse w Hiroyasu's m UNIT V Chermodynam nultidimensi engines – Isot	at transfer models fo in SI engines, Flame g rate, Turbulence r onal models. in CI engines Sing way model, Two zor odel, Lyn's model – I Thermodyn mics of the gas exch onal models, Flow a thermal and non-iso	r engines. Combustion in SI engines propagation and velocity, Single ze models – One dimensional models Combustion in CI engines le zone models – Premixed-Diffe ne models - Multizone models- Me ntroduction to Multidimensional at namics of the gas exchange proce hange process - Flows in engine r round valves and through ports Me thermal models. Tot	one models s – Chemics usive mode guerdichian nd spray mo ess nanifolds – odels for sca al Periods	– Mul al kin els – n and odellir One avengi	ti zor etics Wieb Wats ng dime ing in	9 ne mo mode 9 e' mo con's n 9 nsiona two s 45	dels ling odel node
emperature, engines – Hea UNIT III Combustion i Mass burning Multidimensi UNIT IV Combustion Whitehouse v Hiroyasu's mo UNIT V Chermodynan nultidimensi engines – Isot Suggestive A	at transfer models fo (in SI engines, Flame g rate, Turbulence r onal models. (in CI engines Sing way model, Two zor odel, Lyn's model – I Thermodyr mics of the gas excl onal models, Flow a thermal and non-iso ssessment Method Assessment Test	r engines. Combustion in SI engines propagation and velocity, Single zo models – One dimensional models Combustion in CI engines le zone models – Premixed-Diffe ne models - Multizone models- Me ntroduction to Multidimensional a namics of the gas exchange proces hange process - Flows in engine r round valves and through ports Me thermal models. Tot S Formative Assessment Test	one models s – Chemica usive mode guerdichian nd spray mo ess nanifolds – odels for sca al Periods	– Mul al kind els – n and odellin One avengi	ti zor etics Wieb Wats ng dime ing in	9 ne mo mode 9 e' mo con's n 9 nsiona two s 45	dels ling odel node
emperature, engines – Hea UNIT III Combustion i Mass burning Multidimensi UNIT IV Combustion Whitehouse w Hiroyasu's m UNIT V Thermodynam nultidimensi engines – Isof Suggestive A Continuous A (20 Ma	at transfer models fo (in SI engines, Flame g rate, Turbulence r onal models. (in CI engines Sing way model, Two zor odel, Lyn's model – I Thermodyr mics of the gas exch onal models, Flow a thermal and non-iso (assessment Method Assessment Test arks)	r engines. Combustion in SI engines propagation and velocity, Single zo models – One dimensional models Combustion in CI engines le zone models – Premixed-Diffu- ne models - Multizone models- Mee ntroduction to Multidimensional a namics of the gas exchange proce- nange process - Flows in engine r round valves and through ports Mee thermal models. Tot S Formative Assessment Test (20 Marks)	one models s – Chemics usive mode guerdichian nd spray mo ess nanifolds – odels for sca al Periods End Se (60 Ma	– Mul al kind els – n and odellir one avengi avengi meste rks)	ti zor etics Wieb Wats ng dime ing in	9 ne mo mode 9 e' mo con's n 9 nsiona two s 45	dels ling odel node
emperature, engines – Hea UNIT III Combustion i Mass burning Multidimensi UNIT IV Combustion Whitehouse v Hiroyasu's mo UNIT V Thermodynam nultidimensi engines – Isot Suggestive A Continuous A	at transfer models fo (in SI engines, Flame g rate, Turbulence r onal models. (in CI engines Sing way model, Two zor odel, Lyn's model – I Thermodyr mics of the gas excl onal models, Flow a thermal and non-iso ssessment Method Assessment Test arks) exam	r engines. Combustion in SI engines propagation and velocity, Single zo models – One dimensional models Combustion in CI engines le zone models – Premixed-Diffu- ne models - Multizone models- Me ntroduction to Multidimensional a namics of the gas exchange proce- nange process - Flows in engine r round valves and through ports Me thermal models. Tot s Formative Assessment Test (20 Marks) MCQ QUIZ / SEMINAR/	one models s – Chemica usive mode guerdichian nd spray mo ess nanifolds – odels for sca al Periods	– Mul al kind els – n and odellir one avengi avengi meste rks)	ti zor etics Wieb Wats ng dime ing in	9 ne mo mode 9 e' mo con's n 9 nsiona two s 45	dels ling odel node
emperature, engines – Hea UNIT III Combustion i Mass burning Multidimensi UNIT IV Combustion Whitehouse v Hiroyasu's m UNIT V Chermodynan nultidimensi engines – Isot Suggestive A Continuous A (20 Ma Descriptive o	at transfer models fo (in SI engines, Flame g rate, Turbulence r onal models. (in CI engines Sing way model, Two zor odel, Lyn's model – I Thermodyr mics of the gas exch onal models, Flow a thermal and non-iso (ssessment Method Assessment Test urks) exam ID	r engines. Combustion in SI engines propagation and velocity, Single zo models – One dimensional models Combustion in CI engines le zone models – Premixed-Diffu- ne models - Multizone models- Mee ntroduction to Multidimensional a namics of the gas exchange proce- nange process - Flows in engine r round valves and through ports Mee thermal models. Tot S Formative Assessment Test (20 Marks)	one models s – Chemics usive mode guerdichian nd spray mo ess nanifolds – odels for sca al Periods End Se (60 Ma	– Mul al kind els – n and odellir one avengi avengi meste rks)	ti zor etics Wieb Wats ng dime ing in	9 ne mo mode 9 e' mo con's n 9 nsiona two s 45	dels ling odel node
emperature, engines – Hea UNIT III Combustion i Mass burning Multidimensi UNIT IV Combustion Whitehouse w Hiroyasu's ma UNIT V Thermodynam nultidimensi engines – Isot Suggestive A Continuous A (20 Ma Descriptive o CAT 1 10 AN CAT2 10 MA	at transfer models fo (in SI engines, Flame g rate, Turbulence r onal models. (in CI engines Sing way model, Two zor odel, Lyn's model – I Thermodyr mics of the gas exch onal models, Flow a thermal and non-iso (assessment Method Assessment Test arks) exam ID RKS omes	r engines. Combustion in SI engines propagation and velocity, Single zo models – One dimensional models Combustion in CI engines le zone models – Premixed-Diffu- ne models - Multizone models- Me ntroduction to Multidimensional a namics of the gas exchange proce- nange process - Flows in engine r round valves and through ports Me thermal models. Tot S Formative Assessment Test (20 Marks) MCQ QUIZ / SEMINAR/ ASSIGNMENT/SLIPTEST/CASE STUDY	one models s – Chemics usive mode guerdichian nd spray mo ess nanifolds – odels for sca al Periods End Se (60 Ma	– Mul al kind els – n and odellir one avengi avengi meste rks)	ti zor etics Wieb Wats ng dime ing in	9 ne mo mode 9 e' mo con's n 9 nsiona two s 45	dels ling odel node
emperature, engines – Hea UNIT III Combustion i Mass burning Multidimensi UNIT IV Combustion Whitehouse w Hiroyasu's m UNIT V Thermodynam nultidimensi engines – Isof Suggestive A Continuous A (20 Ma Descriptive o CAT 1 10 AN CAT2 10 MA	at transfer models fo (in SI engines, Flame g rate, Turbulence r onal models. (in CI engines Sing way model, Two zor odel, Lyn's model – I Thermodyn mics of the gas exch onal models, Flow a thermal and non-iso (ssessment Method Assessment Test arks) exam ID RKS omes etion of the course,	r engines. Combustion in SI engines propagation and velocity, Single zo models – One dimensional models Combustion in CI engines le zone models – Premixed-Diffe ne models - Multizone models- Me ntroduction to Multidimensional a namics of the gas exchange proces hange process - Flows in engine r round valves and through ports Me thermal models. Tot S Formative Assessment Test (20 Marks) MCQ QUIZ / SEMINAR/ ASSIGNMENT/SLIPTEST/CASE	one models s – Chemics usive mode guerdichian nd spray mo ess manifolds – odels for sca al Periods End Sei (60 Ma Descrip	– Mul al kind els – n and odellin One avengi meste rks) tive E	ti zor etics Wieb Wats ng dime ing in er Exa	9 ne mo mode 9 e' mo con's n 9 nsiona two s 45 ams	dels ling odel node al an strok

CO3: Demonstrate the models to describe the combustion of SI Engine. (Apply)
CO4: Demonstrate the models to describe the combustion of CI Engine. (Apply)
CO5: Discuss about the thermodynamics of gas exchange process (Understand)

Text Books

- 1. Simulation and Optimization of Internal Combustion Engines", SAE International, 2021
- 2. 1D and Multi-D Modeling Techniques for IC Engine Simulation", SAE International, 2020

Reference Books

- 1. Ashley S. Campbell, Thermodynamic Analysis of Combustion Engines, John Wiley and Sons, 1980.
- 2. V.Ganesan, Computer Simulation of Spark Ignition Engine Processes, Universities Press, 1995.
- 3. V.Ganesan, Computer Simulation of Compression Ignition Engine Processes, Universities Press, 2002.
- 4. J.I.Ramos, Internal Combustion Engine Modeling, Hemisphere Publishing Corporation, 1989.
- 5. J.N.Mattavi and C.A.Amann, Combustion Modeling in Reciprocating Engines, Plenum Press, 1980.

Web Resources

1. https://archive.nptel.ac.in/courses/112/107/112107214/<u>SIMULATION OF IC ENGINE</u>

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1												2
CO2	2	1	1	1	3	1								2
CO3	2	1	1	1	3	1								3
CO4	2	1	1	1	3	1								3
CO5	2	1	1	1	3	1								3

CO Vs PO Mapping and CO Vs PSO Mapping

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Students will be able to interpret about the first and second law of thermodynamics and properties of gas mixtures. (Understand)

1. Sate first and second law of thermodynamics (Understand)

2. Difference between open loop and closed loop systems (Understand)

COURSE OUTCOME 2: Students will be able to summarize the chemical reactions and heat transfer in IC Engine. (Understand)

1. Describe how equilibrium constant can be used to calculate the composition of an equilibrium mixture. (**Understand**)

2. What are the different types of heat transfer in an engine? (Understand)

COURSE OUTCOME 3: Students will be able to demonstrate the models to describe the combustion of SI Engine. (Apply)

- 1. Develop the practice turbulence model for SI engine (Apply)
- 2. Interpret the chemical kinetics modelling and its principles (Understand)

COURSE OUTCOME 4: Students will be able to demonstrate the models to describe the combustion of CI Engine (Apply)

- 1. Discuss the single zone and multizone model of combustion in SI engine (Understand)
- 2. Develop the practice model for Watson's theory of caring (Apply)

COURSE OUTCOME 5: Students will be able to discuss about the thermodynamics of gas exchange process (Understand)

- 1. Distinguish between isothermal and non-isothermal models (Understand)
- 2. Interpret the process of gas exchange in IC engine (Understand)

21ME7725	Sunnly	chain Management and Logistics		L	T	Р	C
21ME//23	Supply	tham management and Lugistics		3	0	0	3
	s for the course						
NIL							
Objectives							
The course p	ovides insight on the	e fundamentals, tools and techniques	s of supply	chain	and	logist	ic
networks							
UNIT I		Introduction				9	
Role of Logis	tics and Supply Cha	in Management: Scope and Importa	ince- Evolu	tion	of Su	pply	Chain
Decision Pha	ses in Supply Chain	- Competitive and Supply Chain Stra	ategies – D	river	s of S	upply	7 Chai
Performance	and Obstacles.						
UNIT II	Su	pply Chain Network Design				9	
Role of Distr	ibution in Supply (Chain – Factors Influencing Distrib	oution Netw	vork	Desi	gn –	Desig
		Distribution Network in Practice-R	Role of Net	work	Desi	gn in	Suppl
Chain – Fram	ework for Network I	Decisions.					
UNIT III]	Logistics In Supply Chain				9	
Role of trans	portation in supply o	chain – factors affecting transportat	ions decisi	on –	Desig	n opt	ion fo
transportatio	n network – Tailoreo	l transportation – Routing and sched	luling in tra	anspo	rtatio	on.	
UNIT IV	Sourcing	and Coordination In Supply Chain				9	
Role of sour	cing supply chain s	upplier selection assessment and o	contracts-	Desig	n col	labor	ation
sourcing plar	ning and analysis -	supply chain co-ordination - Bull v	whin effect	– Efi	ect o	f lack	c of co
	-	bstacles – Building strategic partne	_				
chain.	supply chain and o	building strategic partic	and and	l ti us		iiii a	Suppi
UNIT V	Supply cha	in and Information Technology (IT	ר ז			9	
		supply chain IT frame work - Custo	-	onsh	in Ma	-	ment
		it – supplier relationship manageme			-	-	
	supply chain.	it supplier relationship manageme	int intuit	0111	111 50	ppiy	chann
	supply chain	Tota	l Periods			45	
Suggestive A	ssessment Method						
Continuous	Assessment Test	Formative Assessment Test	End Sen	neste	er Exa	ıms	
(20 Ma	rks)	(20 Marks)	(60 Mar	rks)			
Descriptive		MCQ QUIZ / SEMINAR/	Descript	ive Qı	lestio	ns	
CAT 1 10 AN		ASSIGNMENT/SLIPTEST/CASE					
CAT2 10 MA	RKS	STUDY					
Course Outc	omes	1	1				
		the students will be able to:					
	-	functions and drivers of supply chair	-	ent (Unde	rstar	ıd)
		ved in network design (Understand	IJ				
	0	s in industrial supply chain (Apply) ation in supply chain (Understand)					
		a different cases of supply chain (Understand)					
	the necessity of 11 II	i amerene cases of supply chain (On	acistalluj				

Text Books

1. Sunil Chopra, Peter Meindl and Kalra, "Supply Chain Management, Strategy, Planning, and Operation", Pearson Education, 7 th edition 2018.

Reference Books

- 1. Simchi Levi Davi, "Designing and Managing the Supply Chain", Tata McGraw Hill Publishing Company Ltd, New Delhi, 3rd edition 2019.
- 2. Srinivasan, G, "Quantitative Models in Operations and Supply Chain Management", Prentice Hall India Pvt Limited, India, 2018.

Web Resources

- 1. <u>https://archive.nptel.ac.in/courses/112/106/112106249/</u> Supply chain management and logistics
- 2. <u>https://archive.nptel.ac.in/courses/110/106/110106045/</u> Supply chain management and logistics
- 3. <u>https://archive.nptel.ac.in/courses/110/108/110108056/</u> Supply chain management and logistics
- 4. <u>https://archive.nptel.ac.in/courses/110/107/110107074/</u> Supply chain management and logistics

CO Vs PO Mapping and CO Vs PSO Mapping

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	3	2		1					1			3	
CO2	1	3	2		1					1			3	
CO3	1	3	2		1					1			3	
CO4	1	3	2		1					1			3	
CO5	1	3	2		1					1			3	

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Discuss the building blocks, functions and drivers of supply chain management (Understand)

- 1. Discuss in detail about decision phases in supply chain. (Understand)
- 2. Interpret the drivers of supply chain performance. (Understand)

COURSE OUTCOME 2: Summarize the factors involved in network design (Understand)

- 1. Summarize the framework of structuring drivers. (Understand)
- 2. Discuss in detail about factors influencing distribution network design (Understand)

COURSE OUTCOME 3: Illustrate the role of logistics in industrial supply chain (Apply)

- 1. Show in detail about factors affecting transportations decision. (Understand)
- 2. Determine in detail about tailored transportation. (Apply)

COURSE OUTCOME 4: Interpret the role of coordination in supply chain. (Understand)

- 1. Show in detail about supplier selection assessment and contracts. (Understand)
- 2. Discuss in detail about sourcing planning and analysis (Understand)

COURSE OUTCOME 5: Discuss the necessity of IT in different cases of supply chain. (Understand)

- 1. Summarize the supply chain IT frame work. (Understand)
- 2. Discuss in detail about E-Business in supply chain. (Understand)

<i>Syllabi</i> 21ME7726	ſ	DEDATIONS DESEADOU		L	Т	Р	C
		OPERATIONS RESEARCH		3	0	0	3
-	for the course	s, Partial Differential Equation a	nd Applica	tion of	Fourio	r Corioc	
	d Statistical Analy	-	nu Applica		rourie	i series	,
Objectives	<u> </u>	<u> </u>					
renderi • To stu	ing an optimal sol dy Appraising tl	onstraints on the availability of ution for the given circumstance he challenges in the transport ution to maximize the benefits.	es.		•	U	
To lear solutionTo lear	rn the network n n for the given cir rn Planning the	nodels and project manageme cumstances. purchase/ manufacturing polic	-			-	-
	g the customer de lysing the queue c	emands. discipline and exploring the ave	nues for be	etter cu	stomer	service).
UNIT I		Linear Models				9	
		dy – Formation of Linear Progra hical Solution - Simplex Algorit					
UNIT II	Transportation	Problems, Assignment Probl Sequencing Problems	ems and			9	
Transportatio	n Problems: Mat	hematical Formulation-Basic F	easible So	lutions	- Noi	th-Wes	t Corn
-		LCM) – Vogels Approximation					
Mathematical	Formulation -Hu	ingarian Algorithm. Sequencing	g Problem	s:1 Jobs	s N Ma	achine,	N Jobs
Machine, N Job	os 2 Machine, N Jo	bs 3 Machine, N Jobs M Machine	e and 2 Job	s N Ma	chine F	roblem	s.
UNIT III	Network	Models and Project Managem	ent			9	
		oute - Minimal Spanning Tre					
-		Networks-Activity and Event Ba itical Path Method (CPM) Proble	-		-	ı Evalua	ition ai
UNIT IV		Inventory Models				9	
		: Order Quantity (EOQ) - Detern v Models - Multi Item Determini		-			
UNIT V	Queuing I	Models and Replacement Mod	els			9	
Multiserver M	odels. Replaceme	stems and Structures - Notati nt Models: Replacement of Item al and Group Replacement Polic	s Due to D				
			l Periods			45	
	sessment Metho		Γ				
Continuous A Test	ssessment	Formative Assessment Test (20 Marks)	End Sem (60 Marl		xams		
(20 Mai	,						
MA) CAT	51 - 10 RKS 52 - 10	1.Assignment 2. Online Quizzes 3.Problem-Solving Activities	1. Descriptive Questions				
MA	RKS						
Course Outco	mes						
		e, the students will be able to	•				
Spon comple	tion of the toul 3	e, the statents will be able to					

401

- **CO.1** Formulate and solve linear programming problems. (Apply)
- **CO.2** Develop solutions to transportation, assignment, and sequencing problems. **(Apply)**
- **CO.3** Construct networks and analyse optimality for various applications. **(Analyse)**

CO.4 Identify inventory models and solve for optimality. **(Apply)**

CO.5 Analyse queuing characteristics and compute the optimum replacement period for capital equipment and items that fail suddenly **(Analyse)**

Text Books

1. Gupta P.K. & Hira D.S., "Operations Research", 7th Edition, S. Chand Publishing, New Delhi, 2014.

Reference Books

- 1. Taha & Hamdy A., "Operation Research: An Introduction", 10th Edition, Pearson Education, Chennai, 2017.
- 2. Hiller Frederick S., Lieberman Gerald J., Bodhibrata Nag & Preetam Basu, "Introduction to Operations Research", 10th Edition, McGraw-Hill Education, Bengaluru, 2017.
- 3. Vohra N.D., "Quantitative Techniques in Management", 5th Edition, McGraw Hill Education, Noida, 2017.

Web Resources

- 1. <u>https://archive.nptel.ac.in/courses/112/106/112106134</u> /**Operations Research**
- 2. https://onlinecourses.nptel.ac.in/noc22_ma48/preview / Operations Research
- 3. <u>https://archive.nptel.ac.in/courses/112/106/112106131</u> / Operations Research

CO Vs PO Mapping and CO Vs PSO Mapping

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2
CO 1	3	2											3	
CO 2	3	2	1										3	
CO 3	1	1	1	1							3		3	
CO 4	1	1	3	1									3	
CO 5	1	1	3	2									3	

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Formulate and solve linear programming problems. (Apply)

- 1. How does the formation of a Linear Programming Problem (LPP) differ from other optimization problems? **(Understand)**
- 2. Minimize Z=3x1+2x2 solve by graphically.

Subject to $5x1+x2 \ge 10$ $x_1+x_2 \ge 6$ $x_1+4x_2 \ge 12$ $X_1,X_2,\ge 0$ (Apply)

COURSE OUTCOME 2: Develop solutions to transportation, assignment, and sequencing problems. (Apply)

1. Obtain an initial basic feasible solution to the following transportation problem using the North-West Corner Rule. **(Apply)**

	D_1	D_2	D_3	D_4	Supplies
<i>S</i> ₁	20	25	28	31	200
<i>S</i> ₂	32	28	32	41	180
<i>S</i> ₃	18	35	24	32	110
Demands	150	40	180	170	

2. Use the Hungarian method to solve the following assignment problem: (Apply)

	J_1	J_2	J_3	J_4
M_1	10	9	7	8
M_2	5	8	7	7
M_3	5	4	6	5
M_4	2	3	4	5

COURSE OUTCOME 3: Construct networks and analyse optimality for various applications. (Analyze)

1. Draw the A project consists of seven activities for which the relevant data are given below:

Activity	Preceding activities	Duration (days)
A		4
В		7
С		6
D	A, B	5
E	A, B	7
F	C, D, E	6
G	C, D, E	5

i. Draw the network. ii. Identify the critical path and find the project completion time. **(Analyze)**

2. Construct the project network for project summarized in Table Q12b. Calculate the expected duration and variance of each activity and determine the critical path and expected project completion time. **(Analyze)**

The	Te	able – Q	12b			
Activity	Predecessor (s)	Duration (week)				
See.		D	m	b		
Α.		6	7	8		
В	-	1	. 2	+ 9		
С		-1	4	7		
D	A	I	2	3		
E	A.B	1	2	9		
F	C	1	5	9		
G	C	2	2	8		
H	E,F	4	4	4		
I	E, F	4	4	- 10		
J	D, H	2	5	14		
K	I, G	2	2	8		

COURSE OUTCOME 4: Identify inventory models and solve for optimality. (Apply)

- An industry produces a particular product with a demand rate r =14000 units/year, Production rate k = 35,000 units/year, set up cost Co = Rs. 500 per setup and carrying cost Cc = Rs. 15/unit/year. Determine the EBQ ad cycle time. (Apply)
- 2. A newspaper boy buys papers for 30 paise each and sells them for 70 paise. He cannot return unsold newspapers. Daily demand has the following distribution. **(Apply)**

No. of customers	23	24	25	26	27	28	29	30	31	32
Probability	0.01	0.03	0.06	0.10	0.20	0.25	0.15	0.10	0.05	0.05

COURSE OUTCOME 5: Analyse queuing characteristics and compute the optimum replacement period for capital equipment and items that fail suddenly. (Analyze)

1. A machine owner finds from his past records that the costs per year of maintaining a machine, whose purchase price is Rs.6000, are as given below, Determine at what age a replacement is due. **(Analyze)**

Yr.	1	2	3	4	5	6	7	8
Maintenance	1000	1200	1400	1800	2300	2800	3400	4000
cost								
Resale price	3000	1500	750	375	200	200	200	200

2. The following mortality rates have been observed for a certain type of light bulbs.

Week	1	2	3	4	5
Percent failing by the end of week	10	25	50	80	100

There are 1000 bulbs in use and it costs Rs.2 to replace an individual bulb, which has burnt out. If all the bulbs were replaced simultaneously, it would cost 50 paise per bulb. Find the average cost of group replacement policy. **(Analyze)**

				L	Τ	Р	C
21ME7727	Intro	oduction to NANO Technology	-	3	0	0	3
Prereauisite	s for the course			3	U	U	3
Nil							
Objectives							
•	he students to unde	erstand about the nanomaterials, syn	nthesis and	its ch	aract	teriza	tion.
UNIT I	BASICS A	ND SCALE OF NANOTECHNOLOGY	•			9	
Introduction ·	-Scientific revolutio	ons –Time and length scale in struct	ures –Defin	ition	of a	nanos	systen
	rgy and surface stre	ent phenomena –Surface to volume ess – surface defects – Properties a					
UNIT II	DIFFERE	NT CLASSES OF NANOMATERIALS				9	
		onality – Quantum Dots, Wells and					
•) – Nanocomposit	s, graphene)–Metal based nano ma æs – Nanopolymers –Nanoglasse	•	0			
UNIT III	SYN	THESIS OF NANOMATERIALS				9	
-	-	olvothermal Synthesis – Photoche eposition (CVD) –Metal Oxide	mical Syntł	nesis	- Sc	noch	emica
Routes – C (MOCVD).Phy	hemical Vapor De rsical Methods:Ball etron Sputtering – M	olvothermal Synthesis – Photoche eposition (CVD) –Metal Oxide Milling –Electro deposition – Spra folecular Beam Epitaxy (MBE) FION AND CHARACTERIZATION O	mical Synth – Chemica ly Pyrolysis	nesis 1 Va	– Sc por	noch Depo	emica ositio
Routes – C (MOCVD).Phy DC/RF Magne UNIT IV	hemical Vapor De rsical Methods:Ball etron Sputtering – M FABRICAT	eposition (CVD) –Metal Oxide Milling –Electro deposition – Spra olecular Beam Epitaxy (MBE) FION AND CHARACTERIZATION O NANOSTRUCTURES	mical Synth – Chemica ly Pyrolysis F	nesis 11 Va 5 – Fl	– Sc por ame	Depo Depo Pyrol 9	emica ositio lysis
Routes – C (MOCVD).Phy DC/RF Magne UNIT IV Nanofabricati Nanoimprint Microscopy (Fransmission enhanced Rai	hemical Vapor De rsical Methods:Ball etron Sputtering – M FABRICAT on: Photolithograp –Softlithography (FESEM) –Environ Electron Microsco man spectroscopy (eposition (CVD) –Metal Oxide Milling –Electro deposition – Spra lolecular Beam Epitaxy (MBE) FION AND CHARACTERIZATION O	mical Synth – Chemica y Pyrolysis F on-beam l d Emission scopy (ESE ng Microsco	nesis il Va ; – Fla ithog n Sca :M) H ope ((– So por ame raph; annin High STM	9 9 9 9 9 9 9 8 9 9 8 9 8 9 8 9 8 9	emica ositio lysis BL) ectro olutio Gurfac
Routes – C (MOCVD).Phy DC/RF Magne UNIT IV Nanofabricati Nanoimprint Microscopy (Transmission enhanced Rai	hemical Vapor De rsical Methods:Ball etron Sputtering – M FABRICAT on: Photolithograp –Softlithography (FESEM) –Environ Electron Microsco man spectroscopy ((AES) –Rutherford	eposition (CVD) –Metal Oxide Milling –Electro deposition – Spra Jolecular Beam Epitaxy (MBE) FION AND CHARACTERIZATION O NANOSTRUCTURES Thy and its limitation – Electr patterning. Characterization: Fiel mental Scanning Electron Microsope (HRTEM) –Scanning Tunnelir (SERS) – X-ray Photoelectron Spec	mical Synth – Chemica y Pyrolysis F on-beam l d Emission scopy (ESE ng Microsco	nesis il Va ; – Fla ithog n Sca :M) H ope ((– So por ame raph; annin High STM	9 9 9 9 9 9 9 8 9 9 8 9 8 9 8 9 8 9	BL) ectropolution
Routes – C (MOCVD).Phy DC/RF Magne UNIT IV Nanofabricati Nanoimprint Microscopy Transmission enhanced Ran spectroscopy UNIT V Solar energy Nanoelectron nonlinear op Nanomaterial	hemical Vapor De sical Methods:Ball etron Sputtering – M FABRICAT on: Photolithography (FESEM) –Environ Electron Microsco man spectroscopy ((AES) –Rutherford I APPLIC v conversion and ics – Polymers wit tical and electro-o	eposition (CVD) –Metal Oxide Milling –Electro deposition – Spra Jolecular Beam Epitaxy (MBE) TION AND CHARACTERIZATION O NANOSTRUCTURES ohy and its limitation – Electri patterning. Characterization: Fiel mental Scanning Electron Microsope (HRTEM) –Scanning Tunnelin (SERS) – X-ray Photoelectron Spec backscattering spectroscopy (RBS). ATIONS OF NANO TECHNOLOGY catalysis – Molecular electron ch aspecial architecture – Liquid co optical properties, Applications in Photonics, Plasmonics – Chemical xicology challenges.	mical Synth – Chemica y Pyrolysis F on-beam 1 d Emission scopy (ESE of Microsco troscopy (X cs and pro- rystalline s displays a and biosen	nesis il Va ; – Fli ithogi n Sca (M) H ope (X (PS) – rinted system and o	– Sc por ame raphy annin High STMJ - Aug l ele ns – other – Na	9 9 9 9 9 9 9 9 9 9 9 9 9 9 1 1 1 9 9 1 1 1 9 0 1 1 1 1	emica ositio lysis BL) ectro olutio curfac ectro nics ar an ices
Routes – C. (MOCVD).Phy DC/RF Magne UNIT IV Nanofabricati Nanoimprint Microscopy Transmission enhanced Ran spectroscopy UNIT V Solar energy Nanoelectron nonlinear op Nanomaterial and Nanobiot	hemical Vapor De rsical Methods:Ball etron Sputtering – M FABRICAT on: Photolithograp –Softlithography (FESEM) –Environ Electron Microsco man spectroscopy ((AES) –Rutherford I <u>APPLIC</u> v conversion and ics – Polymers wit tical and electro-o s for data storage – echnology –Nanotos	eposition (CVD) –Metal Oxide Milling –Electro deposition – Spra Jolecular Beam Epitaxy (MBE) TION AND CHARACTERIZATION O NANOSTRUCTURES The and its limitation – Electro patterning. Characterization: Fiel mental Scanning Electron Microsope (HRTEM) –Scanning Tunnelin (SERS) – X-ray Photoelectron Spec backscattering spectroscopy (RBS). ATIONS OF NANO TECHNOLOGY catalysis – Molecular electron th aspecial architecture – Liquid of poptical properties, Applications in - Photonics, Plasmonics – Chemical xicology challenges. Tota	mical Synth – Chemica by Pyrolysis F con-beam 1 d Emission scopy (ESE ig Microsco troscopy (X cs and purystalline s displays a	nesis il Va ; – Fli ithogi n Sca (M) H ope (X (PS) – rinted system and o	– Sc por ame raphy annin High STMJ - Aug l ele ns – other – Na	9 9 9 9 9 9 9 8 9 9 9 9 9 9 9 1 1 1 1 1	emica ositio lysis BL) ectro olutio curfac ectro nics ar an ices
Routes – C. (MOCVD).Phy DC/RF Magne UNIT IV Nanofabricati Nanoimprint Microscopy Transmission enhanced Ran spectroscopy UNIT V Solar energy Nanoelectron nonlinear op Nanomaterial and Nanobiot	hemical Vapor De rsical Methods:Ball etron Sputtering – M FABRICAT on: Photolithography (FESEM) –Environa Electron Microsco man spectroscopy ((AES) –Rutherford I APPLIC v conversion and ics – Polymers wit tical and electro-o s for data storage – echnology –Nanotos	eposition (CVD) -Metal Oxide Milling -Electro deposition - Spra Jolecular Beam Epitaxy (MBE) TION AND CHARACTERIZATION O NANOSTRUCTURES ohy and its limitation - Electri patterning. Characterization: Fiel mental Scanning Electron Microsope (HRTEM) -Scanning Tunnelin (SERS) - X-ray Photoelectron Spec backscattering spectroscopy (RBS). ATIONS OF NANO TECHNOLOGY catalysis - Molecular electron th aspecial architecture - Liquid co optical properties, Applications im - Photonics, Plasmonics - Chemical xicology challenges. Tota	mical Synth – Chemica by Pyrolysis F con-beam 1 d Emission scopy (ESE ng Microsco troscopy (X cs and purystalline s displays a and biosen d Periods	nesis il Va ; – Fla ithoga (M) H ope (S (PS) – rinted system and o isors	– So por ame raphy annin High STMJ - Aug d ele ns – other – Na	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 1 1 1 1	emica ositio lysis BL) ectro olutio curfac ectro nics ar an ices
Routes – C. (MOCVD).Phy DC/RF Magne UNIT IV Nanofabricati Nanoimprint Microscopy (Transmission enhanced Ran spectroscopy UNIT V Solar energy Nanoelectron nonlinear op Nanomaterial and Nanobiot Suggestive A Continuous A	hemical Vapor De rsical Methods:Ball etron Sputtering – M FABRICAT on: Photolithograp –Softlithography (FESEM) –Environa Electron Microsco man spectroscopy ((AES) –Rutherford I APPLIC v conversion and ics – Polymers wit tical and electro-o s for data storage – echnology –Nanotos ssessment Method Assessment Test	eposition (CVD) –Metal Oxide Milling –Electro deposition – Spra Jolecular Beam Epitaxy (MBE) TION AND CHARACTERIZATION ON NANOSTRUCTURES The patterning Characterization: Fiel mental Scanning Electron Microsope (HRTEM) –Scanning Tunnelin (SERS) – X-ray Photoelectron Spectbackscattering spectroscopy (RBS). ATIONS OF NANO TECHNOLOGY catalysis – Molecular electronic th aspecial architecture – Liquid co optical properties, Applications in - Photonics, Plasmonics – Chemical xicology challenges. Total S	mical Synth – Chemica by Pyrolysis F ron-beam 1 d Emission scopy (ESE bg Microsco troscopy (X cs and pro- rystalline s displays a and biosen l Periods End Sen	nesis il Va il Va il Va ithog n Sca M) H ope (1 (PS) - rinted system and o nsors neste	– So por ame raphy annin High STMJ - Aug d ele ns – other – Na	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 1 1 1 1	emica ositio lysis BL) ectro olutio curfac ectro nics ar an ices
Routes – C. (MOCVD).Phy DC/RF Magne UNIT IV Nanofabricati Nanoimprint Microscopy Transmission enhanced Ran spectroscopy UNIT V Solar energy Nanoelectron nonlinear op Nanomaterial and Nanobiot	hemical Vapor De sical Methods:Ball etron Sputtering – M FABRICAT on: Photolithograp –Softlithography (FESEM) –Environ Electron Microsco man spectroscopy ((AES) –Rutherford I APPLIC v conversion and ics – Polymers wit tical and electro-o s for data storage – echnology –Nanotoz ssessment Method Assessment Test rks)	eposition (CVD) -Metal Oxide Milling -Electro deposition - Spra Jolecular Beam Epitaxy (MBE) TION AND CHARACTERIZATION O NANOSTRUCTURES ohy and its limitation - Electri patterning. Characterization: Fiel mental Scanning Electron Microsope (HRTEM) -Scanning Tunnelin (SERS) - X-ray Photoelectron Spec backscattering spectroscopy (RBS). ATIONS OF NANO TECHNOLOGY catalysis - Molecular electron th aspecial architecture - Liquid co optical properties, Applications in - Photonics, Plasmonics - Chemical xicology challenges. Tota	mical Synth – Chemica by Pyrolysis F con-beam 1 d Emission scopy (ESE ng Microsco troscopy (X cs and purystalline s displays a and biosen d Periods	nesis il Va il Va il Va ithog n Sca CM) H ope (1 CPS) - crinted system and co system and co sors neste 'ks)	 Score por ame raphy annin High STM) - Aug d ele ns - other other other r Exa 	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 1 1 1 1	emica ositio lysis BL) ectro olutio curfac ectro nics ar an ices
Routes – C. (MOCVD).Phy DC/RF Magne UNIT IV Nanofabricati Nanoimprint Microscopy Transmission enhanced Ran spectroscopy UNIT V Solar energy Nanoelectron nonlinear op Nanomaterial and Nanobiot Suggestive A Continuous A (20 Ma	hemical Vapor De sical Methods:Ball etron Sputtering – M FABRICAT on: Photolithograp –Softlithography (FESEM) –Environi Electron Microsco man spectroscopy ((AES) –Rutherford I APPLIC v conversion and ics – Polymers wit tical and electro-o s for data storage – echnology –Nanotox ssessment Method Assessment Test rks) exam D	eposition (CVD) -Metal Oxide Milling -Electro deposition - Spra Jolecular Beam Epitaxy (MBE) TION AND CHARACTERIZATION O NANOSTRUCTURES by and its limitation - Electric patterning. Characterization: Fiel mental Scanning Electron Microsope (HRTEM) -Scanning Tunnelin (SERS) - X-ray Photoelectron Spectroscopy (RBS). ATIONS OF NANO TECHNOLOGY catalysis - Molecular electronic ch aspecial architecture - Liquid co optical properties, Applications in Photonics, Plasmonics - Chemical xicology challenges. Totals Formative Assessment Test (20 Marks)	mical Synth – Chemica by Pyrolysis F ron-beam 1 d Emission scopy (ESE ag Microsco troscopy (X cs and purystalline s displays a and biosen cli Periods End Sen (60 Mar	nesis il Va il Va il Va ithog n Sca CM) H ope (1 CPS) - crinted system and co system and co sors neste 'ks)	 Score por ame raphy annin High STM) - Aug d ele ns - other other other r Exa 	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 1 1 1 1	emica ositio lysis BL) ectro olutio curfac ectro nics ar an ices

Course Outcomes

Upon completion of the course, the students will be able to:

CO1: Interpret the basics in nano sciences and scales using in this technology. **(Understand) CO2:** Summarize the classification of nano materials. **(Understand)**

CO3: Outline the various synthesizing methods for nanomaterials. **(Understand)**

CO4: Discuss the fabricating methodologies and characterization techniques for nano materials. **(Understand)**

CO5: Demonstrate the applications of nanotechnologies in various fields. **(Apply)**

Text Books

- 1. Hari Singh Nalwa, "Nanostructured Materials and Nanotechnology", Academic Press, (2012)
- 2. Pradeep T., "A Textbook of Nanoscience and Nanotechnology", Tata McGraw Hill Education Pvt. Ltd., (2016)

Reference Books

- 1. Charles P. Poole Jr., Frank J. Ownes, 'Introduction to Nanotechnology", Wiley Interscience, (2003)
- 2. Dupas C., Houdy P., Lahmani M., "Nanoscience: Nanotechnologies and Nanophysics", Springer-Verlag Berlin Heidelberg, (2007)
- 3. Mark Ratner and Daniel Ratner, "Nano Technology", Pearson Education, New Delhi, (2003)
- 4. Nabok A., "Organic and Inorganic Nanostructures", Artech House, (2005)
- 5. Bhusan, Bharat (Ed), "Springer Handbook of Nanotechnology", 2ndEdition, (2007)

Web Resources

1. <u>https://nptel.ac.in/courses/118/104/118104008/</u> Introduction to NANO technology

CO Vs PO Mapping and CO Vs PSO Mapping

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2		1	1								3	3	
CO2	2		1	1								3	3	
CO3	2		1	1								3	3	
CO4	2		1	1								3	3	
CO5	2		1	1								3	3	

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Students will be able to interpret the basics in nano sciences and scales using in this technology. (Understand)

- 1. Discuss about the implications of Nano Technology. (Understand)
- 2. Write a technical note on "Time and length scale in structures ". (Understand)

COURSE OUTCOME 2: Students will be able to summarize the classification of nano materials. (Understand)

- 1. Make short note on Metal based Nano materials. (Understand)
- 2. Explain Synthesis of Nanoparticles through Homogenous and Heterogeneous Nucleation. (Understand)

COURSE OUTCOME 3: Students will be able to outline the various synthesizing methods for nanomaterials. (Understand)

- 1. Discuss in detail different types of ball-milling and their advantages. **(Understand)**
- 2. Write in detail the special magnetic properties of nanomaterials with special reference to Super para magnetism. **(Understand)**

COURSE OUTCOME 4: Students will be able to discuss the fabricating methodologies and characterization techniques for nano materials. (Understand)

- 1. Explain in detail how XRD analysis is important in nanomaterial characterization. **(Understand)**
- 2. Explain in detail size and surface, morphological analysis of nanostructures using SEM. **(Understand)**

COURSE OUTCOME 5: Students will be able to demonstrate the applications of nanotechnologies in various fields. (Apply)

- 1. Discuss the advantages and basic principles of Nano sensors. (Understand)
- 2. Explain in detail about the case study using Plasmonics. (Apply)

21ME7728	S	Smart and New Materials		L	T	Р	C
				3	0	0	3
	s for the course						
Nil							
Objectives							
	provide Knowledge advanced engineerin	of smart materials and structures ir ng applications.	ı designin	ig me	echan	ical s	ystems
UNIT I	INTRODUCT	ION AND HISTORICAL PERSPECTIV	E			9	
Structural ma Diverse areas in materials - e materials	terial – Functional m of intelligent materi Examples of intellig	ge – Intelligent /Smart materials – E naterials – Poly functional materials – ials –Primitive functions of intelligent ent materials, structural materials, El piological materials – Biomimetics ls.	Generation materials ectrical m	on of s – In nateri	smar tellig ials, ł	t mat ent in Diocor	erials - theren npatib
UNIT II		ERIALS AND STRUCTURAL SYSTEM	S			9	
- Passive ser	sory smart structur	brid smart materials – An algorithm f res–Reactive actuator based smart s t skins – Aero elastic tailoring of airf	tructures	- Ac	ctive	sensi	ng and
UNIT III	ELECTRO-RHEO	DLOGICAL (FLUIDS) SMART MATER	IALS			9	
		Composition and behavior, The Bingl v applications in Clatches, Dampers a			d Rel	ated I	Models
UNIT IV	PIEZO	ELECTRIC SMART MATERIALS				9	
PZT – PVDF –	PVDF film – Propert	yroelectricity – Piezoelectricity – Ind ies of commercial piezoelectric mater als featuring piezoelectric elements.	-				
UNIT V	-	MORY (ALLOYS) SMART MATERIAL	S			9	
characteristic	s of Nitinol – Marten ransformations – Cu	ory alloys (SMA) Nickel – Titanin nsitic transformations – Austenitictra 1 based SMA, chiral materials – App Total	ns format	tions	– Tł MA –	nermo	oelastic
Suggestive A	ssessment Methods					10	
	Assessment Test	Formative Assessment Test (20 Marks)	End Sen (60 Mar		er Exa	ams	
Descriptive e CAT 1 10 AN CAT2 10 MA	D	MCQ QUIZ / SEMINAR/ ASSIGNMENT/SLIPTEST/CASE STUDY	Descript	ive ty	/pe		
Outcomes			1				
	etion of the course,	the students will be able to:					
CO1: Outline CO2: Discuss CO3: Summar	the behaviour and ap the behavior of smar rize the properties ar	oplicability of various smart materials t materials and structural systems. (U nd behavior of Electro-Rheological ma applications of Piezoelectric smart ma	Understar terial. (UI	nd) nder:	stand	-	

Text Books

- 1. M.V.Gandhi and B.S. Thompson, Smart Materials and Structures Chapman and Hall, London, First Edition, 2013
- 2. T.W. Deurig, K.N.Melton, D.Stockel and C.M.Wayman, Engineering aspects of Shape Memory alloys, Butterworth Heinemann, 2015

Reference Books

- 1. Martin, J.W., Engineering Materials, Their properties and Applications, Wykedham Publications (London) Ltd., 1987.
- 2. C.A.Rogers, Smart Materials, Structures and Mathematical issues, Technomic Publising Co., USA, 2017.
- 3. Van Vlack.L.H., Elements of Materials Science and Engineering Prentice Hall; Publishers, Sixth edition, 1989.

Web Resources

1. https://archive.nptel.ac.in/courses/112/104/112104251/ (Smart and New Materials)

CO Vs PO Mapping and CO Vs PSO Mapping

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01	2		3	1		1	1					1	3	
CO2	2		3	1		1	1					1	3	
CO3	2		3	1		1	1					1	3	
CO4	2		3	1		1	1					1	3	
CO5	2		3	1		1	1					1	3	

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Students will be able to outline the behavior and applicability of various smart materials. (Understand)

- 1. Explain the diverse areas of intelligent materials. (Understand)
- 2. Write short notes on Biomimetics. (Understand)

COURSE OUTCOME 2: Students will be able to discuss the behavior of smart materials and structural systems. (Understand)

- 1. List the properties of Micro sensors and its applications. (Understand)
- 2. Explain in detail about the Reactive actuator based smart structures (Understand)

COURSE OUTCOME 3: Students will be able to summarize the properties and behavior of Electro-Rheological material. (Understand)

- 1. Explain the Working Principle and application of ER Fluids. (Remember)
- 2. Compare ER Fluids with Other Smart Materials. (Understand)

COURSE OUTCOME 4: Students will be able to interpret the properties and applications of Piezoelectric smart materials. (Understand)

- 1. List and explain the Industrial piezoelectric materials. (Understand)
- 2. Distinguish the difference between Pyroelectricity and Piezoelectricity. (Understand)

COURSE OUTCOME 5: Students will be able to infer knowledge on the characteristics and applications of SMA material. (Understand)

- 1. Explain in detail about characteristics of Nitinol. (Understand)
- 2. Describe the application of SMA in nuclear reactors. (Understand)

				L	T	Р	С
21ME7729		DRONE TECHNOLOGIES		3	0	0	3
Prerequisite Nil	s for the course			0	U	U	
Objectives							
	lerstand the basics o	f drone concepts					
		ne fundaments of design, fabrication	and progra	ammir	ng of (drone	
		of drone flying and operation			0		
-	0	applications of drone					
		isks and guidelines of fly safely					
UNIT I		UCTION TO DRONE TECHNOLOGY				9	
		minology- History of drone - Types	of curron	t gong	ratio	-	Ironc
		lsion- Drone technology impact on		0			
	1 1	tunities/applications for entreprene					Sincs
UNIT II		N, FABRICATION AND PROGRAMM			oyub	9	
		iew of the main drone parts- Techn		cterist	ics o	f the r	arts
		-Assembling a drone- The energy so				-	
		f programming drone- Download					
		lti rotor stabilization- Flight modes				C	
UNIT III	DRO	NE FLYING AND OPERATION				9	
-			ono in o o	ontrol	lod c	nviro	nmor
		-Flight modes- Oberate a small dro	ле пас	onuoi	ieu e		INCL
-	-	-Flight modes- Operate a small dro -management tool -Sensors-Onboa					
Drone contro	ls Flight operations	-management tool –Sensors-Onboa evices and applications					
Drone contro	ls Flight operations es- Linked mobile de	-management tool -Sensors-Onboa					
Drone contro storage devic UNIT IV	ls Flight operations es- Linked mobile de DRONI	-management tool -Sensors-Onboa evices and applications E COMMERCIAL APPLICATIONS	ard storage	e capa	city -	Remo 9	ovabl
Drone contro storage devic UNIT IV Choosing a d	Is Flight operations es- Linked mobile de DRONI rone based on the ap	 management tool –Sensors-Onboa evices and applications 	ard storage sector- Dro	e capa ones in	city - n deli	Remo 9 vering	ovabl g mai
Drone contro storage devic UNIT IV Choosing a di parcels and c	Is Flight operations es-Linked mobile de DRONI rone based on the ap other cargo- Drones i Drones in filming and	-management tool -Sensors-Onboa evices and applications E COMMERCIAL APPLICATIONS oplication -Drones in the insurance s in agriculture- Drones in inspection d panoramic picturing	ard storage sector- Dro	e capa ones in	city - n deli	Remo 9 vering	ovabl g mai
Drone contro storage devic UNIT IV Choosing a dr parcels and c distribution - UNIT V	Is Flight operations es- Linked mobile de DRONI rone based on the ap other cargo- Drones i Drones in filming and FU	-management tool -Sensors-Onboa evices and applications E COMMERCIAL APPLICATIONS oplication -Drones in the insurance s in agriculture- Drones in inspection d panoramic picturing TURE DRONES AND SAFETY	ard storage sector- Dro of transm	e capa ones in ission	city - 1 deli lines	Remo 9 vering and p 9	g mai powe
Drone contro storage devic UNIT IV Choosing a di parcels and c distribution - UNIT V The safety r	Is Flight operations es-Linked mobile de DRONI rone based on the ap other cargo- Drones i Drones in filming and FU7 isks- Guidelines to	-management tool –Sensors-Onboa evices and applications E COMMERCIAL APPLICATIONS oplication -Drones in the insurance s in agriculture- Drones in inspection d panoramic picturing TURE DRONES AND SAFETY fly safely -Specific aviation regulat	ard storage sector- Dro of transm tion and s	e capa ones in ission tanda	city - n deli lines rdiza	Remo 9 vering and p 9 tion-	g mai powe
Drone contro storage devic UNIT IV Choosing a di parcels and c distribution - UNIT V The safety r	Is Flight operations es-Linked mobile de DRONI rone based on the ap other cargo- Drones i Drones in filming and FU7 isks- Guidelines to	-management tool -Sensors-Onboa evices and applications E COMMERCIAL APPLICATIONS oplication -Drones in the insurance s in agriculture- Drones in inspection d panoramic picturing TURE DRONES AND SAFETY fly safely -Specific aviation regulat - Increasing autonomy of drones -Th	sector- Dro of transm tion and s	e capa ones in ission tanda	city - n deli lines rdiza n sw	Remo 9 vering and p 9 tion- arms	g mai powe
Drone contro storage devic UNIT IV Choosing a dr parcels and c distribution - UNIT V The safety r license- Minia	Is Flight operations es- Linked mobile de DRONI rone based on the ap other cargo- Drones i Drones in filming and FU isks- Guidelines to f aturization of drones	-management tool –Sensors-Onboa evices and applications E COMMERCIAL APPLICATIONS oplication -Drones in the insurance s in agriculture- Drones in inspection d panoramic picturing TURE DRONES AND SAFETY fly safely -Specific aviation regulat - Increasing autonomy of drones -Th Tota	ard storage sector- Dro of transm tion and s	e capa ones in ission tanda	city - n deli lines rdiza n sw	Remo 9 vering and p 9 tion-	g mai powe
Drone contro storage devic UNIT IV Choosing a dr parcels and c distribution - UNIT V The safety r license- Minia Suggestive A	Is Flight operations es- Linked mobile de DRONI rone based on the ap other cargo- Drones i Drones in filming and FUT isks- Guidelines to t aturization of drones ssessment Methods	-management tool -Sensors-Onboa evices and applications E COMMERCIAL APPLICATIONS oplication -Drones in the insurance s in agriculture- Drones in inspection d panoramic picturing TURE DRONES AND SAFETY fly safely -Specific aviation regulat - Increasing autonomy of drones -Th Tota	sector- Dro of transm tion and s le use of dr I Periods	e capa ones in ission tanda ones i	city - n deli lines rdiza n sw	Remo 9 vering and p 9 tion- arms 45	g mai powe
Drone contro storage devic UNIT IV Choosing a di parcels and co distribution - UNIT V The safety ri license- Minia Suggestive A Continuous A	Is Flight operations es- Linked mobile de DRONI rone based on the ap other cargo- Drones i Drones in filming and FUT isks- Guidelines to f aturization of drones ssessment Methods Assessment Test	-management tool –Sensors-Onboa evices and applications E COMMERCIAL APPLICATIONS oplication -Drones in the insurance s in agriculture- Drones in inspection d panoramic picturing TURE DRONES AND SAFETY fly safely -Specific aviation regulat - Increasing autonomy of drones -Th Tota S Formative Assessment Test	sector- Dro of transm tion and s te use of dr l Periods End Ser	e capa ones in ission tanda rones i neste	city - n deli lines rdiza n sw	Remo 9 vering and p 9 tion- arms 45	g mai powe
Drone contro storage device UNIT IV Choosing a du parcels and co distribution - UNIT V The safety ru license- Minia Suggestive A Continuous A (20 Ma	Is Flight operations es- Linked mobile de DRONI rone based on the ap other cargo- Drones i Drones in filming and FUT isks- Guidelines to f aturization of drones ssessment Methods Assessment Test arks)	-management tool –Sensors-Onboa evices and applications E COMMERCIAL APPLICATIONS oplication -Drones in the insurance s in agriculture- Drones in inspection d panoramic picturing TURE DRONES AND SAFETY fly safely -Specific aviation regulat - Increasing autonomy of drones -Th Tota S Formative Assessment Test (20 Marks)	sector- Dro of transm tion and s le use of dr I Periods	e capa ones in ission tanda rones i neste	city - n deli lines rdiza n sw	Remo 9 vering and p 9 tion- arms 45	g mai
Drone contro storage devic UNIT IV Choosing a di parcels and co distribution - UNIT V The safety ri license- Minia Suggestive A Continuous A (20 Ma Descriptive of	Is Flight operations es-Linked mobile de DRONI rone based on the ap other cargo- Drones i Drones in filming and FUT isks- Guidelines to t aturization of drones sessment Methods Assessment Test urks) exam	 management tool –Sensors-Onboa evices and applications E COMMERCIAL APPLICATIONS oplication -Drones in the insurance sin agriculture- Drones in inspection d panoramic picturing TURE DRONES AND SAFETY fly safely -Specific aviation regulat Increasing autonomy of drones -Th Tota S Formative Assessment Test (20 Marks) MCQ QUIZ / SEMINAR/ 	sector- Dro of transm tion and s te use of dr l Periods End Ser	e capa ones in ission tanda rones i neste rks) 1.	city - n deli lines rdiza n swa r Exa	Remo 9 vering and p 1 9 tion- arms 45	g mai
Drone contro storage device UNIT IV Choosing a deparcels and continuous UNIT V The safety relicense- Minia Suggestive A Continuous (20 Ma Descriptive of CAT 1 10 AN	Is Flight operations es-Linked mobile de DRONI rone based on the ap other cargo- Drones i Drones in filming and FU ⁷ isks- Guidelines to f aturization of drones ssessment Methods Assessment Test urks) exam	-management tool –Sensors-Onboa evices and applications E COMMERCIAL APPLICATIONS oplication -Drones in the insurance s in agriculture- Drones in inspection d panoramic picturing TURE DRONES AND SAFETY fly safely -Specific aviation regulat - Increasing autonomy of drones -Th Tota S Formative Assessment Test (20 Marks) MCQ QUIZ / SEMINAR/ ASSIGNMENT/SLIPTEST/CASE	sector- Dro of transm tion and s te use of dr l Periods End Ser	e capa ones in ission tanda ones i neste rks) 1. Des	city - n deli lines rdiza n swa r Exa	Remo 9 vering and p 9 tion- arms 45 ms	g mai
Drone contro storage devic UNIT IV Choosing a di parcels and co distribution - UNIT V The safety ri license- Minia Suggestive A Continuous A (20 Ma Descriptive of	Is Flight operations es-Linked mobile de DRONI rone based on the ap other cargo- Drones i Drones in filming and FU ⁷ isks- Guidelines to f aturization of drones ssessment Methods Assessment Test urks) exam	 management tool –Sensors-Onboa evices and applications E COMMERCIAL APPLICATIONS oplication -Drones in the insurance sin agriculture- Drones in inspection d panoramic picturing TURE DRONES AND SAFETY fly safely -Specific aviation regulat Increasing autonomy of drones -Th Tota S Formative Assessment Test (20 Marks) MCQ QUIZ / SEMINAR/ 	sector- Dro of transm tion and s te use of dr l Periods End Ser	e capa ones in ission tanda ones i neste rks) 1. Des	city - n deli lines rdiza n swa r Exa	Remo 9 vering and p 9 tion- arms 45 ms	g mai powe
Drone contro storage device UNIT IV Choosing a diparcels and continuous distribution - UNIT V The safety rision icense- Minia Suggestive A Continuous (20 Ma Descriptive of CAT 1 10 AN CAT2 10 MA	Is Flight operations es-Linked mobile de DRONI rone based on the ap other cargo- Drones i Drones in filming and FUT isks- Guidelines to f aturization of drones ssessment Methods Assessment Test arks) exam ID RKS	-management tool –Sensors-Onboa evices and applications E COMMERCIAL APPLICATIONS oplication -Drones in the insurance s in agriculture- Drones in inspection d panoramic picturing TURE DRONES AND SAFETY fly safely -Specific aviation regulat - Increasing autonomy of drones -Th Tota S Formative Assessment Test (20 Marks) MCQ QUIZ / SEMINAR/ ASSIGNMENT/SLIPTEST/CASE	sector- Dro of transm tion and s te use of dr l Periods End Ser	e capa ones in ission tanda ones i neste rks) 1. Des	city - n deli lines rdiza n swa r Exa	Remo 9 vering and p 9 tion- arms 45 ms	g mai
Drone contro storage device UNIT IV Choosing a du parcels and co distribution - UNIT V The safety ru license- Minia Suggestive A Continuous A (20 Ma Descriptive of CAT 1 10 AN CAT2 10 MA	Is Flight operations es- Linked mobile de DRONI rone based on the ap other cargo- Drones i Drones in filming and FUT isks- Guidelines to f aturization of drones ssessment Methods Assessment Test urks) exam ID RKS	-management tool –Sensors-Onboa evices and applications E COMMERCIAL APPLICATIONS oplication -Drones in the insurance s in agriculture- Drones in inspection d panoramic picturing TURE DRONES AND SAFETY fly safely -Specific aviation regulat - Increasing autonomy of drones -Th Tota S Formative Assessment Test (20 Marks) MCQ QUIZ / SEMINAR/ ASSIGNMENT/SLIPTEST/CASE	sector- Dro of transm tion and s te use of dr l Periods End Ser	e capa ones in ission tanda ones i neste rks) 1. Des	city - n deli lines rdiza n swa r Exa	Remo 9 vering and p 9 tion- arms 45 ms	g mai
Drone contro storage device UNIT IV Choosing a di parcels and co distribution - UNIT V The safety ri- license- Minia Suggestive A Continuous A (20 Ma Descriptive of CAT 1 10 AN CAT2 10 MA	Is Flight operations es- Linked mobile de DRONI rone based on the ap other cargo- Drones i Drones in filming and FUT isks- Guidelines to f aturization of drones ssessment Methods Assessment Test arks) exam D RKS omes etion of the course,	-management tool –Sensors-Onboa evices and applications E COMMERCIAL APPLICATIONS oplication -Drones in the insurance s in agriculture- Drones in inspection d panoramic picturing TURE DRONES AND SAFETY fly safely -Specific aviation regulat - Increasing autonomy of drones -Th Tota S Formative Assessment Test (20 Marks) MCQ QUIZ / SEMINAR/ ASSIGNMENT/SLIPTEST/CASE STUDY	ard storage sector- Dro of transm tion and s the use of dr l Periods End Ser (60 Man	e capa ones in ission tanda rones i neste rks) 1. Des Qu	city - n deli lines rdiza n swa r Exa	Remo 9 vering and p 9 tion- arms 45 ms	g mai
Drone contro storage device UNIT IV Choosing a dr parcels and co distribution - UNIT V The safety ri- license- Minia Suggestive A Continuous A (20 Ma Descriptive of CAT 1 10 AN CAT2 10 MA Course Outco Upon comple CO1: Discuss CO2: Summa	Is Flight operations es- Linked mobile de DRONI rone based on the ap other cargo- Drones i Drones in filming and FU? isks- Guidelines to f aturization of drones assessment Methods Assessment Test arks) exam D RKS omes etion of the course, the various types an rize the fundamental	 -management tool –Sensors-Onboa evices and applications E COMMERCIAL APPLICATIONS oplication -Drones in the insurance sin agriculture- Drones in inspection d panoramic picturing TURE DRONES AND SAFETY fly safely -Specific aviation regulat - Increasing autonomy of drones -Th Tota S Formative Assessment Test (20 Marks) MCQ QUIZ / SEMINAR/ ASSIGNMENT/SLIPTEST/CASE STUDY the students will be able to: d concepts of drone technology. (Un s of drone fabrication and programm 	ard storage sector- Dro of transm tion and s ie use of dr l Periods End Ser (60 Man derstand) hing. (Und	e capa ones in ission tanda ones i neste rks) 1. Des Qu	city - n deli lines rdiza n swa r Exa	Remo 9 vering and p 9 tion- arms 45 ms	g mai
Drone contro storage device UNIT IV Choosing a di parcels and co distribution - UNIT V The safety ri- license- Minia Suggestive A Continuous A (20 Ma Descriptive of CAT 1 10 AN CAT2 10 MA Course Outco Upon comple CO1: Discuss CO2: Summa CO3: Interpre	Is Flight operations es- Linked mobile de DRONI rone based on the ap other cargo- Drones i Drones in filming and FUT isks- Guidelines to f aturization of drones ssessment Methods Assessment Test arks) exam ID RKS omes etion of the course, the various types an rize the fundamental et the knowledge of d	 -management tool –Sensors-Onboa evices and applications E COMMERCIAL APPLICATIONS oplication -Drones in the insurance sin agriculture- Drones in inspection d panoramic picturing TURE DRONES AND SAFETY fly safely -Specific aviation regulat - Increasing autonomy of drones -Th Tota S Formative Assessment Test (20 Marks) MCQ QUIZ / SEMINAR/ ASSIGNMENT/SLIPTEST/CASE STUDY the students will be able to: d concepts of drone technology. (Un s of drone fabrication and programm drone flying and operations. (Underst 	ard storage sector- Dro of transm tion and s ie use of dr l Periods End Ser (60 Man derstand) hing. (Und	e capa ones in ission tanda ones i neste rks) 1. Des Qu	city - n deli lines rdiza n swa r Exa	Remo 9 vering and p 9 tion- arms 45 ms	g mai
Drone contro storage device UNIT IV Choosing a deparcels and co distribution - UNIT V The safety re- license- Minia Suggestive A Continuous A (20 Ma Descriptive of CAT 1 10 AN CAT2 10 MA Course Outco Upon comple CO1: Discuss CO2: Summar CO3: Interpre CO4: Develop	Is Flight operations es- Linked mobile de DRONI rone based on the ap other cargo- Drones in Drones in filming and FU? isks- Guidelines to in aturization of drones ssessment Methods Assessment Test urks) exam ID RKS omes etion of the course, the various types and rize the fundamental et the knowledge of d o a drone mechanism	 -management tool –Sensors-Onboa evices and applications E COMMERCIAL APPLICATIONS oplication -Drones in the insurance sin agriculture- Drones in inspection d panoramic picturing TURE DRONES AND SAFETY fly safely -Specific aviation regulat - Increasing autonomy of drones -Th Tota S Formative Assessment Test (20 Marks) MCQ QUIZ / SEMINAR/ ASSIGNMENT/SLIPTEST/CASE STUDY the students will be able to: d concepts of drone technology. (Un s of drone fabrication and programm 	ard storage sector- Dro of transm tion and s le use of dr l Periods End Ser (60 Man derstand) hing. (Und stand)	e capa ones in ission tanda ones i neste rks) 1. Des Qu	city - n deli lines rdiza n swa r Exa	Remo 9 vering and p 9 tion- arms 45 ms	g mai powe

Text Books

- Daniel Tal and John Altschuld, "Drone Technology in Architecture, Engineering and Construction: A Strategic Guide to Unmanned Aerial Vehicle Operation and Implementation", 2021 John Wiley & Sons, Inc.
- 2. Terry Kilby and Belinda Kilby, "Make:Getting Started with Drones ",Maker Media, Inc, 2016

Reference Books

1. John Baichtal, "Building Your Own Drones: A Beginners' Guide to Drones, UAVs, and ROVs", Que Publishing, 2016

2 . Zavrsnik, "Drones and Unmanned Aerial Systems: Legal and Social Implications for Security and Surveillance", Springer, 2018.

Web Resources

- 1. https://nptel.ac.in/courses/101104083 /Drone Technologies
- 2. https://onlinecourses.nptel.ac.in/noc20_ae04/preview / Drone Technologies

CO Vs PO Mapping and CO Vs PSO Mapping

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	2	1	1		1						3		3
CO2	1	2	1	1		1						3		3
CO3	1	2	1	1		1						3		3
CO4	1	2	1	1		1						3		3
CO5	1	2	1	1		1						3		3

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Discuss the various types and concepts of drone technology (Understand)

- 1. Describe in details about types of current generation of drones based on their method of propulsion **(Understand)**
- 2. Explain briefly about the Opportunities/applications for entrepreneurship and employability **(Understand)**

COURSE OUTCOME 2: Summarize the fundamentals of drone fabrication and programming. (Understand)

- 1 Explain the technical characteristics of the parts of Drone and Functions of the component parts of drone. **(Understand)**
- 2 Describe the methods of programming which are stored inside the drone. **(Understand)**

COURSE OUTCOME 3: Interpret the knowledge of drone flying and operations (Understand)

- 1. Describe the operations of a small drone in a controlled environment **(Understand)**
- 2. Interpret the classifications of Removable storage devices and linked mobile devices and briefly explain the applications of this storage devices **(Understand)**

COURSE OUTCOME 4: Develop a drone mechanism for specific applications. (Apply)

- 1 Demonstrate the applications of drones in agriculture. (Apply)
- 2 Illustrate the applications of drones in inspection of transmission lines and power distribution and also Drones in filming and panoramic picturing. **(Apply)**

COURSE OUTCOME 5: Discuss the guidelines for safety flying of a drone. (Understand)

- 1. Explain the guidelines to fly safely and Specific aviation regulation and standardization and in Drone license. **(Understand)**
- 2. Describe the methods of miniaturization of drones for Increasing autonomy of drones and also describe the use of drones in swarms. **(Understand)**

21ME7730	INDU		L	Τ	Р	C	
				3	0	0	3
	es for the course						
Objectives	ourse sime to acque	int with the idea of Safety Dulas faller	und in Ind	duate	00.07	d roo	ognie
	•	int with the idea of Safety Rules follow , safety management and Human facto			es al	lu rec	ogniz
UNIT I		INTRODUCTION				9	
	modern safety con trical Exposure – Firs	cepts – Fire prevention – Mechanic st Aid.	al hazaro	ds – 1	Boile	rs, Pr	essui
UNIT II		CHEMICAL HAZARDS				9	
Hygiene – Ir		erials – Radiation Ionizing and Non- – Toxic Chemicals and its harmful Iterials					
UNIT III		WIRONMENTAL CONTROL				9	
		ronmental Control – Environmental P Control of Noise, Vibration – Personal			- Indı	istria	l Nois
UNIT IV		HAZARD ANALYSIS				9	
•	y Analysis –Techniq OP analysis and Risl	ues – Fault Tree Analysis (FTA), Fail Assessment.	ure Mode	es and	l Effe	cts A	nalys
UNIT V		SAFETY REGULATIONS				9	
	- Disaster managen Product safety – case	nent – catastrophe control, hazard studies.	control,	Facto	ories	Act,	Safe
		Total	Periods			45	
	Assessment Method	S					
Continuous	Assessment Test	s Formative Assessment Test	End Ser		er Exa	ams	
Continuous (20 Ma	Assessment Test arks)	s Formative Assessment Test (20 Marks)	End Ser (60 Mai	rks)			
Continuous	Assessment Test arks) exam ND	s Formative Assessment Test	End Ser	rks)			
Continuous (20 Ma Descriptive CAT 1 10 AN	Assessment Test arks) exam ND ARKS	s Formative Assessment Test (20 Marks) MCQ QUIZ / SEMINAR/ ASSIGNMENT/SLIPTEST/CASE	End Ser (60 Mai	rks)			
Continuous (20 Ma Descriptive CAT 1 10 AN CAT2 10 MA Course Outc Upon compl	Assessment Test arks) exam ND ARKS comes etion of the course,	s Formative Assessment Test (20 Marks) MCQ QUIZ / SEMINAR/ ASSIGNMENT/SLIPTEST/CASE STUDY , the students will be able to:	End Ser (60 Mar 1. Descr	r ks) iptive	Ques	tions	
Continuous (20 Ma Descriptive CAT 1 10 AN CAT2 10 MA Course Outc Upon compl	Assessment Test arks) exam ND ARKS comes etion of the course,	s Formative Assessment Test (20 Marks) MCQ QUIZ / SEMINAR/ ASSIGNMENT/SLIPTEST/CASE STUDY	End Ser (60 Mar 1. Descr	r ks) iptive	Ques	tions	al tirr
Continuous (20 Ma Descriptive CAT 1 10 AN CAT2 10 MA Course Outc Upon compl CO1: Illustra	Assessment Test arks) exam ND ARKS comes etion of the course, ate the representation	s Formative Assessment Test (20 Marks) MCQ QUIZ / SEMINAR/ ASSIGNMENT/SLIPTEST/CASE STUDY , the students will be able to:	End Ser (60 Mar 1. Descr	r ks) iptive	Ques	tions	al tim
Continuous (20 Ma Descriptive CAT 1 10 AN CAT2 10 MA Course Outco Upon compl CO1: Illustra Industries (U CO2: Outline	Assessment Test arks) exam ND ARKS comes etion of the course, ate the representation Jnderstand) the chemical expose	s Formative Assessment Test (20 Marks) MCQ QUIZ / SEMINAR/ ASSIGNMENT/SLIPTEST/CASE STUDY , the students will be able to: on of various safety concepts and p ares in industries and industrial toxico	End Ser (60 Mar 1. Descr	rks) iptive follow derst	Ques wed i	itions	
Continuous (20 Ma Descriptive CAT 1 10 AN CAT2 10 MA Course Outco Upon compl CO1: Illustra Industries (U CO2: Outline CO3: Classif	Assessment Test arks) exam ND ARKS comes etion of the course, ate the representation Inderstand) the chemical exposu- by the various types	S Formative Assessment Test (20 Marks) MCQ QUIZ / SEMINAR/ ASSIGNMENT/SLIPTEST/CASE STUDY , the students will be able to: on of various safety concepts and p	End Ser (60 Mar 1. Descr	rks) iptive follow derst	Ques wed i	itions	
Continuous (20 Ma Descriptive CAT 1 10 AN CAT2 10 MA Course Outco Upon compl CO1: Illustra Industries (U CO2: Outline CO3: Classif measures (U	Assessment Test arks) exam ND ARKS comes etion of the course, ate the representation Inderstand) the chemical exposu- by the various types nderstand)	S Formative Assessment Test (20 Marks) MCQ QUIZ / SEMINAR/ ASSIGNMENT/SLIPTEST/CASE STUDY the students will be able to: on of various safety concepts and p ares in industries and industrial toxico s of environmental hazards in work	End Ser (60 Mar 1. Descr rinciples blogy (Un kplace, e	r ks) iptive follow derst ffects	Ques wed i tand] and	itions	
Continuous (20 Ma Descriptive CAT 1 10 AN CAT2 10 MA Course Outco Upon compl CO1: Illustra Industries (U CO2: Outline CO3: Classif measures (U CO4: Apply v	Assessment Test arks) exam ND ARKS comes etion of the course, ate the representation Inderstand) the chemical exposu- by the various types nderstand) various hazard analys	s Formative Assessment Test (20 Marks) MCQ QUIZ / SEMINAR/ ASSIGNMENT/SLIPTEST/CASE STUDY , the students will be able to: on of various safety concepts and p ares in industries and industrial toxico	End Ser (60 Mar 1. Descr rinciples blogy (Un kplace, e industrie	rks) iptive follov derst ffects s (Ap	Ques wed i and ply)	in rea	contr

Text Books

- 1. R.K. Jain & Sunil S. Rao, "Industrial Safety, Health and Environment Management Systems", 3rd Edition, Khanna Publishers, New Delhi, 2022.
- 2. C. Ray Asfahl & David W.Rieske "Industrial Safety & Health Management", Prentice Hall Publishers, 2018.

Reference Books

- 1. David L.Goetsch, "Occupational Safety and Health for Technologists", Engineers and Managers, Pearson Education Ltd. 8th Edition, (2014)
- 2. Basudev Panda, "Industrial Safety, Health Environment and Security", 2013.
- 3. Yang Miang Goh , "Introduction To Workplace Safety And Health Management", World Scientific Publishing Company, 2020

Web Resources

1. <u>https://onlinecourses.nptel.ac.in/noc20 mg43/preview</u> /Industrial Safety Engineering

s PO Mapping and CO Vs PSO Mapping

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	2				3						1		3
CO2	1	2				3						1		3
CO3	1	2				3						1		3
CO4	1	2				3						1		3
CO5	1	2				3						1		3

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Illustrate the representation of various safety concepts and principles followed in Real Time Industries (Understand)

- 1. Illustrate the various media available and used for extinguishing fire. (Understand)
- 2. Enlist various safety measures while working on plants **(Remember)**

COURSE OUTCOME 2: Outline the chemical exposures in industries and industrial toxicology (Understand)

- 1. How hazards are monitored and can be controlled at the workplace in chemical industry? (Remember)
- 2. Discuss Industrial Toxicology and how toxic chemicals will effect on humans? (Understand)

COURSE OUTCOME 3: Classify the various types of environmental hazards in workplace, effects and its control measures (Understand)

- 1. List out the various kinds of PPE and how it will protect against humans? (Remember)
- 2. Discuss in detailed procedure to eliminate noise in working environment using hierarchy of controls technique **(Understand)**

COURSE OUTCOME 4: Apply various hazard analysis and risk assessment techniques in industries (Apply)

- 1. Construct fault tree for cotton disease involved in textile industry and evaluate using gate by gate method **(Apply)**
- 2. Outline the FMEA Procedures and develop the FMEA check sheet with suitable example. **(Understand)**

COURSE OUTCOME 5: Demonstrate the various safety standards in industries with the help of case studies (Apply)

- 1. Illustrate the Bhopal Gas Tragedy Disaster 1984 (Apply)
- 2. Outline the Chapter III under Factories Act 1948 (Understand)

OPEN ELECTIVE - I

21ME5801	NUCLEAR ENGINEERING L T P C									
				3	0	0	3			
Prerequisites	s for the course:									
Engineering P	hysics									
Objectives										
To gain some	fundamental know	vledge about nuclear physics, nu	clear rea	ctor,	nucl	ear fu	ıels,			
reactors and s	afe disposal of nucl	ear wastes								
UNIT I		NUCLEAR PHYSICS				7				
	•	alence of mass and energy–binding	g–radioac	tivity	-half	life-				
neutron intera	actions-cross sectio									
UNIT II	NUCLEAR REA	CTIONS AND REACTION MATER	IALS			9				
Mechanism of	nuclear fission and	d fusion – radio activity – chain r	eactions	– crit	ical 1	nass	and			
•	•	and its characteristics – uranium	production	on an	d pu	rificat	tion			
-Zirconium ,tł	orium,beryllium.									
UNIT III		NUCLEAR SAFETY SYSTEMS				11				
Safety objecti	ves, Shutdown sys	stems in PWR,BWR,PHWR, Reac	tivity Wo	orth	of sl	hutdo	wn			
system, Opera	ting Environment, (Grouping of safety systems, Heat R	emoval s	ystem	ns, Er	nerge	ency			
Core Cooling.	Containment and au	houstom Cito coloction and Dojoct		• • •						
-	containinent and st	bsystem, Site selection and Reject	tion criter	10n.						
UNIT IV		UCLEAR POWER PLANTS	lon criter	10n.		9				
UNIT IV Introduction,	NI Fermi pile Experim	UCLEAR POWER PLANTS ent, Major Components of nuclear	power p		Clas	-	tions			
UNIT IV Introduction, of Nuclear rea	N Fermi pile Experim ctors, Nuclear Bree	UCLEAR POWER PLANTS ent, Major Components of nuclear ding, Breeder reactors, Nuclear Ma	power p		Clas	sifica	tions			
UNIT IV Introduction,	N Fermi pile Experim ctors, Nuclear Bree	UCLEAR POWER PLANTS ent, Major Components of nuclear	power p		Clas	-	tions			
UNIT IV Introduction, of Nuclear rea UNIT V Safety and c accident-crite	N Fermi pile Experim ctors, Nuclear Bree lisposal: Nuclear eria for safety – nucl	UCLEAR POWER PLANTS ent, Major Components of nuclear ding, Breeder reactors, Nuclear Ma SAFETY AND DISPOSAL plant safety–safety systems–cha lear waste – types of waste and its	power platerials.	lants. d co	nseq	sifica 9 uence	es of			
UNIT IV Introduction, of Nuclear rea UNIT V Safety and c accident–crite	Ni Fermi pile Experim ctors, Nuclear Bree lisposal: Nuclear	UCLEAR POWER PLANTS ent, Major Components of nuclear ding, Breeder reactors, Nuclear Ma SAFETY AND DISPOSAL plant safety-safety systems-cha lear waste – types of waste and its roliferation	power pl aterials. Inges and s disposal	lants. d co	nseq liatic	sifica 9 uence	es of			
UNIT IV Introduction, of Nuclear rea UNIT V Safety and of accident–crite and their prev	N Fermi pile Experime ctors, Nuclear Bree lisposal: Nuclear eria for safety – nucl rention–weapons pr	UCLEAR POWER PLANTS ent, Major Components of nuclear ding, Breeder reactors, Nuclear Ma SAFETY AND DISPOSAL plant safety-safety systems-cha lear waste – types of waste and its coliferation Total	power platerials.	lants. d co	nseq liatic	sifica 9 uence on haz	es of			
UNIT IV Introduction, of Nuclear rea UNIT V Safety and c accident–crite and their prev Suggestive As	N Fermi pile Experim ctors, Nuclear Bree lisposal: Nuclear eria for safety – nucl	UCLEAR POWER PLANTS ent, Major Components of nuclear ding, Breeder reactors, Nuclear Ma SAFETY AND DISPOSAL plant safety–safety systems–cha lear waste – types of waste and its coliferation Total s	power pl aterials. Inges and s disposal	lants. d cor	nseq liatic	sifica 9 uence on haz 45	es of zards			
UNIT IV Introduction, of Nuclear rea UNIT V Safety and c accident–crite and their prev Suggestive As	N Fermi pile Experime ctors, Nuclear Bree lisposal: Nuclear eria for safety – nucl rention–weapons pr ssessment Method	UCLEAR POWER PLANTS ent, Major Components of nuclear ding, Breeder reactors, Nuclear Ma SAFETY AND DISPOSAL plant safety-safety systems-cha lear waste – types of waste and its coliferation Total	power platerials. Inges and s disposal Periods	lants. d cor - rac mest	nseq liatic	sifica 9 uence on haz 45	es of zards			
UNIT IV Introduction, of Nuclear rea UNIT V Safety and c accident–crite and their prev Suggestive As Continuous A (20 Ma	N Fermi pile Experime ctors, Nuclear Bree lisposal: Nuclear eria for safety – nucl rention–weapons pr ssessment Method	UCLEAR POWER PLANTS ent, Major Components of nuclear ding, Breeder reactors, Nuclear Ma SAFETY AND DISPOSAL plant safety–safety systems–cha lear waste – types of waste and its roliferation Total S Formative Assessment Test	r power platerials. unges and s disposal Periods	lants. d con - rac mest	nseq liatic er Ex	sifica 9 uence on haz 45 xams	es of zards			
UNIT IV Introduction, of Nuclear rea UNIT V Safety and c accident–crite and their prev Suggestive As Continuous A (20 Ma	N Fermi pile Experime ctors, Nuclear Breed lisposal: Nuclear eria for safety – nucl rention–weapons pr ssessment Method ssessment Test rks)	UCLEAR POWER PLANTS ent, Major Components of nuclear ding, Breeder reactors, Nuclear Ma SAFETY AND DISPOSAL plant safety-safety systems-cha lear waste – types of waste and its coliferation Total S Formative Assessment Test (20 Marks) DESCRIPTIVE TYPE QUESTIONS.	power platerials. anges and s disposal Periods End Se (60 Ma	lants. d con - rac mest	nseq liatic er Ex	sifica 9 uence on haz 45 xams	es of zards			
UNIT IV Introduction, of Nuclear rea UNIT V Safety and c accident–crite and their prev Suggestive As Continuous A (20 Ma	N Fermi pile Experime ctors, Nuclear Breed lisposal: Nuclear eria for safety – nucl rention–weapons pr ssessment Method ssessment Test rks)	UCLEAR POWER PLANTS ent, Major Components of nuclear ding, Breeder reactors, Nuclear Ma SAFETY AND DISPOSAL plant safety–safety systems–cha lear waste – types of waste and its roliferation Total S Formative Assessment Test (20 Marks) DESCRIPTIVE TYPE	power platerials. anges and s disposal Periods End Se (60 Ma	lants. d con - rac mest	nseq liatic er Ex	sifica 9 uence on haz 45 xams	es of zards			
UNIT IV Introduction, of Nuclear rea UNIT V Safety and c accident–crite and their prev Suggestive As Continuous A (20 Mat CAT 1 & CAT 2	N Fermi pile Experime ctors, Nuclear Breed lisposal: Nuclear eria for safety – nucl rention–weapons pr ssessment Method ssessment Test rks)	UCLEAR POWER PLANTS ent, Major Components of nuclear ding, Breeder reactors, Nuclear Ma SAFETY AND DISPOSAL plant safety-safety systems-cha lear waste – types of waste and its coliferation Total S Formative Assessment Test (20 Marks) DESCRIPTIVE TYPE QUESTIONS.	power platerials. anges and s disposal Periods End Se (60 Ma	lants. d con - rac mest	nseq liatic er Ex	sifica 9 uence on haz 45 xams	es of zards			
UNIT IV Introduction, of Nuclear rea UNIT V Safety and c accident–crite and their prev Suggestive As Continuous A (20 Ma CAT 1 & CAT 2	N Fermi pile Experime ctors, Nuclear Breed lisposal: Nuclear eria for safety – nucl rention–weapons pr ssessment Method ssessment Test rks) 2 EACH 10 MARKS	UCLEAR POWER PLANTS ent, Major Components of nuclear ding, Breeder reactors, Nuclear Ma SAFETY AND DISPOSAL plant safety-safety systems-cha lear waste – types of waste and its coliferation Total S Formative Assessment Test (20 Marks) DESCRIPTIVE TYPE QUESTIONS. ASSIGNMENT	power platerials. anges and s disposal Periods End Se (60 Ma	lants. d con - rac mest	nseq liatic er Ex	sifica 9 uence on haz 45 xams	es of zards			
UNIT IV Introduction, of Nuclear rea UNIT V Safety and c accident-crite and their prev Suggestive As Continuous A (20 Ma CAT 1 & CAT 2 Outcomes Upon comple	N Fermi pile Experime ctors, Nuclear Breed disposal: Nuclear eria for safety – nuclear cention–weapons pr ssessment Method ssessment Test rks) 2 EACH 10 MARKS tion of the course,	UCLEAR POWER PLANTS ent, Major Components of nuclear ding, Breeder reactors, Nuclear Ma SAFETY AND DISPOSAL plant safety-safety systems-cha lear waste – types of waste and its roliferation Total S Formative Assessment Test (20 Marks) DESCRIPTIVE TYPE QUESTIONS. ASSIGNMENT the students will be able to:	power platerials. anges and s disposal Periods End Se (60 Ma DESCR)	lants. d con - rac mest IPTIV	nseq liatic er Ex E QU	sifica 9 uence on haz 45 xams	es of zards			
UNIT IV Introduction, of Nuclear rea UNIT V Safety and c accident–crite and their prev Suggestive As Continuous A (20 Mai CAT 1 & CAT 2 Outcomes Upon comple CO1: List the l	N Fermi pile Experime ctors, Nuclear Breed lisposal: Nuclear eria for safety – nuclear rention–weapons pressessment Method ssessment Test rks) 2 EACH 10 MARKS tion of the course, pasic concepts of atomic states and the second states and the s	UCLEAR POWER PLANTS ent, Major Components of nuclear ding, Breeder reactors, Nuclear Ma SAFETY AND DISPOSAL plant safety-safety systems-cha lear waste – types of waste and its coliferation Total S Formative Assessment Test (20 Marks) DESCRIPTIVE TYPE QUESTIONS. ASSIGNMENT	r power platerials. unges and s disposal Periods End Se (60 Ma DESCR) (Unders	lants. d con - rac mest IPTIV	nseq liatic er Ex E QU	sifica 9 uence on haz 45 xams	es of zards			
UNIT IV Introduction, of Nuclear rea UNIT V Safety and c accident–crite and their prev Suggestive As Continuous A (20 Ma CAT 1 & CAT 2 Outcomes Upon comple CO1: List the I CO2: Interpre	N Fermi pile Experiment ctors, Nuclear Breed disposal: Nuclear eria for safety – nuclear cention–weapons present seessment Method ssessment Test rks) 2 EACH 10 MARKS tion of the course, pasic concepts of atous t the nuclear reaction	UCLEAR POWER PLANTS ent, Major Components of nuclear ding, Breeder reactors, Nuclear Ma SAFETY AND DISPOSAL plant safety-safety systems-cha lear waste – types of waste and its roliferation Total S Formative Assessment Test (20 Marks) DESCRIPTIVE TYPE QUESTIONS. ASSIGNMENT the students will be able to: oms, equivalence mass and energy	power platerials. anges and s disposal Periods End Se (60 Ma DESCR) (Unders)	lants. d con - rac mest IPTIV	nseq liatic er Ex E QU	sifica 9 uence on haz 45 xams	es of zards			
UNIT IV Introduction, of Nuclear rea UNIT V Safety and c accident-crite and their prev Suggestive As Continuous A (20 Ma CAT 1 & CAT 2 Outcomes Upon comple CO1: List the I CO2: Interpre CO3: Describe	Ni Fermi pile Experiment ctors, Nuclear Breed disposal: Nuclear eria for safety – nuclear gention-weapons pressessment Method ssessment Method ssessment Test rks) 2 EACH 10 MARKS basic concepts of ator the nuclear fuel cype	UCLEAR POWER PLANTS ent, Major Components of nuclear ding, Breeder reactors, Nuclear Ma SAFETY AND DISPOSAL plant safety-safety systems-cha lear waste – types of waste and its coliferation Total S Formative Assessment Test (20 Marks) DESCRIPTIVE TYPE QUESTIONS. ASSIGNMENT the students will be able to: oms, equivalence mass and energy ons and reaction materials (Apply	r power platerials. anges and s disposal Periods End Se (60 Ma DESCR) (Unders) stand)	lants. d con - rac mest IPTIV	nseq liatic er Ex E QU	sifica 9 uence on haz 45 xams	es of zards			

Text Books

- 1. Nuclear reactor Safety- principles and concept by G. Vaidyanathan, Yes Dee Publishing, (2017).
- 2. Power Plant Engineering: by Arora&Domkundwar, Dhanpatrai Publication (2016).
- 3. Power Plant Engineering by P.K.Nag, Tata McGraw Hill Publishing Company Ltd. (2017).

Reference Books

- 1. Nuclear Reactor Engineering by Samuel Glass tone, CBS Publishers & Distributors (2016).
- 2. Introduction to Nuclear Engineering by John R. Lamarsh, Pearson Education India (2017).

Web Resources

1. https://nptel.ac.in/courses/112101007/

CO Vs PO Mapping and CO Vs PSO Mapping

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
1	3					1	3							3
2	3					1	3							3
3	3					2	3							3
4	3		3		1	2	3	2				1		3
5	3				1	2	3	2				1		3

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: List the basic concepts of atoms ,equivalence mass and energy (Understand)

1. Derive mass energy equivalence equation and explain the term mass defect and its significance. (U)

2. Write short notes on Ruther ford model of an atom .(U)

COURSE OUTCOME 2: Interpret the nuclear reactions and reaction materials (Apply)

- 1. Explain the nuclear fuel. What is chain reaction? How it is measured? What is the difference between controlled and uncontrolled chain reaction? (U)
- 2. Draw and explain the solvent extraction equipment in following cases. (A)
 (i) Explain in brief how uranium material is produced and purified.
 (ii) Write short notes on the purification of thorium and beryllium materials
- 3. Explain the process of uranium production and purification. (U)

COURSE OUTCOME 3: Describe the nuclear fuel cycle and its characteristics (Understand)

1. Explain about the nuclear safety inspections. (U)

2. How the nuclear plant safety system works in Shutdown to cooling the fuel. (U)

COURSE OUTCOME 4: Demonstrate about the functions of different nuclear reactor (Apply)

- 1. Describe the boiling water reactor with the help of neat sketch and explain its chief characteristics(U)
- 2. Illustarte the boiling water reactor power plant. (A)
- 3. Write short notes on the following(U)
 - [i] Boiling water reactor
 - [ii] Fast breeder reactor.

COURSE OUTCOME 5: Discuss about the safety and disposal methods of nuclear waste (Understand)

1.Explain about the nature of wastes generated from each stage of nuclear fuel cycle. (A)

2. Explain about the disposal of gaseous nuclear wastes with a diagram. (U)

21ME5802	RENE		L	Т	Р	C		
			3	0	0	3		
Prerequisites fo	or the course							
NIL								
Objectives								
 To identi energy so 	•	hodologies /technologies for effe	ctive utili	zatio	n of	renev	wable	
UNIT I		INTRODUCTION				9		
- Renewable En	ergy Scenario in	Energy Resources – Environmenta Tamil Nadu, India and around th conomics of renewable energy syst	ne World				satior	
	11	SOLAR ENERGY				9		
Photo Voltaic Co		ns – Solar thermal Power Genera Cells – Solar PV Power Generation				ions.	Sola	
		WIND ENERGY				9		
		on – Types of Wind Energy System ne Generator – Safety and Environ				Site		
UNIT IV		9						
	ombustion – Bio eneration – Biom	mass gasifiers – Biogas plants – Di ass Applications	gesters –	Ethan	iol p	roduc	tion ·	
UNIT V	OTHER	RENEWABLE ENERGY SOURCES		9				
Tidal energy – W		pen and Closed OTEC Cycles – Sma Systems – Hybrid Systems	ll Hydro-	Geoth	erm	al Ene	ergy -	
	torage – Fuel Cell	Systems – mybrid Systems						
	torage – Fuel Cell		Periods			45		
Hydrogen and St	essment Method	Total	Periods			45		
Hydrogen and St Suggestive Asse	essment Method	Total	Periods End Se	mest				
Hydrogen and St Suggestive Asse Continuous Ass (20 Marks	essment Method essment Test s)	Total	-					
Hydrogen and St Suggestive Asse Continuous Ass (20 Marks CAT 1 – 10 MAR	essment Method ressment Test s) KS	Total Is Formative Assessment Test (20 Marks) 1.Assignment	End Se	rks)	er E	xams		
Hydrogen and St Suggestive Asse Continuous Ass (20 Marks) CAT 1 – 10 MAR CAT 2 – 10 MAR	essment Method essment Test s) KS KS	Total Is Formative Assessment Test (20 Marks) 1.Assignment 2. Online Quizzes	End Se (60 Ma	rks)	er E	xams		
Hydrogen and St Suggestive Asse Continuous Ass (20 Marks CAT 1 – 10 MAR	essment Method essment Test s) KS KS	Total Is Formative Assessment Test (20 Marks) 1.Assignment	End Se (60 Ma	rks)	er E	xams		
Hydrogen and St Suggestive Asse Continuous Ass (20 Marks) CAT 1 – 10 MAR CAT 2 – 10 MAR	essment Method essment Test s) KS KS	Total Is Formative Assessment Test (20 Marks) 1.Assignment 2. Online Quizzes	End Se (60 Ma	rks)	er E	xams		
Hydrogen and St Suggestive Asse Continuous Ass (20 Marks CAT 1 – 10 MAR CAT 2 – 10 MAR Descriptive Ques Outcomes	essment Method essment Test s) KS KS stions	Total Is Formative Assessment Test (20 Marks) 1.Assignment 2. Online Quizzes	End Se (60 Ma	rks)	er E	xams		
Hydrogen and St Suggestive Asse Continuous Ass (20 Marks CAT 1 – 10 MAR CAT 2 – 10 MAR Descriptive Ques Outcomes Upon completio	essment Method ressment Test s) KS KS stions	Total Total S Formative Assessment Test (20 Marks) 1.Assignment 2. Online Quizzes 3.Problem-Solving Activities	End Se (60 Ma 1. Desc	urks) riptiv	er E	xams		
Hydrogen and St Suggestive Asse Continuous Ass (20 Marks) CAT 1 – 10 MAR CAT 2 – 10 MAR Descriptive Ques Outcomes Upon completion CO1: Describe th	essment Method essment Test s) KS KS Stions on of the course ne renewable ene	Total Total S Formative Assessment Test (20 Marks) 1.Assignment 2. Online Quizzes 3.Problem-Solving Activities , the students will be able to:	End Se (60 Ma 1. Desc	urks) riptiv	er E	xams		

Text Books

- 1. Rai G.D., "Non-Conventional Energy Sources", Khanna Publisher, New Delhi, (2011)
- 2. Twidell, J.W. & Weir A, "Renewable Energy Sources", EFN Spon Ltd. UK, (2022)

Reference Books

- 1. Godfrey Boyle, "Renewable Energy, Power for a Sustainable Future", Oxford University Press, U.K., (2012)
- 2. Chetan Singh Solanki, Solar Photovoltaics, "Fundamentals, Technologies and Applications", PHI Learning Private Limited, New Delhi, (2015)
- 3. David M. Mousdale "Introduction to Biofuels", CRC Press, Taylor & Francis Group, USA (2017)
- 4. Tiwari G.N., "Solar Energy Fundamentals Design, Modelling and applications", Narosa Publishing House, New Delhi, (2002)
- 5. Freris L.L., "Wind Energy Conversion systems", Prentice Hall, UK, (2002)

Web Resources

1. https://nptel.ac.in/courses/121106014/

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
1	2					2	2	2						3
2	2					2	2	2						3
3	2					2	2	2						3
4	2					2	2	2						3
5	2					2	2	2						3

CO Vs PO Mapping and CO Vs PSO Mapping

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Describe the renewable energy scenario all over the world (Understand)

- **1.** Describe the types of Solar power plant. What are the limitations of solar power plant? (U)
- 2. Illustrate the conventional and unconventional energy sources. Describe briefly.(U)

COURSE OUTCOME 2: Explain the basics of solar energy and its applications. (Understand)

- **1.** Classify the methods of solar energy storage. Describe thermal energy storage system. (U)
- **2.** Discuss the main components of a flat-plate collector. Explain the functions of each and write its advantage and disadvantage of flat plate collector. (U)

COURSE OUTCOME 3: Apply the principles of energy estimation in wind energy. (Apply)

- **1.** Determine the operation and control of wind turbine. (A)
- **2.** Describe the main applications of wind energy. Giving neat sketches. (U)

COURSE OUTCOME 4: Explain about biogas digesters and cogeneration plant. (Understand)

- Explain the process of photo synthesis. What are the necessary conditions of it? (U)
- **2.** Discuss the factors affecting Bio digestion (U).

COURSE OUTCOME 5: Compare different renewable energy sources and construct a hybrid system. (Understand)

- 1. Differentiate open cycle OTEC system and Closed OTEC cycle. (U)
- 2. Explain briefly how prime movers for geothermal energy conversion are classified and elaborate it. (U).

21ME5803	ADD	ADDITIVE MANUFACTURING						
				3	0	0	3	
Prerequisites	s for the course							
Manufacturing	g Technology							
Objectives								
	• •	methods, areas of usage, possibili f the Additive Manufacturing tech		imitat	tions	as w	ell as	
	e familiar with the o itive Manufacturing	characteristics of the different ma	terials the	ose are	e use	ed in		
UNIT I		INTRODUCTION				10		
	-	- Classification – Additive M or Additive Manufacturing Techno		-		-	-	
UNIT II	CAD	& REVERSE ENGINEERING				10		
AdditiveManu generation –M	facturing Technolo	echniques – Model Reconstructory gy: CAD model preparation – D path Generation – Softwares for	Part Orie	ntatio	n ai	nd su	pport	
UNIT III		SED AND SOLID BASED ADDITIV	/F			10		
UNIT III	MA							
Classification		em – Stereolithography Apparatu	ıs (SLA) -	Prine	ciple	,		
		ons – Solid based system –Fuse			-			
Principle, proc	cess,advantages and	applications, Laminated Object M	lanufactui	ing				
UNIT IV	POWDER BASED	ADDITIVE MANUFACTURING SY	(STEMS			10		
ThreeDimensi		ciples of SLS process – Process, nciple, process, advantages and a n Melting.						
UNIT V	MEDICAL AN	D BIO-ADDITIVE MANUFACTUR	ING			5		
	• •	esis: Design and production. Bio ng (CATE) – Case studies	o-Additive	Man	ufac	turing	-	
		Total	Periods			45		
Suggestive As	ssessment Method	s						
Continuous A	ssessment Test	Formative Assessment Test	End Se	Semester Exams				
(20 Mai		(20 Marks)	(60 Marks)					
CAT 1 – 10 MA		MCQ	MCQ Descriptive type					
CAT 2 – 10 MA	ARKS	Assignment						
Descriptive Qu		Slip Test						

Outcomes

Upon completion of the course, the students will be able to:

CO1: Distinguish the basic concepts of additive manufacturing and its applications. **(Understand)**

CO2: Demonstrate the software's for additive manufacturing technology. **(Apply)**

CO3: Construct liquid and solid based additive manufacturing and its applications. (Apply)CO4: Illustrate power based additive manufacturing and its applications. (Apply)CO5: Apply the possibilities and limitations in medical and bio additive manufacturing. (Apply)

Text Books

- 1. Chua C.K., Leong K.F., and Lim C.S., "Rapid prototyping: Principles and applications", World Scientific Publishers, (2010)
- 2. Gebhardt A., "Rapid prototyping", Hanser Gardener Publications, (2003)

Reference Books

- 1. Liou L.W. and Liou F.W., "Rapid Prototyping and Engineering applications: A tool box for prototype development", CRC Press, (2007)
- 2. Kamrani A.K. and Nasr E.A., "Rapid Prototyping: Theory and practice", Springer, (2006)
- 3. Hilton P.D. and Jacobs P.F., "Rapid Tooling: Technologies and Industrial Applications", CRC press, (2000)
- 4. Ian Gibson, David Rosen and Brent Stucker, "Additive Manufacturing Technologies: 3D printing, Rapid prototyping and Direct Digital Manufacturing", Springer, (2014)
- 5. Andreas Gebhardt "Understanding Additive Manufacturing: Rapid Prototyping, Rapid Manufacturing"Hanser Gardner Publication (2011)
- 6. Tom Page "Design for Additive Manufacturing" LAP Lambert Academic Publishing, (2012)

Web Resources

1. https://nptel.ac.in/courses/112104265/

CO Vs PO Mapping and CO Vs PSO Mapping

со	PO	PO1	PO1	PO1	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	2	1	2
1	3										2	3	3	
2			3		3							3	3	
3	3				3						2	3	2	1
4	3				3						2	3	2	1
5					3						2	3	2	1

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Distinguish the basic concepts of additive manufacturing and its applications (Understand)

- 1. Write a note on the impact of AM on product development. (U)
- 2. Describe a) Virtual prototyping b) Rapid Tooling. (U)

COURSE OUTCOME 2: Demonstrate the software's for additive manufacturing technology. (Apply)

- 1. Explain the geometric modeling techniques? (U)
- 2. Demonstrate the techniques used in Tool path generation? (A)

COURSE OUTCOME 3: Construct liquid and solid based additive manufacturing and its applications.(Apply)

- 1. Illustrate about strength, Weakness and applications of SGC? (A)
- 2. What are the steps in pre build and post-build process for LOM? (U)

COURSE OUTCOME 4: Illustrate power based additive manufacturing and its applications. (Apply)

- 1. Discover the effect of surface deviation in LENS? (A)
- 2. What is indirect SLS and direct SLS. Explain the same. (U)

COURSE OUTCOME 5: Apply the possibilities and limitations in medical and bio additive manufacturing. (Apply)

- 1. Prepare the design and production of customized implants and prosthesis. (A)
- 2. Discuss in detail about Computer Aided Tissue Engineering. (U)

21ME5804	FUN		L	Τ	Р	С			
				3	0	0	3		
	for the course								
Nil									
Objectives									
course is to m students over through this c systematic and	nake students awa come common mi ourse, students an l	udents to the important aspects re of the details associated with s conceptions that may be pres re likely to be ableto take up r	formal r ent in th	esean eir n	rch a	nd t 5. By	o help going		
	right from the beg								
UNIT I		RODUCTION TO RESEARCH				9			
		Outcome of Research - Sources							
		ch Problem - Errors in Selecting	a Resear	rch P	roble	em -			
_	Keywords – Ethics								
UNIT II		LITERATURE REVIEW				9			
Literature Coll	ection – Methods –	Analysis – Citation Study – Gap Ar	nalysis – F	Proble	em F	ormu	lation		
Techniques.									
UNIT III	RE	SEARCH METHODOLOGY				9			
Investigation of	of Solutions for Re	:/Methodologies/Methods – Meas search Problem – Interpretation Experimental skills,Safety in Labor	– Resear				•		
UNIT IV	J	OURANALS AND PAPERS				9			
Research Ethi	cs. Intellectual pr	g - Indexing and Impact factor operty. Types of Research Pape se Study – Systematic Approach t	ers - Orig	ginal	Arti	cle/R	leview		
UNIT V	REPO	ORTS AND PRESENTATIONS				9			
How to Write	a Report - Languag	ge and Style - Format of Project R	eport - T	itle P	age -	Abs	tract -		
Table of Conte	ents - Headings and	d Sub-Headings - Footnotes - Tab	oles and l	Figur	es	Appe	ndix -		
Bibliography e	tc Different Refer	ence Formats. Presentation using	PPTs. Res	searcl	h Too	ols.			
		Total	Periods			45			
Suggestive As	sessment Method	s							
Continuous As	ssessment Test	Formative Assessment Test	End Se	mest	er Ex	kams			
(20 Mar	ks)	(20 Marks)	(60 Ma	0 Marks)					
CAT 1 and CAT	2 Each 10 Marks	MCQ, CASE STUDY,	Q, CASE STUDY, DESCRIPTIV						
	TYPE OF	PRESENATIONS	TIONS						
DESCRIPTIVE '			1						
DESCRIPTIVE QUESTIONS									

CO1: List the various stages in research and categorize the quality of research problem. **(Apply) CO2:** Formulate a research problem from published literature/journal papers. (Apply) **CO3:** Select appropriate research method for a defined problem (Apply) **CO4:** Prepare review/ research paper, select suitable journal and submit a paper **(Apply) CO5:** Prepare research report and presentation **(Apply) Text Books**

1.Wailliman, Nicholas. "Research Methods: The basics". 3rd Edition Routledge, 2021. 2.David V.Thiel," Research Methods For Engineers", Cambridge University Press 2014 3.Habbeb Adewale Ajimotokan, "Research Techniques Qualitative, Quantitative and Mixed Methods Approaches for Engineers" Springer 2022

Reference Books

- 1. Melville S, Goddard W. " Research Methodology: An Introduction For Science and Engineering Students". Kenwyn Co Ltd. 1996
- 2. Kumar, Ranjit. "Research Methodology: A step-by-step guide for beginners". SAGE Publications Limited, 2019

Web Resources

1.https://nptel.ac.in/courses/121106007

СО	DO1	DOJ	2 PO3 PO4 PO5 PO6 PO7 PO8 PO	DOD	РО	РО	РО	PSO	PSO					
	PO1	r02	PUS	rU4	rus	ruo	PU/	PUð	P09	10	11	12	1	2
1	2	2	1		1			2		3		1	2	2
2	2	2	1		1			2		3		1	2	2
3	2	2	1		1			2		3		1	2	2
4	2	2	1		1			2		3		1	2	2
5	2	2	1		1			2		3		1	2	2

CO Vs PO Mapping and CO Vs PSO Mapping

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: List the various stages in research and categorize the quality of research problem. (Apply)

- 1. Discuss the applications of research from the view point of
 - (i) The service provider
 - (ii) The administrator, manager and/or planer
 - (iii) The Consumer
 - (iv) The Professional (Apply)
- Discuss the types of research on different perspectives say application 2. perspective, objective perspective and mode of enquiry perspective. (Apply)
- 3. Identify two research questions, related to your professional area, that could be answered by undertaking each of the following types of research.

- a. Descriptive Research b. Correlational research
- c. Explanatory Research d. Exploratory research

(Analyze)

4. Draw the research process "onion' (Understand)

COURSE OUTCOME 2: Formulate a research problem from published literature/journal papers. **(Apply)**

1. Undertake a keyword search for a theme or issue that interests you using (a) an Internet search engine, such as Google Scholar, and (b) a library search facility. Compare the results (analyze)

2.Discuss about the source of information for literature review. (Understanding)3.Write a short notes on "Note Taking" (Understand)

COURSE OUTCOME 3: Select appropriate research method for a defined problem **(Apply)**

1. List the sources of research problems (Understand)

2. Elaborate the considerations in selecting a research problem (Understand)

3.Discuss in details about steps in formulating a research problem (Understand)

4.Select a broad subject area of interest to you and 'dissect' it. (Apply)

COURSE OUTCOME 4: Prepare review/ research paper, select suitable journal and submit a paper **(Apply)**

1. What is meant by indexing? Why it is needed? (Understand)

2. Discuss in detail about the "Intellectual Property Rights" (Understand)

3. Explain the systematic approach to prepare and review papers. (Apply)

COURSE OUTCOME 5: Prepare research report and presentation (Apply)

- 1. Discuss any two software tools in preparing thesis in required format. (Apply)
- 2. Design two-minute paper presentations. Prepare one slide showing a plot of the major results from a research project. Deliver two-minute presentations on the topic showing only one slide of results. (Analyze)

OPEN ELECTIVE - II

21ME6801	SOLAR	CELLS AND FUNDAMENTALS		L	T	P	C
		GELUTIAN I UNDAMENTALS		3	0	0	3
-	for the course						
NIL							
Objectives				6			
	tify the new method	ologies /technologies for effective u	utilization	n of so	lar c		
UNIT I		SOLAR SYSTEM				8	
-		, solar window, atmospheric effect				ns, Ai	r mass,
effect of Air Ma	ass, seasonal effects,	environmental effects on standard	test cond	lition	5		
UNIT II	SOLA	R PHOTOVOLTAIC SYSTEMS				10	
solar power ge	eneration systems a) off-grid systems b) grid connecte	d system	s c) p	owei	r cont	rol and
0		of solar photovoltaic systems, Wor	0.	· •			0.
		PV Installation, Common Systems t	ype, GRII	D-TIEI	D Sys	stem,	Hybrid
-	ovoltaic in Energy Su	ipply. DESIGN OF SOLAR CELL					
	. 11.			11	. 1.0:		
	.	Cells: Mono- crystalline and poly –					
-		ercial Si cell technology, process in rocess, thin film layers, Metal con				-	-
	U	roperties, P – N junction and solar		micor	iuuc	1015 a	IS DASIC
						0	
		ND MAINTENANCE OF SOLAR PLA		CDU		9	C
	.	site considerations, components age, Selection of systems design a			-		
system.	v of the planning su	age, selection of systems design a	iiu object	Ive Iu	I gII		metteu
UNIT V	FUN	DAMENTALS OF PV CELLS				7	
– Fundamenta	ls of Solar Photo Vo	oltaic Conversion – Solar PV Powe	r Genera	tion -	Sola	ar PV	
Applications.							
		Total	Periods			45	
Suggestive As	sessment Methods		renous			15	
	ssessment Test	Formative Assessment Test	End Se	mest	er Es	ams	
(20 Mar		(20 Marks)	(60 Ma			ums	
CAT 1 – 10 MA	-	1.Assignment	1. Desc		e Ou	estion	IS
CAT 2 – 10 MA	RKS	2. Online Quizzes		1	C		
		3. Problem-Solving Activities					
Outcomes							
Upon complet	tion of the course, t	he students will be able to:					
		solar system in atmospheric and en			-		-
	-	system in a various field in world en			-		-
-	r cell in various techi	niques for suitable infrastructure wit	th require	d enh	ance	d Proj	perties.
(Apply) CO4 Demonstra	te the site area of sel	ection using the fundamentals of roo	f grid wit	h the	comi	oonen	ts of
	stem. (Apply)	the fundamentals of 100	-, 5.14 111				
•	ne fundamentals of 1	PV cells in an energy conversion w	vith the h	elp of	f PV	applio	cations.
Textbooks							

- 1. Solar Power Hand Book, Dr. H. Naganagouda(2017).
- 2. Solar Photovoltaic; Chetansinghsolanki; PHI, Learning private ltd., New dehli- 2018.

Reference Books

- 1. Solar Electricity Handbook; MichaleBoxwell; 2017 edition.
- 2. Renewable energy systems; Devid M, Buchla, Thomas E kissell, Thomas, L Floyd; Pearson India Education Services Pvt. Ltd. 2017

Web Resources

https:nptel.ac.in/courses/1211060114/

CO Vs PO Mapping and CO Vs PSO Mapping

	• •	-				U								
CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2
C01	2					2	2	2						3
C02	2					2	2	2						3
CO3	2					2	2	2						3
CO4	2					2	2	2						3
C05	2					2	2	2						3

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1 Enumerate the fundamentals of solar system in atmospheric and environment effects. (Understand)

- 1. How Do We Generate Electricity From The Sun?(U)
- 2. What Happens With A Solar Pv System At Night And On Cloudy Days? (U)
- 3. How Do I Get Started With Solar? (U)

COURSE OUTCOME 2 Describe the solar photovoltaic system in a various field in world energy requirement. (Understand)

- 1. Explain the Stand alone PV system. (U)
- 2. Explain the Grid connected PV system (U)

COURSE OUTCOME 3 Design solar cell in various techniques for suitable infrastructure with required enhanced Properties. (Apply)

1. Explain the Working principle of solar cell. **(U)**

2. Demonstrate about solar cell technologies in crystalline & poly crystalline cells.(A) COURSE OUTCOME 4 Demonstrate the site area of selection using the fundamentals of roof, grid with the components of solar PV system. (Apply)

- **1.** Predict the criteria level for site selection of solar photovoltaic (PV)(A)
- **2.** Examine the Site Selection for a Solar Power Plant in SPV System.**(A)**

COURSE OUTCOME 5 Examine the fundamentals of PV cells in an energy conversion with the help of PV applications. (Apply)

1.Explain about the solar PV generation (U)

2. Interpret the energy conversion in solar photovoltaic cell & its applications (A)

21ME6802	ENERGY E	NGINEERING AND MANAGEMEN'	Г	L	T	P	C
				3	0	0	3
-	s for the course						
Nil							
Objectives							
• To	create awareness o	n the energy scenario of India witl	n respect	to wo	rld		
• To	Comprehend the in	npact of energy on environment					
UNIT I		INTRODUCTION				9	
Comparison of	f energy scenario –	India and World (energy sources,	generatio	on miz	x, coi	nsum	ptior
pattern, T&D	losses, energy dem	and, per capita energy consumpti	on) – ene	ergy p	ricin	ıg –er	nergy
security-energ	gy conservation and	its importance -EnergyConservat	ionAct20	01			
UNIT II		ELECTRICAL SYSTEMS				9	
HT and LT	supply, Transform	ners, Cable Sizing, Concept of	f Capacit	ors,	Pow	er F	acto
		ric Motors - Motor Efficiency C	-				
-		ns, Types of lighting, Efficacy, LEI	-		-	-	
in Illuminatior			0 0				
UNIT III				9			
Stoichiometry	, Boilers, Furnaces	and Thermic Fluid Heaters – Effic	iency con	iputa	tion	and e	encor
-		Usage: Steam Traps, Condensate	-	-			
measures, ste		obuge. Dicum maps, domacinsut					
	sulators & Refractor			<i>y</i> , 110			
	sulators & Refractor			<i>y</i> , <i>i</i> ic		9	
Utilization, Ins UNIT IV	sulators & Refractor ENI	ries E RGY AND ENVIRONMENT				9	
Utilization, Ins UNIT IV Greenhouse ef	sulators & Refractor ENI ffect and the carbor	ries	ure effect	s of c	limat	9 te cha	ange
Utilization, Ins UNIT IV Greenhouse ef Global Envir	sulators & Refractor ENI ffect and the carbor onmental Concerr	ries E RGY AND ENVIRONMENT n cycle - current evidence and fut ns-United Nations Frame wor	ure effect rk Conve	s of cl	limat n or	9 te cha	ange imat
Utilization, Ins UNIT IV Greenhouse ef Global Envir Change(UNFC	sulators & Refractor ENI ffect and the carbor onmental Concerr C), Kyoto Protoco	ries ERGY AND ENVIRONMENT n cycle - current evidence and fut ns-United Nations Frame wor l, Conference of Parties(COP),	ure effect rk Conve Emission:	s of cl entior s trac	limat n or ding	9 te cha n Cli (ET),	ange imat Join
Utilization, Ins UNIT IV Greenhouse ef Global Envir Change(UNFC	Sulators & Refractor ENI Iffect and the carbor onmental Concerr C), Kyoto Protoco on(JI), Clean Develo	ries E RGY AND ENVIRONMENT n cycle - current evidence and fut ns-United Nations Frame wor	ure effect rk Conve Emission:	s of cl entior s trac	limat n or ding	9 te cha n Cli (ET),	ange imato Join
Utilization, Ins UNIT IV Greenhouse ef Global Envir Change(UNFC implementatio	sulators & Refractor ENI ffect and the carbor onmental Concerr C), Kyoto Protoco on(JI), Clean Develo evelopment	ries ERGY AND ENVIRONMENT In cycle - current evidence and fut Ins-United Nations Frame wor I, Conference of Parties(COP), Inpment Mechanism (CDM), Proto	ure effect rk Conve Emission:	s of cl entior s trac	limat n or ding	9 te cha n Cli (ET),	ange imato Join
Utilization, Ins UNIT IV Greenhouse ef Global Envir Change(UNFC implementatic Sustainable De UNIT V	Sulators & Refractor ENI Effect and the carbor onmental Concerr C), Kyoto Protoco on(JI), Clean Develo evelopment	ries ERGY AND ENVIRONMENT In cycle - current evidence and fut Ins-United Nations Frame wor I, Conference of Parties(COP), ENERGY MANAGEMENT	ure effect rk Conve Emission type Car	s of cl entior s trae bon l	limat n or ding Fund	9 te cha n Cli (ET), (PCF) 9	inge imat Join),
Utilization, Ins UNIT IV Greenhouse ef Global Envir Change(UNFC implementation Sustainable De UNIT V Energy audit -	sulators & Refractor ENI ffect and the carbon onmental Concern C), Kyoto Protoco on(JI), Clean Develo evelopment I need – types – me	ries ERGY AND ENVIRONMENT In cycle - current evidence and fut Ins-United Nations Frame work I, Conference of Parties(COP), opment Mechanism (CDM), Proto ENERGY MANAGEMENT ethodology – barriers - analysis or	ure effect ck Conve Emission type Car	s of cl entior s trac bon l	limat n on ding Fund g an	9 te cha n Cli (ET), (PCF) 9 d sha	inge imat Join), ring
Utilization, Ins UNIT IV Greenhouse ef Global Envir Change(UNFC) implementatio Sustainable De UNIT V Energy audit - bench marking	sulators & Refractor ENI ffect and the carbon onmental Concern C), Kyoto Protoco on(JI), Clean Develo evelopment velopment need – types – me g - fuel and energy	ries ERGY AND ENVIRONMENT In cycle - current evidence and fut Ins-United Nations Frame work I, Conference of Parties(COP), Depment Mechanism (CDM), Proto ENERGY MANAGEMENT ethodology – barriers - analysis or substitution – billing parameters	ure effect rk Conve Emission type Car type Car	s of cl entior bon l bon l costin EDCO	limat n on ding Fund g an – de	9 ce cha n Cl: (ET), (PCF) 9 d sha emano	imat Join), ring d side
Utilization, Ins UNIT IV Greenhouse ef Global Envir Change(UNFC implementation Sustainable De UNIT V Energy audit - bench marking management -	sulators & Refractor ENI ffect and the carbon onmental Concern C), Kyoto Protoco on(JI), Clean Develo evelopment velopment need – types – me g - fuel and energy	ries ERGY AND ENVIRONMENT In cycle - current evidence and fut Ins-United Nations Frame work I, Conference of Parties(COP), opment Mechanism (CDM), Proto ENERGY MANAGEMENT ethodology – barriers - analysis or	ure effect rk Conve Emission type Car type Car	s of cl entior bon l bon l costin EDCO	limat n on ding Fund g an – de	9 ce cha n Cl: (ET), (PCF) 9 d sha emano	imat Join), ring d side
Utilization, Ins UNIT IV Greenhouse ef Global Envir Change(UNFC) implementatio Sustainable De UNIT V Energy audit - bench marking	sulators & Refractor ENI ffect and the carbon onmental Concern C), Kyoto Protoco on(JI), Clean Develo evelopment velopment need – types – me g - fuel and energy	ries ERGY AND ENVIRONMENT In cycle - current evidence and futtors-United Nations Frame wordly, Conference of Parties(COP), Depment Mechanism (CDM), Proto ENERGY MANAGEMENT Ethodology – barriers - analysis or substitution – billing parameters ergy audit – energy monitoring an	ure effect rk Conve Emission type Car type Car	s of cl entior bon l bon l costin EDCO	limat n or ding Fund g an g an USUI	9 ce cha n Cl: (ET), (PCF) 9 d sha emano	inge imato Join), ring d sido
Utilization, Ins UNIT IV Greenhouse ef Global Envir Change(UNFC) implementatio Sustainable De UNIT V Energy audit - bench marking management - labeling	sulators & Refractor ENI ffect and the carbon onmental Concern C), Kyoto Protoco on(JI), Clean Develo evelopment velopment need – types – me g - fuel and energy	ries ERGY AND ENVIRONMENT In cycle - current evidence and futtors In cycl	ure effect rk Conve Emissions type Car n energy of in TANGI d targetir	s of cl entior bon l bon l costin EDCO	limat n or ding Fund g an g an USUI	9 ce cha n Cli (ET), (PCF) 9 d sha emano M – er	imat Join), ring d side
Utilization, Ins UNIT IV Greenhouse ef Global Envir Change(UNFC) implementation Sustainable De UNIT V Energy audit - bench marking management - labeling Suggestive As	sulators & Refractor ENI ffect and the carbon onmental Concern C), Kyoto Protoco on(JI), Clean Develo evelopment need – types – me g - fuel and energy instruments for en	ries ERGY AND ENVIRONMENT In cycle - current evidence and futtors In cycl	ure effect rk Conve Emissions type Car n energy of in TANGI d targetir	s of cl entior s trac bon I costin EDCO ng – C	limat n on ding Fund g an – de USUI	9 ce cha n Cl: (ET), (PCF) 9 d sha emano M – er 45	ange imat Join), ring d sid
Utilization, Ins UNIT IV Greenhouse ef Global Envir Change(UNFC) implementatio Sustainable De UNIT V Energy audit - bench marking management - labeling Suggestive As Continuous A	sulators & Refractor ENI ffect and the carbon onmental Concern C), Kyoto Protoco on(JI), Clean Develo evelopment need – types – me g - fuel and energy instruments for en sessment Method ssessment Test	ries ERGY AND ENVIRONMENT In cycle - current evidence and futtors In cycle	ure effect ck Conve Emission type Car n energy o in TANGI d targetir Periods	s of cl entior s trac bon I bon I costin EDCO ng – C meste	limat n on ding Fund g an – de USUI	9 ce cha n Cl: (ET), (PCF) 9 d sha emano M – er 45	imat Join), ring d side
Utilization, Ins UNIT IV Greenhouse ef Global Envir Change(UNFC implementation Sustainable De UNIT V Energy audit - bench marking management - labeling Suggestive As Continuous A (20 Mar	sulators & Refractor ENI ffect and the carbon onmental Concern C), Kyoto Protoco on(JI), Clean Develo evelopment need – types – me g - fuel and energy instruments for en sessment Method ssessment Test rks)	ries ERGY AND ENVIRONMENT In cycle - current evidence and futtors-United Nations Frame word I, Conference of Parties(COP), opment Mechanism (CDM), Proto ENERGY MANAGEMENT Ethodology – barriers - analysis or substitution – billing parameters ergy audit – energy monitoring an Total S Formative Assessment Test (20 Marks)	ure effect ck Conve Emissions type Car n energy of in TANGI d targetir Periods End Sec (60 Ma	s of cl entior s trae bon I bon I costin EDCO ng – C meste rks)	limat n on Jing Fund g an – de USUI USUI	9 == cha == cha == (ET), (PCF) 9 d sha == manc M – er 45 == ams	inge imat Join), ring d sid nergy
Utilization, Ins UNIT IV Greenhouse ef Global Envir Change(UNFC) implementatio Sustainable De UNIT V Energy audit - bench marking management - labeling Suggestive As Continuous A (20 Mar CAT 1 – 10 MA	sulators & Refractor ENI ffect and the carbon onmental Concern C), Kyoto Protoco on(JI), Clean Develo evelopment need – types – me g - fuel and energy instruments for en sessment Method ssessment Test rks) ARKS	ries ERGY AND ENVIRONMENT In cycle - current evidence and futtors In cycle - current evidence and futtors ENERGY MANAGEMENT ENERGY MANAGEMENT	ure effect ck Conve Emissions type Car n energy of in TANGI d targetir Periods	s of cl entior s trae bon I bon I costin EDCO ng – C meste rks)	limat n on Jing Fund g an – de USUI USUI	9 == cha == cha == (ET), (PCF) 9 d sha == manc M – er 45 == ams	inge imat Join), ring d sid nergy
Utilization, Ins UNIT IV Greenhouse ef Global Envir Change(UNFC) implementation Sustainable Dec UNIT V Energy audit - bench marking management - labeling Suggestive As Continuous A (20 Man CAT 1 – 10 MA CAT 2 – 10 MA	sulators & Refractor ENI ffect and the carbon onmental Concern C), Kyoto Protoco on(JI), Clean Develo evelopment need – types – me g - fuel and energy instruments for en sessment Method ssessment Test rks) ARKS	ries ERGY AND ENVIRONMENT In cycle - current evidence and futtors-United Nations Frame word I, Conference of Parties(COP), I, Conference of Parties(COP), I, Conference of Parties(COP), I, Conference of Parties (COP), ENERGY MANAGEMENT Ethodology – barriers - analysis or substitution – billing parameters ergy audit – energy monitoring an Total S Formative Assessment Test (20 Marks) 1.Assignment 2. Online Quizzes	ure effect ck Conve Emissions type Car n energy of in TANGI d targetir Periods End Sec (60 Ma	s of cl entior s trae bon I bon I costin EDCO ng – C meste rks)	limat n on Jing Fund g an – de USUI USUI	9 == cha == cha == (ET), (PCF) 9 d sha == manc M – er 45 == ams	inge imat Join), ring d sid nergy
Utilization, Ins UNIT IV Greenhouse ef Global Envir Change(UNFC) implementatio Sustainable De UNIT V Energy audit - bench marking management - labeling Suggestive As Continuous A (20 Mar CAT 1 – 10 MA	sulators & Refractor ENI ffect and the carbon onmental Concern C), Kyoto Protoco on(JI), Clean Develo evelopment need – types – me g - fuel and energy instruments for en sessment Method ssessment Test rks) ARKS	ries ERGY AND ENVIRONMENT In cycle - current evidence and futtors In cycle - current evidence and futtors ENERGY MANAGEMENT ENERGY MANAGEMENT	ure effect ck Conve Emissions type Car n energy of in TANGI d targetir Periods End Sec (60 Ma	s of cl entior s trae bon I bon I costin EDCO ng – C meste rks)	limat n on Jing Fund g an – de USUI USUI	9 == cha == cha == (ET), (PCF) 9 d sha == manc M – er 45 == ams	inge join j, ring d side nergy

CO1 Recognize the importance of energy engineering and suggest measures for improving per capita energy consumption **(Understand)**

CO2 Identify theworking of electrical systems **(Understand)**

CO3 Predict the methodologies for energy recovery using boilers. **(Apply)**

CO4 Apply the sources of additional revenue generation for energy conservation projects Adopting UNFCC **(Apply)**

CO5 Examine the energy sharing and cost sharing pattern of fuels used in industries **(Apply)**

Text Books

1. Energy Manager Training Manual (4 Volumes) available at www.energymanager training.com, a website administered by Bureau of Energy Efficiency (BEE), a statutory body under Ministry of Power, Government of India, 2004

Reference Books

- 1. Witte. L.C., P.S. Schmidt, D.R. Brown, "Industrial Energy Management and Utilisation" Hemisphere Publ, Washington, 1988.
- 2. Callaghn, P.W. "Design and Management for Energy Conservation", Pergamon Press, Oxford, 1981.
- 3. Dryden. I.G.C., "The Efficient Use of Energy" Butterworths, London, 1982
- 4. Turner. W.C., "Energy Management Hand book", Wiley, New York, 1982.
- 5. Murphy. W.R. and G. Mc KAY, "Energy Management", Butterworths, London 1987.

Web Resources

- 1. <u>https://nptel.ac.in/courses/112105221</u>
- 2. https://nptel.ac.in/courses/108106022

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01		2	2			2								3
C02		2	2		1	2								3
CO3		2	2		1	2								3
C04		2	2		1	2								3
C05		2	2		1	2								3

CO Vs PO Mapping and CO Vs PSO Mapping

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Recognize the importance of energy engineering and suggest measures for improving per capita energy consumption (Understand)

- 1. Describe the concept of energy planning. (R)
- 2. Write short notes on Energy conservation Act. (U)

COURSE OUTCOME 2: Identify the working of electrical systems (Understand)

- 1. Examine the power loss for motors and improvement of motor efficiency. (R)
- 2. Explain the electrical load management and maximum demand control. (U)

COURSE OUTCOME 3: Suggest methodologies for energy recovery using boilers (Apply)

- 1. Explain the performance evaluation of boilers. (R)
- 2. Examine the process of condensate recovery and flash steam utilization. (A)
- 3. An oil-fired boiler is generating 30 T/hr steam andoperates for 8000 hrs/ year. The TDS in boiler feedwater was reduced from 500 ppm to 200 ppm. Themaximum permissible limit of TDS in the boiler is3000 ppm and make up water is 10%. Temperature of the blow down water is 170 C and boiler feedwater temperature is 40 C .GCV of fuel is 10000kcal/kg and efficiency of the boiler is 80%.Calculate the saving in fuel oil per annum due toreduction in the blow down. (A)

COURSE OUTCOME 4: Assess the sources of additional revenue generation for energy conservation projectsAdopting UNFCC (Apply)

- 1. Explain Green house concept. (R)
- 2. Describe the United Nations Frame work Convention on Climate Change (U)
- 3. Compose the case study of Clean Development Mechanism (CDM) (A)

COURSE OUTCOME 5: Analyse the energy sharing and cost sharing pattern of fuels used in industries (Apply)

- 1. Integrate the need for energy audit and compose the types of energy audit. (R)
- 2. Illustrate the various instruments used forenergy auditing. (U)
- 3. The contract demand of plant is 1000 kVA. The minimum billing demand is 75% of the contract demand. The basic tariff structure is as follows: Demand charges: Rs. 180 per kVA / month Unit charges: Rs. 3.75 for the first one lakh units / month Rs. 3.50 above one lakh units / month Fuel surcharge: Rs. 0.20 per unit / month Service Tax: Rs. 0.25 per unit / month Meter rent: Rs 500 / month The energy consumption is 3, 15,000 units and the maximum demand recorded is 600 kVA. Calculate the cost of monthly electricity. (A)

21ME6803	D	ESIGN OF EXPERIMENTS		L	T	Р	C
Dronoquisitos	for the course			3	0	0	3
Probability and	d Statistics						
Objectives							
-	· · · · · · · · · · · · · · · · · · ·		(1
a pr met	roduct or service th	on concepts in design and principl hrough tools such as control char strategies of designing experimer	ts, statistic	cal p	proc	ess co	ontro
UNIT I		INTRODUCTION				9	
Strategy of E	xperimentation. Ty	ypical applications of Experimen	tal design	. Ba	asic	Prine	ciples
cumulative dis	stribution function.	nents.Concepts of random variable, . Sample and population, Measure ariability, Concept of confidence lev	e of Centra	-		-	
UNIT II				9			
Classical Exp	eriments: Factoria	al Experiments: Terminology: f	actors, le	vels	s, ir	nterac	ctions
treatment com	bination, randomiz	zation, Two-level experimental des	igns for tw	o fa	ctor	s and	three
factors. Three-	level experimental	designs for two factors and three	factors, Fa	ctor	r effe	ects, I	Facto
interactions, F	ractional factorial	design, Saturated Designs, Centra	l composit	e de	esigi	1s. –	
Demonstration	n using Minitab/ SP	SS software					
UNIT III	QUALIT	TY BY EXPERIMENTAL DESIGN				9	
Quality, Weste	ern and Taguchi's	quality philosophy, elements of	cost, Noise	e fao	ctors	cau	ses o
variation. Qua	dratic loss function	& variations of quadratic loss fund	ction. Robı	ıst I	Desig	gn: St	eps ii
0	0	. Reliability Improvement through nonstration using Minitab/ SPSS so	•	nts, I	llus	tratio	n
UNIT IV		ISE RATIO AND TOLERANCE DES				9	
Evaluation of	sensitivity to noise	e. Signal to Noise ratios for static	problems:	Sma	aller	-the-	bette
		Larger-the-better type. Signal t	•				
		umerical examples. Parameter an				-	
-	-	s, parameter design strategy, toler			-		-
		ration using Minitab/ SPSS softwar		,		05	0
UNIT V		CONSIDERATION AND RELIABIL				9	
	tributions and His	stograms- Run charts –stem and	leaf plots-	Pa	reto	diag	rams
		lots- Probability distribution-Stati	-			-	
	o i	-Matrix plots and 3-D plotsReli					
-		n time between failure-Weibull dis	-				
-	SPSS software						
		Total I	Periods			45	
	sessment Method	S					
Suggestive As	sessment Method ssessment Test	s Formative Assessment Test	End Sem	este	er Ex	kams	

	- 10 M	ARKS			1.A	ssign	ment				1. Desc	riptive	Questi	ons
CAT 2 -	- 10 M	ARKS			2. (Dnline	Quizz	zes						
DESCR	IPTIV	E QUES	TION	S	3.P	roble	m-Sol	ving Ac	ctivitie	es				
Outcor	nes													
Upon o	compl	etion o	of the	cours	se, the	stude	ents w	vill be a	able t	0:				
C 01 Re	ecite tl	ie basi	c conc	cepts c	of prob	ability	/ distr	ibutior	1 (Unc	lerstan	d)			
C O2 D	escrib	e the f	funda	menta	l prin	ciples	of D	esign o	of Exp	erimen	t proce	ess for	optimi	zatior
[Unde	rstand	1)												
		-				-		-		obust d				
		0		• •				•••		for S-N	•			
		e the	conce	pts in	reliat	oility	princi	ples ir	1 the	design	of an e	enginee	ering p	roduc
(Apply	-													
Гext В														
1.	Dougl	as C. M	ontgo	mery,	Desig	n and	Analy	rsis of E	Experi	ments, J	ohn Wi	ley and	l sons, 2	2012.
2.	Box, G	. E., Hu	inter,V	N.G., H	lunter,	J.S., H	unter	,W.G., S	Statist	ics for E	xperim	enters:	Design	1,
	Innov	ation, a	and Di	iscove	ry, 2nd	l Editi	on, W	'iley, 20	005.					
Refere	nce B	ooks												
1.				d Shał	nabude	en P,	Appli	ed Des	ign of	Experir	nents a	nd Tag	uchi Me	ethod
	•	ndia, 20		• -				••	_					
2.		-		-		-	-	-	-	ing, Mc				
3.		tion, 2	-	ana De	evelop	ment,	Karl	t. Ulric	n, Stev	ven D. E	ppinge	r, I ataw	icgraw	-H111-
4.		•		Tochn	iauos	in Ro	vorco	Fngin	ooring	g and N	low Dr	nduct I	Dovolor	mont
			0		•			tion (L	-			Juuct	Develop	mem
			. 111150	111 110	04,100	11 5011	Luuce							
		ces							,,					
Neb R			neco	urses.	nptel.	ac.in/	/noc2	1 mg4						
Web R 1.	<u>https</u>				_			<u>1 mg4</u> 5						
Web R 1. 2.	<u>https:</u> https:	://onli	<mark>el.ac.i</mark>	n/cou	<u>irses/</u>	<u>1111</u>		_						
Web R 1. 2.	<u>https:</u> https:	://onli ://npt	<mark>el.ac.i</mark>	n/cou	<u>irses/</u>	<u>1111</u>		_			P011	PO12	PSO1	PSO2
Web R 1. 2. CO Vs I	<mark>https:</mark> https: PO Ma	: <mark>//onl</mark> i : <mark>//npt</mark> pping a	<mark>el.ac.i</mark> and C(i <mark>n/cou</mark>) Vs P:	<mark>urses/</mark> SO Maj	1111 oping	<u>0407</u>	5	8/pro	eview	P011	PO12	PSO1 3	PSO2
Web R 1. 2. CO Vs I	https https PO Ma PO1	<mark>://onli</mark> ://npt pping a PO2	<mark>el.ac.i</mark> and C(i <mark>n/cou</mark>) Vs P:	SO Map PO5	1111 oping	<u>0407</u>	5	8/pro	eview	P011	PO12		PSO2
Web R 1. 2. CO Vs F CO 1	https: https: PO Ma PO1 2	<pre>//onli //npt pping a PO2 2</pre>	<mark>el.ac.i</mark> and C(i <mark>n/cou</mark>) Vs P:	nrses/ SO Map PO5 2	1111 oping	<u>0407</u>	5	8/pro	eview	P011	PO12	3	PSO2
CO Vs Image: Co 1 Image: Co 1 Image: Co 1 Image: Co 1 Image: Co 1	https: https: PO Ma PO1 2 2	<pre>//onli //npt pping a PO2 2 2</pre>	<mark>el.ac.i</mark> and C(i <mark>n/cou</mark>) Vs P:	SO Map PO5 2 2	1111 oping	<u>0407</u>	5	8/pro	eview	P011	PO12	3	PSO2

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Understand the basic concepts of probability distribution (Understand)

1. Write down the guidelines for Design of Experiments. (R)

2. Explain the concept of probability and its functions. (U)

COURSE OUTCOME 2: Apply fundamental principles of Design of Experiment process for Optimization (Understand)

- Write down the procedure for two-level experimental designs for two factors. (R)
- 2. Explain the types of design methods with arrays. (U)

COURSE OUTCOME 3: Describe the Taguchi's approach to experimental design for robust design (Apply)

- 1. Write short notes on Quadratic loss function.(R)
- 2. Explain the concept of Taguchi's quality philosophy. (U)
- 3. Illustrate the steps in Robust design process. (A)

COURSE OUTCOME 4: Describe the Taguchi's approach to tolerance design process for S-N ratio (Apply)

- 1. Write short notes on Signal to Noise ratio (S-N).(R)
- 2. Explain the concepts of design strategy. (U)
- 3. Examine the procedure for Design using Orthogonal Array with suitable examples. (A)

COURSE OUTCOME 5: Familiarized with concepts in reliability principles in the design of an engineering product (Apply)

- 1. Write short notes on Cause and Effect diagrams. (R)
- 2. Briefly explain the survival and failure.(U)
- 3. Elaborate the concept of Reliability, MTBF, MTTF in detail. (A)

				L	Τ	Р	С
21ME6804	ENGINEERIN	NG ECONOMICS AND COST ANALYS	IS	3	0	0	3
Prerequisites	s for the course						
Nil							
Objectives							
		to understand the fundamental econ learn the techniques of incorporatin		-			
UNIT I	IN	FRODUCTION TO ECONOMICS				8	
EngineeringEo economics – E even analysis	conomics – Engin Elementof costs, Ma	ow in an economy, Law of supp eering efficiency, Economic effici rginal cost, Marginal Revenue, Sunk ary economic Analysis – Material se anning.	ency, Sc cost, Opp	cope portu	of nity	engin cost, H	eering Break-
UNIT II		VALUE ENGINEERING				10	
formulae and the Single payment seriespayment gradient series UNIT III Methods of condiagram), Futur diagram), Futur diagram), Annu flow diagram) UNIT IV Replacement determination	their applications – nt present worth factors t Present worth factors annual equivalent CA comparison of alternative ure worth method (and equivalent method) REPLACEM and Maintenance and of economic life of return and conception	neering – Function, aims, Value engin Time value of money, Single paymen actor, Equal payment series sinking tor- equal payment series capital re- factor, Effective interest rate, Examp SH FLOW natives – present worth method (R Revenue dominated cash flow diagr hod (Revenue dominated cash flow diagr hod, Examples in all the methods. IENT AND MAINTENANCE ANALYS nalysis – Types of maintenance, ty of an asset, Replacement of an asset t of challenger and defender, Simple	t compou g fund fa covery fa les in all evenue cam, cost diagram, IS pes of re et with a	actor, actor, the m domi domi cost eplac new	emen	nt fact al pay iform ds. 9 d cash ed cash inatec 9 nt pro et – c	or, ment flow flow l cash oblem capital
UNIT V		DEPRECIATION AND INFLATION				9	
depreciation-S Annuity meth alternatives- i	Sum of the year's di nod of depreciation ntroduction, Examp	ight line method of depreciation, gits method of depreciation, sinking n, service output method of depr ples, Inflation adjusted decisions – p natives and determination of econom	fund me eciation- procedur	thod Evalu e to	of de latio adju	precian of	ation/ public
Suggestive Ac	ssessment Method		erious			43	
	ssessment Test	Formative Assessment Test (20 Marks)	End Sei (60 Ma	emester Exams arks)			
CAT 1 – 10 MA		1.Assignment	1. Descriptive Questions			S	
CAT 2 - 10 MARKS2. Online Quizzes 3. Problem-Solving Activities							

Outcomes

Upon completion of the course, the students will be able to:

CO1 Apply the principles of engineering economics in estimating the economic efficiency. **(Apply)** CO2 Choose either to make or buy a product based on economic specialized concepts. **(Apply)** CO3 Compare the various methods in cash flow to find the optimal method. **(Analyze)**

CO4 Categorize the replacement and maintenance analysis based on economic life of an asset. (Analyze)

CO5 Apply the concepts of depreciation and inflation in evaluation of public alternatives. **(Apply) Textbooks**

1. Panneer Selvam, R, "Engineering Economics", 2nd Edition, Prentice Hall of India Ltd, New Delhi, 2013.

Reference Books

- 1. Chan S.Park, "Contemporary Engineering Economics", 6th Edition, Prentice Hall of India, 2015.
- 2. Donald.G. Newman, Jerome.P.Lavelle, "Engineering Economics and analysis" 12th Edition, Engg. Press, Texas, 2013.
- 3. Degarmo, E.P., Sullivan, W.G and Canada, J.R, "Engineering Economy", 10th Edition, Macmillan, NewYork, 2011.

Web Resources

1. https://nptel.ac.in/courses/112107209

CO Vs PO Mapping and CO Vs PSO Mapping

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2
C01		1	1						2		3			3
CO2		2							2		3			3
CO3		2							2		3			3
CO4		2							2		3			3
CO5		2							2		3			3

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1 Apply the principles of engineering economics in estimating the economic efficiency. **(Apply)**

- **1.** Trace out the flow of goods, services, resources and money payments in an economy with suitable sketch. **(Understand)**
- 2. Enumerate briefly the various cost concepts. Establish the cost-output relationship in the short-run with suitable diagram. (Apply)
- 3. From the following figures extracted from the book of Beta associates, find the following.
 i. Break-even sales quantity, ii. Break-even sales, iii. If the actual production quantity is 60,000, find a. contribution, b.Margin of safety. Data:- Fixed cost = Rs.10,00,000 Variable cost per unit = Rs.50 and Selling price per unit = Rs.100 (Apply)

COURSE OUTCOME 2 Choose either to make or buy a product based on economic specialized concepts. (Apply)

1. As an engineer how will you calculate single payment compound amount factor?

Illustrate your answer with examples. **(Understand)**

- 2. Explain value engineering procedure. (Understand)
- **3.** A company has extra capacity that can be used to produce a sophisticated fixture which it has been buying for Rs.900 each. If the company makes the fixtures, it will incur material cost of Rs 300 per unit, labour cost of Rs.250 per unit and variable overhead cost of Rs.100 per unit. The annual fixed cost associated with the unused capacity is Rs.10,00,000. Demand over the next year is estimated at 5,000 units. Would it be profitable for the company to make the fixtures?(Apply)

COURSE OUTCOME 3 Compare the various methods in cash flow to find the optimal method. (Analyze)

- **1.** Summarize the different types of rate of return methods in engineering decision making. **(Understand)**
- **2.** A firm is diversifying into new business. The life of the business is 10 years without any salvage value at the end of its life. The initial outlay required is Rs.20,00,000/- and the annual net profit estimated is Rs.3,50,000/- Find rate of return for the new business. Check whether the business is worth for a cost of capital of 12%.(Apply)
- **3.** Arova industry is planning to expand its production operation. It has identified two different technologies for meeting the goal. The initial outlay and annual revenues with respect to each of the technologies are summerised in the below given table. Suggest the best technology which is to be implemented based on the present worth method of comparison assuming 20% interest rate compounded annually. **(Analyze)**

(I mary 20)			
	Initial outlay	Annual revenue	Life (years)
Technology 1	6,00,000	2,00,000	10
Technology 2	10,00,000	3,00,000	10

COURSE OUTCOME 4 Categorize the replacement and maintenance analysis based on economic life of an asset. (Analyze)

- 1. Illustrate annual equivalent total cost with suitable examples and state its limitations **(Understand)**
- **2.** Three years earlier Coimbatore corporation purchased a 10HP motor for pumping drinking water and its useful life was estimated as 10 years. But due to rapid development, it is unable to meet demand per water. The options available are either to augment the capacity with an additional 5 HP motor or to replace the existing 10 HP motor with a new 15HP motor. The data on the two options are follows. **(Apply)**

Details of motors	Old 10HP motor	New 10HP motor	New 15HP motor
Purchase cost(P) in Rs.	25,000	12,000	32,000
Life in years(n)	10	7	7

Salvage value at the end of the machine life(Rs.)	1,500	800	5,000
Annual O&M cost(Rs.)	1,600	1,000	500

3. A firm is considering replacement of an equipment, whose first cost is Rs.1,750 and the scrap value is negligible at any year. Based on experience, it was found that the maintenance cost is zero during the first year and it increases by Rs.100 every year thereafter.

When should the equipment be replaced if i = 0%

When should the equipment be replaced if i = 12%

(Analyze)

COURSE OUTCOME 5 Apply the concepts of depreciation and inflation in evaluation of public alternatives. (Apply)

- **1.** Elucidate the different methods of calculating depreciation. **(Understand)**
- **2.** Two equipments are purchased each for Rs.12,000. The estimated useful life is 5 years for both; the estimated scarp value for each equipment is Rs.2000. For one equipment the straight line method is used to calculate the annual depreciation and for the other equipment, the reducing balance method is adopted. Compare the depreciation charges for both for all the 5 years.(Apply)
- **3.** Two mutually exclusive projects are being considered for investment. Project A1 requires an initial outlay of Rs. 50,00,000 with net receipts estimated to be Rs. 11,00,000 per year for the next eight years. The initial outlay for the project A2 is Rs. 80,00,000, and net receipts have been estimated at Rs. 20,00,000 per year for the next eight years. There is no salvage value associated with either of the projects. Using the BC ratio, which project would you select? Assume an interest rate of 15%. **(Apply)**

OPEN ELECTIVE - III

Francis Xavier Engineer	ina Colleael Dept of	f Mechanical Enaineerinal	R2021/Curriculum and Syllab	i
				-

21ME7801	INDUSTRIAL ECONOMICS AND FOREIGN TRADE	L	Τ	Р	C
		3	0	0	3
	s for the course				
Nil					
Objectives					
-	part the basics concept of economics and factors that	influ	ienc	e der	nand
and su					
	iliarize with economies of scale and cost concepts.				
• To und	lerstand the market competitions and various pricing r	neth	ods.		
 To mal 	ke the students understand the determination of GDP.				
• To intr	oduce the students with international trade and trade	polic	cies.		
UNIT I	BASIC CONCEPTS & DEMAND AND SUPPLY			9	
	ANALYSIS				
Scarcity and c	hoice - Basic economic problems- Utility — Law of dir	ninis	hing	g mar	ginal
	nand and its determinants — law of demand —elasti				
measurement	of elasticity and its applications — Supply, la	w of	f su	pply	and
determinants	of supply — Equilibrium — Changes in demand a	nd s	uppl	ly an	d its
effects —Cons	sumer surplus and producer surplus (Concepts).			-	
UNIT II	PRODUCTION AND COST			9	
Production fu	nction — law of variable proportion — economies of	of sca	le –	– int	ernal
	economies - Cost concepts — Social cost: private cost				
	d implicit cost — sunk cost - short run cost curves -lo				
-	concepts) — Shutdown point — Break-even analysis.	•			
UNIT III	MARKET STRUCTURE			9	
Perfect and in	nperfect competition — monopoly, regulation of mono	poly	, mo	nopo	listic
completion (f	eatures and equilibrium of a firm) — oligopoly — Kin	ked o	dem	and o	curve
— Collusive o	ligopoly (meaning) — non-price competition — Prod	uct p	ricir	1g —	Cost
plus pricing -	 Target return pricing—Penetration pricing — Pressure 	edato	ory p	oricir	ıg —
Going rate pri	cing — Price skimming.				
UNIT IV	MACROECONOMIC CONCEPTS			9	
Circular flow	of economic activities — Stock and flow — Final good	s and	l inte	erme	diate
goods -Gross	Domestic Product - National Income - Three secto	rs of	an	econ	omy-
Methods of m	easuring national income — Inflation- causes and effe	cts –	– Me	easur	es to
control inflati	on-Monetary and fiscal policies — Business financing	— St	ock	mark	et —
Demat accour	it and Trading account - SENSEX and NIFTY.				
UNIT V	INTERNATIONAL TRADE			9	
Advantages a	nd disadvantages of international trade - Absolute	and	Со	mpar	ative
advantage the	eory - Heckscher - Ohlin theory - Balance of payments	— C	omp	onen	its —
-	ayments deficit and devaluation — Trade policy —		-		
	Tariff and non-tariff barriers.				
	Tatal Davia Ja			4 5	
	Total Periods	1	4	45	

Continuous Assessment Test	Formative Assessment Test (20 Marks)	End Semester Exams (60Marks)
(20 Marks)		
CAT 1 - 10 Marks	1.Descriptive type questions, and	1. Descriptive type questions.
CAT 2 - 10 Marks	2.Multiple choice questions,	
Course Outcomes		· ·
Upon completion of the cou	rse, the students will be able to:	

CO1: Interpret the impact of government policies on the general economic welfare. **(Understand) CO2**: Choose appropriate decisions regarding volume of output and to evaluate the social cost of production. **(Apply)**

CO3: Determine the functional requirement of a firm under various competitive conditions. **(Apply) CO4**: Identify the overall performance of the economy, and the regulation of economic fluctuations and its impact on various sections in the society. **(Apply)**

CO5: Determine the impact of changes in global economic policies on the business opportunities of a firm. **(Apply)**

Text Books

1. Gregory N Mankiw, 'Principles of Micro Economics', 8th Edition, 2016, Cengage Publications

Reference Books

- 1. Gregory N Mankiw, 'Principles of Macro Economics', 2nd Edition, 2017, Cengage Publications
- 2. Dwivedi D N, 'Macro Economics', 5th Edition, 2018, Tata McGraw Hill, New Delhi.

Web Resources

- 1. <u>https://archive.nptel.ac.in/courses/107/103/107103085/</u> (Ergonomics Workplace Analysis.)
- 2. <u>https://youtu.be/3kVnUqvRJV0</u> (Lecture Series on Ergonomics by Dr Peter Crane)

СО	PO	PO	РО	PO	РО	PO	PSO	PSO						
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
C01	1										3			3
CO2	1	2				1					3			3
CO3		2	1								3			3
CO4		2	1			1					3			3
CO5		2	1								3			3

Francis Xavier Engineering College| Dept of Mechanical Engineering| R2021/Curriculum and Syllabi COURSE LEVEL ASSESSMENT QUESTIONS

CO1: Students will be able to Interpret the impact of government policies on the general economic welfare. (Understand)

1. Why does the problem of choice arise? (Remember)

2. How do we solve the basic economic problems? (Understand)

CO2: Students will be able to Choose appropriate decisions regarding volume of output and to evaluate the social cost of production. (Apply)

1. Explain the term producer equilibrium. (Understand)

2. Suppose a chemical factory is functioning in a residential area. What are the external costs? **(Apply)**

CO3: Students will be able to determine the functional requirement of a firm under various competitive conditions. (Apply)

1. Explain the equilibrium of a firm under monopolistic competition. **(Remember)**

2. Apply any one method of non-price competition under oligopoly for retail shop. (Apply)

CO4: Students will be able to Identify the overall performance of the economy, and the regulation of economic fluctuations and its impact on various sections in the society. (Apply)

1. Enumerate the measures to control inflation. (Remember)

2. Determine the GDP of our country. (Apply)

CO5: Students will be able to Determine the impact of changes in global economic policies on the business opportunities of a firm. (Apply)

1. Enumerate the arguments in favor of protection. (Understand)

2. Suppose a foreign country imposes a tariff on Indian goods. How does it affect India's exports? (Apply)

Francis Xavier Engineering College Dept of Mechanical Engineering R2021/Curriculum and Syllabi								
21ME7802	FUNDAMENTALS OF ERGONOMICS		L	T	P	C		
			3	0	0	3		
Prerequisites for the course								
The fundamentals of ergonom and secure workplace are cov	ics as well as numerous tools and appro ered in this course.	baches for cre	eating	a coi	mfort	able		
Objectives								
• To introduce the princi	ples of Ergonomics and its evaluation pr	ocedure.						
_	edge on the movements of hand, leg etc.		ireme	nt teo	chniq	ues.		
To convey the different	posture of hand and arm and motion as	sessment me	thods					
• To impart the environm	nental issues and perception on men ma	chine interac	tion.					
_	work system evaluation and safety meth							
UNIT I	INTRODUCTION TO ERGONOMICS			Ģ	-			
-	/ Human Factors - Disciplines - Physica	-		-				
	kplace - Ergonomic Principles - Applic	ations - Ergo	onomi	c Eva	aluati	on -		
Questionnaire Survey.								
UNIT II	ANTHROPOMETRY			9				
-	Function - Types of Anthropometric Data				-	-		
	Measuring Techniques - Statistical Tr	eatment of l	Data a	and I	Percei	ntile		
Calculations					<u> </u>			
UNIT III	POSTURE AND MOVEMENT			Ģ	·			
	ground - Physiological Background - Sit	ting - Standin	g Cha	nge o	of Pos	ture		
- Hand and Arm Postures						_		
	- Pulling - Pushing - Repetitive Motions							
	Assessment (REBA) and Ovako Worki	ng Posture A	Assess	men		(AS)		
Method.	COUNTED DELLAVIOD AND DEDCEDT				`			
	K COUNTER BEHAVIOR AND PERCEPT			9				
	al Issues - Physical Work Capacity - F	actors Affect	ing w	ork (Lapac	ity -		
	Issues - Information Processing and							
Perception : Interaction with	Machines - Mental Workload							
UNIT V WO	PRK SYSTEM EVALUATION AND SAFET	Υ		Ģ)			
Work system Evaluation: Co	ntribution of Ergonomics to Workstatio	n Design - Ar	alysis	of V	Vorkp	lace		
Design - Work Envelopes - Wo	rkplace Evaluation Tools - Case Studies							
	mic Safety and Stress at Various Workp	lace - Health I	Manag	geme	nt Ru	les -		
Scope of Ergonomics in India-								
	То	tal Periods		4	5			
Suggestive Accessment Meth	ode							
Suggestive Assessment Meth								
Continuous Assessment	Formative Assessment Test (20	End Semest	ter ex	ams				
Test (20 Marka)	Marks)	(60Marks)						
(20 Marks) CAT 1 - 10 Marks	1.Descriptive type questions, and	1. Descriptiv	in turn	0 0110	oction			
CAT 2 - 10 Marks	2.Multiple choice questions,		vetyp	e que	.50011	з.		
	μ	1				1		
Course Outcomes	rse, the students will be able to:							

- **CO1**: Define ergonomics and its components. (Understand)
- CO2: Apply statistical treatment of data in anthropometry design. (Apply)
- **CO3**: Identify the various assessment methods for ergonomic improvement. **(Apply)**
- **CO4**: Utilize the ergonomic principles in assigning task to the workers. (Apply)
- **CO5**: Apply ergonomics to propose an effective work place design with safety. **(Apply)**

Text Books

1. Bridger, Robert. "Introduction to Human Factors and Ergonomics", United Kingdom, CRC Press, 2017.

Reference Books

- 1. Dul, Jan, and Weerdmeester, Bernard. "Ergonomics for Beginners: A Quick Reference Guide", 3rd Edition. United Kingdom, Taylor & Francis, 2017.
- **2.** Pamela McCauley-Bush, "Ergonomics: Foundational Principles, Applications, and Technologies", 1st Edition, Taylor & Francis, CRC Press, New York, 2015.

Web Resources

- 1. <u>https://archive.nptel.ac.in/courses/107/103/107103085/</u> **Ergonomics Workplace** Analysis.
- 2. <u>https://youtu.be/3kVnUqvRJV0</u> Lecture Series on Ergonomics by Dr Peter Crane

								DO 0	DO 0	PO	PO	РО	PSO	PSO
CO	PO 1	PO 2	P03	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	10	11	12	1	2
C01	3	1	1		1							1		3
CO2	3	1	2		1							1		3
CO3	3	1			1	1						1		3
CO4	3	1	2		1	1						1		3
CO5	3	1			1	1	2					1		3

Francis Xavier Engineering College| Dept of Mechanical Engineering| R2021/Curriculum and Syllabi COURSE LEVEL ASSESSMENT QUESTIONS

CO1: Students will be able to define ergonomics and its components - (Understand)

- 1. What are the fundamentals of ergonomics and human factors? (Remember)
- 2. What is the role of questionnaire surveys in ergonomic evaluation? (Understand)

CO2: Students will be able to apply statistical treatment of data in anthropometry design. (Apply)

1. How is statistical treatment of data used in anthropometry? (Understand)

2. Apply a suitable anthropometric measuring techniques for generating data for shop floor. **(Apply)**

CO3: Students will be able to identify the various assessment methods for ergonomic improvement. (Apply)

- 1. Mention the biomechanical and physiological implications of frequently changing posture from sitting to standing? **(Understand)**
- 2. Compare and contrast the Rapid Upper Limb Assessment (RULA) method and Rapid Entire Body Assessment (REBA) **(Apply)**

CO4: Students will be able to utilize the ergonomic principles in assigning task to the workers. - (Apply)

- 1. What strategies can be employed to enhance an individual's physical work capacity? (Understand)
- 2. With a help of any technique assess the mental workload in an automobile assembly section of an industry. **(Apply)**

CO5: Students will be able to apply ergonomics to propose an effective work place design with safety – (Apply)

- 1. Explain the process of analyzing workplace design from an ergonomics perspective? (Understand)
- 2. Apply any one technique in identifying the essential elements available in an oil refinery industry for an effective ergonomic planning **(Apply)**

24 ME7042			c	L	Т	Р	С
21ME7803	POLLUTIO	N CONTROL AND ITS EQUIPMENT	5	3	0	0	3
Prerequisites	for the course						
Nil							
Objectives							
•	the pollution contro	l regulation and standards, water an	nd wastewa	ter.			
 To study 	, the equipment for va	arious water pollution.					
 To study 	the equipment for a	r pollution control.					
 To study 	the equipment for so	olid waste processing					
 To study 	the pollution monito	oring equipment					
UNIT I	POLLUTION CON	NTROL REGULATIONS AND STANE	DARDS		9)	
hazardous was Standards und Environmental and Handling) (Management a	tes - Indian Constitut ler different Enviro Protection Act (1986 Rules -Bio Medical V and Handling Rules),J	 – sources and impacts- Characteristion and Environmental Protection onmental legislations - Water Action on and major Notifications, Municipation Wastes (Management and Handling Environment Impact Assessment N rol Selection criteria for Pollution 	Legislation ct (1974), al solid Wa g) Rules - otifications	s – Ei Air stes (Hazar s - Un	nviro Act Mana dous it op	nme (19 agen Wa	enta 81] nen ste
UNIT II		S FOR WATER POLLUTION CONTR		P	9)	
Adsorption Col Chemical dosin	umns, Aerators, Air E g systems, Motors, Pi	criteria of Flash mixers, Floccula blowers, Distillation units, Centrifug pes, valves and Fittings.	gal and Rec		ating	g Pur	
UNIT III	•	TS FOR AIR POLLUTION CONTRO riteria of Cyclone separators, gravit			9		
	'ilters, Electrostatic p	recipitators, Biofilters	-		<u> </u>		
UNIT IV	EQUII MEN	IS FOR SOLID WAS IE I ROCESSIN	u		2	,	
Filter Press- Si	ze Reduction equipr	criteria of Dewatering equipment nent – shredders, grinders – Tron - incinerators –Pyrolysis					
UNIT V	POLLUT	IONS MONITORING EQUIPMENT			9)	
Equipment's fo	r sampling of water,	solids and air- Sample preservation	on Equipm	ent –	incu	bato	rs ·
	vstems- equipment for nonitoring equipment	or analysis of water and air sampl	es- Ambier	nt air	and	flue	ga
		Tota	l Periods		4	5	
66	essment Methods						
Continuous As (20 Marl	sessment Test <s)< td=""><td>Formative Assessment Test (20 Marks)</td><td>End Ser (60 Ma</td><td></td><td>r Exa</td><td>ams</td><td></td></s)<>	Formative Assessment Test (20 Marks)	End Ser (60 Ma		r Exa	ams	
Descriptive ex		MCQ QUIZ / SEMINAR/	Descri	otive e	exam		
CAT 1 10 AND		ASSIGNMENT/SLIPTEST/CASE					
CAT2 10 MAR	KS	STUDY/					
Course Outcor							
		e students will be able to:					
	• • •	ollution, their sources and effects. (I		d)			
		nomilations and standards (Undans	tand)				
•		regulations and standards (Unders air pollution control (Understand)	-				

CO5: Identify and use the suitable pollution monitoring equipments for air and water samples **(Apply)**

Text Books

- 3. George Tchobanoglous, Hilary Theisen and Samuel A, Vigil, "Integrated Solid Waste Management, Mc-Graw Hill India, First edition, 2015.
- 4. Rao. C.S ., "Environmental Pollution and Control Engineering", 2nd Edition, Revised, Wiley Eastern Limited, India, 2006

Reference Books

- 4. Shyam Diwan and Armin Rosencranz, Enviromental Law and Policy in India, Oxford, 2001
- 5. Metcalf & Eddy, INC, "Wastewater Engineering Treatment and Reuse, Fourth Edition, Tata McGraw-Hill Publishing Company Limited, New Delhi, 2014.
- 6. Noel de Nevers, "Air Pollution Control Engg", Mc Graw Hill, New York, 2016.
- 7. CPCB (2021), "Pollution Control Acts, Rules and Notifications issued thereunder, PCL Series-Central Pollution Control Board, Delhi

Web Resources

2. <u>https://archive.nptel.ac.in/courses/105/107/105107213/</u> - Air Pollution and Control

	5101	Tappin	ig anu	CU V3	1 30 14	apping	5							
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01	1		1			2	3					1		3
CO2	1		2			2	3					1		3
CO3	1		2			2	3					1		3
CO4	1		2			2	3					1		3
CO5	1		2			2	3					1		3

Francis Xavier Engineering College| Dept of Mechanical Engineering| R2021/Curriculum and Syllabi COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Students will be able to outline the different types of pollution, their sources and effects. (Understand)

- 3. Write a brief note on Governmental rules related to bio medical wastes. (Understand)
- 4. Discuss the criteria followed in selecting the pollution control equipment. **(Understand)**

COURSE OUTCOME 2: Students will be able to interpret the pollution control regulations and standards (Understand)

- 3. Discuss about the design considerations in selecting flocculators and aerators in water pollution control. **(Understand)**
- 4. What is the role of pumps in water pollution control. Explain the significance of reciprocating pump in pollution control. **(Understand)**

COURSE OUTCOME 3: Students will be able to summarize the equipments for air pollution control (Understand)

- 3. Explain the criteria for selection of air pollution control equipment. (Understand)
- Explain with neat sketch the working principle, advantages and disadvantages of Electrostatic Precipitator (Understand)
 COURSE OUTCOME 4: Students will be able to Discuss different methods of pollution control from various sources in air, water and soil (Understand)
- 3. Explain the types of vacuum filters used in solid processing. **(Understand)**
- Mention the factors considered in selecting dewatering equipment. (Understand)
 COURSE OUTCOME 5: Students will be able to Identify and use the suitable pollution monitoring equipments for air and water samples (Apply)
- 3. How water sample can be analysed for pollutants. Briefly discuss its methods (understand)
- Explain how cold storage systems are predominant in pollution control. Justify your answers (Apply)

i uncis Auvier E	ngmeering conegej De	pt of Mechanical Engineering R2021/Cur	i iculum dr		T	Р	0	
21ME7804		Energy Storage Devices						
				3	0	0	3	
	es for the course							
Nil								
Objectives								
-	udy the various t	ypes of energy storage devices a	nd techn	ologie	es ar	nd th	en	
comp	arison.			U				
• To lea	arn the techniques of	various energy storage devices and t	heir perfo	orman	ces.			
• To lea	arn the basics of batte	eries and hybrid systems for EVs and	other mo	bile a	pplica	ation	s.	
• To lea	arn about the renewa	ble energy storage systems and mana	agement s	systen	ns.			
• To ha	ve an insight into oth	ner energy storage devices, hydrogen,	and fuel	cells.				
UNIT I	INTRO	DUCTION TO ENERGY STORAGE			9			
Need for Er	nergy Storage – Ty	pes of Energy Storage – Various f	forms of	Ener	gy St	orag	e ·	
		– Electrochemical – Electrical - Othe				-		
cechnologies	- Efficiency and Con	nparison.						
UNIT II	FI	NERGY STORAGE SYSTEMS			Q	1		
			whool S	other mobile applications gement systems. and fuel cells. 9 orms of Energy Storage alternative energy stora 9 cheel – Sensible and Late nemical systems – Batter 15 9 art pacemakers, comput 9 - Energy Storage in Mic Systems – EVBMS – Ener 9 MHD Power generatior EMFC, AMFC, DMFC, SOI				
•	0							
-	_	g – Battery testing and performance.	.iiciiicai .	syster	115 1	Jane	iii	
UNIT III		HYBRID ENERGY STORAGE SYSTE			-			
		Battery specifications for cars, he	eart pace	make	rs, c	ompu	ite	
standby supp	plies – V2G and G2V t	technologies – HESS						
UNIT IV	RENEWAB	LE ENERGY STORAGE AND ENERGY MANAGEMENT	*		9			
Storage of R	enewable Energy Sy	stems –Solar Energy – Wind Energy	v – Energ	y Sto	rage	in Mi	cro	
grid– Smart (Audit and Ma	0,	rsion Efficiency - Battery Managemen	t Systems	5 – EV	BMS ·	– Ene	rg	
UNIT V	<u> </u>	OTHER ENERGY DEVICES			9)		
		gy Storage (SMES), Supercapacitors	– MHD P	ower	-		n .	
-		Basic principle and classifications –			-			
	ofuel Cells – Biogas S		-,	-,		-,	-	
	-		Periods		45	5		
Suggestive A	Assessment Method	S						
Continuous (20 Ma	Assessment Test	Formative Assessment Test (20 Marks)			er Exa	ams		
Descriptive	,	MCQ QUIZ / SEMINAR/			exam			
CAT 1 10 AI		ASSIGNMENT/SLIPTEST/CASE	Deseri	puve	chain			
CAT2 10 MA	ARKS	STUDY						
Course Outo	romes							
		, the students will be able to:						
<u> </u>		lentify the suitable energy storage	e devices	s for	appl	icatio	m	
(Understan		survisie energy storage		01	~ 6 6 1			
		ious energy storage devices and their	r importa	nce f i	IIndo	rcta	ոժ	
	0	atteries for mobile and hybrid storage		-		i stal	u	
	-	vable energies and conduct energy au	-		jiy j			
	0			• •	oret	տժՆ		
	the need for other e	nergy devices and their scope for app	ncations.	loud	ersta	maj		
Cext Books								

- 1. Rober Huggins, "Energy Storage: Fundamentals, Materials and Applications", 2 nd Edition, Springer, 2015.
- 2. Dell, Ronald M Rand, David A J, "Understanding Batteries", Royal Society of Chemistry, 2001

Reference Books

- 1. Francisco Díaz-González, Andreas Sumper, Oriol Gomis-Bellmunt," Energy Storage in Power Systems" Wiley Publication, 2016.
- 2. Lindon David, "Handbook of Batteries", McGraw Hill, 2002.
- 3. Aulice Scibioh M. and Viswanathan B, "Fuel Cells principles and applications', University Press(India), 2006
- 4. Ru-Shiliu, Leizhang, Sueliang Sun, "Electrochemical Technologies for Energy Storage and Conversion", Wiley Publications, 2012.

Web Resources

- 1. <u>https://archive.nptel.ac.in/courses/113/105/113105102/</u> (Electrochemical energy storage)
- 2. <u>https://nptel.ac.in/courses/108105058</u> **Fundamentals of energy Energy resources** and technology

CO	PO 1	PO 2	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2
CO 1	2					2	3							3
CO 2	2		1			2	3							3
CO 3	2		1			2	3							3
CO 4	2	1	1			2	3							3
CO 5	2		1			2	3							3

Francis Xavier Engineering College| Dept of Mechanical Engineering| R2021/Curriculum and Syllabi COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Students will be able to discuss the need and identify the suitable energy storage devices for applications. (Understand)

- 1. Outline the various forms of energy storage methodologies (Understand)
- 2. Compare and contrast thermal and electrochemical methods of energy storage in commercial applications. **(Understand)**

COURSE OUTCOME 2: Students will be able to illustrate the working of various energy storage devices and their importance. (Understand)

- 1. Differentiate pumped air storage and compressed air storage. (Understand)
- 2. Explain the various methods involved in evaluating the performance of storage systems **(Understand)**

COURSE OUTCOME 3: Students will be able to select the specification of batteries for mobile and hybrid storage systems. (Apply)

- What are the parameters you will consider in selecting the storage device for heart pacemaker. Justify them (Apply)
- Identify the factors need to be considered in selecting the storage device for electric vehicles.
 (Apply)

COURSE OUTCOME 4: Students will be able to discuss the storage of renewable energies and conduct energy audit. (Apply)

- 1. Explain the methods involved in storing energy from wind. (Understand)
- 2. With a case study, conduct an energy audit in Air Conditioning System and provide a solution for energy efficiency. **(Apply)**

COURSE OUTCOME 5: Students will be able to explain the need for other energy devices and their scope for applications. (Understand)

- 1. Explain the various methods available for storing biogas at onsite conditions **(Understand)**
- 2. What is SMES? Mention its significance (Understand)

OPEN ELECTIVE - IV

				L	Т	Р	C
21ME7805	D.	IGITAL MANUFACTURING		3	0	0	3
Prerequisite	es for the course				1	1	
Nil							
Objectives							
To stu	idy the various aspec	ts of digital manufacturing.					
• To in	culcate the importa	nce of DM in Product Lifecycle M	anageme	nt ar	nd S	upply	chain
Mana	gement.						
To for	mulate smart manuf	acturing systems in the digital work e	nvironme	ent.			
To int	erpret IoT to suppor	t the digital manufacturing.					
To ela	borate the significan	ce of digital twin.					
UNIT I		INTRODUCTION				9	
		w of Digital Manufacturing and th			-		-
		, Smart factory, and value chain mana	agement	– Pra	ctica	I Ben	efits of
		e of Digital Manufacturing. CYCLE & SUPPLY CHAIN MANAGEME	NUT			0	
UNIT II					<u> </u>	9	
		ent, Mapping Requirements to spe					0
0 0	0	ict reuse – Engineering Change Man	0				
		ock up and Prototype development – - Scope& Challenges in Digital SC - Eff			<u> </u>		
Future Pract		- Scope& chanenges in Digital SC - En	ective Di	gitai	IIan	5101111	au011 -
UNIT III		SMART FACTORY				9	
Smart Factor	ry – Levels of Smart	Factories – Benefits – Technologies v	used in S	mart	Fact	ory -	Smart
		a Smart Factory – Creating a Smart					
Cybersecurit	• •		2				
UNIT IV	-	INDUSTRY 4.0				9	
Introduction	– Industry 4.0 –In	ternet of Things – Industrial Inter	net of T	hing	s –	Frame	ework:
Connectivity	devices and services	s – Intelligent networks of manufactu	ring – Cle	oud c	omp	uting	– Data
analytics –Cy	ber physical systems	-Machine to Machine communication	1 – Case S	tudie	s.		
UNIT V	S	TUDY OF DIGITAL TWIN				9	
Basic Concep	ots – Features and I	nplementation – Digital Twin: Digita	al Thread	and	Digi	tal Sh	adow-
Building Blo	cks – Types – Char	acteristics of a Good Digital Twin I	Platform	– Be	nefit	s, Imj	pact &
Challenges –	Future of Digital Twi						
		Total I	Periods			45	
Suggestive A	Assessment Method	S					
Continuous	Assessment Test	Formative Assessment Test	End Ser		r Ex	ams	
(20 Ma		(20 Marks)	(60 Mai				
Descriptive	exam	MCQ QUIZ / SEMINAR/	Descrip	ntive f	uno		
Descriptive			-		lype		
CAT 1 10 AI	ND	ASSIGNMENT/SLIPTEST/CASE STUDY	-		lype		

Upon completion of the course, the students will be able to:

CO1: Summarize the various elements in digital manufacturing. **(Understand)**

CO2: Illustrate the concepts involved in digital product development life cycle process and supply chain management in digital environment. **(Understand)**

CO3: Select the proper procedure of validating practical work through digital validation in Factories. **(Apply)**

CO4: Interpret the concepts of IoT and its role in digital manufacturing. **(Understand)**

CO5: Outline various practical manufacturing process through digital twin. **(Understand)**

Text Books

- 7. Zude Zhou, Shane (Shengquan) Xie and Dejun Chen, Fundamentals of Digital Manufacturing Science, Springer-Verlag London Limited, 2012.
- 8. Alasdair Gilchrist, "Industry 4.0: The Industrial Internet of Things", A press, 2016

Reference Books

- 4. Lihui Wang and Andrew YehChing Nee, Collaborative Design and Planning for Digital Manufacturing, Springer-Verlag London Limited, 2009.
- 5. Andrew Yeh Chris Nee, Fei Tao, and Meng Zhang, "Digital Twin Driven Smart Manufacturing", Elsevier Science., United States, 2019.
- 6. Alp Ustundag and Emre Cevikcan, "Industry 4.0: Managing The Digital Transformation", Springer Series in Advanced Manufacturing., Switzerland, 2017
- 7. Ronald R. Yager and Jordan Pascual Espada, "New Advances in the Internet of Things", Springer., Switzerland, 2018

Web Resources

6. <u>The Future of Manufacturing Business: Role of Digital Technologies - Course (nptel.ac.in)</u> - (The Future of Manufacturing Business: Role of Digital Technology)

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	2	1	1	1	2						2		3	
CO 2	1	1	1	1	3						2		3	
CO 3	1	1	1	1	3						2		3	
CO 4	1	1	1	1	3						2		3	
CO 5	1	1	1	1	3						2		3	

CO Vs PO Mapping and CO Vs PSO Mapping

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Students will be able to summarize the various elements in digital manufacturing. (Understand)

- 1. Discuss the various key aspects of Digital manufacturing. (Understand)
- 2. List the practical benefits of Digital Manufacturing. **(Remember)**

COURSE OUTCOME 2: Students will be able to illustrate the concepts involved in digital product development life cycle process and supply chain management in digital environment. (Understand)

- 1. Briefly discuss the scope and challenges available in digital supply chain management. **(Understand)**
- 2. Write a brief note on Digital mockup and prototype development. (Understand)

COURSE OUTCOME 3: Students will be able to select the proper procedure of validating practical work through digital validation in Factories. (Apply)

- 1. What are the various levels of smart factories. Explain each with its salient features **(Understand)**
- 2. How can digital validation be effectively utilized to validate practical work in automotive industries. **(Apply)**

COURSE OUTCOME 4: Students will be able interpret the concepts of IoT and its role in digital manufacturing. (Understand)

- 1. Write short notes on Cloud computing. (Understand)
- 2. Differentiate IoT and IIoT. (Understand)

COURSE OUTCOME 5: Students will be able to outline various practical manufacturing process through digital twin. (Understand)

- 1. Outline the characteristics of a good digital twin atmosphere. (Understand)
- 2. With suitable block diagram, explain the various components of digital twin. (Understand)

21ME7806		MARINE VEHICLES		L	Т	Р	С
2 IME / 000		MANINE VEHICLES		3	0	0	3
Prerequisit	es for the course						
Nil							
Objectives							
• To pr	ovide the students a	basic knowledge about various types	of marine	vehi	cles		
• To pr	ovide the students ba	asic theory behind the design and dev	velopment	of ma	arine	vehic	les
UNIT I		MARINE VEHICLES				9	
Types – gen	eral – by function -	- commercial marine vehicles- passe	enger ship	, car	go sh	ips, o	il an
chemical tan	kers, cattle carriers,	harbor crafts, off shore platform, cont	tainer ship)S			
UNIT II	RI	EEFERS AND GAS CARRIERS				9	
Introduction	– Types, design c	onsiderations, safety – operation a	nd contro	ls, pr	ecau	tion o	durin
bunkering				_			
UNIT III	REMOTELY O	PERABLE VEHICLE (ROV), UMS SH	IPS			9	
Remotely Op	perable Vehicles (RO	V) – The ROV business – Design theo	ory and sta	andar	ds –	contr	ol an
simulation –	design and stability	– components of ROV – applications,	UMS opera	ation,	and	contro	ols
UNIT IV	SUBMERSIBLES A	ND AUTONOMOUS UNDERWATER V	/EHICLE			9	
		(AUV)					
		ns, AUV – Design and construction	considerat	tions	- co	mpon	ents
sensors – Na	vigation -control stra	ategies – applications					
UNIT V	MANNEI	O AND UNMANNED SUBMERSIBLE				9	
		ational consideration – pressure hull					
	-	- Life support and habitability – eme					nent
- certificatio	n and classification, i	towed vehicles – gliders – crawler – D	Periods	cons			
Suggostivo	According to Mathad		Perious			45	
	Assessment Method Assessment Test	Formative Assessment Test	End Ser	nocto	n Ev	ame	
(20 M		(20 Marks)	(60 Mai			ams	
Descriptive	1	MCQ QUIZ / SEMINAR/	Descrip		type		
CAT 1 10 A		ASSIGNMENT/SLIPTEST/CASE			51		
CAT2 10 M	ARKS	STUDY					
		1					

Francis Xavier Engineering College/ Dept of Mechanical Engineering/ R2021/Curriculum and Syllabi **Course Outcomes**

Upon completion of the course, the students will be able to:

CO1: Classify the types of marine vehicles (Understand)

CO2: Illustrate the design and safety considerations in reefers and gas carriers **(Understand)**

CO3: Distinguish between Remotely Operable Vehicle (ROV), Unmanned Machinery Space (UMS) ships (Apply)

CO4: Classify the various submersible vehicles with its applications **(Understand)**

CO5: Outline the various components of manned and unmanned submersibles. (Understand)

Text Books

- 1. Jonathan M. Ross, human factors for naval marine vehicle design and operation, CRC press, 2009
- 2. Sabiha A. Wadoo, Pushkin Kachroo, Autonomous underwater vehicles, modelling control design and Simulation, CRC press, 2011

Reference Books

- 1. Ferial L hawry, The ocean engineering handbook, CRC press, 2000
- 2. Robert D. Christ, Robert L. Wernli, Sr. "The ROV Manual A User Guide for Remotely Operated Vehicles", Elsevier, second edition, 2014

Web Resources

1. NPTEL :: Ocean Engineering - Performance of Marine Vehicles at Sea (Marine Vehicles)

PO1 PO2 CO PO3 **PO4** PO5 **PO6** PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 CO 1 1 1 1 1 3 3 CO 2 1 2 1 1 3 3 CO 3 1 2 1 1 3 3 CO 4 1 2 1 1 3 3 CO 5 1 2 1 1 3 3

Francis Xavier Engineering College | Dept of Mechanical Engineering | R2021/Curriculum and Syllabi COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Students will be able to understand the types of marine vehicles (Understand)

- 1. Explain the general classifications of marine vehicles. (Understand)
- 2. Write short notes on oil and chemical tankers. (Understand)

COURSE OUTCOME 2: Students will be able to describe the design and safety considerations in reefers and gas carriers (Understand)

- 1. Explain briefly the safety considerations in reefers and gas carriers. (Understand)
- 2. Describe the precautionary steps involved in bunkering of marine vehicles. (Understand)

COURSE OUTCOME 3: Students will be able to distinguish between Remotely Operable Vehicle (ROV), Unmanned Machinery Space (UMS) ships (Apply)

- **1.** With a case study, discuss the components to be employed in ROV for underwater pipeline applications. **(Apply)**
- 2. Discuss the controls and operations of UMS ships (Understand)

COURSE OUTCOME 4: Students will be able to classify the various submersible vehicles with its applications (Understand)

- 1. Explain the components of AUV with neat sketches. **(Understand)**
- 2. Discuss the navigation and control strategies followed in AUV. (Understand)

COURSE OUTCOME 5: Students will be able to describe the various components of manned and unmanned submersibles. (Understand)

- Distinguish the design consideration to be followed between manned and unmanned vehicles. (Understand)
- 2. Discuss in detail the components used in unmanned marine vehicles. (Understand)

		ot of Mechanical Engineering R2021/Curi		L	Т	Р	С
21ME7807	SAFET	Y MEASURES FOR ENGINEERS		3	0	0	3
Prerequisit	es for the course						
Nil							
Objectives							
-		basic knowledge about safety in differ					
•		basic knowledge about personne	l protect	ion a	ind i	risk c	ontro
techn	•	CENTRY AND A CODENT DEFURNT				0	
UNIT I		GEMENT AND ACCIDENT PREVENT		l :		9 	Cafat
Analysis - Sa Nature and	fety Sampling Technic Causes of Accidents	afety and Productivity - Safety Manag que - Incident Recall Technique - Pla s - Accident Proneness - Cost of A l Investigation - Safety Education and	nt Safety ccident -	Inspe Acci	ectior	n - Aco	cident
UNIT II		FRICAL SAFETY EQUIPMENTS	Tannig			9	
		afety Voltage Measurement - Contact	and Non	-Cont	act T	-	esters
Sleeves -Insp for Tools - Sa	pection Techniques –	ubber Mats - Rubber Blankets - Ru Standards. Insulated Tools: Hot Stigns - Safety Tags - Lock and Locking of es of Extinguishers.	cks - Chei	rry Pi	cker	- Star	ndard
UNIT III	SAFI	ETY IN CHEMICAL INDUSTRY				9	
& Controls - Operations - Hazardous W	Utility Hazards & Cor - Safe Transfer of C Vork	azards and Controls – Storage Hazard atrols - Pollution Hazards & Controls hemicals - Inspection, Testing & M	- Instrum	entat	ion fo	or Safe	e Plan
UNIT IV		L PROTECTION EQUIPMENT (PPE) Glossary of Terminologies - Fla				9	
Choice of Clo Head Protect	othing - Flame and N tion: Hard Hats – ANS ection - Face shield.	ergy Breakthrough (EBT) - ASTM Sta on-Flame-Resistant Materials - Guid SI Z 89.1 Standard - Eye Protection - F Hearing Protection – Requirement - D	elines for lequireme	Sele ents c	ction of Saf	- Flas ety Gla	sh Sui asses -
UNIT V	RISK ASSESS	MENT AND CONTROL TECHNIQUES	5:			9	
Accident Inv	estigation, Analysis a	s of Risk - Safety Appraisal, Analy and Reporting - Hazard and Risk Asse ard (MAH) Control - Onsite and Off-si	ssment T te Emerg	echni	ques Plans	- Reli	-
Cuerce et '	1000000		Periods			45	
55	Assessment Method Assessment Test		End Cor				
(20 Ma		Formative Assessment Test (20 Marks)	(60 Mai	mester Exams			
Descriptive		MCQ QUIZ / SEMINAR/	Descrip		type		
CAT 1 10 Al		ASSIGNMENT/SLIPTEST/CASE					
CAT2 10 MA	ARKS	STUDY					
Course Outc	comes		•				
Upon compl	etion of the course,	the students will be able to:					
CO2 : Apply a CO3 : List the	ppropriate insulating	nent concepts and accident preventio g equipment, use of fire extinguishers al industries during transporting, sto a d)	(Apply)				-

CO4: Infer suitable PPE based on the type of industry and standards. (Understand)CO5: Implement the techniques like risk assessment disaster management and emergency preparedness with the proper knowledge on accident prevention. (Apply)

Text Books

1. Mistry K.U., "Fundamentals of Industrial Safety and Health", 2nd Edition, Siddharth Prakashan, Ahmedabad, 2008.

Reference Books

- 1. John Cadick, Mary Capelli Schellpfeffer & Dennis Neitzell, "Electrical Safety Handbook", 4th Edition, McGraw-Hill Education, 2012.
- 2. Rao S, Jain R.K. & Saluja H.L., "Electrical Safety, Fire Safety Engineering and Safety Management", 2nd Edition, Khanna Publishers, 2012.

Web Resources

- 1. <u>https://archive.nptel.ac.in/courses/110/105/110105094/</u> (Industrial Safety Engineering)
- 2. <u>https://archive.nptel.ac.in/courses/103/107/103107156/</u> (Chemical Process Safety)

СО	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	1			1		3					1	1		3
CO 2	1			1		3					1	1		3
CO 3	1			1		3					1	1		3
CO 4	1			1		3					1	1		3
CO 5	1			1		3					1	1		3

Francis Xavier Engineering College | Dept of Mechanical Engineering | R2021/Curriculum and Syllabi COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Students will be able to perceive the safety management concepts and accident prevention methods. (Understand)

- 1. Discuss about the safety education and training in accident prevention. **(Understand)**
- 2. Explain the various accident prevention methods in detail. (Understand)

COURSE OUTCOME 2: Students will be able to apply appropriate measuring and /or insulating equipment, use of fire extinguishers and safe earthing practices (Apply)

- 1. What are the safety considerations to be followed in earthing systems? Brief them. **(Understand)**
- 2. How safety can be ensured in fire extinguishers. Explain them with a case study. (Apply)

COURSE OUTCOME 3: Students will be able to list the hazards in chemical industries during transporting, storing and processing to ensure safe plant operations (Understand)

- 1. Discuss the various types of chemical hazards and explain its control measures. **(Understand)**
- 2. What are the guidelines to be followed in the safe transfer of chemicals? Explain in brief. **(Understand)**

COURSE OUTCOME 4: Infer suitable PPE based on the type of industry and standards. (Understand)

- 1. Types and characteristics of head protectors (Understand)
- 2. When canister or cartridge type respirator should not be used? Explain your answers with justification **(Understand)**

COURSE OUTCOME 5: Implement the techniques like risk assessment disaster management and emergency preparedness with the proper knowledge on accident prevention. (Apply)

- 1. What is Total Loss Control? What are the four steps involved in managing the loss control **(Understand)**
- 2. In a factory rough casting of 15 Kg. are fettled by hand on a pedestal grinder (dia 12"). The castings are picked up from nearby store, fettled on the grinder and replaced on the floor on the other side of the machine. Carry out job safety analysis and prepare the job breakdown sheet. **(Apply)**

21MF7202		L	Т	Р	С
21ME7808	INTRODUCTION TO ROBOTICS	3	0	0	3
Prerequisite	es for the course		1 1		
Nil					
Objectives					
• To un	derstand the functions of the basic components of a Robot.				
• To stu	dy the use of various types of end Effectors and Sensors				
• To im	part knowledge in Robot Kinematics and Programming				
• To lea	rn Robot safety issues and economics.				
UNIT I	FUNDAMENTALS OF ROBOT			9	
Robot - Defi	nition - Robot Anatomy - Coordinate Systems, Work Envelope Typ	es an	d Cla	assific	ation
•	s-Pitch, Yaw, Roll, Joint Notations, Speed of Motion, Pay Load-R	lobot	Part	s and	thei
Functions-Ne	eed for Robots-Different Applications				
UNIT II	ROBOT DRIVE SYSTEMS AND END EFFECTORS			9	
Pneumatic D	rives-Hydraulic Drives-Mechanical Drives-Electrical Drives-D.C. S	ervo	Moto	ors, St	eppe
•	Servo Motors-Salient Features, Applications and Comparison of				
	ppers-Mechanical Grippers, Pneumatic and Hydraulic- Grippers		0	-	
-	opers; Two Fingered and Three Fingered Grippers; Internal G	rippe	rs ar	nd Ex	terna
Grippers; Sel	ection and Design Considerations.				
UNIT III	SENSORS			9	
-	s of a sensor, Principles and Applications of the following types				
sensors - Pie	ezo Electric Sensor, LVDT, Resolvers, Optical Encoders, pneumat	tic Po	sitio	n Se	nsors
sensors - Pie Range Senso	ezo Electric Sensor, LVDT, Resolvers, Optical Encoders, pneumators Triangulations Principles, Structured, Lighting Approach, Tir	tic Po ne of	sitio F Flig	n Sei ght, l	nsors Rang
sensors - Pie Range Senso Finders, Las	ezo Electric Sensor, LVDT, Resolvers, Optical Encoders, pneumat ors Triangulations Principles, Structured, Lighting Approach, Tir er Range Meters, Touch Sensors, binary Sensors, Analog Sens	tic Po ne of	sitio F Flig	n Sei ght, l	nsor: Rang
sensors - Pie Range Senso Finders, Las Compliance S	ezo Electric Sensor, LVDT, Resolvers, Optical Encoders, pneumators Triangulations Principles, Structured, Lighting Approach, Tir er Range Meters, Touch Sensors, binary Sensors, Analog Sens Sensors, Slip Sensors,	tic Po ne of	sitio F Flig	n Sei ght, l t Sei	nsor: Rang
sensors - Pie Range Senso Finders, Las Compliance S UNIT IV	ezo Electric Sensor, LVDT, Resolvers, Optical Encoders, pneumat ors Triangulations Principles, Structured, Lighting Approach, Tir er Range Meters, Touch Sensors, binary Sensors, Analog Sens Sensors, Slip Sensors, ROBOT KINEMATICS AND ROBOT PROGRAMMING	tic Po ne of ors,	sitio F Flig Wris	n Sei ght, l t Sei 9	nsors Rang nsors
sensors - Pie Range Senso Finders, Las <u>Compliance S</u> UNIT IV Forward Kit	ezo Electric Sensor, LVDT, Resolvers, Optical Encoders, pneumat ors Triangulations Principles, Structured, Lighting Approach, Tir er Range Meters, Touch Sensors, binary Sensors, Analog Sens Sensors, Slip Sensors, ROBOT KINEMATICS AND ROBOT PROGRAMMING nematics, Inverse Kinematics and Difference; Forward Kinem	tic Po ne of ors, '	sitio Flig Wris sar	n Sei ght, l t Sei 9 id Re	nsors Rang nsors
sensors - Pie Range Senso Finders, Las Compliance S UNIT IV Forward Kinematics o	ezo Electric Sensor, LVDT, Resolvers, Optical Encoders, pneumat ors Triangulations Principles, Structured, Lighting Approach, Tir er Range Meters, Touch Sensors, binary Sensors, Analog Sens Sensors, Slip Sensors, ROBOT KINEMATICS AND ROBOT PROGRAMMING nematics, Inverse Kinematics and Difference; Forward Kiner f manipulators with Two, Three Degrees of Freedom (in 2 Dimensi	tic Po me of ors, ' matic ion), l	sitio F Flig Wris s ar Four	n Sei ght, l t Sei 9 nd Re Degra	nsors Rang nsors evers ees o
sensors - Pie Range Senso Finders, Las Compliance S UNIT IV Forward Kin Kinematics of freedom (in	ezo Electric Sensor, LVDT, Resolvers, Optical Encoders, pneumat ors Triangulations Principles, Structured, Lighting Approach, Tir er Range Meters, Touch Sensors, binary Sensors, Analog Sens Sensors, Slip Sensors, ROBOT KINEMATICS AND ROBOT PROGRAMMING nematics, Inverse Kinematics and Difference; Forward Kinematics f manipulators with Two, Three Degrees of Freedom (in 2 Dimension) 3 Dimension) Lead through Programming, Robot programming	tic Po me of ors, ' matic ion), I ming	sitio F Flig Wris s ar Four Lan	n Sei ght, l t Sei 9 nd Re Degro guages	nsors Rang nsors evers ees c s-VA
sensors - Pie Range Senso Finders, Las Compliance S UNIT IV Forward Kin Kinematics of freedom (in	ezo Electric Sensor, LVDT, Resolvers, Optical Encoders, pneumat ors Triangulations Principles, Structured, Lighting Approach, Tir er Range Meters, Touch Sensors, binary Sensors, Analog Sens Sensors, Slip Sensors, ROBOT KINEMATICS AND ROBOT PROGRAMMING nematics, Inverse Kinematics and Difference; Forward Kiner f manipulators with Two, Three Degrees of Freedom (in 2 Dimensi	tic Po me of ors, ' matic ion), I ming	sitio F Flig Wris s ar Four Lan	n Sei ght, l t Sei 9 nd Re Degro guages	nsor: Rang nsor: evers ees c s-VA
sensors - Pie Range Senso Finders, Las Compliance S UNIT IV Forward Kin Kinematics of freedom (in	ezo Electric Sensor, LVDT, Resolvers, Optical Encoders, pneumat ors Triangulations Principles, Structured, Lighting Approach, Tir er Range Meters, Touch Sensors, binary Sensors, Analog Sens Sensors, Slip Sensors, ROBOT KINEMATICS AND ROBOT PROGRAMMING nematics, Inverse Kinematics and Difference; Forward Kinematics f manipulators with Two, Three Degrees of Freedom (in 2 Dimension) 3 Dimension) Lead through Programming, Robot programming	tic Po me of ors, ' matic ion), I ming	sitio F Flig Wris s ar Four Lan	n Sei ght, l t Sei 9 nd Re Degro guages	nsor: Rang nsor: evers ees c s-VA
sensors - Pie Range Senso Finders, Las Compliance S UNIT IV Forward Kin Kinematics o freedom (in Programming UNIT V	ezo Electric Sensor, LVDT, Resolvers, Optical Encoders, pneumat ors Triangulations Principles, Structured, Lighting Approach, Tir er Range Meters, Touch Sensors, binary Sensors, Analog Sens Sensors, Slip Sensors, ROBOT KINEMATICS AND ROBOT PROGRAMMING nematics, Inverse Kinematics and Difference; Forward Kiner f manipulators with Two, Three Degrees of Freedom (in 2 Dimensi 3 Dimension) Lead through Programming, Robot programm g-Motion Commands, Sensor Commands, End Effector commands a	tic Po me of ors, ' matic ion), I ming nd sir	sitio F Flig Wris s ar Four Lan nple	n Ser ght, l t Ser 9 nd Re Degru guage: Progra 9	nsors Rang nsors evers ees o s-VA ams.
sensors - Pie Range Senso Finders, Las Compliance S UNIT IV Forward Kii Kinematics of freedom (in Programmin UNIT V Material tran Delivery Rob	ezo Electric Sensor, LVDT, Resolvers, Optical Encoders, pneumat ors Triangulations Principles, Structured, Lighting Approach, Tir er Range Meters, Touch Sensors, binary Sensors, Analog Sens Sensors, Slip Sensors, ROBOT KINEMATICS AND ROBOT PROGRAMMING nematics, Inverse Kinematics and Difference; Forward Kiner f manipulators with Two, Three Degrees of Freedom (in 2 Dimensi 3 Dimension) Lead through Programming, Robot programm g-Motion Commands, Sensor Commands, End Effector commands at FIELD APPLICATIONS OF ROBOTICS asfer, Machine loading, Assembly, inspection, processing operation ots – Intelligent vehicles – Survey and inspection robots – Space F	tic Po me of ors, ' matic ion), I ming nd sir	sitio F Flig Wris s ar Four Lan nple	n Ser ght, l t Ser 9 nd Re Degra guages Progra 9 vice re	nsors Rang nsors evers ees o s-VA ams.
sensors - Pie Range Senso Finders, Las Compliance S UNIT IV Forward Kii Kinematics of freedom (in Programmin UNIT V Material tran Delivery Rob	ezo Electric Sensor, LVDT, Resolvers, Optical Encoders, pneumat ors Triangulations Principles, Structured, Lighting Approach, Tir er Range Meters, Touch Sensors, binary Sensors, Analog Sens Sensors, Slip Sensors, ROBOT KINEMATICS AND ROBOT PROGRAMMING nematics, Inverse Kinematics and Difference; Forward Kiner f manipulators with Two, Three Degrees of Freedom (in 2 Dimensi 3 Dimension) Lead through Programming, Robot programm g-Motion Commands, Sensor Commands, End Effector commands at FIELD APPLICATIONS OF ROBOTICS nsfer, Machine loading, Assembly, inspection, processing operation	tic Po me of ors, ' matic ion), I ming nd sir	sitio F Flig Wris s ar Four Lan nple l ser s – A	n Ser ght, l t Ser 9 nd Re Degra guages Progra 9 vice re	nsors Rang nsors evers ees o s-VA ams.

<u> </u>			Metho										
	ous Asse) Marks]		t Test	Form	native (20	Assess Marks		ſest		ld Sem 0 Mark	ester E (s)	xams	
Descrip	tive exan	1		MCQ	QUIZ /	SEMIN	NAR/		Ē	escript	ive type	è	
CAT 1 1	0 AND			ASSI	GNME	NT/SLI	PTEST	CASE		_			
CAT2 10) MARKS			STUI	ΟY								
Course C	outcome	s											
Upon con	mpletior	n of the	e cours	e, the s	studen	ts will	be abl	e to:					
CO1: Exp	ress the l	basic co	oncepts	s, laws,	compo	nents a	nd par	ameter	rs of rob	ots (Ur	idersta	nd)	
CO2: Disc					• •	0				•		-	
CO3: Sun									0	-		-	
CO4: Inte										oots (U I	ndersta	ınd)	
CO5: Ider	-	use of r	obots i	n vario	us field	l of app	licatio	ns (Ap)	ply)				
Text Boo													
	.P.Groove			-								program	nmin
an	id Applic	ations"	' Tata , I	McGrav	<i>w</i> -Hill E	Educati	on Pvt	Limited	d 2nd Eo	lition, 2	2012		
2. Ro	oland Sei	gwart,	Illah Re	eza Not	ırbakhs	sh, and	Davide	Scarai	nuzza, ʻ	Introdu	iction to	o auton	omou
m	obile rob	ots", 21	nd editi	on, Mľ	T Press	, 2011.							
Referend	ce Books												
1. John.J.Craig, " Introduction to Robotics: Mechanics & control"Pearson Publication, Fourth											Public	ration	Fourt
			troduct	tion to	Robot	cics: M	echanio	s & c	ontrol"I	Pearson	Public	cation,	Fourt
ed	lition, 20	18.											
ed 2. Kl	lition, 20 after R.D	18. ., Chm	ielewsk										
ed 2. Kl Pr	lition, 20 after R.D entice Ha	18. ., Chm all, 200	ielewsk 13.	ti T.A a	nd Neg	gin M., '	"Robot	c Engi	neering	- An In	itegrate	d Appr	roach'
ed 2. Kl Pr 3. Sa	lition, 20 after R.D entice Ha eed B N	18. ., Chm all, 200 iku, 'In	ielewsk 13. itroduc	ti T.A a tion to	nd Neg	gin M., '	"Robot	c Engi	neering	- An In	itegrate	d Appr	roach'
ed 2. Kl Pr 3. Sa pu	lition, 20 after R.D entice Ha leed B N ablication	18. ., Chm all, 200 iku, 'In	ielewsk 13. itroduc	ti T.A a tion to	nd Neg	gin M., '	"Robot	c Engi	neering	- An In	itegrate	d Appr	roach'
ed 2. Kl Pr 3. Sa pt Web Reso	lition, 20 after R.D entice Ha eed B N ablication	18. ., Chm all, 200 iku, 'In 1, 2nd F	ielewsk 13. Itroduc Edition,	ti T.A a tion to 2011.	nd Neg Robot	gin M., ' ics, An	"Robot alysis,	c Engi Contro	neering l, Appli	- An In	itegrate	d Appr	roach'
ed 2. Kl Pr 3. Sa pt Web Reso	lition, 20 after R.D entice Ha leed B N ablication	18. ., Chm all, 200 iku, 'In 1, 2nd F	ielewsk 13. Itroduc Edition,	ti T.A a tion to 2011.	nd Neg Robot	gin M., ' ics, An	"Robot alysis,	c Engi Contro	neering l, Appli	- An In	itegrate	d Appr	roach'
ed 2. Kl Pr 3. Sa pt Web Reso 1. ht	lition, 20 after R.D rentice Ha leed B N lblicatior burces tps://onli	18. all, 200 iku, 'In a, 2nd F	ielewsk 13. troduc Edition, rses.npt	ti T.A a tion to 2011. el.ac.in	nd Neg Robot /noc21_	gin M., ' ics, An	"Robot alysis,	c Engi Contro	neering l, Appli	- An In	itegrate	d Appr	roach'
ed 2. Kl Pr 3. Sa pu Web Reso 1. ht CO Vs PO	lition, 20 after R.D rentice Ha leed B N liblicatior Durces tps://onli	18. all, 200 iku, 'In a, 2nd F	ielewsk 13. troduc Edition, rses.npt	ti T.A a tion to 2011. el.ac.in	nd Neg Robot /noc21_	gin M., ' ics, An	"Robot alysis,	c Engi Contro	neering l, Appli	- An In	itegrate	d Appr	roach'
ed 2. Kl Pr 3. Sa pu Web Reso 1. ht CO Vs PO	lition, 20 after R.D rentice Ha leed B N liblicatior Durces tps://onli	18. ., Chm all, 200 iku, 'In n, 2nd F necour g and C	ielewsk 13. Itroduc Edition, rses.npt CO Vs P	ti T.A a tion to 2011. el.ac.in, SO Ma	nd Neg Robot /noc21_ pping	gin M., ' ics, An _me76/	"Robot alysis, /previev	c Engi Contro v (Rob o	neering l, Appli otics)	- An In cations,	Wiley	d Appı India P	roach' 'vt Lto
ed 2. Kl Pr 3. Sa pu Web Reso 1. ht CO Vs PO CO PO1	lition, 20 after R.D rentice Ha leed B N liblicatior Durces tps://onli Mapping	18. ., Chm all, 200 iku, 'In n, 2nd F necour g and C	ielewsk 13. Itroduc Edition, rses.npt CO Vs P	ti T.A a tion to 2011. el.ac.in, SO Ma	nd Neg Robot /noc21_ pping PO6	gin M., ' ics, An _me76/	"Robot alysis, /previev	c Engi Contro v (Rob o	neering l, Appli otics)	- An In cations,	Wiley PO12	d Appı India P	roach' 'vt Lto PSO
ed 2. Kl Pr 3. Sa pu Web Reso 1. ht CO Vs PO CO PO1 CO 201 3	lition, 20 after R.D eentice Ha leed B N lblication Durces tps://onli Mapping 1 PO2 1	18. ., Chm all, 200 iku, 'In n, 2nd F necour g and C	ielewsk 13. Itroduc Edition, rses.npt CO Vs P	ti T.A a tion to 2011. el.ac.in, SO Ma	nd Neg Robot /noc21_ pping PO6 2	gin M., ' ics, An _me76/	"Robot alysis, /previev	c Engi Contro v (Rob o	neering l, Appli otics)	- An In cations,	Viley PO12	d Appı India P	roach' 'vt Lto PSO 3

CO 5

Francis Xavier Engineering College| Dept of Mechanical Engineering| R2021/Curriculum and Syllabi COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1: Students will be able to express the basic concepts, laws, components and parameters of robots (Understand)

- 1. Sketch and explain the four basic robot configurations classified according to the coordinate system. **(Understand)**
- 2. Write short notes on Joint notation scheme. (Understand)

COURSE OUTCOME 2: Students will be able to Discuss about drive system and the types of grippers and its functions. (Understand)

- 1. Explain various types of Gripper mechanisms in robot. (Understand)
- 2. Explain how grippers are selected for high temperature applications? Justify your answers with gripper selection factors and considerations. **(Understand)**

COURSE OUTCOME 3: Students will be able to summarize and determine various types of sensors involved in controlling the robots (Understand)

- 1. Briefly explain the working principle of position sensors with neat sketch. (Understand)
- 2. Explain the working principle of Proximity sensors with neat sketch. (Understand)

COURSE OUTCOME 4: Students will be able to describe the various programming techniques used in industrial robots (Understand)

- 1. List the commands used in VAL II programming and describe its functions. (Understand)
- 2. Write down the capabilities and limitations of Lead through methods. (Understand)

COURSE OUTCOME 5: Students will be able to Identify the use of robots in various field of applications (Apply)

- 1. With necessary outline, discuss the application of robots in packaging industries (Apply)
- 2. With a case study, explain the applications of robot in underwater inspection. **(Apply)**

Francis Xavier Engineering College | Dept of Mechanical Engineering | R2021/Curriculum and Syllabi

VALUE ADDED COURSES

Francis Xavier Engineering College/ Dept of Mechanical Engineering/ R2021/Curriculum and Syllabi

21ME3V01	DIGITAL PROTOTYPING USING SOLIDWORKS	L	Τ	Р	С
		0	0	4	2
Prerequisites for					
Engineerin	g Graphics, Basics of AutoCAD				
Objectives					
-	nis skill training is to teach users the basic commands a rawing, 3D drawing, Assembly of mechanical componen				-
MODULE 1	Introduction to Solidworks and its User			10	
	Interface				
Introduction-Basic	c Commands, Interacting with Solidworks UI, Drawing tool	ls, Edi	ting	cools,	
Drawing setup-Con	nmand Manager- Feature manager design tree, Callouts, H	landle	es, Co	nfirn	nation
corner, mouse but	tons, keyboard shortcuts, Command Manager,Hardware a	nd So	ftwai	·e	
requirements.		_			
MODULE 2	Sketching			10	
Sketching: 2D S	ketching, Sketch entities, rules that govern sketch	es, sl	ketch	rela	ations
00	lelines, – Inference line, Centerline line, Line, Circle, A		ipse,	Rect	angle
Slots, Polygon, El drawing	delines, – Inference line, Centerline line, Line, Circle, A lipse, Partial Ellipse, Spline, Points, Text, Constructio		ipse, omet	Rect ry-Pr	angle
Slots, Polygon, El drawing MODULE 3	delines, – Inference line, Centerline line, Line, Circle, A llipse, Partial Ellipse, Spline, Points, Text, Constructio Basic Part Modeling	on ge	ipse, omet	Rect ry-Pr 10	angle
Slots, Polygon, El drawing MODULE 3 Basic modeling te feature – view sel	delines, – Inference line, Centerline line, Line, Circle, A llipse, Partial Ellipse, Spline, Points, Text, Construction Basic Part Modeling rminologies, part details – Boss feature – sketching on lector – hole wizard – filleting – editing tools – detailin	on ge a pla	ipse, omet anar	Rect cry-Pr 10 face	angle actice
Slots, Polygon, El drawing MODULE 3 Basic modeling te feature – view sel	delines, – Inference line, Centerline line, Line, Circle, A lipse, Partial Ellipse, Spline, Points, Text, Constructio Basic Part Modeling rminologies, part details – Boss feature – sketching on	on ge a pla	ipse, omet anar rawi	Rect cry-Pr 10 face	angle actice
Slots, Polygon, El drawing MODULE 3 Basic modeling te feature – view sel changing paramete MODULE 4	delines, – Inference line, Centerline line, Line, Circle, A llipse, Partial Ellipse, Spline, Points, Text, Construction Basic Part Modeling rminologies, part details – Boss feature – sketching on lector – hole wizard – filleting – editing tools – detailing ers – dimensioning - Practice drawing	on ge a pla ng – d	ipse, omet anar rawi	Rect cry-Pr 10 face ng vi 10	angle actice - cut ews -
Slots, Polygon, El drawing MODULE 3 Basic modeling te feature – view sel changing paramete MODULE 4 Boss feature with	delines, – Inference line, Centerline line, Line, Circle, A llipse, Partial Ellipse, Spline, Points, Text, Construction Basic Part Modeling rminologies, part details – Boss feature – sketching on lector – hole wizard – filleting – editing tools – detailin ers – dimensioning - Practice drawing Part Modeling Features	on ge a pla ng – d view	ipse, omet anar rawi	Rect cry-Pr 10 face ng vi 10 ons –	angle actice - cut ews - mode
Slots, Polygon, El drawing MODULE 3 Basic modeling te feature – view sel changing paramete MODULE 4 Boss feature with edges in sketch – t	delines, – Inference line, Centerline line, Line, Circle, A llipse, Partial Ellipse, Spline, Points, Text, Construction Basic Part Modeling rminologies, part details – Boss feature – sketching on lector – hole wizard – filleting – editing tools – detailin ers – dimensioning - Practice drawing Part Modeling Features draft, symmetry in sketch, sketching inside the model –	on ge a pla ng – d view	ipse, omet anar rawi	Rect cry-Pr 10 face ng vi 10 ons –	angle actice - cut ews - mode
Slots, Polygon, El drawing MODULE 3 Basic modeling te feature – view sel changing paramete MODULE 4 Boss feature with edges in sketch – t	delines, – Inference line, Centerline line, Line, Circle, A llipse, Partial Ellipse, Spline, Points, Text, Construction Basic Part Modeling rminologies, part details – Boss feature – sketching on lector – hole wizard – filleting – editing tools – detailin ers – dimensioning - Practice drawing Part Modeling Features draft, symmetry in sketch, sketching inside the model – rimmed sketch geometry - linear patterns – circular patter	on ge a pla ng – d view	ipse, omet anar rawi opti mirro	Rect cry-Pr 10 face ng vi 10 ons –	angle actice - cut ews - mode
Slots, Polygon, El drawing MODULE 3 Basic modeling te feature – view sel changing paramete MODULE 4 Boss feature with edges in sketch – t revolved features- MODULE 5	delines, – Inference line, Centerline line, Line, Circle, A llipse, Partial Ellipse, Spline, Points, Text, Construction Basic Part Modeling rminologies, part details – Boss feature – sketching on ector – hole wizard – filleting – editing tools – detailin ers – dimensioning - Practice drawing Part Modeling Features draft, symmetry in sketch, sketching inside the model – rimmed sketch geometry - linear patterns – circular patter shells and ribs – thin features - Practice drawing	on ge a pla ng – d view rns – 1	ipse, omet anar rawi optio	Rect cry-Pr 10 face ng vi 10 ons – or pat	angle actice - cut ews - mode terns
Slots, Polygon, El drawing MODULE 3 Basic modeling te feature – view sel changing paramete MODULE 4 Boss feature with edges in sketch – t revolved features- MODULE 5 New assembly –	delines, – Inference line, Centerline line, Line, Circle, A lipse, Partial Ellipse, Spline, Points, Text, Construction Basic Part Modeling rminologies, part details – Boss feature – sketching on lector – hole wizard – filleting – editing tools – detailing ers – dimensioning - Practice drawing Part Modeling Features draft, symmetry in sketch, sketching inside the model – rimmed sketch geometry - linear patterns – circular patter shells and ribs – thin features - Practice drawing Assembly	on ge a pla ng – d view rns – 1 compo	ipse, omet anar rawi opti mirro	Rect cry-Pr 10 face ng vi 10 ons – or pat 10 ss –	angle actice - cut ews - mode terns matin
Slots, Polygon, El drawing MODULE 3 Basic modeling te feature – view sel changing paramete MODULE 4 Boss feature with edges in sketch – t revolved features- MODULE 5 New assembly – components – sub	delines, – Inference line, Centerline line, Line, Circle, A llipse, Partial Ellipse, Spline, Points, Text, Construction Basic Part Modeling rminologies, part details – Boss feature – sketching on lector – hole wizard – filleting – editing tools – detailing ers – dimensioning - Practice drawing Part Modeling Features draft, symmetry in sketch, sketching inside the model – rimmed sketch geometry - linear patterns – circular patter shells and ribs – thin features - Practice drawing Assembly positioning of component – Design tree – adding of	on ge a pla ng – d view rns – 1 compo	ipse, omet anar rawi option mirro onent ateria	Rect cry-Pr 10 face ng vi 10 ons – or pat 10 ss –	angle actice - cut ews - mode terns matin
Slots, Polygon, El drawing MODULE 3 Basic modeling te feature – view sel changing paramete MODULE 4 Boss feature with edges in sketch – t revolved features- MODULE 5 New assembly – components – sub drawing MODULE 6	delines, – Inference line, Centerline line, Line, Circle, A llipse, Partial Ellipse, Spline, Points, Text, Construction Basic Part Modeling rminologies, part details – Boss feature – sketching on ector – hole wizard – filleting – editing tools – detailing ers – dimensioning - Practice drawing Part Modeling Features draft, symmetry in sketch, sketching inside the model – rimmed sketch geometry - linear patterns – circular patter shells and ribs – thin features - Practice drawing Assembly positioning of component – Design tree – adding of assemblies – assembly analysis – assembly explode – bill	on ge a pla ag – d view rns – n compo of ma	ipse, omet anar rawi optionirro onent ateria	Rect rry-Pr 10 face ng vi 10 ons – or pat 10 rs – als - P 10	angle actice - cu ews - mode terns matin

Francis Xavier Engineering College | Dept of Mechanical Engineering | R2021/Curriculum and Syllabi

 Daline Assessment Online assessment tests each carrying 25 marks (Total 100 marks) Course Outcomes Upon completion of the course, the students will be able to: CO1: Interpret the basics of Solidworks (Understand) CO2: Discuss the sketching tools and guidelines in sketching. (Understand) CO3: Interpret part modeling and its features (Apply) CO4: Assemble the modeled components using solidworks. (Apply) CO5: Generate predefined views using various tools using solidworks (Apply) Text Books Alejandro Reyes 2021 Beginner's guide to Solidworks 2021 David C Planchard, "Engineering Design with solidworks" 2019 Reference Books Gaurav vera, matt weber, "Solidworks flow simulation 2020 Black book" 2019 CADArtife, John Willis, Sandeep Dogra"solidworks 2019 A Power guide for beginners an intermediate User (2019) 	Total Periods	60
 Online assessment tests each carrying 25 marks (Total 100 marks) Course Outcomes Upon completion of the course, the students will be able to: CO1: Interpret the basics of Solidworks (Understand) CO2: Discuss the sketching tools and guidelines in sketching. (Understand) CO3: Interpret part modeling and its features (Apply) CO4: Assemble the modeled components using solidworks. (Apply) CO5: Generate predefined views using various tools using solidworks (Apply) Text Books 1. Alejandro Reyes 2021 Beginner's guide to Solidworks 2021 2. David C Planchard, "Engineering Design with solidworks" 2019 Reference Books 1. Gaurav vera, matt weber, "Solidworks flow simulation 2020 Black book" 2019 2. CADArtife, John Willis, Sandeep Dogra"solidworks 2019 A Power guide for beginners an intermediate User (2019) 	Suggestive Assessment Methods	
Course Outcomes Upon completion of the course, the students will be able to: C01: Interpret the basics of Solidworks (Understand) C02: Discuss the sketching tools and guidelines in sketching. (Understand) C03: Interpret part modeling and its features (Apply) C04: Assemble the modeled components using solidworks. (Apply) C05: Generate predefined views using various tools using solidworks (Apply) C05: Generate predefined views using various tools using solidworks (Apply) Text Books 1. Alejandro Reyes 2021 Beginner's guide to Solidworks 2021 2. David C Planchard, "Engineering Design with solidworks" 2019 Reference Books 1. Gaurav vera, matt weber, "Solidworks flow simulation 2020 Black book" 2019 2. CADArtife, John Willis, Sandeep Dogra"solidworks 2019 A Power guide for beginners an intermediate User (2019)	Online Assessment	
 Upon completion of the course, the students will be able to: CO1: Interpret the basics of Solidworks (Understand) CO2: Discuss the sketching tools and guidelines in sketching. (Understand) CO3: Interpret part modeling and its features (Apply) CO4: Assemble the modeled components using solidworks. (Apply) CO5: Generate predefined views using various tools using solidworks (Apply) CO5: Generate predefined views using various tools using solidworks (Apply) CO5: Generate predefined views using various tools using solidworks (Apply) CO5: Generate predefined views using various tools using solidworks (Apply) CO5: Generate predefined views using various tools using solidworks (Apply) CO5: Generate predefined views using various tools using solidworks (Apply) CO5: Generate predefined views using various tools using solidworks (Apply) CO5: Generate predefined views using various tools using solidworks (Apply) CO5: Generate predefined views using various tools using solidworks (Apply) CO5: Generate predefined views using various tools using solidworks 2021 2. David C Planchard, "Engineering Design with solidworks" 2019 CADArtife, John Willis, Sandeep Dogra" solidworks 2019 A Power guide for beginners an intermediate User (2019) 	4 Online assessment tests each carrying 25 marks (Total 100 marks)	
 CO1: Interpret the basics of Solidworks (Understand) CO2: Discuss the sketching tools and guidelines in sketching. (Understand) CO3: Interpret part modeling and its features (Apply) CO4: Assemble the modeled components using solidworks. (Apply) CO5: Generate predefined views using various tools using solidworks (Apply) CO5: Generate predefined views using various tools using solidworks (Apply) CO5: Generate predefined views using various tools using solidworks (Apply) CO5: Generate predefined views using various tools using solidworks (Apply) CO5: Generate predefined views using various tools using solidworks (Apply) CO5: Generate predefined views using various tools using solidworks (Apply) CO5: Generate predefined views using various tools using solidworks (Apply) CO5: Generate predefined views using various tools using solidworks (Apply) CO5: Generate predefined views using various tools using solidworks (Apply) CO5: Generate predefined views using various tools using solidworks (Apply) CO5: Generate predefined views using various tools using solidworks 2021 2. David C Planchard, "Engineering Design with solidworks" 2019 Reference Books 1. Gaurav vera, matt weber, "Solidworks flow simulation 2020 Black book" 2019 2. CADArtife, John Willis, Sandeep Dogra" solidworks 2019 A Power guide for beginners an intermediate User (2019) 	Course Outcomes	
 CO2: Discuss the sketching tools and guidelines in sketching. (Understand) CO3: Interpret part modeling and its features (Apply) CO4: Assemble the modeled components using solidworks. (Apply) CO5: Generate predefined views using various tools using solidworks (Apply) Text Books Alejandro Reyes 2021 Beginner's guide to Solidworks 2021 David C Planchard, "Engineering Design with solidworks" 2019 Reference Books Gaurav vera, matt weber, "Solidworks flow simulation 2020 Black book" 2019 CADArtife, John Willis, Sandeep Dogra" solidworks 2019 A Power guide for beginners an intermediate User (2019) 	Upon completion of the course, the students will be able to:	
 CO3: Interpret part modeling and its features (Apply) CO4: Assemble the modeled components using solidworks. (Apply) CO5: Generate predefined views using various tools using solidworks (Apply) Text Books Alejandro Reyes 2021 Beginner's guide to Solidworks 2021 David C Planchard, "Engineering Design with solidworks" 2019 Reference Books Gaurav vera, matt weber, "Solidworks flow simulation 2020 Black book" 2019 CADArtife, John Willis, Sandeep Dogra" solidworks 2019 A Power guide for beginners and intermediate User (2019) 	CO1: Interpret the basics of Solidworks (Understand)	
 CO4: Assemble the modeled components using solidworks. (Apply) CO5: Generate predefined views using various tools using solidworks (Apply) Text Books Alejandro Reyes 2021 Beginner's guide to Solidworks 2021 David C Planchard, "Engineering Design with solidworks" 2019 Reference Books Gaurav vera, matt weber, "Solidworks flow simulation 2020 Black book" 2019 CADArtife, John Willis, Sandeep Dogra" solidworks 2019 A Power guide for beginners an intermediate User (2019) 	CO2: Discuss the sketching tools and guidelines in sketching. (Understand)	
 CO5: Generate predefined views using various tools using solidworks (Apply) Text Books Alejandro Reyes 2021 Beginner's guide to Solidworks 2021 David C Planchard, "Engineering Design with solidworks" 2019 Reference Books Gaurav vera, matt weber, "Solidworks flow simulation 2020 Black book" 2019 CADArtife, John Willis, Sandeep Dogra" solidworks 2019 A Power guide for beginners an intermediate User (2019) 	CO3: Interpret part modeling and its features (Apply)	
 Text Books Alejandro Reyes 2021 Beginner's guide to Solidworks 2021 David C Planchard, "Engineering Design with solidworks" 2019 Reference Books Gaurav vera, matt weber, "Solidworks flow simulation 2020 Black book" 2019 CADArtife, John Willis, Sandeep Dogra" solidworks 2019 A Power guide for beginners and intermediate User (2019) 	CO4: Assemble the modeled components using solidworks. (Apply)	
 Alejandro Reyes 2021 Beginner's guide to Solidworks 2021 David C Planchard, "Engineering Design with solidworks" 2019 Reference Books Gaurav vera, matt weber, "Solidworks flow simulation 2020 Black book" 2019 CADArtife, John Willis, Sandeep Dogra" solidworks 2019 A Power guide for beginners and intermediate User (2019) 	CO5: Generate predefined views using various tools using solidworks (Apply)	
 David C Planchard, "Engineering Design with solidworks" 2019 Reference Books Gaurav vera, matt weber, "Solidworks flow simulation 2020 Black book" 2019 CADArtife, John Willis, Sandeep Dogra" solidworks 2019 A Power guide for beginners an intermediate User (2019) 	Text Books	
 Reference Books 1. Gaurav vera, matt weber, "Solidworks flow simulation 2020 Black book" 2019 2. CADArtife, John Willis, Sandeep Dogra"solidworks 2019 A Power guide for beginners and intermediate User (2019) 	1. Alejandro Reyes 2021 Beginner's guide to Solidworks 2021	
 Gaurav vera, matt weber, "Solidworks flow simulation 2020 Black book" 2019 CADArtife, John Willis, Sandeep Dogra"solidworks 2019 A Power guide for beginners and intermediate User (2019) 	2. David C Planchard, "Engineering Design with solidworks" 2019	
2. CADArtife, John Willis, Sandeep Dogra"solidworks 2019 A Power guide for beginners an intermediate User (2019)	Reference Books	
intermediate User (2019)	1. Gaurav vera, matt weber, "Solidworks flow simulation 2020 Black book" 2	019
		r beginners and
3. Arsath Natheem "Solidworks for Beginners" 2018	3. Arsath Natheem "Solidworks for Beginners" 2018	
Web Resources	Web Resources	

CO	PO	PO1	PO1	PO1	PSO	PSO								
CO	1	2	3	4	5	6	7	8	9	0	1	2	1	2
C01	3	2	2	1	3				1			1	3	
CO2	3	2	2	1	3				1			1	3	
CO3	3	2	2	1	3				1			1	3	
CO4	3	2	2	1	3				1			1	3	
CO5	3	2	2	1	3				1			1	3	

21ME5V03	Numerical Simulation using Ansys Fluent	L	Τ	Р	С	
2111123403	Numerical simulation using Ansys Fluenc	0	0	4	2	
Prerequisites for	the course					
Basic know Transfer	vledge in Engineering Drawing, Basic Knowledge in Fluid N	Mecha	nics a	and H	eat	
Objectives						
To acquire	knowledge on the basic concepts involved in grid generat	ion in	Flue	nt.		
6	ic ideas on numerical fluid dynamics.					
 To arrive a needs. 	t the solution of fluid flow equations and to apply those	conce	pts fo	or ind	ustr	
MODULE 1	Introduction			10		
CFD-Definition, Ap	pplications, CFD Methodology, Ansys Fluent, Menu bar & T	'oolbaı	rs, Na	avigat	ion	
pane – Task pages	 Boundry conditions – fluent in workbench. 					
MODULE 2	Solid modeling fundamentals	10				
MODULE 2	Sond modering fundamentals			10		
	olid Modeling Operations, Working with Boolean opera	tions,		-	Plan	
An Overview of S	6	tions,		-	Plan	
An Overview of S	olid Modeling Operations, Working with Boolean opera	tions,	Wor	-	Plan	
An Overview of S Importing of 3D m MODULE 3	olid Modeling Operations, Working with Boolean opera odels – practice problems		Wor	king 10		
An Overview of S Importing of 3D m MODULE 3 Free meshing, sett	olid Modeling Operations, Working with Boolean opera odels – practice problems Meshing	elemer	Wor nt typ	king 10 Des, se	ectio	
An Overview of S Importing of 3D m MODULE 3 Free meshing, sett properties, assign	olid Modeling Operations, Working with Boolean opera odels – practice problems Meshing ting element attributes, selecting element type, defining e	elemer	Wor nt typ	king 10 Des, se	ectio	
An Overview of S Importing of 3D m MODULE 3 Free meshing, sett properties, assign	olid Modeling Operations, Working with Boolean opera odels – practice problems Meshing ting element attributes, selecting element type, defining e ing element attributes before meshing, mesh controls,	elemer	Wor nt tyj t siz	king 10 Des, se	ectio	
An Overview of S Importing of 3D m MODULE 3 Free meshing, sett properties, assign meshing, mesh ext MODULE 4	olid Modeling Operations, Working with Boolean opera odels – practice problems Meshing ting element attributes, selecting element type, defining e ing element attributes before meshing, mesh controls, trusion – practice problems	elemer smar	Wor nt tyj t siz	king 10 Des, so ing, h 10	ectio iybri	
An Overview of S Importing of 3D m MODULE 3 Free meshing, sett properties, assign meshing, mesh ext MODULE 4 Material library, s	olid Modeling Operations, Working with Boolean opera odels – practice problems Meshing ting element attributes, selecting element type, defining e ing element attributes before meshing, mesh controls, trusion – practice problems Material properties in fluent	elemer smar	Wor nt tyj t siz	king 10 Des, so ing, h 10	ectio iybri	
An Overview of S Importing of 3D m MODULE 3 Free meshing, sett properties, assign meshing, mesh ext MODULE 4 Material library, s	olid Modeling Operations, Working with Boolean opera odels – practice problems Meshing ting element attributes, selecting element type, defining element attributes before meshing, mesh controls, trusion – practice problems Material properties in fluent pecifying properties – boundary conditions – types of lo	elemer smar	Wor nt tyj t siz type	king 10 Des, so ing, h 10	ectio iybri	
An Overview of S Importing of 3D m MODULE 3 Free meshing, sett properties, assign meshing, mesh ext MODULE 4 Material library, s solver setup, load MODULE 5	olid Modeling Operations, Working with Boolean opera odels – practice problems Meshing ting element attributes, selecting element type, defining element attributes before meshing, mesh controls, trusion – practice problems Material properties in fluent pecifying properties – boundary conditions – types of loss step options, post processing – practice problems	elemer smar ads –	Wor nt typ t siz type	king 10 Des, so ing, h 10 s of s 10	ectio lybri olve	
An Overview of S Importing of 3D m MODULE 3 Free meshing, sett properties, assign meshing, mesh ext MODULE 4 Material library, s solver setup, load MODULE 5 Flow inside square	olid Modeling Operations, Working with Boolean opera odels – practice problems Meshing ting element attributes, selecting element type, defining e ing element attributes before meshing, mesh controls, trusion – practice problems Material properties in fluent pecifying properties – boundary conditions – types of lo step options, post processing – practice problems 2D flow analysis	elemer smar bads –	Wor nt typ t siz type	king 10 Des, so ing, h 10 s of s 10	ectio iybri olve	
An Overview of S Importing of 3D m MODULE 3 Free meshing, sett properties, assign meshing, mesh ext MODULE 4 Material library, s solver setup, load MODULE 5 Flow inside square	olid Modeling Operations, Working with Boolean opera odels – practice problems Meshing ting element attributes, selecting element type, defining element attributes before meshing, mesh controls, trusion – practice problems Material properties in fluent pecifying properties – boundary conditions – types of loss step options, post processing – practice problems 2D flow analysis e cavity & channel – steady flow past a cylinder – comprese	elemer smar bads –	Wor nt typ t siz type	king 10 Des, so ing, h 10 s of s 10	ectio iybri olve	
An Overview of S Importing of 3D m MODULE 3 Free meshing, sett properties, assign meshing, mesh ext MODULE 4 Material library, s solver setup, load MODULE 5 Flow inside square supersonic flow ov MODULE 6	olid Modeling Operations, Working with Boolean opera odels – practice problems Meshing ting element attributes, selecting element type, defining element attributes before meshing, mesh controls, trusion – practice problems Material properties in fluent pecifying properties – boundary conditions – types of lo step options, post processing – practice problems 2D flow analysis e cavity & channel – steady flow past a cylinder – compress yer a wedge – flow over an air foil - 2D Steady State Condu	elemer smar oads –	Wor nt typ t siz type	king 10 bes, so ing, h 10 s of s 10 in a n 10	ectio lybri olve ozzle	

Francis Xavier Engineering College | Dept of Mechanical Engineering | R2021/Curriculum and Syllabi

Suggestive Assessment Methods Online Assessment 4 Online assessment tests each carrying 25 marks (Total 100 marks) Course Outcomes Upon completion of the course, the students will be able to: CO1: Acquire knowledge on the mathematical nature of fluid dynamic equations an	
 4 Online assessment tests each carrying 25 marks (Total 100 marks) Course Outcomes Upon completion of the course, the students will be able to: CO1: Acquire knowledge on the mathematical nature of fluid dynamic equations an 	
Course Outcomes Upon completion of the course, the students will be able to: CO1: Acquire knowledge on the mathematical nature of fluid dynamic equations an	
Upon completion of the course, the students will be able to: C01: Acquire knowledge on the mathematical nature of fluid dynamic equations an	
CO1: Acquire knowledge on the mathematical nature of fluid dynamic equations an	
	id to
specify boundary conditions (Understand)	
CO2: Generate grid by using numerical methods. (Understand)	
CO3: mesh the modelled part using various features (Apply)	
CO4: Apply time dependant methods for 2-D flow problems. (Apply)	
CO5: Apply time dependant methods for 3-D flow problems. (Apply)	
Text Books	
1. Divya zindani, Apurba Kumar Roy, "Working with ANSYS: A Tutorial Approach	h", 2017

Reference Books

- 1. John E Matsson "An Introduction to Ansys Fluent 2022", 2022
- 2. Huei-Huang Lee "Finite element simulations with Ansys workbench 2023". 2023

CO	PO	PO1	PO1	PO1	PSO	PSO								
CO	1	2	3	4	5	6	7	8	9	0	1	2	1	2
C01	3	2	2	1	3				1			1	3	
CO2	3	2	2	1	3				1			1	3	
CO3	3	2	2	1	3				1			1	3	
CO4	3	2	2	1	3				1			1	3	
CO5	3	2	2	1	3				1			1	3	

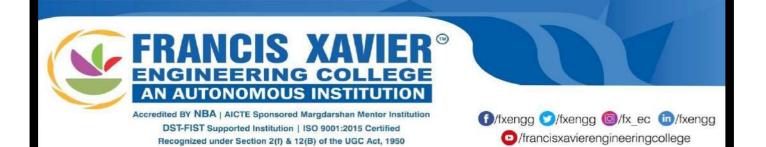
Francis Xavier Engineering College| Dept of Mechanical Engineering| R2021/Curriculum and Syllabi

SWAYAM NPTEL ONLINE COURSES

Francis Xavier Engineering College/ Dept of Mechanical Engineering/ R2021/Curriculum and Syllabi

Department: Mechanical Engineering

Dept		lamear Engineer					
S.No	Course ID	Course Name	Start Date	End Date	Duration	Recommended for open elective	Recommended for professional elective
1	noc23_cs82	Introduction to Industry 4.0 and Industrial Internet of Things	24.07.2023	13.10.2023	12 Weeks	-	PE
2	noc23_de12	Introduction to Robotics	24.07.2023	13.10.2023	12 Weeks	-	PE
3	noc23_mg74	Entrepreneurship	24.07.2023	13.10.2023	12 Weeks	-	PE
4	noc23_me105	Automation in Manufacturing	24.07.2023	13.10.2023	12 Weeks	-	PE
5	noc23_mg71	Operations and Supply chain Management	24.07.2023	13.10.2023	12 Weeks	-	PE
6	noc23_mg98	Industrial Safety Engineering	24.07.2023	13.10.2023	12 Weeks	-	PE
7	noc23_me119	Computational Fluid Dynamics	24.07.2023	13.10.2023	12 Weeks	-	PE


ISO 9001:2015 Certified | DST-FIST Supported Institution Recognized under Section 2(f) & 12(B) of the UGC Act, 1956 Vannarpettai, Tirunelveli - 627003, Tamil Nadu

MINOR/SPECIALIZATION COURSE ON ADDITIVE MANUFACTURING

B.E.Mechanical Engineering

Regulations 2021

Department of Mechanical Engineering

B.E. Mechanical Engineering

MINOR/SPECIALIZATION COURSE ON ADDITIVE MANUFACTURING

REGULATIONS 2021

(CBCS)

Specialization Course on Additive Manufacturing

CURRICULUM AND SYLLABI

0	Offered one course per semester starting from 4 th semester									
Course code	Course Category L T P C						Н			
21ME4S01	Additive Manufacturing Technologies and Applications	S	3	0	0	3	3			
21ME5S02	CAD for Additive Manufacturing	S	3	0	2	4	5			
21ME6S03	Design for Additive Manufacturing	S	3	0	0	3	3			
21ME7S04	3D Printing and Prototyping	S	3	0	2	4	5			
21ME8S05	Prototyping project	S	0	0	8	4	8			

ADDITIVE MANUFACTURING SYLLABI

21ME4S01	ADDITIVE MANUFACTURING TECHNOLOGIES AND	L	Т	Р	С				
210124001	APPLICATIONS	3	0	0	3				
Prerequisites f	or the course								
Nil									
Objectives									
Ĵ.	going this course are expected to								
1. Know t	he principles, methods, areas of usage, possibilities and limit	ations	of t	the ad	ditive				
manufacturing technologies									
2. Be familiar with the characteristics of various materials that are used in additive manufacturing.									
UNIT I	ADDITIVE MANUFACTURING FUNDAMENTALS			9					
Need for time compression in product development, Need for Additive Manufacturing (AM), Historical development, Fundamentals of Additive Manufacturing, AM Process Chain, Advantages and Limitations of AM, Classification of AM process, Comparison of AM with CNC and other technologies.									
UNIT II	LIQUID-BASED AM SYSTEMS	9							
and Limitations principle, Appl Applications, A UNIT III Laminated Ob Applications, A and specification Multi-Jet Mode	StereolithographyApparatus(SLA): Models and specifications, Process, working principle, photopolymers, photo polymerization, Layering technology, Laser scanning, Applications, Advantages and Limitations, Case studies. Solid Ground Curing (SGC): Models and specifications, Process, working principle, Applications, Advantages and Limitations, Case studies. Polyjet: Process, working principle, Applications, Advantages and Limitations, Case studies. Introduction to microfabrication.UNIT IIISOLID-BASED AM SYSTEMS9Laminated Object Manufacturing (LOM): Models and specifications, Process, working principle, Applications, Advantages and Limitations, Case studies. Fused Deposition Modelling (FDM): Models and specifications, Process, working principle, Applications, Advantages and Limitations, Case studies. Multi-Jet Modelling (MJM): Models and specifications, Process, working principle, Applications, Case studies. Introduction to Direct Metal Deposition (DMD), Electron								
UNIT IV	POWDER-BASED AM SYSTEMS			9					
Selective laser sintering (SLS): Models and specifications, Process, working principle, Applications, Advantages and Limitations, Case studies. Three-dimensional Printing (3DP): Models and specifications, Process, working principle, Applications, Advantages and Limitations, Case studies. Laser Engineered Net Shaping (LENS): Models and specifications, Process, working principle, Applications, Electron Beam Melting (EBM): Models and specifications, Process, working principle, Applications, Advantages and Limitations, Case studies. Electron Beam Melting (EBM): Models and specifications, Process, working principle, Applications, Advantages and Limitations, Case studies.									
UNIT V	TVAM APPLICATIONS9								
Applications of AM- Prototyping- Tooling- Production- Customization and Personalization- Spare Parts, Maintenance and Repair- Art, Design, and Architecture- Evaluating the Adoption of AM- Applications in Aerospace Industry, Automotive Industry, Jewellery Industryapplication. AM inMedical and									

Bioengineering Applications: Planning and simulation of complex surgery, Customised Implants & Prosthesis, Design and Production of Medical Devices.									
	Tota	l Periods	45						
Suggestive Assessment Methods									
Continuous Assessment Test	Formative Assessment Test	End Seme	ester Exams						
(20 Marks)	(20 Marks)	(60 Marks)							
2 Test EACH 10 marks	MCQ,ASSIGNMENT	Descriptive Questions							
MCQ/Descriptive Questions									
Outcomes									
Upon completion of the course, th	e students will be able to:								
CO.1 Explain the fundamentals of v	arious Additive Manufacturing (AM	I)techniques.							
CO.2 Describe the working principle, capability, limitation and applications of liquid, solid and powder based additive manufacturing techniques.									
CO.3 Choose a suitable AM techniq	ue for the specified application.								
CO.4 Compare different AM proces	CO.4Compare different AM process and materials based on application.								
CO.5 Explore the range of 3D printidesign, and creative field.	ng and Prototyping technologies an	d their applic	ation for industrial,						
CO.6 Explain current and emerging	3D printing applications for variou	s industrial e	nvironment.						
Text Books									
	uide to Design for Additive Manufac Additive Manufacturing", Elsevier, 2		nger, 2019						
Reference Books									
1. Ben Redwood, "The 3D Prin 2017.	nting Handbook: Technologies, Des	ign and Appl	lications",3D Hubs,						
2. Rapid prototyping: Principle Scientific publications, Third		-	nd LIM C.S, World						
1 0	. Pham and S.S. Dimov, Springer, 2 y Wohlers, Wohlers Associates, 200								
5. Rapid Prototyping & Engin	eering Applications – Frank W.Lio		s, Taylor & Francis						
 Group, 2011. 6. Ian Gibson, David W Rosen, Brent Stucker., "Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing", 2nd Edition, Springer, 2015 									
Web Resources		,							
Nil									
L									

					1 0							
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
1	3	1	1	1								
2	3	1	1	2	1							
3	3	2	3	2	2							
4	3	2	2	2	2							
5	3	2	2	2	2							
6	3	3	3	2	2	2						3

partment of Mecl	hanical Engineering, Francis Xavier Engineering College Regulation 2021				
		-	-		
21ME5S02	CAD FOR ADDITIVE MANUFACTURING	L 3	Т 0	P 2	C 4
Duonoquisitos	for the course	5	U	4	-
	for the course				
Nil					
Objectives					
engineers and manufacturing	aimed at giving exposure to and enhancing the knowledge and ski l engineers involved in the operation use of 3D Scanners and 3I g with the aid of CAD packages and for those who want to provide tra exposure and on hand experience in the field of CAD packages, 3	D prii ining	nting to oth	/ add	litive 1 this
UNIT-I	DESIGN OF SOLIDS			6	
of solid mode approach, Ad	o modelling, Types of modelling, 3D modelling: Solid entities, Boole el – Boundary representation (B-rep) technique and Construction So vanced modelling methods-CAD Data exchange formats. AMF file ΓΕΡ for AM Application Protocols (AP).	lid M	odelli	ing (C	CSG)
UNIT-II	3D DATA CAPTURE AND SCANNING TECHNOLOGIES			6	
flight and pha Tomography (o imaging, Portable CMM - Structured light, portable arm-based lase se shift (long range) scanners-X-Ray technology, -3D CT (X-Ray) sc (CT), Basic Components of CT, Different Types of CT Scanners, Ma I), Ultrasound imaging, 3-D laser scanners, Industrial CT Scanners.	canne	rs- Co	mput	ted
UNIT-III	REVERSE ENGINEERING AND OBJECT DIGITIZATION		(6	
reverse engin development,	heering Methodology – Reverse Engineering Steps - The generic pro heering-Phase I: Scanning, Phase II: Point processing, Phase II Case studies. Applications and selection of reverse engineering system lved. Point clouds, meshes (.stl), NURBS surface models and parameters	I: Ge stems	eometr . Harc	ric n lware	nodel e and
UNIT-IV	3D RECONSTRUCTION			6	
Captured Dat Generation – Construction	ction, Image Reconstruction Procedure, Digital Communication a - Handling Data Points - Curve and Surface and solid Creation. Adaptive Slicing Approach for Cloud Data Modelling – Pla – Determination of Adaptive Layer Thickness – Application Ex from Point Clouds, Data handling & Reduction Methods, AM Softwa	Layo nar 1 ampl	er-bas Polyg es.CA	ed M on C D M	lodel Curve lodel
UNIT-V	AM DATA FORMATS AND MESHING			6	
Tessellated N	Iodels, STL Format, STL File Problems, Consequence of Buildin Iodels, STL file Repairs: Generic Solution, Other Translators, a File Manipulation and Repair Algorithms - Mesh Refining by Sub d	nd N	ewly	Prop	osed

Department of Mechanical Engineering, Francis Xavier Engineering College Regulation 2021										
S.No		List of Experiments		CO						
1	2D sketching of pr	oduct design ideas.		C01						
2	3D modelling and	assembling.		C01						
3	Use of 3D digitaliz	zation scanners.		CO2						
4	4 Use of point clouds/meshes editing software. CO2									
5		C03								
6File manipulations and repair using AMsoftwareCO5										
Total Periods30 Theory +30Lab										
Laboratory	Requirements									
3-D Scanner	DM Machine r gineering Software									
Suggestive	Assessment Metho	ds								
Continuous (30Marks)	s Assessment Test	Lab Components Assessments (20 Marks)	End So (50 Ma	emester Exams arks)						
2 Test EACH MCQ/Descr	I 15marks iptive Questions	Experiments and record of work (10) & Model practical (10)	Descrij	ptive Questions						
Outcomes		L								
Upon comp	oletion of the cours	e, the students will be able to:								
CO2 Explain CO3 Descri	n the different CAD d be the working princi	ng B-rep and CSG techniques. ata exchange formats. ple of different solid component scanni of reverse engineering and object digiti		lues						

C05Construct curve, surface and solid models using AM editing software (Practical)

CO6 Convert the different AM data formats (Practical)

Text Books

- 1. Michael E. Mortenson, "Geometric Modeling", Wiley, NY, 1997.
- 2. Anupam Saxena, Birendra Sahay, "Computer Aided Engineering Design", Springer, 2005.
- 3. Ian Gibson, "Software Solutions for Rapid Prototyping", Professional Engineering Publishing Limited, UK, 2002.
- 4. Ali K. Kamrani and Emad Abouel Nasr, "Engineering Design and Rapid Prototyping", Springer, 2010.
- Ibrahim Zeid, "CAD/CAM: Theory and Practice" TMH, 2009. 5.

Reference Books

Nil

Web Resources

Nil

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
1	3	2	3	1	3							
2	3	1	1	1	3							
3	3	1	1	1	3							
4	3	2	1	1	3							
5	3	3	3	3	3							
6	3	3	3	3	3							

partment of Mechanic	al Engineering, Francis Xavier Engineering College Regulation 2021										
21ME6S03	DESIGN FOR ADDITIVE MANUFACTURING	L 3	Т 0	P 0	C 3						
Prerequisites fo	r the course										
CAD for Ac3D Printin	fanufacturing Technologies and Applications Iditive manufacturing g and Prototyping										
Objectives											
 To impart To introdution To demon To know t To illustra 	bing this course are expected to knowledge on ace the basics of design for additive manufacturing. strate comprehensive knowledge of part consolidation and t he design requirements for Metal AM and Polymer AM techn te the implication of part design on build time and material s the concept of the post processing treatments in AM	ique.	-	sign							
UNIT I STRATEGIC DESIGN IN ADDITVE MANUFACTURING 9											
Minimize Post-pr Analysis of AM D Comparing Proces	arts – Design to Avoid Anisotropy – Design to Minimize Pri ocessing – Topology Optimisation. Design Analysis for AM Parts – role of mesh, topology and size optimization – Build s and Material Performance.	- Co	onsid	leratic simul	ons fo						
UNIT II	PART CONSOLIDATION AND TOOLING DESIGN			9							
Conventional DFM Tooling Design –	n – Design for Function – Material Considerations – Nu I/DFA principles to DfAM – Assembly Considerations – Design Mounting Fixtures and Guides – Conformal Cooling – Coola Shape and Spacing – Steps to minimise Print Time in Tooling.	of M	ovin	g Part	s, Al						
UNIT III	DESIGN CONSIDERATIONS FOR METAL AM			9							
Designing for Metal Powder Bed Fusion – Metal Powder Production – Powder Morphology – Powder Size Distribution – Other Powder Considerations – Potential Defects in AM Materials – Topology Optimisation – Lattice Structures – Overhangs and Support Material Designing to Reduce Residual stress and Stress Concentrations – General Part Positioning Guidelines - Design for Laser Powder Bed Fusion, Electron Beam Melting and Metal Binder Jetting.											
UNIT IV	DESIGN FOR POLYMER AM PROCESS AND OTHER AM CONSIDERATIONS			9							
fonts and intricate Polymer Powder E	ons due to Anisotropy, Wall Thickness, Overhangs and Support e details – Design guidelines for Material Extrusion, Vat Pho Bed Fusion. Designer Machine Operator Cooperation – Health ar I Part Certification	otopol	yme	risatio	on an						

UNIT V	

COST &VALUE OF AMAND FUTURE OF AM

9

A Cost Model of Conventional Manufacturing- Modelling the Cost of AM- Assessing the Value of AM-Cost and Value Scenarios. Future of AM: Functionally Graded Materials – Bio printing - Printed Electronics - Nano Printing - Food Printers.

	Total Periods	45

Suggestive Assessment Methods

Continuous Assessment Test (20 Marks)	LAB COMPONENT (30 Marks)	End Semester Exams (60 Marks)			
2 Test EACH 10 marks	Experiment – 20 Marks	Descriptive Questions			
MCQ/Descriptive Questions	Model lab with project – 10 Marks				

Outcomes

Upon completion of the course, the students will be able to:

CO.1Describe the design aspects for additive manufacturing.

CO.2 Convert the DFM/DFA into Design for Additive Manufacturing.

CO.3 Explain the design consideration of metal powder for AM process.

CO.4 Perform design of AM to reduce residual stresses.

CO.5 Describe the design aspects for polymer AM process.

CO.6 Compute the costing for AM products.

Text Books

- 1. Olaf Diegel, "A Practical Guide to Design for Additive Manufacturing", Springer, 2019.
- 2. Martin Leary, "Design for Additive Manufacturing", Elsevier, 2019.

Reference Books

 Ben Redwood, "The 3D Printing Handbook: Technologies, Design and Applications", 3D Hubs, 2017.

Web Resourses

Nil

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
1	2	1	1	1								
2	3	3	3	3	1							
3	2	2	3	2	1							
4	3	3	3	3	1							
5	1	1	1	1	1							
6	2	2	2	2	2						2	

	anda Engineering, Francis Xavier Engineering Couege Regulation 2021										
21ME7S04	3D PRINTING AND PROTOTYPING	L	Т	Р	С						
21101E750 4	SD F KINTING AND F KOTOTTFING	3	0	2	4						
Prerequisite	s for the course	I									
	ve Manufacturing Technologies and Applications for Additive manufacturing										
Objectives											
Students unde	ergoing this course are expected to										
To UncTo impTo exp	lain pre-processing and model preparation in AM lerstand and operate on tessellated/meshed model ort knowledge on slicing process and software lain AM data process like support generation lain post processing techniques of AM										
UNIT-I PREPROCESSING IN ADDITIVE MANUFACTURING 6											
orientation and support generation, STL Conversion, STL error diagnostics, Slicing and Generation of codes for tool path, Surface preparation of materials. Introduction, Process, CAD Data formats Data translation, Data loss, STL format. Pre-Processing -Preparation of 3D-CAD model, Par orientation and support generation, STL Conversion, STL error diagnostics, Slicing and Generation of codes for tool path, Surface preparation of materials - post processing.											
UNIT II	AM SOFTWARE	6									
Solid View, V	software, Build Preparation-Features of various AM software iew Expert, 3 D View, Velocity 2, Rhino, STL View 3 Data E matic, Simplant, MeshLab.		-								
UNIT III	AM Data Processing	6									
Data Organi Generation.M	essing: Part Orientation and Support Structure Generation, Mod zation, Direct and Adaptive Slicing, Hatching Strateg odelling of AM Process: Surface Roughness due to Staircase I ost, Optimal Orientation, Quantification of Building Inaccuracy	ies Effect	and , Part	Too Bui	l Pa ld-tim						
UNIT IVPOST PROCESSING OF AM PARTS6											
Support Material Removal, Surface Texture Improvement- Polymer Surface Treatments - Accurac Improvement, Aesthetic Improvement, Preparation for use as a Pattern, Property Enhancement using Non-thermal and Thermal Techniques- Gluing and Welding AM Parts – Heat Treatment an Aging. Product Quality - sanding, Acetone treatment, polishingInspection and testing - Defect and their causes.											
UNIT V	PROCESS SELECTION AND MATERIAL SCIENCE	6									
	Process Selection: Introduction, Selection Methods for a Part, mple System for Preliminary Selection, Process Planning and (0		ls						

		and graded materials in AM, Role of								
of non	-equilibrium structure, mi	crostructural studies, Structure prop	erty	relationship.						
S.No	Lis	t of Experiments		СО						
1	Slicing of an engineering	component		C01						
2	Fabrication of the compo dimensional analysis	onent through 3D printer and		C02						
3	Use of FDM, SLA, DLP an models.	d SLS machines to produce 3D physic	al	C02						
4	Simulation of additive manufacturing C									
Total Periods30 Theory +30 Lab										
Laboratory Requirements:										
Suggestive Assessment Methods										
Continuous Assessment Test (20 Marks)LAB COMPONENT Marks)(30 (30 										
	EACH 10 marks Descriptive Questions	Experiment – 20 Marks Model lab with project – 10 Marks	De	escriptive Questions						
Outco	omes									
Upon	completion of the course	e, the students will be able to:								
CO2: CO3: CO4: CO5:	Compare the different feature Explain the data processing Discuss the different post process parameter f	techniques for additive manufacturing rocessing methods								
	(Practical)	F	8 -							
Text I	Gibson, I, Rosen, D W.,	and Stucker, B., Additive Manufactu igital Manufacturing, Springer, 2015	urin	g Methodologies: Rapid						
Refer	ence Books									
	Applications: Fourth Edition	Leong, 3D Printing and Additive Mon of Rapid Prototyping, World Scientified Lim C.S., "Rapid prototyping: Prince Publishers, 2010.	fic P	ublishers, 2014.						

- 3. Gebhardt A., "Rapid prototyping", Hanser Gardener Publications, 2003.
- 4. Liou L.W. and Liou F.W., "Rapid Prototyping and Engineering applications: A tool box for prototype development", CRC Press, 2007.
- Kamrani A.K. and Nasr E.A., "Rapid Prototyping: Theory and practice", Springer, 2006 6. Mahamood R.M., Laser Metal Deposition Process of Metals, Alloys, and Composite Materials, Engineering Materials and Processes, Springer International Publishing AG 2018.
- Ehsan Toyserkani, Amir Khajepour, Stephen F. Corbin, "Laser Cladding", CRC Press, 2004.
 V. Raja and K. Fernandes, Reverse Engineering: An Industrial Perspective, Springer- Verlag, 2008.

Web Resources

Nil

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
1	3	2	2	1	3							
2	3	2	2	1	3							
3	3	2	3	1	3							
4	3	2	3	1	3							
5	3	3	3	1	3							
6	3	3	3	3	3					2		

L	Т	Р	С
0	0	8	4

Prerequisites for the course

21ME8S05

Additive Manufacturing Technologies and Applications

- CAD for Additive manufacturing
- 3D Printing and Prototyping
- Design for additive Manufacturing

Objectives

• To prepare students to work in teams to solve open-end designing and manufacturing problems and to develop the necessary skills for using modern AM technology.

PROTOTYPING PROJECT

- To make the students work in small groups following the typical stages of product development -designing, prototyping and manufacturing in one continuous project.
- To teach use of new tools and techniques required to carry out the projects.
- To give guidance on the various procedures for validation of the product and analyze the costeffectiveness.
- To provide guidelines to prepare technical report of the project.

SUGGESTED PROBLEM APPROACH

- Analyze the situation and come up with more than one possible technical solution. Choose one and justify why it is the best.
- For the selected design, produce complete technical documentation going from the hand sketchesto the fully dimensioned CAD files.
- Make physical, fully functioning prototypes to verify form, fit, and function. Analyze the

prototype for design and functional flaws. Prepare the final model and report to turn in, and give apublic presentation.

PROJECT ASSUMPTIONS

- Designing, prototyping and manufacturing facilities are at different locations and a system of communication has to be used to set up the working links between these locations.
- Work-in-progress should be accessible by all the participating team members. A proper file management system has to be developed and used.
- Project evaluation is based on quality and completion of listed "things to do". Students' statements are required to say what the involvement of each member of the group was.
- Each project should begin with work scheduling; Microsoft Project software is recommended to accomplish this. Meetings with faculty are scheduled bi-weekly (or by appointment) to analyze work-in-progress.

PROJECT ASSESSMENT

The project is structured to ensure that each team makes steady progress on the project throughout the semester, with adequate time at the end of the semester to allow for a variety of printing methods.

ſ	1	Team Project Idea Submission	5	
	2	First Project Part file	5	

3	First Project Printed Part	10
4	Final Project CAD files	15
5	Final Project Printed Parts	10
6	Final product assembly – functional test and quality	25
7	Final Printed Project & Presentation	30

The project is structured to ensure that each team makes steady progress on the project throughout the semester, with adequate time at the end of the semester to allow for a variety of printing methods,

SAMPLE PROJECT DETAILS

The team started the project with a hand sketch to show the idea of the mechanism and its location in the machinery. An Internet search of results for similar objects was required for this part of the project. Documentation - project documentation required use of a CAD package. The required documentation format was an assembly drawing as a solid model, and a detailed 3-D drawing file as the necessary technical documentation for prototyping, manufacturing, inspection, and production preparation.

Prototyping - the next step was prototyping, or making physical models. Using additive method plastic objects were built on the FDM. This machine builds precision objects layer by layer. This method is useful for shape and fit evaluation. There were two important issues in this stage of the project. AutoCAD (Mechanical Desktop) and Reverse engineering, AM software from the courses. A third file format, stereolithography (STL files), was created for use by the 3D printer. When conversions were done, the new formats were inspected for possible errors before proceeding with prototyping. Analysisat this stage of the project concentrated on two elements: design flaws: fitting parts together and possibilities of design improvements by reducing the weight and material selection, as well as developing a concept of manufacturing and adapting the design to the process requirements.

Outcomes

Upon completion of the course, the students will be able to:

CO.1 Apply tools and techniques acquired in AM courses for development of new product.

CO.2 Adapt an efficient problem-solving method in analysing industrial product needs.

CO.3 Formulate a real world problem, identify the requirement and develop the design solutions.

CO.4 Identify technical ideas, strategies and methodologies for prototyping

CO.5 Test and validate through conformance of the developed prototype and analysis the cost effectiveness.

CO.6 Prepare technical report and oral presentations.

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
1			3	3	3						2	2
2			3	3	3						2	2
3			3	3	3						2	2
4			3	3	3						2	2
5			3	3	3						2	2
6									3	3		2

Whatever Your Passion, you can Master it @ FXEC

Department of Mechanical Engineering

FRANCIS XAVIER ENGINEERING COLLEGE

Tirunelveli - 627003, Tamil Nadu, India. Phone : 0462 - 2502283, 2502157.

FOLLOW US ON ()/fxengg)/fxengg)/fx_ec (m/fxengg

SOCIAL MEDIA O/francisxavierengineeringcollege

www.francisxavier.ac.in
 mechhod@francisxavier.ac.in

